Behavioral Interventions in Attention-Deficit/Hyperactivity Disorder: A Meta-Analysis of Randomized Controlled Trials across Multiple Outcome Domains

David Daley, PhD, Saskia van der Oord, PhD, Maite Ferrin, MD, PhD, Marina Danckaerts, MD, PhD, Manfred Doepfner, PhD, Samuele Cortese, MD, PhD, Edmund J.S. Sonuga-Barke, PhD, on behalf of the European ADHD Guidelines Group

This article is discussed in an editorial by Dr. Linda Pfiffner on page xxx.

Supplemental material cited in this article is available online.

Objective: Behavioral interventions are recommended as attention-deficit/hyperactivity disorder (ADHD) treatments. However, a recent meta-analysis found no effects on core ADHD symptoms when raters were probably blind to treatment allocation. The present analysis is extended to a broader range of child and parent outcomes. Method: A systematic search in PubMed, Ovid, Web of Knowledge, ERIC, and CINAHL databases (up to February 5, 2013) identified published randomized controlled trials measuring a range of patient and parent outcomes for children and adolescents diagnosed with ADHD (or who met validated cutoffs on rating scales). Results: Thirty-two of 2,057 nonduplicate screened records were analyzed. For assessments made by individuals closest to the treatment setting (usually unblinded), there were significant improvements in parenting quality (standardized mean difference [SMD] for positive parenting 0.68; SMD for negative parenting 0.57), parenting self-concept (SMD 0.37), and child ADHD (SMD 0.35), conduct problems (SMD 0.26), social skills (SMD 0.47), and academic performance (SMD 0.28). With probably blinded assessments, significant effects persisted for parenting (SMD for positive parenting 0.63; SMD for negative parenting 0.43) and conduct problems (SMD 0.31). Conclusion: In contrast to the lack of blinded evidence of ADHD symptom decrease, behavioral interventions have positive effects on a range of other outcomes when used with patients with ADHD. There is blinded evidence that they improve parenting and decrease childhood conduct problems. These effects also may feed through into a more positive parenting self-concept but not improved parent mental well-being.

Attention-deficit/hyperactivity disorder (ADHD) is characterized by age-inappropriate, persistent, and pervasive inattention and/or overactivity/impulsiveness that impairs daily functioning and is associated with substantial long-term burden on patients, families, and health and educational services. Multimodal treatment approaches are recommended. Medication is typically used as the first-line intervention, especially for severe cases. Despite robust evidence of medium-term symptom control, medication has some limitations. A proportion of patients shows partial or no response. Long-term effectiveness remains to be established. Important aspects of functioning may not improve (e.g., academic achievement). Adverse effects on sleep, appetite, and growth, although rarely serious and generally manageable, are common and may not be well tolerated. Treatment compliance can be low, especially during adolescence. Parents and clinicians can have reservations about medication use and may prefer nonpharmacologic approaches.

Interventions using behavioral techniques also are recommended and commonly used as ADHD treatments. Systematic reviews of treatment trials have provided evidence to support their efficacy. However, these reviews can be difficult to interpret, because they sometimes include nonrandomized controlled trials (RCTs), mix individuals with and without ADHD, and have not always drawn clear boundaries between ADHD-specific and other outcomes. Furthermore, outcome assessment is often made unblinded by individuals taking an active part in the intervention (e.g., parents receiving parent training), which is likely to inflate efficacy estimates. Sonuga-Barke et al. published a meta-analysis of RCTs of behavioral interventions. Stringent inclusion and exclusion criteria addressed some limitations of previous meta-analyses. There was a moderate, statistically significant, positive effect on ADHD core symptoms for assessments made by individuals most proximal to the therapeutic setting—typically unblinded parent ratings. However, these effects were not corroborated by probably blinded measurements made by observers or raters unaware of treatment allocation when the effect size decreased to near 0 and became nonsignificant. A similar, although less marked, decrease was found for neural feedback and cognitive training. There are some possible explanations for these findings. First, that unblinded raters are biased and overestimate treatment effects. Second, that interventions increase parental tolerance for ADHD or their ability to cope with its negative impact rather than decreasing symptom levels. Third, that probably blinded measurements were less valid than most proximal measurements. Fourth, that intervention effects did not generalize from the therapeutic setting (e.g., the home) to other settings (e.g., school). The authors concluded that more evidence from studies with blinded assessments is required before behavioral interventions can be supported as treatments for core ADHD symptoms.

The limited effects of behavioral approaches on blinded core ADHD measurements may be explicable if one considers the treatment models on which many are based. For instance, although most treatments in the trials included in the meta-analysis of Sonuga-Barke et al. were implemented to target
ADHD symptoms, they were initially developed and have been used extensively for children with oppositional and conduct problems. For many of these, the rationale is that children’s challenging behavior develops because of coercive interactional cycles that, over time, co-reinforce noncompliant and oppositional behaviors in the child and negative and inappropriate responses from significant adults (usually the parent but also potentially teachers and other caregivers). During intervention, the adult is taught to apply behavior modification techniques to reinforce appropriate and discourage inappropriate child behaviors, enhance effective and enjoyable adult–child interactions, and so transform negative into positive interactional cycles. Such interventions, it could be argued, are unlikely to be effective as treatments for core ADHD symptoms because ADHD does not emerge along a similar environmentally mediated route as conduct problems and therefore is less likely to respond to the modification of environmental contingencies.

However, the value of behavioral interventions does not rest exclusively on their potential effects on ADHD symptoms. Patients with ADHD often have conduct problems and other comorbidities in addition to poor social and organizational skills and low academic achievement. Their parents can have poor parenting self-concept and mental health problems. These associated features of the disorder are important treatment targets in and of themselves, because each is associated with substantial burden to the child, the child’s family, and society through the criminal justice, social, and health systems. Behavioral interventions may have an important role in treating these problems whether or not they decrease core ADHD symptoms. Indeed, behavioral treatments used with patients with ADHD have targeted ADHD-related but nonspecific aspects of impairment rather than ADHD symptoms themselves (e.g., social skills, organizational skills, and academic achievement).

In this article, the authors build on the previous meta-analysis to address the broader impact of behavioral interventions for children with ADHD. They address 3 related questions. First, given that most, although not all, interventions are implemented by changes in the behavior of responsible adults (typically parents or teachers), do behavioral interventions improve adult responses to children with ADHD? Second, do they improve the sense of efficacy and competence and decrease the mental health problems of adults working with children with ADHD? Third, do they decrease levels of child oppositional behavior and other comorbidities and other aspects of impairment such as social skills and academic performance? To address these questions, most proximal and probably blinded assessments were contrasted.

Method

Please see the registered protocol CRD42011001393 (link deleted to blind the identity of the authors) for more details.
<H2>Inclusion Criteria</H2>

Only published peer-reviewed RCTs were included, although the authors acknowledge that many well-designed studies using single-subject research designs examining the effects of behavioral interventions have been published. Following the recommendation of the Cochrane group, the search was limited to published trials to ensure a level of methodologic adequacy and rigor among included trials and to avoid the inevitable problems with securing access to a full set of unpublished trials and the bias that this would introduce. Participants needed to be 3 to 18 years old and have an ADHD diagnosis (any subtype) or have met accepted cutoffs on validated ADHD rating scales. Trials involving only rare comorbid disorders (e.g., fragile X syndrome) were excluded. Acceptable control conditions were “treatment as usual,” “wait list,” or “active” controls. “Treatment as usual” could include medication, but trials were excluded if the behavioral intervention was an adjunct to medication or if pharmacologic and behavioral interventions were combined into 1 therapeutic arm as part of the study design. For the present extended review, trials could be included despite not having an ADHD-related outcome (as required in the original protocol).

<H2>Search Strategy</H2>

The search was updated to February 5, 2013. Drs. Cortese and Ferrin blindly conducted and cross-checked the updated search using the same databases, search strategy, and search terms as used previously (see protocol). The searches were conducted for records included from the inception of the databases. Behavioral interventions were defined as those interventions directed at changing behaviors (increasing desired and decreasing undesired behaviors). They encompass classic contingency management, behavior therapy (mainly through mediators such as parents or teachers), and cognitive behavior therapy (such as verbal self-instruction, problem-solving strategies, or social skills training). The treatment search terms covered a wide variety of intervention types with the aim of including trials involving any form of behaviorally based therapies, implemented in any setting (home or school), and indirectly by an adult or directly to the child (see protocol).

<H2>Outcome Measurements</H2>

To increase analytical robustness, outcome domains were only considered if at least 5 RCTs were available. Outcome measurements meeting this criterion were pre- to post-treatment changes in positive and negative parenting, parent mental health (e.g., anxiety, depression) and parenting self-concept (e.g., sense of competence and efficacy), child ADHD, conduct problems (i.e., negative and noncompliant behavior including symptoms of oppositional defiance and conduct disorders), social skills, and academic achievement. There were too few RCTs (n < 5) to examine changes in teacher behavior and well-being,
child impairment, internalizing problems, executive/organizational skills, or more general measurements of family functioning.

H2>Study Selection

Article titles and abstracts were screened. Final inclusion was based on the full text. Trials were blindly double-coded for eligibility. Study quality was assessed by 2 independent raters according to the criteria of Jadad et al. These provide a rating for each trial in terms of standard definitions for randomization, blinding, and treatment of missing data defined by Jadad et al. Jadad scores for blinding were adapted for use with multiple outcomes so that studies with at least 1 blinded outcome yielded a score of 1 on this dimension. A score of at least 3 is regarded as indicating acceptable quality. Initial disagreements (n = 4) were resolved by the coders through discussion without recourse to an independent arbitrator.

H2>Data Extraction and Statistical Analysis

Trial information was entered into RevMan 5.1. Data extraction was independently rated by 2 authors. The standardized mean difference (SMD), namely the mean pre- to post-treatment change minus the mean pre- to post-treatment control group change divided by the pooled pretest standard deviation with a bias adjustment, was calculated. SMDs for trials in each domain were combined using the inverse-variance method. Given the inherent heterogeneity of studies, random-effects models were used. The I^2 statistic was calculated, a posteriori, to estimate between-trial SMD heterogeneity. Most proximal and probably blinded analyses were performed for all domains except parent mental health, parenting self-concept, child social skills, and academic outcomes for which insufficient trials with probably blinded measurements were available. When multiple measurements were available for an outcome, the one most frequently reported across included trials was included. For the most proximal analysis, parent ratings, if available, were used, except for teacher-based interventions, when teacher ratings or direct observations were preferred. Probably blinded assessments were made by an individual likely to be blind to allocation. In trials in which more than 1 such measurement was available, the best blinded measurement was selected. This affected only trials with a home-based element where direct observations by an independent researcher and teacher ratings were the probably blinded measurement. In such cases, direct observation was selected over teacher ratings. Sensitivity analyses examined the impact of background ADHD medication use in trial samples for which at least 3 trials had fewer than 30% of participants receiving medications (i.e., were no-/low-medication trials) and the effects of outliers identified using funnel plots within RevMan 5.1. Meta-regression tested whether effect sizes were larger in lower-quality trials according to Jadad et al. For 1 study, 2 active treatment arms were suitable for analysis. Parents and Teachers Helping Children Organize and Organizational Skills
Treatment yielded similar results; so only 1 arm, Parents and Teachers Helping Children Organize, which was considered the more standard behavioral intervention, was included in the final analysis. For another study,^40^ outcomes were taken from 3 publications.^40^-^42^

<H1>Results

Thirty-two studies met the entry criteria and had data amenable to analysis. Eight had a Jadad study quality rating of at least 3.^33^ Thirty-one studies had a parent-based component implemented at home. Four had an additional school-based, teacher-focused element. Fourteen included direct intervention with the child. Although most used standard behavioral principles and targeted children’s externalizing behaviors (ADHD, oppositional defiance disorder, conduct disorder), some implemented specialized social (n = 3), organizational (n = 3), or academic (n = 1) skills. Figure 1 presents the trial selection flowchart. Tables 1 and 2 present information about included trials and the measurements used in each analysis, respectively.

<H2>Do Behavioral Interventions Improve Adult Responses to Children with ADHD?

No trials measured responses to children with ADHD by adults other than parents (i.e., no teachers). Nine trials measured positive parenting. Three most proximal measurements were parent rated; 5 were observational. Eight trials had probably blinded measurements, all observational. For positive parenting, most proximal effects were significant (SMD 0.68; 95% confidence interval [CI] 0.27-1.09; Figure 2 shows forest plots). Effects were similar for probably blinded outcomes (SMD 0.63, 95% CI 0.47-0.78). Heterogeneity was significant in the 2 analyses (χ^2 for most proximal = 63.55, $I^2 = 87\%$, $p < .01$; χ^2 for probably blinded = 40.58, $I^2 = 83\%$, $p < .01$). Effects were unaffected by limiting the analyses to no-/low-medication trials (n = 5, SMD for most proximal 1.23, 95% CI 0.26-2.20; n = 4, SMD for probably blinded 0.89, 95% CI 0.65-2.13), although heterogeneity remained high (χ^2 for most proximal = 28.35, $I^2 = 89\%$, $p < .01$; χ^2 probably blinded = 23.29, $I^2 = 87\%$, $p < .01$). Removing outliers decreased effect sizes (n = 2, SMD most proximal 0.32, 95% CI −0.06 to 0.58; n = 1, SMD probably blinded 0.44, 95% CI 0.14-0.75). Heterogeneity was no longer significant (χ^2 most proximal = 3.46, $I^2 = 0\%$, $p = .48$; χ^2 for probably blinded = 0.83, $I^2 = 0\%$, $p = .66$). Fourteen trials measured negative parenting. The 9 most proximal measurements were parent ratings (4 observations and 1 speech sample). Eight studies met criteria for probably blinded assessments (7 observations and 1 speech sample). For negative parenting, effects were significant for the 2 analyses (SMD for most proximal 0.57, 95% CI 0.37-0.78; SMD for probably blinded 0.43, 95% CI 0.24-0.62). Heterogeneity also was significant (χ^2 for most proximal = 32.7, $I^2 = 60\%$, $p < .01$; χ^2 for probably blinded = 19.8, $I^2 = 65\%$, $p < .01$). Most proximal effects were unchanged when no-/low-medication trials were analyzed (n = 7, SMD 0.57, 95% CI 0.22-0.92; $\chi^2 = 7.81$, $I^2 = 49\%$, $p < .01$), but effects became nonsignificant for probably blinded outcomes (n = 6, SMD 0.42,
When outliers were excluded, effects remained significant for the 2 outcomes (n = 2, SMD for most proximal 0.45, 95% CI 0.31-0.58; n = 1, SMD for probably blinded 0.36, 95% CI 0.12-0.60). Heterogeneity was decreased for one (χ^2 for most proximal = 15.45, $I^2 = 35\%$, $p = .12$) but not the other (χ^2 for probably blinded = 15.03, $I^2 = 73\%$, $p < .01$).

Do Behavioral Interventions Improve the Self-Concept and Mental Health of Adults Working with Children with ADHD?

No trials measured the self-concept and mental health of adults other than parents. Seven trials included self-ratings of parental self-concept (6 parenting efficacy/sense of competence, 1 parenting self-esteem). There was a small but significant improvement in self-concept after treatment (SMD 0.37, 95% CI 0.03-0.70). Heterogeneity was significant ($\chi^2 = 19.03$, $I^2 = 68\%$, $p < .01$). Effects increased slightly in no-/low-medication trials (n = 5, SMD 0.68, 95% CI 0.22-0.92), whereas heterogeneity decreased substantially ($\chi^2 = 0.99$, $I^2 = 0\%$, $p = .61$). When outliers were removed (n = 1), effects and their heterogeneity were decreased to nonsignificant levels (SMD 0.30, 95% CI -0.07 to 0.65, $\chi^2 = 5.24$, $I^2 = 4\%$, $p = .39$). Measurements of self-rated parent mental health were included in 9 studies (7 depression/anxiety, 2 more general well-being). There were no significant effects of treatment (SMD 0.09, 95% CI -0.09 to 0.23; no-/low-medication analysis, n = 6, SMD 0.09, 95% CI -0.19 to 0.37, $p = .13$; $\chi^2 = 5.63$, $I^2 = 47\%$, $p < .01$). No outliers were identified.

Do Behavioral Interventions Decrease Child Psychopathology and Improve Functioning?

Nineteen studies had most proximal ADHD measurements (4 in addition to the trials included in the study by Sonuga-Barke et al.21). The treatment effect was significant (SMD 0.35, 95% CI 0.19-0.50). Heterogeneity was significant ($\chi^2 = 32.63$, $I^2 = 45\%$, $p < .05$). Restricting the analysis to no-/low-medication enhanced the effect (n = 11, SMD 0.50, 95% CI 0.24-0.76), but heterogeneity remained significant ($\chi^2 = 20.33$, $I^2 = 51\%$, $p < .05$). Effects were decreased when outliers (n = 3) were removed but remained significant (SMD 0.23, 95% CI 0.12-0.35). Heterogeneity was no longer significant ($\chi^2 = 16.86$, $I^2 = 23\%$, $p = .21$). None of the trials added since the study by Sonuga-Barke et al.19 had a probably blinded measurement, so the prior finding of no treatment effect for ADHD remained unchanged (overall SMD 0.02, 95% CI -0.30 to 0.34).

Fifteen trials had most proximal measurements of conduct problems (10 parent ratings, 3 teacher ratings, and 2 clinic observations). Eight trials had probably blinded measurements (1 teacher rating and 7 observational ratings). Most proximal and probably blinded effects were significant (SMD for most proximal 0.26, 95% CI 0.14-0.37; SMD for probably blinded 0.31, 95% CI -0.05 to 0.57). Heterogeneity was significant for most proximal ($\chi^2 = 25.87$, $I^2 = 46\%$, $p = .03$) but not for probably blinded ($\chi^2 = 14.28$, $I^2 = 51\%$, $p = .05$) effects. Low-/no-medication studies yielded significant effects for the 2 analyses

95% CI -0.07 to 0.91, $\chi^2 = 14.25$, $I^2 = 72\%$, $p < .01$). When outliers were excluded, effects remained significant for the 2 outcomes (n = 2, SMD for most proximal 0.45, 95% CI 0.31-0.58; n = 1, SMD for probably blinded 0.36, 95% CI 0.12-0.60). Heterogeneity was decreased for one (χ^2 for most proximal = 15.45, $I^2 = 35\%$, $p = .12$) but not the other (χ^2 for probably blinded = 15.03, $I^2 = 73\%$, $p < .01$).
(n = 7, SMD for most proximal 0.54, 95% CI 0.32-0.76; n = 6, SMD for probably blinded 0.27, 95% CI = 0.02-0.51). Heterogeneity was not significant for either of these analyses (χ^2 for most proximal = 5.96, $I^2 = 37\%$, $p = .43$; χ^2 for probably blinded = 3.77, $I^2 = 0\%$, $p = .44$). Most proximal effects remained significant when outliers (n = 2) were removed (SMD 0.26, 95% CI = 0.12-0.46, $\chi^2 = 14.16$, $I^2 = 22\%$, $p = .22$). There were no probably blinded outliers.

Nine trials included most proximal social skills outcomes (4 parent and 5 teacher ratings). Four of these included a core specialized social skills training component. The effect was significant (SMD 0.47, 95% CI 0.15-0.78), as was heterogeneity ($\chi^2 = 22.98$, $I^2 = 65\%$, $p < .01$). Restricting the analysis to the no-/low-medication studies increased heterogeneity (n = 5, $\chi^2 = 22.08$, $I^2 = 86\%$, $p < .01$), so that although the effect size increased, it was no longer significant (SMD 0.67, 95% CI = -0.20 to 1.55). When outliers (n = 1) were removed, the effect remained (SMD 0.30, 95% CI 0.07-0.52) and heterogeneity was nonsignificant ($\chi^2 = 4.04$, $I^2 = 0\%$, $p = .54$).

Academic achievement was measured in 9 trials (6 parent or teacher questionnaire-based measurements and 3 objective assessments). Seven studies had a specialized component to specially target this aspect of impairment. Most proximal effects were significant, and heterogeneity was nonsignificant (SMD 0.28, 95% CI 0.06-0.50, $\chi^2 = 14.55$, $I^2 = 45\%$, $p = .07$) and persisted when outliers (n = 2) were removed (SMD 0.16, 95% CI 0.01-0.31) and heterogeneity was nonsignificant ($\chi^2 = 7.95$, $I^2 = 37\%$, $p = .16$). There were insufficient no-/low-medication studies to conduct a sensitivity analysis (Figure 3).

There was no association between larger effect sizes and lower Jadad ratings. In fact, for most proximal ADHD ($t = 2.52$, $p = .02$), higher-quality trials yielded larger effects. Meta-regression did show larger effect sizes in trials with younger children for most proximal positive parenting ($t = -2.63$, $p = .03$), most proximal ADHD ($t = -2.09$, $p = .05$), and most proximal conduct problems ($t = -2.46$, $p = .03$).

Discussion

The present meta-analyses found blinded evidence that behavioral interventions used to treat children and adolescents with ADHD had beneficial effects on important aspects of child and parent functioning. This finding contrasts with the lack of blinded evidence relating to ADHD symptoms reported by Sonuga-Barke et al.19 Specifically, in this analysis, behavioral interventions improved parenting, decreasing negative and increasing positive parenting, and decreased children’s comorbid conduct problems.

Although improving parent functioning was rarely their primary therapeutic goal, nearly all behavioral interventions included parent training as a core therapeutic mechanism. Positive effects on these outcomes are therefore expectable and, in some ways, a necessary condition for subsequent impacts on children’s behavior. Given the need to pool across very diverse and often rather general parenting...
assessments, a fine-grained analysis of these effects was not possible. For instance, positive parenting analyses pooled studies with general assessments of overall increases in positive behaviors/strategies (e.g., praise, encouragement), together with measurements of their appropriate use, according to therapeutic models. This is important because, according to most models, simply increasing levels of positive parenting may not be sufficient to produce positive changes in children’s behavior. Objective effects on parenting were reflected in improved parenting self-concept: an empowering effect important in the process of breaking negative parent–child interaction cycles. Increased parenting confidence could come from working with experienced therapists who validate parents’ approaches and/or implementing behavioral strategies and seeing their positive effects. It also may be an effect of psychoeducation that emphasizes the power parents have to influence developmental outcomes. Given these parenting-specific positive effects, it was perhaps surprising that no beneficial effects were seen on parent mental health more generally. It would seem that the high levels of mental health problems that often affect parents of children with ADHD are not solely the result of issues around parenting morale, but rather reflect a more deep-seated, pervasive psychological aspect, perhaps reflecting shared genetic risk for mental health problems within families. There also was blinded evidence that behavioral interventions decreased conduct problems in children with ADHD; benefits of behavioral interventions for children seen with conduct disorder extend to those with a full ADHD diagnosis. Given the limited number of studies with probably blinded measurements and the fact that few had objective measurements of child behavior measured at home and school, the authors were unable to assess the generalization of child effects across settings. According to most proximal measurements, children’s academic performance and social skills also were improved—an effect that is perhaps not surprising, because trials included in these analyses often specifically targeted these aspects of impairment with specialized packages. If these effects could be corroborated with blinded ratings, this would be encouraging given the inconsistent evidence regarding the effects of medication on these outcomes.

When interpreting the present analysis, it is important to take some factors into account; all meta-analyses are constrained by the quality and diversity of the studies available for inclusion. First, for nearly all analyses, there was significant SMD heterogeneity among studies that may reflect the variety of intervention and outcome types analyzed. In most, although not all, cases, removing outliers identified using funnel plots decreased this heterogeneity while leaving treatment effects significant. Second, the authors could not establish how many parents had definite parenting or mental health problems, or how many children had clinical levels of conduct problems. Because participants were specifically selected for ADHD in childhood, it is likely that substantial numbers of individuals were unaffected by these additional problems. As a consequence, effect sizes seen for these outcomes, given the smaller room for improvement, are likely to be an underestimate of the true effects of behavioral interventions. Third,
Sonuga-Barke et al.' raised questions about the status of the probably blinded measurements as valid outcomes. This is because they were often based on relatively small snapshots of behavior or a rating by a teacher who may not know the child well. However, in the present study, these measurements proved to be sensitive to treatment-related change. Fourth, this evaluation did not explore the impact on long-term outcomes, where one might predict a more robust impact of behavioral interventions. Fifth, although the authors established that parenting improved on rather artificial trial-based assessments, these may not have been able to capture improvements in everyday life situations. Sixth, there were insufficient studies to explore whether interventions specifically tailored for ADHD were more effective than parenting interventions designed to treat more general childhood behavior problems or other aspects of impairment (social and academic skills). Seventh, the pool of trials meeting inclusion criteria was dominated by parenting interventions. This meant that the present analysis says little specifically about the value of child- or teacher-focused interventions. Eighth, in a related manner, no trials included measurements of changes in adult responses to children with ADHD other than parents. Ninth, the authors decided not to conduct or report an analysis of publication bias using techniques such as funnel plots because their interpretation is equivocal when based on a small number of studies, with difficulty in particular distinguishing between the effects of study heterogeneity and publication bias with sparse data.

In summary, although more evidence is required before behavioral interventions can be supported as a front-line treatment for core ADHD symptoms, the authors found evidence that they do have beneficial effects on parenting and parents’ sense of empowerment and independently corroborated effects on conduct problems in children with ADHD. Initial evidence from proximal outcomes relating to academic achievement and social skills needs to be confirmed by probably blinded analyses and greater exploration is needed on the moderating impact of child age on intervention outcome.
This work was not directly funded. However support for meetings was received from Brain Products GmbH, Janssen-Cilag, Eli Lilly and Co., Medice, Shire, and Vifor. No honoraria were received, and funders had no input in the review and meta-analysis process or the writing of the article.

The European ADHD Guidelines Group is a workgroup of the European Network for Hyperkinetic Disorder (Eunethydis) and consists of the following members and associates co-opted to work on this review (listed in alphabetical order): T. Banaschewski, MD, PhD; J. Buitelaar, MD, PhD; D. Brandeis, PhD; D. Coghill, MD; S. Cortese, MD, PhD; D. Daley, PhD; M. Danckaerts, MD, PhD; R.W. Dittmann, MD, PhD; M. Döpfner, PhD; B. Falissard, MD, PhD; M. Ferrin, MD, PhD; J. Graham, MD; R. Hamilton, MD; C. Hollis, MD, PhD; M. Holtmann, MD, PhD; M. Hulpmke-Wette, MD; M. Lecendreux, MD; E. Konofal, MD, PhD; P. Santosh, MD; E. Rosenthal, MD; A. Rothenberger, MD; J.A. Sergeant, PhD; E. Simonoff, MD; E.J. Sonuga-Barke, PhD; H.-Ch. Steinhausen, MD, PhD; J. Stevenson, PhD; A. Stringaris, MD, PhD; E. Taylor, MD; M. Thompson, MD; S. van der Oord, PhD; I. Wong, PhD; and A. Zuddas, MD.

The authors thank the following individuals who supplied information and advice: Howard Abikoff, PhD, New York University; Russell Barkley, PhD, Medical University of South Carolina; Bazian Ltd., UK; Steve Evans, PhD, Ohio University; Greg Fabiano, PhD, Buffalo State University; Philip Firestone, PhD, University of Ottawa, Canada; Nicholas Ialongo, PhD, Johns Hopkins University; Linda Pfiffner, PhD, University of California, San Francisco; Thomas Power, PhD, University of Pennsylvania; Mary V. Solanto, PhD, Mount Sinai School of Medicine; Jim Stevenson, PhD, University of Southampton, UK; Jim Swanson, PhD, University of California, Irvine; Barbara van den Hooffdakker, PhD, University of Groningen, Netherlands; and the anonymous reviewers who provided invaluable feedback. The authors also are grateful for the support given by Jana de Vos, MSc, and Stephanie Kristensen, MSc, of KU Leuven, and Jo Lockwood, BA, University of Nottingham.

Disclosure: Dr. Daley has provided educational talks for Eli Lilly and Co. and Shire, has attended an advisory board for Eli Lilly and Co., has received support for educational travel from Eli Lilly and Co., Shire, and HP Pharma, and currently holds funding from Shire. Dr. van der Oord has been involved in the development, implementation, and trialing of Braingame Brian, an executive functioning game training for children with ADHD, and Zelf Plannen, a cognitive behavioral planning intervention for adolescents with ADHD. She has no financial interests in either of these interventions. She has been a paid consultant for Janssen Pharmaceuticals, for the development and evaluation of the game Healseeker, which is aimed at training cognitive functions. Dr. Ferrin is a grant recipient for travel expenses from Alicia Koplowitz Foundation, Instituto de Salud Carlos III (ETS 07/90902, BAE 09/90088), and Gobierno de Navarra (Beca Jeronimo de Ayana 2011/12). Dr. Danckaerts has served on the speaker’s bench for Janssen-Cilag, Eli Lilly and Co., Shire, Novartis, and Medice. She has received funding for clinical trials from Eli Lilly and Co. and Shire and an educational grant from Shire. She has been involved in the development and dissemination of an ADHD Toolkit for teachers in primary school, distributed to all primary schools in Belgium by the Minister of Education, and has been a consultant for Janssen Pharmaceuticals for the development and evaluation of the game Healseeker, which is aimed at training cognitive functions. Dr. Doepfner has received research support from and served on the advisory or speaker’s boards of Janssen-Cilag, Medice, Vifor, Shire, Eli Lilly and Co., and Novartis. He has been involved in the development, evaluation, and dissemination of the German
Therapieprogramm für Kinder mit hyperkinetischem und oppositionellem Problemverhalten (THOP) and Präventionsprogramm für Expansives Problemverhalten (PEP), which are behavioral interventions for children with ADHD. He is also head, supervisor, and lecturer at the School of Child Behavior Therapy at the University of Cologne. He has received royalties for treatment manuals (Beltz, Hogrefe Publisher) and as supervisor and lecturer and as consultant of the German Kassenärztliche Bundesvereinigung for the evaluation of behavior therapy. He has received support from Vifor Pharma for an ongoing trial on the effects of omega-3/6 fatty acids and from the German Research Foundation, German Ministry of Education and Research, Shire, Eli Lilly and Co. for trials on the effects of behavioral interventions for children with ADHD. Dr. Cortese has served as scientific consultant for Shire. He has received support to attend meetings from Eli Lilly and Co. and Shire. Dr. Sonuga-Barke has been involved in the development, implementation, and trialing of the New Forest Parenting Programme for preschool children with ADHD and has received royalties from sales of a New Forest Parent Training self-help manual. He has served on the speaker’s board for Shire, UCB Pharma, Janssen-Cilag, and Medice. He has been a consultant for UCB Pharma and Shire. He has received research and conference support from Shire and has served on the advisory boards of Shire, Flynn Pharma, and AstraZeneca.

References

7. van de Loo-Neus GH, Rommelse N, Buitelaar JK. To stop or not to stop? How long should medication treatment of attention deficit hyperactivity disorder be extended? Eur Neuropsychopharmacol. 2011;21:584-599.

35. Langberg JM, Epstein JN, Becker SP, Girio-Herrera E, Vaughn AJ. Evaluation of the homework, organization and planning (HOPS) intervention for middle school students with attention deficit hyperactivity disorder as implemented by school mental health providers. Sch Psychol Q. 2012;41:342-364.
Figure 1 Flowchart showing the selection of trials. See Supplement 1 (available online) for specific reasons for exclusion.

Figure 2 Parental outcomes. Note: CI = confidence interval; MPROX = most proximal rating; MTA = National Institute of Mental Health Multimodal Treatment Study of Attention-Deficit/Hyperactivity Disorder; PBLIND = probably blinded rating; SMD = standardized mean difference.

Figure 3 Child outcomes. Note: ADHD = attention-deficit/hyperactivity disorder; CI = confidence interval; MPROX = most proximal rating; MTA = National Institute of Mental Health Multimodal Treatment Study of Attention-Deficit/Hyperactivity Disorder; PBLIND = probably blinded rating; SMD = standardized mean difference.

Table 1 Characteristics of Included Studies

<table>
<thead>
<tr>
<th>Trial</th>
<th>Treatment</th>
<th>Control</th>
<th>Jadad Rating</th>
<th>Sample Size</th>
<th>Age Range (y)</th>
<th>Boys Medicated for ADHD, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abikoff et al. (2012)³⁴</td>
<td>parent and teacher behavioral training</td>
<td>wait list</td>
<td>2</td>
<td>61</td>
<td>8-11</td>
<td>69</td>
</tr>
<tr>
<td>Antshel and Remer (2003)³⁵</td>
<td>child and parent social skills training</td>
<td>wait list</td>
<td>2</td>
<td>80</td>
<td>8-12</td>
<td>75</td>
</tr>
<tr>
<td>Bloomquist et al. (1991)³³</td>
<td>child, parent, and teacher CBT</td>
<td>wait list</td>
<td>2</td>
<td>20</td>
<td>8.58</td>
<td>69</td>
</tr>
<tr>
<td>Bor et al. (2002)³⁴</td>
<td>parent behavioral training</td>
<td>wait list</td>
<td>3</td>
<td>26</td>
<td>3.6 mean</td>
<td>73</td>
</tr>
<tr>
<td>Brown et al. (1986)³⁵</td>
<td>child self-control training</td>
<td>attention control</td>
<td>2</td>
<td>10</td>
<td>5-13</td>
<td>85</td>
</tr>
<tr>
<td>Chacko et al. (2009)³⁶</td>
<td>parent behavioral training</td>
<td>wait list</td>
<td>2</td>
<td>40</td>
<td>5-12</td>
<td>73</td>
</tr>
<tr>
<td>Evans et al. (2011)³⁷</td>
<td>parent and child behavioral and social skills training</td>
<td>TAU</td>
<td>1</td>
<td>31</td>
<td>11-13</td>
<td>71</td>
</tr>
<tr>
<td>Fabiano et al. (2010)³⁸</td>
<td>children daily report card</td>
<td>TAU</td>
<td>2</td>
<td>33</td>
<td>6-12</td>
<td>86</td>
</tr>
<tr>
<td>Fabiano et al. (2012)³⁹</td>
<td>parent behavioral training</td>
<td>wait list</td>
<td>2</td>
<td>27</td>
<td>6-12</td>
<td>87</td>
</tr>
<tr>
<td>Fehlings et al. (1991)³⁰</td>
<td>parent and child CBT</td>
<td>attention control</td>
<td>2</td>
<td>13</td>
<td>8-11</td>
<td>100</td>
</tr>
<tr>
<td>Study</td>
<td>Type</td>
<td>Intervention</td>
<td>Group 1</td>
<td>Group 2</td>
<td>Age Range</td>
<td>Group 1 Effect Size</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------------</td>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Hoath and Sanders (2002)</td>
<td>parent behavioral training</td>
<td>wait list</td>
<td>1</td>
<td>9</td>
<td>5-9</td>
<td>76</td>
</tr>
<tr>
<td>Horn et al. (1991)</td>
<td>parent and child behavioral and self-control training</td>
<td>placebo</td>
<td>2</td>
<td>16</td>
<td>7-11</td>
<td>no info</td>
</tr>
<tr>
<td>Jones et al. (2008)</td>
<td>parent behavioral training</td>
<td>wait list</td>
<td>3</td>
<td>50</td>
<td>3.8</td>
<td>mean</td>
</tr>
<tr>
<td>Kapalka (2005)</td>
<td>parent behavioral training</td>
<td>wait list</td>
<td>0</td>
<td>45</td>
<td>5-10</td>
<td>100</td>
</tr>
<tr>
<td>Langberg et al. (2008)</td>
<td>child and parent organizational skills training</td>
<td>wait list</td>
<td>1</td>
<td>24</td>
<td>grade 4-7</td>
<td>83</td>
</tr>
<tr>
<td>Langberg et al. (2012)</td>
<td>child and parent organizational skills training</td>
<td>wait list</td>
<td>2</td>
<td>23</td>
<td>grade 6-8</td>
<td>74</td>
</tr>
<tr>
<td>Mikami et al. (2011)</td>
<td>parent parent coaching on social skills</td>
<td>wait list</td>
<td>2</td>
<td>32</td>
<td>grade 6-8</td>
<td>75</td>
</tr>
<tr>
<td>Molina et al. (2008)</td>
<td>child and parent organizational skills training</td>
<td>community</td>
<td>2</td>
<td>11</td>
<td>grade 6-8</td>
<td>75</td>
</tr>
<tr>
<td>Pfiffner and McBurnett (1997)</td>
<td>child and parent behavioral training and CBT</td>
<td>wait list</td>
<td>2</td>
<td>9</td>
<td>8-10</td>
<td>72</td>
</tr>
<tr>
<td>Pfiffner et al. (2007)</td>
<td>child and parent behavioral training and CBT</td>
<td>wait list</td>
<td>2</td>
<td>36</td>
<td>7-11</td>
<td>66</td>
</tr>
<tr>
<td>Pisterman et al. (1989)</td>
<td>parent behavioral training</td>
<td>wait list</td>
<td>3</td>
<td>23</td>
<td>4.1</td>
<td>mean 80</td>
</tr>
<tr>
<td>Pisterman et al. (1992)</td>
<td>parent behavioral training</td>
<td>wait list</td>
<td>3</td>
<td>23</td>
<td>4.1</td>
<td>mean 91</td>
</tr>
<tr>
<td>Power et al. (2012)</td>
<td>child and parent behavioral and academic skills training</td>
<td>attention</td>
<td>2</td>
<td>100</td>
<td>grade 2-6</td>
<td>68</td>
</tr>
<tr>
<td>Sonuga-Barke et al. (2001)</td>
<td>parent behavioral training</td>
<td>counseling</td>
<td>3</td>
<td>30</td>
<td>2-4</td>
<td>62</td>
</tr>
<tr>
<td>Sonuga-Barke et al. (2004)</td>
<td>parent behavioral training</td>
<td>wait list</td>
<td>2</td>
<td>59</td>
<td>2-4</td>
<td>no info</td>
</tr>
<tr>
<td>Thompson et al. (2009)</td>
<td>parent behavioral training</td>
<td>wait list</td>
<td>4</td>
<td>21</td>
<td>2-6</td>
<td>73</td>
</tr>
<tr>
<td>Tracey and Tripp (2005)</td>
<td>parent stress management</td>
<td>wait list</td>
<td>2</td>
<td>20</td>
<td>6-15</td>
<td>88</td>
</tr>
</tbody>
</table>
Van den Hoofdakker
et al. (2007) 66

Webster-Stratton
et al. (2011) 23

Table 2 Measurements Used in Each Trial for the Different Outcomes

<table>
<thead>
<tr>
<th>Study</th>
<th>Child Measures</th>
<th>Parent Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abikoff et al.</td>
<td>MPROX</td>
<td>APRS<sup>a</sup></td>
</tr>
<tr>
<td>Antshel and Remer</td>
<td>PBLIND</td>
<td>SSRS<sup>a</sup></td>
</tr>
<tr>
<td>Bloomquist et al.</td>
<td>PBLIND</td>
<td>CTRS<sup>b</sup></td>
</tr>
<tr>
<td>Bor et al.</td>
<td>ECBI<sup>a</sup></td>
<td>DASS<sup>a</sup></td>
</tr>
<tr>
<td>Brown et al.</td>
<td>CPRS<sup>a</sup></td>
<td>IRS<sup>b</sup></td>
</tr>
<tr>
<td>Chacko et al.</td>
<td>DBD<sup>a</sup></td>
<td>BDI<sup>a</sup></td>
</tr>
<tr>
<td>Evans et al.</td>
<td>ADHDRS<sup>S</sup></td>
<td>IRS<sup>a</sup></td>
</tr>
<tr>
<td>Fabiano et al.</td>
<td>DBD<sup>b</sup></td>
<td>APRS<sup>a</sup></td>
</tr>
<tr>
<td>Fabiano et al.</td>
<td>ECBI<sup>a</sup></td>
<td>DPICS<sup>c</sup></td>
</tr>
<tr>
<td>Fehlings et al.</td>
<td>WWAS<sup>a</sup></td>
<td>DPICS<sup>c</sup></td>
</tr>
<tr>
<td>Hoath and Sanders</td>
<td>CAPS<sup>a</sup></td>
<td>DASS<sup>a</sup></td>
</tr>
<tr>
<td>Horn et al.</td>
<td>CAPS<sup>b</sup></td>
<td>SESBI<sup>b</sup></td>
</tr>
<tr>
<td>Jones et al.</td>
<td>CPRS<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>Authors</td>
<td>MPROX</td>
<td>Method</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Kapalka et al. 54</td>
<td>MPROX</td>
<td>SSQ²</td>
</tr>
<tr>
<td>Langberg et al. 55</td>
<td>PBLIND MPROX</td>
<td>APRS¹</td>
</tr>
<tr>
<td>Langberg et al. 55</td>
<td>PBLIND MPROX</td>
<td>VADPR S²</td>
</tr>
<tr>
<td>Mikami et al. 56</td>
<td>PBLIND MPROX</td>
<td>SSRS¹ PBIPC²</td>
</tr>
<tr>
<td>Molina et al. 57</td>
<td>PBLIND MPROX</td>
<td>ACPS¹ SGR</td>
</tr>
<tr>
<td>MTA 40-42</td>
<td>PBLIND MPROX</td>
<td>SNAP¹ SNAP¹</td>
</tr>
<tr>
<td>Pfliffner and McBurnett 33</td>
<td>PBLIND MPROX</td>
<td>SSRS¹</td>
</tr>
<tr>
<td>Pfliffner et al. 58</td>
<td>PBLIND MPROX</td>
<td></td>
</tr>
<tr>
<td>Pfliffner et al. 59</td>
<td>PBLIND MPROX</td>
<td>clinob³</td>
</tr>
<tr>
<td>Pisterman et al. 59</td>
<td>PBLIND MPROX</td>
<td>clinob³ clinob³</td>
</tr>
<tr>
<td>Pisterman et al. 60</td>
<td>PBLIND MPROX</td>
<td>clinob³ clinob³</td>
</tr>
<tr>
<td>Power et al. 61</td>
<td>PBLIND MPROX</td>
<td>SNAP¹ SNAP¹</td>
</tr>
<tr>
<td>Sonuga-Barke et al. 62</td>
<td>PBLIND MPROX</td>
<td>PACS¹ PACS¹</td>
</tr>
<tr>
<td>Sonuga-Barke et al. 63</td>
<td>PBLIND MPROX</td>
<td>homeob³ PACS</td>
</tr>
<tr>
<td>Thompson et al. 64</td>
<td>PBLIND MPROX</td>
<td>PACS PACS</td>
</tr>
<tr>
<td>Tracey and Tripp 65</td>
<td>PBLIND MPROX</td>
<td>homeob³ GIPCI³</td>
</tr>
<tr>
<td>Van den Hoofdakar et al. 66</td>
<td>PBLIND MPROX</td>
<td>CPRS¹</td>
</tr>
<tr>
<td>Webster-Stratton et al. 25</td>
<td>PBLIND MPROX</td>
<td>CPRS¹ CPRS¹ SCS¹</td>
</tr>
<tr>
<td></td>
<td>PBLIND COCA-R</td>
<td></td>
</tr>
</tbody>
</table>
Note: Superscript letter codes who provided the assessment; superscript number gives full name of test. ACPS = Aggression and Conduct Problem Scale; ACRS = Abbreviated Conners Rating Scale; ACTeRS = ACTeRS ADD-H Comprehensive Teachers Rating Scale; ADHD = attention-deficit/hyperactivity disorder; ADHDRS = Attention Deficit Hyperactivity Disorder Rating Scale; APRS = Academic Performance Rating Scale; AS = academic skills; BDI = Beck Depression Inventory; CAPS = Child Attention Problem Rating Scale; classob = classroom observation; clinob = clinic observation; COCA-R = Coder Observation of Classroom Adaption–Revised; Cognitive Concentration; COSS = Children’s Organizational Skills Scale; CP = conduct problems; CPRS = Conners Parent Rating Scale–Hyperactivity; CTRS = Conners Teachers Rating Scale; DASS = Depression Anxiety and Stress Scale; DBD = Disruptive Disorders Rating Scale; DPICS = Dyadic Parent–Child Interaction Coding System; ECBI = Eyberg Child Behavior Inventory; EE = Expressed Emotion measured using the Pre-school Five Minute Speech Sample; FOSR = Family Observation Schedule; GHQ = General Health Questionnaire; GIPCI = Global Impressions of Parent Child Interaction Revised; homeob = home observation of on-task behavior; HPC = Homework Problem Checklist; IRS = Impairment Rating Scale; MH = mental health; MPROX = most proximal rating; MTA = National Institute of Mental Health Multimodal Treatment Study of Attention-Deficit/Hyperactivity Disorder; NP = negative parenting; OBS = observed constructive parenting; PACS = Parent Account of Childhood Symptoms Interview; PBIPC = Parental Behavior in Parent–Child Interaction; PBLIND = probably blinded rating; PCRQ = Parent Child Relationship Questionnaire; PES = Parent as Educator; PLOC = parents locus of control; PS = Parenting Scale; PSBC = Problem Setting and Behavior Checklist; PSI = Parenting Stress Inventory; SCS = Social Competence Scale; SESBI = Sutter-Eyberg Student Behavior Inventory Revised; SGR = school grade records; SNAP = Pelham Swanson and Nolan Questionnaire; SS = social skills; SSCSA = Walker-McConnel Scale of Social Competence and School Adjustment; SSQ = Social Situations Questionnaire; SSRS = Social Skills Rating Scale; VADPRS = Vanderbilt ADHD Diagnostic Parent Rating Scale; WIAT = Wechsler Individual Achievement Test; WRAT = Wide Range Achievement Test; WWAS = Werry Weiss Activity Scale.

Parent.
Teacher.
Observation.
Academic skills test.
Speech sample.

Supplement 1 Information on Excluded Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Reasons for Exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abikoff and Gittelman (1985)<sup>1</sup></td>
<td>not a behavioral intervention; study explores cognitive training</td>
</tr>
<tr>
<td>Abikoff <i>et al.</i> (2004)<sup>2</sup></td>
<td>no appropriate control group; behavioral intervention adjunctive to medication</td>
</tr>
<tr>
<td>Abikoff <i>et al.</i> (2004)<sup>3</sup></td>
<td>no appropriate control group; behavioral intervention adjunctive to medication</td>
</tr>
<tr>
<td>Altemeier and Horwitz (1997)<sup>4</sup></td>
<td>not randomized</td>
</tr>
<tr>
<td>Anastopolos <i>et al.</i> (1993)<sup>5</sup></td>
<td>not randomized</td>
</tr>
<tr>
<td>Arnold <i>et al.</i> (2003)<sup>6</sup></td>
<td>MTA study that did not add additional outcomes to the included studies</td>
</tr>
<tr>
<td>Barkley <i>et al.</i> (1992)<sup>7</sup></td>
<td>no appropriate control group; this study is a comparison of 3 active therapies</td>
</tr>
<tr>
<td>Barkley <i>et al.</i> (1996)<sup>8</sup></td>
<td>reports violation of randomization</td>
</tr>
<tr>
<td>Barkley <i>et al.</i> (2000)<sup>9</sup></td>
<td>reports violation of randomization in 8 children</td>
</tr>
<tr>
<td>Barkley <i>et al.</i> (2001)<sup>10</sup></td>
<td>no appropriate control group; this study compares 3 different combinations of intervention but does not have a control condition</td>
</tr>
<tr>
<td>Carlson <i>et al.</i> (1992)<sup>11</sup></td>
<td>not randomized</td>
</tr>
<tr>
<td>Chacko <i>et al.</i> (2003)<sup>12</sup></td>
<td>not a behavioral intervention; this is a medication study</td>
</tr>
<tr>
<td>Christensen and Sprague (1973)<sup>13</sup></td>
<td>not randomized</td>
</tr>
<tr>
<td>Christensen (1975)<sup>14</sup></td>
<td>no appropriate control group; this is a within-subject design</td>
</tr>
<tr>
<td>Cohen <i>et al.</i> (1981)<sup>15</sup></td>
<td>not randomized</td>
</tr>
</tbody>
</table>
Cunningham et al. (1995)16 not a specific ADHD sample
Döpfner et al. (2004)17 no appropriate control group; this study applies an adaptive and individually tailored approach to treatment
Dubey and O’Leary (1983)18 randomization unclear; groups were assigned so that age and gender were evenly distributed
Epstein et al. (2007)19 not a behavioral intervention
Evans et al. (2005)20 not randomized
Fabiano et al. (2009)21 no appropriate control group; this study is a comparison of 2 behavioral interventions
Firestone et al. (1981)22 no control group
Firestone et al. (1986)23 no control group and follow-up of a previously excluded study
Frankel et al. (1997)24 children with and without ADHD included in sample
Gerber-von Müller et al. (2009)25 no appropriate treatment control group
Gonzalez and Sellers (2002)26 ADHD status of children unclear
Hanisch et al. (2010)27 not a specific ADHD sample
Hanson et al. (2012)28 not randomized
Hechtman et al. (2004)29 no appropriate control group; behavioral intervention adjunctive to medication
Hechtman et al. (2004)30 no appropriate control group; behavioral intervention adjunctive to medication
Hinshaw et al. (1984)31 no appropriate control group; behavioral intervention adjunctive to medication
Hinshaw et al. (1984)32 no appropriate control group; behavioral intervention adjunctive to medication
Hinshaw et al. (2000)33 MTA study that did not add any additional outcomes
Horn et al. (1987)34 no appropriate control group; this study is a comparison of 2 behavioral interventions
Horn et al. (1990)35 no appropriate control group; this study is a comparison of 2 behavioral interventions case study
Hupp et al. (2002)36 same dataset as Horn et al.,35 which was excluded
Iolango et al. (1993)37 MTA study that did not add additional outcomes
Jensen et al. (2001)38 MTA study that did not add additional outcomes
Jensen et al. (2004)39 MTA study that did not add additional outcomes
Kapalka et al. (2004)40 not a behavioral intervention
Kapalka et al. (2005)41 weak randomization procedure
Kern et al. (2007)42 no appropriate control group; this study is a comparison of 2 behavioral interventions not randomized
Kienle et al. (2009)43 no appropriate control group; this study explores combinations of medication and behavioral intervention
Klein and Abikoff (1997)44 no appropriate control group; this study compares parent with self-monitoring for homework problems
Klein et al. (2004)45 methodology article on design of study by Hechtman29,30; no control group
Lerner et al. (2011)46 randomization unclear
Lloyd et al. (2010)47 not a behavioral intervention
McGrath et al. (2011)48 study met criteria for inclusion, but data were not amenable to analysis, and the investigators were unable to provide the data
McNeil et al. (1991)49 randomization unclear
Meyer and Kelley (2007)50 no appropriate control; this study compares parent with self-monitoring for homework problems
Mikami et al. (2013)51 no appropriate control; this study compares 2 behavioral interventions
Miranda et al. (2002)52 randomization unclear
Odom (1996)53 randomization unclear
Osterberg and Rydell (2012)54 not an entirely ADHD sample
Pelham (1977)55 insufficient detail in summary statistics to allow calculation of SMD
Pelham et al. (1993)56 not a behavioral intervention
Pelham et al. (1999)57 no appropriate control group; this is a within-subject design case study
Pelham et al. (2000)58 review article; no data
Pelham and Gnagy (1999)59 review article; no data
Pelham et al. (1977)60 no control group; same sample as MTA comparing behavioral and combined groups
Pfeiffer et al. (2008)64 not a specific ADHD sample and not a behavioral intervention
Pfeiffer et al. (2007)65 not fully randomized
Poulson et al. (2010)66 not fully randomized
Presentación Herrero et al. (2010)67 not randomized
Rapport et al. (1982)68 case study (2)
Rieppi et al. (2002)69 MTA study that did not add additional outcomes
Rosén et al. (1984)70 not randomized
Rutter and Sroufe (2000)71 review article; no data
Sanders et al. (2007)72 not a specific ADHD sample
Sayal et al. (2010)73 not a behavioral intervention
Shafro and Sulzbacher (1977)74 case study
Schumann et al. (1998)75 not a specific ADHD sample
Scott et al. (2010)76 not a specific ADHD sample
Shaffer et al. (2001)77 not a behavioral intervention
So et al. (2008)78 no appropriate control group; behavioral intervention adjunctive to medication
Springer and Reddy (2010)79 not randomized
Strayhorn and Weidman (1989)80 no specific ADHD sample
Strayhorn and Bickel (2002)81 no appropriate control group; comparison of 2 behavioral approaches
Storebø et al. (2012)82 behavioral intervention adjunctive to medication
Swanson et al. (2001)83 reanalysis of MTA study; no new outcomes added
Thorell (2009)84 not adequately randomized; allocation to condition influenced by other factors
Thurston (1979)85 randomization unclear
Tutty et al. (2003)86 no appropriate control group; behavioral intervention adjunctive to medication
Van der Oord et al. (2007)87 no appropriate control group; behavioral intervention adjunctive to medication
Waxmonsky et al. (2008)88 no appropriate control group; behavioral intervention adjunctive to medication
Waxmonsky et al. (2010)89 no appropriate control group; behavioral intervention adjunctive to medication
Wolraich et al. (1978)90 no appropriate control group
Wulbert and Dries (1977)91 case study

Note: ADHD = attention-deficit/hyperactivity disorder; MTA = National Institute of Mental Health Multimodal Treatment Study of Attention-Deficit/Hyperactivity Disorder; SMD = standardized mean difference.

Supplementary References

1,888 records identified through databases

189 records identified through manual search from year 2000 onwards

2,077 non-duplicate records screened on title/abstract

1,954 records excluded

123 full text articles reviewed

91 records excluded

32 studies included in study tables and with sufficient data for analysis
Overall SMD=0.68;95%CI=0.27-1.09
Overall SMD=0.63;95%CI=0.47-0.7
Overall SMD=0.57;95%CI=0.37-0.78

Overall SMD=0.43;95%CI=0.24-0.62
Overall SMD=0.37;95%CI=0.03-0.7
Overall SMS=0.09;95%CI=0.06-0.23
Overall SMD=0.35; 95%CI=0.19–0.50

Overall SMD=0.02; 95%CI=−0.30–0.34

Overall SMD=0.28; 95%CI=0.06–0.59