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Scope 
 

Global agriculture faces several challenges; one of the biggest ones is to feed a growing population 

predicted to reach about 9 billion people by the year 2050. To feed the world population a 

substantial increase in food production will be required. Unfortunately, the available agricultural land 

area is not increasing, but is constantly reduced due to industrialization, urbanization or 

desertification. Furthermore, environmental stresses including drought, extreme temperatures, 

insect infestation and pathogen infections are major threats to agriculture worldwide leading to 

tremendous yield losses. While abiotic stresses are usually inherently beyond control, the use of 

agrochemicals to protect  crops from pests and diseases is mostly inefficient and disputable from an 

environmental point of view. Thus, the demand for more stress-tolerant crops, which would 

concurrently provide higher yields, is growing. Unfortunately, even though plants have evolved 

strategies to sense, respond and adapt to adverse growth conditions, our understanding of their 

genetic and biochemical basis is very limited impeding the use of this natural potential. Nevertheless, 

the rapid progress in molecular genetic technologies as well as the availability of model plants like 

Arabidopsis thaliana provide invaluable tools for exploring the mechanisms of plant resistance and 

they are of crucial importance for the ultimate bioengineering of tolerant crops.  

 

In the past decade it became evident that exposure of plants to different environmental stresses 

results in the synthesis of some specific carbohydrate-binding proteins, called lectins. Recently, a 

novel family of these plant stress-inducible lectins has been identified, which groups proteins 

comprising an N-terminal F-box domain and a C-terminal Nictaba lectin domain. The members of this 

specialized protein family presumably play a crucial role in plant physiology through recognition and 

regulation of the abundance of key regulatory (glyco)proteins involved in plant responses towards 

stress. Homologs of the F-box-Nictaba family are widespread in the plant kingdom suggesting a  

pivotal role.  

 

This study was focused on one of the Nictaba homologs from Arabidopsis thaliana, the so-called F-

box-Nictaba, which shares the highest sequence similarity with the tobacco lectin Nictaba and thus 

presumably represents a functional carbohydrate-binding protein. The general aim of this research 

was to investigate the physiological role of F-box-Nictaba in plant stress responses. 

Chapter 1 summarizes the currently available knowledge regarding plant lectins with a special focus 

on those lectins involved in plant responses to stress. Furthermore, an overview is presented on 

plant F-box proteins, their role in the molecular control of regulatory proteins and their physiological 

importance for plants. 

The first objective of the work was to characterize F-box-Nictaba at the molecular level. Chapter 2 

describes the recombinant production of the F-box-Nictaba protein and its Nictaba domain in the 

heterologous expression system Pichia pastoris and subsequent protein purification using column 



X 
 

chromatography. The purified proteins have been characterized in some detail, especially with 

respect to their glycan-binding properties. 

The second aim of the research focused on the questions when, where and to what extent the F-box-

Nictaba gene is expressed in A. thaliana plants. Chapter 3 comprises a detailed expression analysis 

performed on different plant tissues sampled throughout the development of plants either grown 

under optimal growth conditions or subjected to various abiotic and biotic stresses. In addition, this 

chapter includes an in silico promoter and co-expression analysis as well as the assessment of F-box-

Nictaba promoter activity using GUS assays. Chapter 4 provides information on the expression of F-

box-Nictaba in specific plant defense-related structures called trichomes. 

The third objective of the thesis was to investigate the biological relevance of F-box-Nictaba 

expression for plant growth and development. Therefore, part of Chapter 3 deals with the effects of 

overexpression or reduced expression of F-box-Nictaba on plant performance after treatment with 

specific environmental stresses. 

Finally, Chapter 5 dwells on the findings of this research, their relevance and the implications for our 

understanding of plant stress responses. This chapter also comprises some perspectives for future 

studies. 
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1.1 Lectins 

1.1.1 General introduction 

The story of lectins, i.e. the carbohydrate-binding proteins, started at the end of the 19th century 

when hemagglutinins were first described in castor bean extracts as proteinaceous factors capable of 

red blood cell agglutination (Stillmark, 1888). Since the first discoveries, these unique proteins have 

been found widespread in nature ranging from viruses, bacteria and fungi to plants and animals 

(Esko and Sharon, 2009; Kilpatrick, 2002; Van Damme et al., 2008; Varrot et al., 2013). Nowadays, 

lectins are known as a highly diverse group of proteins of non-immune origin capable of selective 

recognition and reversible binding to specific carbohydrate structures. Lectins can bind glycans 

present either in their free form or as a part of glycoconjugates (glycoproteins and glycolipids) 

without altering the structure of the recognized carbohydrate moiety (Van Damme et al., 2008). 

Analysis of the amino acid (AA) sequences led to conclusion that the glycan-binding activity of most 

lectins resides within a confined polypeptide fragment, called the carbohydrate-recognition domain 

(CRD) (Drickamer, 1988). The ability to agglutinate cells or form precipitates with glycoconjugates, 

which initially was considered an essential property of lectins, results from the multivalent character 

of lectins consisting of non-covalently linked glycan-binding subunits and thus containing more than 

one CRD. It has to be noted, however, that even though the terms agglutinin and hemagglutinin are 

often used as synonyms, not all lectins are multivalent and thus agglutination is not a requirement to 

classify a protein as a lectin. 

Ever since the beginning of lectin history researchers have been trying to unravel the physiological 

role of these unique proteins. Throughout the years lectins have been widely exploited to investigate 

a multitude of biological processes and became a powerful tool in biochemistry and biomedical 

research (Ghazarian et al., 2011; Fu et al., 2011b; Mislovicova et al., 2009; Peumans and Van Damme, 

1998; Rüdiger and Gabius, 2001; Sharon and Lis, 2004). Nevertheless, despite their ubiquity in living 

organisms and broad scientific application, the biological relevance of many lectins still remains 

unclear. Due to the high specificity of lectin-carbohydrate interactions, the function of particular 

lectins is intrinsically linked to the significance of the target glycans in organisms. Glycans and 

glycoconjugates are known to play a crucial role in many diverse biological events including 

transcription, translation, protein folding, subcellular localization, intra- and intercellular transport, 

(in)activation of proteins, cell-molecule interactions, cell-cell communication and defense responses 

(Varki and Lowe, 2009). Glycosylation is essential for every organism’s growth, development or 

survival and defects in glycan signaling often lead to abnormal development and severe diseases 

(Boisson et al., 2001; Burn et al., 2002; Gillmor et al., 2002; Ohtsubo and Marth, 2006). Importantly, 

carbohydrates are no longer regarded solely as an energy reservoir, but are also associated with 

storage and transfer of biological information. In fact, with respect to the glycan complexity, 

glycosylation is emerging as a highly complicated multidimensional coding system and the idea of the 

“sugar code” is recently attracting growing attention (Rüdiger and Gabius, 2009; Pilobello and Mahal, 
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2007). From this point of view, lectins reveal themselves as specialized proteins which decipher this 

code, representing the indispensable components of the glycan signaling system assuring that the 

sweet message is well read and understood. 

1.1.2 Glycosylation in plants 

Protein glycosylation in plants, as in all eukaryotes, is a major co- and post-translational modification 

which relies on the covalent linkage of oligosaccharide chain(s) to proteins (Etzler and Mohnen, 2009; 

Nguema-Ona et al., 2014). Glycosylation mostly occurs on secreted proteins. Depending on the 

linkage between the glycan moiety and the protein two types of glycosylation are distinguished: N- 

and O-glycosylation (Fig. 1.1).  

 

N-glycosylation 

N-glycosylation takes place by attachment of the oligosaccharide to the amide nitrogen of an 

asparagine (Asn) residue within the consensus sequence Asn–X–serine (Ser)/ threonine (Thr) (where 

X is any amino acid except proline). Most of the proteins which follow the plant secretory pathway 

contain N-linked glycans of four main types: high-mannose, complex, hybrid, and paucimannose (Fig. 

1.1B-E) (Etzler and Mohnen, 2009; Nguema-Ona et al., 2014; Strasser, 2014). N-glycosylation begins 

co-translationally in the endoplasmic reticulum (ER) via the transfer of a precursor oligosaccharide 

Glc3Man9GlcNAc2 (Fig. 1.1A) onto specific Asn residues of the nascent polypeptide chain. Then, the N-

linked glycan is trimmed in the ER by removal of Glc and Man residues to generate high-Man type N-

glycans (Man5-9GlcNAc2) (Fig. 1.1B). During the glycoprotein passage along the secretory pathway, 

the high-Man N-glycan chain is further processed in the Golgi apparatus by trimming Man residues 

and adding new sugar residues to generate complex type N-glycans (Fig. 1.1C). In some plant glycans, 

some terminal Man residues are not removed giving rise to the so-called hybrid-type N-glycans (Fig. 

1.1D). Plant complex N-glycan modifications include an α1-3-fucose attached to the proximal N-

acetylglucosamine (GlcNAc) residue of the core, a β1-2-xylose residue linked to the core β-mannose, 

a single terminal GlcNAc residue and a terminal-linked fucosylated type-1 lactosamine (LacNAc) 

(Galβ1-3GlcNAc), called Lewis A (Galβ1-3(Fucα1-4)GlcNAc). Finally, plant glycoproteins processed in 

the Golgi are either secreted from the cell or are translocated to the vacuoles. Some glycoproteins 

can also undergo post-Golgi removal of at least the terminal GlcNAc residues giving rise to the 

paucimannose type N-glycans (Fig. 1.1E), which are mostly found on vacuolar glycoproteins.  

 

O-glycosylation 

O-glycosylation in plants occurs on the hydroxyl group of hydroxyproline (Hyp), Ser or Thr residues of 

the polypeptide chain (Nguema-Ona et al., 2014). The most abundant O-glycans in plants are found 

on extensins and arabinogalactan proteins (AGPs) which form the group of Hyp-rich glycoproteins 

(HRGPs) present in the plasma membrane and in the cell wall (Tan et al., 2012; Velasquez et al., 

2012). These proteins are O-glycosylated as they pass through the Golgi apparatus via a stepwise 
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transfer of monosaccharides initiated by the addition of an arabinose (Ara) or galactose (Gal) residue. 

Extensins are extensively O-glycosylated with one to four Ara residues bound to Hyp, and with Gal 

moieties linked to Ser residues (Fig. 1.1F). AGPs are the most highly glycosylated HRGPs, with Hyp 

residues frequently glycosylated by branched galactan chains substituted with terminal Ara residues 

(Fig. 1.1G). Side chains can be further modified with Fuc, rhamnose (Rha), Xyl and other sugars. 

 

 
 
Fig. 1.1 Glycan structures occurring on glycoproteins in plants. A-E, Structures of N-glycans. Precursor oligosaccharide 

Glc3Man9GlcNAc2 transferred onto the nascent plypeptide at Asn. Roman numbers I-III indicate different branches of the N-

glycan (A); High-Man type N-glycans composed of the core Man3GlcNAc2 substituted by two to six Man residues (B); 

Complex type N-glycans present a β1-2-linked Xyl and/or α1-3-linked Fuc bound to the core, or a terminal Galβ1-3(Fucα1-

4)GlcNAc trisaccharide (Lewis A) (C); Hybrid type N-glycans which contain the GlcNAc residue initiating complex branch I, 

and Man residues on branches II-III (D); Paucimannose type N-glycans (E). F-G, Structures of O-glycans. Extensin type O-

glycans containing one to four Ara residues bound to Hyp, and Gal moieties linked to Ser residues (F); AGP type O-glycans 

containing branched galactan chains substituted with terminal Ara residues linked to Hyp residues (G). 
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1.1.3 Glycan microarrays 

Since carbohydrates and their conjugates are known to have an important function in a variety of 

biological processes and unraveling of the molecular basis of glycan-protein interactions can provide 

deep insights into our understanding these glycan-mediated processes, studies of functional 

glycomics have received a lot of attention in recent years. However, analysis of carbohydrate-protein 

interactions is difficult due to glycan structure complexity and diversity, as well as low affinity of 

these interactions. A tool frequently used for exploring carbohydrate-mediated interactions and 

contributing to significant advances in glycomics is the glycan microarray technology first developed 

by several research groups in 2002 (Park et al., 2013). Glycan microarrays comprise a wide range of 

diverse carbohydrates (from natural sources or chemical and enzymatic synthesis) densely and 

orderly attached to a solid support. Many different types of glycan microarrays have been exploited, 

in which carbohydrates and glycoconjugates are either covalently or non-covalently immobilized to 

silica plates, beads or microplates. The arrays differ with respect to the repertoire of glycans 

included, covering a broad range of different glycan structures (Blixt et al., 2004) or carbohydrate 

structures representative for the glycome of an organism of interest (e.g. saccharides of the plant cell 

wall; Pedersen et al., 2012). Their chip-based format allows fast and high-throughput profiling of the 

glycan-binding properties of carbohydrate-binding molecules (e.g. lectins, antibodies). It is a high-

sensitivity platform and requires only minute amounts of samples for quantitative analysis of 

carbohydrate-protein interactions commonly measured by the detection of fluorophore-labeled 

proteins (Park et al.,2013). As such glycan arrays are a powerful technology widely used in the 

assessment of carbohydrate-binding properties of antibodies and lectins, in biological and biomedical 

research for detection of cells and pathogens, identification of anti-glycan antibodies for clinical 

diagnostics, development of carbohydrate-based vaccines and new drug discovery (Katrlík et al., 

2011; Liang and Wu, 2009; Park et al., 2008). 

1.1.4 Plant lectins 

Throughout over 100 years of research on carbohydrate-binding proteins, more than 500 highly 

diverse lectins from many different plants (including important crops like tomato, wheat, potato, 

rice, bean and soybean) have been isolated and characterized (Van Damme et al., 1998). With 

respect to the differences in their molecular structure, glycan-binding specificity, biological activity as 

well as regulation, plant lectins constitute an extremely heterogenous group and for years this 

diversity was problematic for the appropriate and functional classification of these proteins. 

Nonetheless, structural and molecular studies allowed to identify a limited number of different CRDs 

in plants which were used as basic structural units to group structurally and evolutionarily related 

lectins. Based on this criterion, plant lectins have been clustered into 12 families (Van Damme et al., 

2008) as presented in Table 1.1.  
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Due to practical constraints, for years lectinology was mainly focused on the lectins which could be 

detected easily in plants by agglutination assays – these are lectins constantly present in reasonably 

high quantities in specific plant tissues and mainly localized in the vacuole of plant cells or in the 

intercellular compartment. Nevertheless, studies of recent years have brought evidence that some 

plant lectins are occurring in the nucleus and the cytoplasm of plant cells and are not permanently 

produced, but are expressed only under particular conditions. Even then, their content in plants 

remains rather low. These observations founded the concept of two functionally distinct groups of 

plant lectins: the classical vacuolar lectins and the inducible nucleocytoplasmic lectins (Lannoo and 

Van Damme, 2010; Van Damme et al., 2004). However, there is also a group of chimeric lectin-like 

proteins which are neither vacuolar nor nucleocytoplasmic but are mainly localized in the plasma 

membrane (Vaid et al., 2013). 

1.1.4.1 Vacuolar lectins 

Most classical lectins are constitutively produced in the plant cell at relatively high concentrations 

(0.1 – 10% of the total protein amount) and their presence is independent from environmental 

conditions. They are synthesized with a signal peptide on endoplasmic reticulum (ER)-associated 

ribosomes and as such they are transported via the Golgi apparatus either to the vacuole or, 

following the secretory pathway, accumulate in the extracellular compartment. These lectins are 

principally found in seeds as well as in vegetative storage tissues of plants like tubers, bulbs and 

rhizomes (Van Damme et al., 2008). High levels of lectins are usually found in legumes (i.e. beans 

including peanuts). The majority of the vacuolar lectins exhibit carbohydrate-binding specificity 

towards glycans mainly occurring outside plants (i.e. complex animal N‐ and O‐glycans) (Peumans et 

al., 2000a).  

1.1.4.2 Nucleocytoplasmic lectins 

Studies of the last years have unambiguously demonstrated that apart from the vacuolar lectins 

abundantly synthesized in specific (storage) tissues, plants also produce minute amounts of lectins 

which are exclusively found in the nucleus and the cytoplasm of non-storage organs (leaves, roots, 

flowers) (Lannoo and Van Damme, 2010; Van Damme et al., 2004). Furthermore, these so-called 

nucleocytoplasmic lectins are not constantly expressed, but are synthesized in very low quantities 

only upon plant exposure to specific stress conditions such as drought, salt, wounding, treatment 

with plant hormones, pathogenic infection or insect herbivory. Since these lectins are not detectable 

in plant tissues during normal growth conditions but are clearly up-regulated after application of 

physical, chemical or biotic stress factors, this lectin group is referred to as the inducible plant lectins 

(Van Damme et al., 2011). Initially, the concept of nucleocytoplasmic lectins was mainly based on the 

data from rice and tobacco, where the first inducible lectins, in particular Oryza sativa agglutinin 

(Orysata) and Nicotiana tabacum agglutinin (Nictaba), were discovered (Zhang et al., 2000; Chen et 

al., 2002). At present however, it becomes obvious that at least some nucleocytoplasmic lectins are 

widespread throughout the plant kingdom (Lannoo and Van Damme, 2010). Until now 
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nucleocytoplasmic carbohydrate-binding proteins have been identified within 6 out of the 12 plant 

lectin families listed in Table 1.1 (marked in grey), namely in the family of Agaricus bisporus 

agglutinin orthologs, amaranthins as well as the Euonymus europaeus lectin- (EUL-), Galanthus nivalis 

agglutinin- (GNA-), jacalin- and Nictaba-related lectins. Each of these lectin families are briefly 

presented below, but since this PhD research is mainly focused on a homolog belonging to the family 

of Nictaba-related carbohydrate-binding proteins, two separate sections are especially dedicated to 

discuss the prototype lectin Nictaba (1.1.3) and its homologs (1.1.4) in more detail.  

 

Agaricus bisporus lectin orthologs 

The prototype of this family is actually a typical fungal lectin, the Agaricus bisporus lectin from the 

edible mushroom Agaricus bisporus. The protein comprises two glycan-binding sites with distinct 

specificity for T-antigen (Galβ1-3GalNAc) and GlcNAc-exposed N-linked glycans (Nakamura‐Tsuruta et 

al., 2006). Plant homologs of Agaricus bisporus lectin are restrained to lower plants and until now 

their expressed sequences have only been reported in the liverwort Marchantia polymorpha and in 

the moss Tortula ruralis. Homologs from M. polymorpha (called MarpoABA) have been demonstrated 

to present comparable lectin specificity as the fungal prototype (Peumans et al., 2007). Moreover, 

localization studies showed that MarpoABA is present in the cytosol and in the nucleus of plant cells. 

 

Amaranthins 

Amaranthins constitute a small family called after the first lectin discovered in Amaranthus caudatus 

seeds (Rinderle et al., 1989). Homologs have been found in different Amaranthus species but 

amaranthin-like sequences have also been reported outside the Amaranthaceae family (Van Damme 

et al., 2008). It has been shown that amaranthin exhibits glycan-binding specificity towards T-antigen 

(Galβ1-3GalNAc) (Transue et al., 1997). Based on the AA sequence which lacks a signal peptide and 

on localization experiments, it has been concluded that amaranthin-like lectins are most probably 

nucleocytoplasmic proteins (Van Damme et al., 2009).  

 

EUL-related proteins 

The Euonymus europaeus agglutinin (EEA), which was originally found in the arils of spindle tree 

(Petryniak et al., 1977), has been recognized as the first representative of a new family of proteins 

containing (an) EUL domain(s) (Fouquaert et al., 2008). EEA has been shown to exhibit a dual glycan-

binding specificity towards blood group B oligosaccharides as well as (with lower affinity) high‐

mannose(Man) N‐glycans. Localization studies have demonstrated its presence in the nucleus and 

cytoplasm of plant cells (Van Hove et al., 2011). Screening of plant genome databases revealed that 

the EUL domain equivalent to the EEA polypeptide is ubiquitous in Embryophyta ranging from lower 

plants like mosses, to monocots and dicots (Fouquaert et al., 2009a; Fouquaert and Van Damme, 

2012). Some of the identified putative EUL-related proteins consist of a single EUL domain only or of 

two tandem-arranged EUL domains, while others comprise also an additional unrelated N‐terminal 

sequence. The EUL-like proteins studied until now differ in their glycan-binding specificity from EEA 

(Fouquaert and Van Damme, 2012). Depending on the homolog, they preferentially recognize 
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galactosylated structures, as shown for OrysaEULD1A (Al Atalah et al., 2014c) and ArathEULS3 (Van 

Hove et al., 2011), or high-Man N-glycans e.g. OrysaEULS2 (Al Atalah et al., 2012). Localization assays 

with enhanced green fluorescence protein (EGFP) fusion proteins revealed that, similar to the EEA, 

EUL-related lectins from Arabidopsis thaliana and rice are located in the cytoplasm and also in the 

nucleus of plant cells (Al Atalah et al., 2013; Van Hove et al., 2011).  

 

GNA-related lectins 

The Galanthus nivalis agglutinin (GNA), a Man-specific lectin, was originally isolated from the bulbs of 

Galanthus nivalis (snowdrop) (Van Damme et al., 1987). While it reacts weakly with Man, it exhibits 

strong affinity towards oligomannosides and high‐Man N‐glycans (Van Damme et al., 2008). Most 

plant GNA-related proteins are synthesized with an N-terminal signal peptide (Van Damme et al., 

2007). Hence, as it has been reported for GNA (Fouquaert et al., 2007), they are most probably 

targeted to the vacuole. Nevertheless, genomic analyses revealed the presence of GNA-related 

proteins in maize, wheat, rice and Medicago truncatula which are not flanked with an N-terminal 

signal peptide and as such are considered to be putative nucleocytoplasmic GNA-like proteins (Van 

Damme et al., 2004). Localization studies confirmed that GNA homologs from maize and rice locate 

to the nucleocytoplasmic compartment of the plant cell (Fouquaert et al., 2007). Furthermore, as 

demonstrated by analyses on a GNA homolog from maize which recognizes complex N-glycans 

instead of high-Man N-glycans, the binding properties of GNA-related lectins can differ significantly 

(Fouquaert et al., 2009b).  

 

Jacalin-related lectins 

The family of the jacalin-related lectins is called after jacalin, a T-antigen-specific lectin isolated from 

the seeds of jack fruit (Artocarpus integrifolia) (Sastry et al., 1986). It groups proteins with one or 

more domains homologous to jacalin and forms a very heterogeneous family as the members differ 

substantially in their molecular structure as well as in their carbohydrate-binding specificity. Based on 

the disparity within the family, it is divided into two groups: (1) galactose (Gal)-specific lectins 

identified exclusively in Moraceae and (2) Man-specific lectins widespread in the plant kingdom (Van 

Damme et al., 2008). While Gal-binding jacalin-related proteins are targeted into the vacuolar 

compartment (e.g. jacalin itself), Man-binding jacalins are synthesized without a signal peptide on 

free ribosomes and as such accumulate in the cytoplasm. Examples of the latter group are Calsepa, a 

jacalin-related protein from Calystegia sepium (Peumans et al., 2000b) and Orysata, a Man-binding 

jacalin homolog from rice (Zhang et al., 2000).  

1.1.4.3 Chimeric proteins with a lectin domain 

Screening of publicly available plant genomes and transcriptomes has demonstrated that, except for 

the A. bisporus lectin domain, all nucleocytoplasmic lectin domains identified until now occur as part 

of chimeric protein sequences. In other words, apart from the glycan-binding domain, these so-called 
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chimerolectins comprise also other unrelated domain(s) (Lannoo and Van Damme, 2010; Van 

Damme et al., 2008).  

Within the amaranthin family only a few putative chimerolectins have been found. In Zea mays and 

Triticum aestivum proteins comprising amaranthin domain(s) C-terminally linked to an aerolysin-like 

domain have been identified. Also, an amaranthin-related protein with a C-terminal kinase-like 

domain has been found in Aquilegia formosa x Aquilegia pubescens. Although most GNA homologs in 

plants are built up of GNA domains exclusively, a couple of putative nucleocytoplasmic 

chimerolectins have been identified with a GNA-like domain (Van Damme et al., 2008). In contrast, 

within the family of EUL-related lectins many sequences comprise an extra unrelated and highly 

variable in size N-terminal domain, and some EUL domain proteins are also characterized by an 

unrelated C-terminal domain. Likewise, jacalin-related chimerolectins with additional N- or C-

terminal domain(s) turn out to be widespread in plants. These extra unrelated domains include 

different N-terminal motifs like ‘dirigent’ domains in grass species (Jiang et al., 2007; Kittur et al., 

2007; Kittur et al., 2009; Yong et al., 2003), F-box domains in A. thaliana (Nagano et al., 2008), a 

kinase domain in O. sativa or a combination of an NB-ARC with a leucine-rich repeat (LRR) domain in 

O. sativa. Moreover, a jacalin-like chimerolectin with C-terminal tandem-arranged Kelch motifs has 

been found in A. thaliana (Van Damme et al., 2008).  

For most of the identified putative nucleocytoplasmic chimerolectins the carbohydrate-binding 

activity of the lectin domain is merely hypothetical, because the proteins have not yet been purified 

and characterized. The exceptions include e.g. ArathEULS3 (Van Hove et al., 2011),  OrysaEULD1A (Al 

Atalah et al., 2014c), horcolin (Grunwald et al., 2007), VER2 (Xing et al., 2009), Calsepa and 

MornigaM (Nakamura-Tsuruta et al., 2008), which have been demonstrated to be functional lectins. 

Furthermore, only a couple of them are experimentally confirmed nucleocytoplasmic lectins (Lannoo, 

2007; Van Hove et al., 2011) and despite the absence of a signal peptide, for most chimeroproteins 

localization in the cytoplasm and nucleus of plant cells still needs to be proven. As a consequence, 

the physiological role(s) of those lectin-related chimeric proteins is an open question. 

1.1.4.4 Membrane-associated proteins containing a lectin-like domain 

A unique group of plant chimeric lectins are receptor‐like kinases (RLKs) containing a putative glycan-

binding domain. They are referred to as lectin receptor kinases (LecRKs) and are involved in plant 

defense signaling (for details regarding their physiological relevance see section 1.1.2.5). Typically, 

LecRKs are localized in the plasma membrane and consist of a highly variable N‐terminal extracellular 

carbohydrate-binding-like domain, a conserved C‐terminal intracellular (cytosolic) Ser/Thr kinase 

domain and a hydrophobic membrane‐spanning motif in between. LecRKs form a large and 

extremely heterogeneous family containing diverse types of putative lectin motifs (Barre et al, 2002; 

Vaid et al., 2012). They are classified into 4 types with respect to their lectin domain referred to as C-, 

G-, L-, and LysM-type LecRKs (Singh and Zimmerli, 2013; Vaid et al., 2013).  

C-type (calcium-dependent) LecRKs are scarce in plants and so far as little as only one member has 

been identified in A. thaliana, though its function has not been elucidated yet (Bouwmeester and 



Chapter 1 - Introduction ______________________________________________________________ 

12 
 

Govers, 2009). In contrast, based on genome/transcriptome data, G-type LecRKs with an extracellular 

GNA-like domain are ubiquitous among Embryophyta (Van Damme et al., 2008). In Arabidopsis and 

in rice 32 and 100 representatives have been identified, respectively (Vaid et al., 2012). G-type 

LecRKs are also known as S-locus RLKs since they contain an S-domain known for its involvement in 

self-incompatibility (SI) in flowering plants (Sherman-Broyles et al., 2007). Representatives of the L-

type LecRKs containing a legume-like lectin domain have been described in A. thaliana (45 members; 

Bouwmeester and Govers, 2009), in tobacco (Kanzaki et al., 2008; Gilardoni et al., 2011), and M. 

truncatula (Navarro-Gochicoa et al., 2003). The Arabidopsis L-type LecRKs are characterized by a 

differential expression in tissues, throughout developmental stages as well as upon stress treatment 

(Bouwmeester and Govers, 2009). Finally, LysM-type LecRKs with extracellular LysM domains, are 

found in many plants including leguminous plants, Arabidopsis, rice and poplar (Zhang et al., 2007). 

The LysM domain is a ubiquitous protein motif first identified in microbial hydrolases which are 

involved in bacterial cell wall degradation. Nowadays, the LysM motif is considered to bind various 

types of bacterial peptidoglycans and fungal chitin through recognition of the GlcNAc moieties (Buist 

et al., 2008; Gust et al., 2012).  

1.1.4.5 Physiological roles of plant lectins 

One of the major issues regarding lectins is their physiological role in plants. Despite the vast 

distribution of lectins in the plant kingdom, the biological relevance of most of these carbohydrate-

binding proteins remains an open question. Nonetheless, during the last decade, substantial progress 

has been made following the discovery of inducible lectins localized in the nucleus and the cytoplasm 

of plants cells. The concept of nucleocytoplasmic glycan-binding proteins put the research on the 

physiological function(s) of plant lectins in a totally different perspective. The hitherto prevalent 

image of lectins being merely storage/defense proteins has suddenly developed into the idea 

whereby lectins are considered as highly specialized molecules involved in complex signaling 

processes within the plant cell (Lannoo and Van Damme, 2014; Van Damme et al., 2004; Van Damme 

et al, 2011). Overview of physiological roles of plant lectins is presented in Fig. 1.2. 

 

Storage/defense function  

Since the classical (vacuolar) lectins are abundantly present in plant storage tissues including seeds as 

well as vegetative organs like tubers, bulbs and rhizomes, and are constitutively produced in the 

plant cell in relatively high amounts they are commonly accepted to fulfill a role as storage proteins 

(Van Damme et al., 2008). Nevertheless, the majority of them recognize complex animal N‐ and O‐

glycans rather than plant‐type glycans (Peumans et al., 2000a). As such, they could potentially bind 

glycans from other (harmful) organisms and consequently play a role in plant defense. In fact, 

feeding assays and experiments with transgenic plants over-expressing specific lectins have 

demonstrated that some of these lectins (e.g. concanavalin A (ConA), GNA, wheat germ agglutinin 

WGA)) exhibit adverse effects on pest insects belonging to the orders Lepidoptera, Coleoptera, 

Diptera and Hemiptera by negatively affecting their development and survival (Michiels et al., 2010; 
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Vandenborre et al., 2011), and as a result these lectins enhance plant resistance. Therefore, apart 

from the endogenous storage function, it is hypothesized that they might have an alternative role in 

plant defense reactions in the circumstances of predator attack (Van Damme, 2008). 

 

 

 

 

Fig. 1.2 Overview of physiological roles of different types of lectins in plant cells. The classical plant lectins localized in 

the vacuoles of plant cells play a storage and/or defense role. Membrane-bound LecRKs and lectin-like receptors function 

in stress signaling by recognizing extracellular effectors generated during stress challenge. After recognition, the signal is 

transmitted from the outside to the inside of the cell via cytosolic (kinase) domains of membrane-bound lectin-related 

receptors which activate the downstream intracellular signaling pathways. The inducible lectin-like receptors localized in 

the nucleus and/or cytosol of plant cells play a role in intracellular stress signaling through recognition of intracellular 

stress signals. Activation of the downstream intracellular signaling pathways mediated by lectin-like receptors leads to 

transcription of defense gene and synthesis of defense proteins, which ultimately results in plant defense response 

against adverse extracellular conditions.  
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Role in plant stress signaling  

Plants are constantly challenged with a multitude of environmental stresses both of abiotic 

(heat/cold, drought, salt) as well as biotic (pathogen and insect attacks) origin (Ahuja et al., 2010; 

Atkinson and Urwin, 2012; Rasmussen et al., 2013). Since they are sessile organisms and cannot 

avoid adverse conditions, plants were forced to develop a wide assortment of sophisticated and 

tightly regulated mechanisms allowing them rapid adaptation to a changing environment (Golldack et 

al., 2014; Muthamilarasan and Prasad, 2013; Osakabe et al., 2013; Qu et al., 2013; Wirthmueller et 

al., 2013). Precise and more importantly prompt perception and transduction of external signals 

resulting in an effective response to particular stimuli is essential for plant survival under unfavorable 

circumstances. As a consequence, fine-tuned plant defense responses to environmental challenges 

rely on a plethora of specific molecules including proteins which play a role in stress signaling. Among 

these proteins lectins turn out to be of particular importance including the LecRKs localized in the 

plasma membrane, responsible for perceiving the specific extracellular signal and transmitting it into 

the cell, as well as the stress-responsive nucleocytoplasmic lectins (Lannoo and Van Damme, 2014) 

which could further transduce the information inside the cell or affect the transcription/activity of 

other defense-related genes/proteins, ultimately leading to an enhanced plant resistance to specific 

stress conditions.  

 

Extracellular signal perception and transduction 

Even though plant transmembrane LecRKs form a large protein family, so far only a small number is 

functionally characterized and it remains unclear whether the lectin domain is functional and if its 

glycan-binding activity is relevant for the physiological role of the receptor. Nonetheless, it is 

hypothesized that LecRKs play a role in diverse signaling processes (particularly in immunity) as 

pattern recognition receptors (PRRs) by selective perception and binding of specific stress-related 

glycan motifs present extracellularly (Lannoo and Van Damme, 2014; Macho and Zipfel, 2014). In 

case of e.g. pathogenic infection these unique carbohydrates may originate either from the attacking 

pathogen (then these glycans are called pathogen- or microbe-associated molecular patterns - 

PAMPs/MAMPs) or from the damaged cell wall structures of the plant itself (the so-called damage-

associated molecular patterns - DAMPs) (Newman et al., 2013; Nühse, 2012; Wirthmueller et al., 

2013). After recognition of such specific glycan molecules, LecRKs could further transmit the signal 

from the outside to the inside of the cell via their cytoplasmic kinase domain by activating 

downstream intracellular signaling pathways (including activation of the mitogen-activated protein 

kinases (MAPK) and reactive oxygen species (ROS) production) which eventually should result in an 

appropriate stress-dependent defense response of the cell (Muthamilarasan and Prasad, 2013; 

Osakabe et al., 2013). 

Indeed, recent studies have brought evidence that some of the LecRKs are involved in plant defense 

responses against (a)biotic stimuli. Until now G-type LecRKs, well known for their involvement in SI 

reactions in flowering plants (Sherman-Broyles et al., 2007), have additionally been shown to play a 

role in plant stress responses to abiotic (Sun et al., 2013) and biotic stress (Chen et al., 2006; Kim et 

al., 2010a). In Arabidopsis, L-type LecRKs are involved in plant defense against bacterial and fungal 



Chapter 1 - Introduction ______________________________________________________________ 

15 
 

pathogens (Bouwmeester et al., 2011; Huang et al., 2013, 2014; Singh et al., 2012), abscisic acid 

(ABA) signaling and stomatal regulation (Paparella et al., 2014; Singh et al., 2012), as well as in salt 

and osmotic stress (Dang et al., 2009). In tobacco, L-type LecRKs have been shown to play a role in 

plant resistance to pathogens and insects (Kanzaki et al., 2008; Gilardoni et al., 2011). Furthermore, 

the LysM-type chitin elicitor receptor kinase 1 from Arabidopsis (AtCERK1) and its ortholog from rice 

(OsCEBiP) turn out to be the major chitin-sensing receptors crucial for plant antifungal responses 

(Brotman et al., 2012; Kouzai et al., 2014; Petutschnig et al., 2010; Shinya et al., 2012; Tanaka et al., 

2013). In fact, LecRKs are relevant not only for plant defense responses against harmful organisms, 

but also play an important role in symbiotic interactions between leguminous plants and beneficial 

bacteria and fungi. Mostly LysM but also L-type LecRKs have been shown to perceive mycorrhizal 

fungi and rhizobacteria by recognizing rhizobial lipochitin-oligosaccharide signals or Nod factors 

involved in nodulation and rhizobial symbiosis (Gust et al., 2012; Knogge and Scheel, 2006, Limpens 

et al., 2003; Navarro-Gochicoa et al., 2003; Radutoiu et al., 2003).  

Lastly, apart from the role in plant interactions with foreign organisms, LecRKs may be relevant for 

developmental processes. Wan et al. (2008) have demonstrated that the L-type LecRK called SGC 

lectin is required for proper pollen development in Arabidopsis. Other LecRKs are involved in 

regulation of the ABA response during seed germination (Deng et al., 2009; Xin et al., 2009). 

Moreover, very recently, the first identified plant ATP receptor DORN1 required for ATP-mediated 

responses in Arabidopsis was shown to be an L-type LecRK (Choi et al., 2014). This same protein was 

already known as a mediator of cell wall-plasma membrane integrity, yet the latter function relies on 

protein-protein interactions (Gouget et al., 2006).  

 

Intracellular signaling in the nucleus and cytoplasm 

As described in previous sections, plants synthesize specific inducible lectins which are localized in 

the nucleus and cytoplasm of plant cells at very low concentrations (Lannoo and Van Damme, 2010; 

Van Damme et al., 2011). These nucleocytoplasmic lectins are expressed in plants under particular 

stress challenges such as drought, salt, wounding, application of plant hormones, microbial infection 

or insect herbivory. With respect to their nucleocytoplasmic localization, stress-inducible synthesis 

and low, but still physiologically relevant concentration, it is hypothesized that they function in the 

plant cell as components of the intracellular stress signaling pathways, presumably by recognizing 

and binding specific glycan structures. Obviously, to get a better insight into the role of these lectins 

in plants, it is crucial to identify possible lectin ligands within plant cells. Yet, knowledge regarding 

the glycans and glycoconjugates present in the nucleus and cytoplasm is rather scarce (Funakoshi 

and Suzuki, 2009) and possible endogenous functions of nucleocytoplasmic lectins still remain mostly 

speculative. Nevertheless, some of these lectins have already been partially characterized in view of 

their carbohydrate-binding  activity and possible physiological role in plant.  

Within the amaranthin family a wheat-specific lectin containing a C-terminal aerolysin motif displays 

up-regulation upon insect feeding (Puthoff et al., 2005). Interestingly, over-expression of amaranthin 

in different plant species increases plant’s resistance to aphids by affecting growth and development 

of insects (Wu et al., 2006; Xin et al., 2011). 
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Over the last decade, evidence was accumulating that the expression of EUL proteins is triggered by 

specific stress factors including ABA application, drought, salt and osmotic challenges (Carpentier et 

al., 2007; Dooki et al., 2006; Fouquaert et al., 2009a; Kawasaki et al., 2001; Moons et al., 1997a; 

Riccardi et al., 2004). Very recently Van Hove et al. (2014) have shown that an EUL-related protein 

from A. thaliana (ArathEULS3) is significantly up-regulated after ABA application and salt stress. It has 

also been demonstrated that ArathEULS3 interacts with the nuclear/cytosolic ABA receptor RCAR1 as 

well as with a calcium-dependent kinase CPK3 involved in the ABA response in guard cells (Li et al., 

2014a; Berendzen et al., 2012), pointing towards the probable role of ArathEULS3 in ABA signaling 

and stomatal movements. Moreover, several rice EUL-related lectins (OrysaEULD1A, OrysaEULD1B 

and OrysaEULD2A) are inducible upon ABA and salt stress, and could be involved in plant response 

towards biotic stress (Al Atalah et al., 2013; Al Atalah et al., 2014a). Although the exact physiological 

function of nucleocytoplasmic EUL lectins still remains unclear, their wide distribution in the plant 

kingdom as well as the stress-dependent expression of EUL-related proteins both strongly suggest 

that the EUL domain probably plays a general role in stress-associated biological processes in the 

nucleus and the cytoplasm of plant cells.  

Also jacalin-related proteins are playing a role in plant stress responses since numerous members of 

this family are responsive to a multitude of environmental stimuli. The rice lectin Orysata is up-

regulated by salt, drought stress, jasmonic acid (JA) and ABA application as well as after bacterial 

infection (Al Atalah et al., 2014a; de Souza Filho et al., 2003; Qin et al., 2003; Moons et al., 1997b). 

What is more, expression of Orysata has been demonstrated to enhance plant resistance to fungal 

infection and insect herbivory (Al Atalah et al., 2014b; Shinjo et al., 2011). Some other jacalin-like 

lectins are also involved in plant defense responses against fungi, viruses and herbivores (Nagano et 

al., 2008; Regente et al., 2014; Xiang et al., 2011; Yamaji et al., 2012). Chimeric jacalins containing a 

dirigent domain found in Poaceae family are induced upon vernalization, JA and ABA treatment and 

insect herbivory (Feng et al., 2009; Ma et al., 2013; Song et al., 2014; Williams et al., 2002; Yong et 

al., 2003). Importantly, some of them increase plant resistance to bacterial, fungal, and viral 

pathogens as well as to insects (Chisholm et al., 2001; Ma et al., 2010; Subramanyam et al., 2008). A 

rice jacalin-related protein with a dirigent domain, OsJAC1, is important for rice growth and 

development (Jiang et al., 2007). Another jacalin-related lectin VER2 plays a role in sensing prolonged 

cold in wheat (Xiao et al., 2014). 

Finally, also the nucleocytoplasmic tobacco lectin Nictaba (described in more detail together with 

Nictaba-like proteins in sections 1.1.3-1.1.4) is inducible upon specific stress treatments including 

jasmonate application and insect herbivory (Chen et al., 2002; Lannoo et al., 2007; Vandenborre et 

al., 2009a, 2009b). Furthermore, it has been demonstrated to exhibit entomotoxic activity 

(Vandenborre et al., 2010, 2011). Remarkably, Nictaba interacts with histone proteins. Therefore it is 

suggested that Nictaba could regulate expression of defense-associated genes through binding to 

chromatin via O-GlcNAcylated histone proteins (Delporte et al., 2014a; Schouppe et al., 2011). 

Unfortunately, information regarding the physiological relevance of the other putatively 

nucleocytoplasmic proteins belonging to the Nictaba family is very limited (Delporte et al., 2015).  
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Protein quality control 

Newly synthesized proteins as well as those already present in cells are constantly at risk of 

misfolding and aggregation. Since the accumulation of abnormal proteins in plants can lead to 

perturbations in cell homeostasis, pathological states, and even cell death (Deng et al., 2013; 

Eichmann and Schafer, 2012; Howell, 2013), eukaryotic cells have developed a sophisticated ER 

protein quality control mechanism for protection from such danger (Liu and Li, 2014). The process 

takes place predominantly in the ER and relies on two glucose(Glc)-binding lectins acting as 

molecular chaperones: calnexin (CNX) and calreticulin (CRT). Upon entering the ER, nascent 

polypeptides of secretory and membrane proteins are co-translationally N-glycosylated with the 

Glc3Man9GlcNAc2 motif. Almost immediately after glycosylation, the two terminal Glc residues are 

cleaved off by glucosidases leaving a GlcMan9GlcNAc2 – a carbohydrate structure specifically 

recognized by a membrane-bound CNX and its ER luminal homolog CRT. CNX and CRT act together to 

monitor and assist in proper folding of the protein. As soon as the folding process is successfully 

completed, the last Glc residue is removed from the oligosaccharide and the correctly folded protein 

is released for further processing. However, in case of folding failure, a typical N-glycan chain on 

misfolded or incompletely assembled proteins gets trimmed by mannosidases (Hüttner et al., 2014). 

Such proteins ultimately modified with Man3-9GlcNAc2 structures are targets for the ER-associated 

protein degradation (ERAD) pathway and get eliminated from the cell via the ubiquitin (Ub)–

proteasome system (UPS) (Hüttner and Strasser, 2012; Strasser, 2014). The ER is a highly controlled 

and stress-susceptible cellular compartment and thus under adverse environmental conditions, when 

misfolded proteins are accumulating, the so-called unfolded protein response is activated, which 

induces the synthesis of factors promoting folding or removing incorrectly folded proteins through 

ERAD (Deng et al., 2013; Eichmann and Schafer, 2012; Howell, 2013).  

 

Glycoprotein degradation 

Following the ERAD pathway, misfolded glycoproteins carrying Man3-9GlcNAc2 structures get 

translocated from the ER into the cytosol, where they are specifically recognized by a sugar-binding 

F-box (Fbs) protein and consequently get labeled with Ub for proteasomal degradation. The Fbs 

proteins have been well described in mammals (Yoshida, 2007), but evidence for their existence and 

functionality in plants is still missing. Nonetheless, it has been shown that plants do express F-box 

proteins with lectin-like domains (in casu jacalin or Nictaba domains) which presumably play a similar 

role in plants (Lannoo et al., 2008). These putative carbohydrate-binding F-box proteins are discussed 

in more detail in section 1.2.4.  
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1.1.5 Nictaba – a lectin from tobacco 

1.1.5.1 Inducible expression of Nictaba 

Nicotiana tabacum agglutinin, abbreviated as Nictaba, has been discovered in 2002 as one of the first 

inducible lectins localized in the nucleus and the cytoplasm of plant cells (Chen et al., 2002). It has 

been demonstrated that the application of JA and its derivative methyl jasmonate (MeJA) induces 

lectin activity in the leaves of N. tabacum cv. Samsun NN. Lectin activity was detected in the 

JA/MeJA-treated leaves as well as in the systemic leaves, but not in the leaves of untreated plants 

(Lannoo et al., 2007). Interestingly, only some Nicotiana species have been shown responsive to 

jasmonates by Nictaba synthesis, indicating that even closely related species may differ in specialized 

hormonal responses (Lannoo et al., 2006a). Later on, Nictaba was also reported to be inducible in 

tobacco by pest herbivores including chewing insects (Spodoptera littoralis and Manduca sexta) and 

cell content feeders (Tetranychus urticae) presumably via activation of the jasmonate pathway 

(Lannoo et al., 2007; Vandenborre et al., 2009a, 2009b).  

1.1.5.2 Nucleocytoplasmic localization of Nictaba 

Nictaba is a homodimer consisting of two identical non-covalently linked subunits of 19 kDa. Analysis 

of the 165 AA sequence revealed that the protein lacks a signal peptide and comprises a putative 

nuclear localization signal (NLS) sequence (102KKKK105) suggesting that Nictaba is synthesized on free 

ribosomes in the cytoplasm and could be targeted to the nucleus (Chen et al., 2002). Indeed, it was 

proven by immunocytochemistry that the tobacco lectin localizes in the nucleocytoplasmic 

compartment of tobacco parenchyma cells subjected to jasmonate treatment (Chen et al., 2002). 

Further localization studies using native protein fusion with EGFP in transgenic N. tabacum BY-2 

suspension cells and N. benthamiana plants confirmed localization of Nictaba in the nucleus and the 

cytoplasm (Delporte, 2013; Lannoo et al., 2006b). However, even though the initial localization 

experiments with a mutant Nictaba protein impaired in the NLS indicated that nuclear localization is 

NLS-dependent, the latest results by Delporte (2013) using a Nictaba mutant with its NLS altered and 

a Nictaba mutant lacking carbohydrate-binding activity show that Nictaba transport to the nucleus 

might also rely on alternative mechanisms independent from both NLS and lectin activity. 

1.1.5.3 Carbohydrate-binding activity of Nictaba 

Nictaba promptly agglutinates red blood cells and this reaction can be most successfully inhibited 

with N-acetylglucosamine (GlcNAc) oligomers and certain glycoproteins of animal origin (e.g. 

thyroglobulin, asialofetuin and ovomucoid) (Chen et al., 2002). Moreover, it has been shown by 

surface plasmon resonance that the lectin preferentially binds GlcNAc oligomers over 

monosaccharide GlcNAc and exhibits the highest affinity towards chitotriose (GlcNAc3). Furthermore, 

more elaborate carbohydrate-binding studies using glycan arrays have demonstrated that Nictaba 

can also strongly interact with high-Man and bi-antennary complex N-glycans (Lannoo et al., 2006b). 
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Finally, NMR analyses revealed that Nictaba has the highest affinity towards chitotriose as well as to 

the Man3GlcNAc2 core (present in both complex and high-Man N-glycans) (Gheysen, 2011). A three-

dimensional model of Nictaba predicts a structure composed of two β-sheets of four and five 

antiparallel β-strands linked through extended loops and places the NLS readily accessible at the top 

of such a protruding loop. Based on this model and a mutational analysis performed by Schouppe et 

al. (2010), it turned out that tryptophan residues Trp15 and Trp22 are crucial for the lectin activity of 

Nictaba. Apparently, the sugar-binding activity of Nictaba is most probably mediated through the 

large electronegatively charged groove (established mostly by glutamic acid residues Glu138 and 

Glu145) and gets stabilized by aromatic stacking via Trp15 and Trp22 of the pyranose ring of the 

bound glycan. 

1.1.5.4 Physiological role of Nictaba 

Endogenous role in stress signaling 

Based on the fact that Nictaba is induced after jasmonate application as well as after insect herbivory 

it is generally suggested to play an endogenous signaling role in stress physiology and defense 

responses of tobacco plants. Since it is a nucleocytoplasmic protein and a functional lectin with well-

defined specificity, studies have been directed towards the identification of putative glycosylated 

interaction partners within the nucleocytoplasmic compartment of the plant cell with special focus 

on the nucleus. Initially, it was shown by far Western blot analysis that Nictaba binds to numerous N-

glycosylated nuclear proteins from BY-2 cells in a carbohydrate-dependent manner (Lannoo et al., 

2006b). Strikingly, affinity chromatography and pull down assays (Delporte et al.,2014a; Schouppe et 

al., 2011) as well as in vivo interaction studies including co-localization and molecular fluorescence 

complementation assays (Delporte et al.,2014a) demonstrated that Nictaba interacts with the core 

histone proteins through their O-GlcNAc modification. Altogether, based on its stress-inducible 

synthesis, localization in the nucleus as well as interaction with histone proteins the hypothesis was 

put forward that Nictaba functions in stress signaling by chromatin remodeling and regulation of 

defense-related gene expression (Delporte et al. , 2014ab). 

 

Role in plant defense  

Since Nictaba expression is up-regulated after insect herbivory, it was speculated that the lectin 

might have an additional function in plant defense by directly affecting the predators. Interestingly, 

feeding experiments with the larvae of the pest insects S. littoralis and M. sexta performed on wild 

type (WT) tobacco plants as well as on transgenic N. attenuata plants ectopically over-expressing 

Nictaba or with reduced Nictaba expression, provided evidence that the tobacco lectin displays 

entomotoxic effects on Lepidopteran larvae (Vandenborre et al., 2010). It is hypothesized that the 

insecticidal activity of Nictaba most probably relies on its lectin activity and interaction with 

glycoconjugates (e.g. chitin microfibrils) residing in the midgut of insects.  
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1.1.6 Nictaba-related proteins  

1.1.6.1 Distribution of Nictaba-like proteins in plant kingdom 

Extensive searches through publically available genome/transcriptome databases revealed that 

sequences homologous to Nictaba are widespread in the plant kingdom and are plant-specific, since 

no orthologs could be identified in other eukaryotes or in prokaryotes (Delporte et al., 2015). 

Alignment of the AA sequence of Nictaba with the Nictaba domains of Nictaba-like proteins from 

different plant species (Schouppe et al., 2010) revealed that the domain comprises several regions 

which are well preserved among the orthologs (Fig. 1.3A). Importantly, Trp residues required for the 

lectin activity of Nictaba are contained within those strongly conserved motifs. Apart from many 

tobacco species (Lannoo et al., 2006a), Nictaba-related sequences with more than 40% sequence 

similarity with the Nictaba protein from N. tabacum have been identified in different dicots including 

A. thaliana, Solanum lycopersicum (tomato), Solanum tuberosum (potato), Cucumis sativus 

(cucumber), Glycine max (soybean), Apium graveolens (celery), Lotus japonicas, Populus trichocarpa 

(poplar), in monocots like Hordeum vulgare (barley) and O. sativa (rice), as well as in lower plants and 

Physcomitrella patens (Fig. 1.3B; Delporte et al., 2015; Dinant et al., 2003). With respect to the 

ubiquitous occurrence of proteins with Nictaba domain(s), it has been suggested that the tobacco 

lectin is the prototype of the family of Nictaba-like proteins (Delporte et al., 2015). Nevertheless, 

despite such a wide distribution of Nictaba-related proteins, only few of them have been (partially) 

characterized until now.  

1.1.6.2 Chimeric proteins containing a Nictaba domain 

Interestingly, few orthologs are built up exclusively of the Nictaba domain, but most of them 

constitute chimeric proteins comprising one or more Nictaba domain(s) fused to unrelated N- and/or 

C-terminal domain(s) of either known or yet undefined function (Delporte et al., 2015; Dinant et al., 

2003; Lannoo, 2007). Depending on the arrangement of the domains, a classification has been 

proposed grouping the Nictaba-related proteins into single (S-type) and multiple (M-type) domain 

proteins (Fig. 1.3; Delporte et al., 2015). The S group type S0 orthologs contain the Nictaba domain 

only, while chimeric proteins preceded by an unrelated N-terminal domain are further subdivided 

into 6 different types (S1-S6) based on the variable length of this N-terminal motif and the presence 

or absence of an additional C-terminal sequence. Moreover, chimeric proteins with a known N-

terminal domain are designated as type T (TIR-Nictaba), type A (AIG1-Nictaba), type P (protein 

kinase-Nictaba) and type F (F-box-Nictaba) proteins, and are following the subdivision analogous to 

the one for the S-type group based on the presence of additional N- or C-terminal motifs. Finally, the 

small M group of Nictaba-like proteins includes the type M1 protein built of a triple Nictaba motif 

with a medium long N-terminal sequence, as well as the type M2 protein built of a double Nictaba 

motif with an N-terminal F-box domain and a C-terminal sequence. 
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Fig. 1.3 Proteins with Nictaba domains. A, Amino acid sequence of the complete (165 AA) Nictaba protein (cDNA clone 

AF389848) from Nicotiana tabacum cv. Samsun NN. AAs highly conserved between different Nictaba-like proteins are 

marked in blue. Trp residues crucial for the lectin activity of Nictaba are indicated with red markers. B, Summary  of  the  

different  types  of  Nictaba  orthologs  and  their  occurrence in  some  plant  species (adapted from Delporte et al., 2015). 
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TIR-Nictaba proteins  

TIR (toll-interleukin 1 receptor) domains are commonly found in insects, mammals and plants as 

components of the specific resistance (R) proteins within the innate immune system (Burch-Smith 

TM and Dinesh-Kumar, 2007). Apart from the TIR domain, these R proteins in plants mostly consist of 

a nucleotide-binding (NB) domain and an LRR domain at the C terminus (TIR-NB-LRR proteins). So far, 

pathways involving TIR domain-containing proteins are not as well studied in plants as in other 

organisms, but it seems that they might have much more expanded functions, since they are 

suggested to play a role in pathogen detection and activation of downstream signaling processes but 

also in direct regulation of the expression of genes involved in defense responses.  

 

AIG1-Nictaba proteins 

Similar to the TIR domain, the AIG1 motif is also associated with plant defense responses. Its name 

refers to the resistance gene, called avrRpt2-induced gene 1, up-regulated in Arabidopsis plants upon 

infection with Pseudomonas syringae carrying the avirulence Rpt2 gene (avrRpt2) (Cui et al., 2013a; 

Reuber and Ausubel, 1996). So far, only one putative AIG1-Nictaba protein has been identified in 

Arabidopsis, but its function remains an open question. 

 

Protein kinase-Nictaba proteins 

Protein kinases are diverse enzymes catalyzing reversible protein phosphorylation in signal 

transduction pathways involved in plant responses to different environmental stresses (Lehti-Shiu 

and Shiu, 2012). The unique putative protein kinase-Nictaba found in rice has not been functionally 

characterized until now. 

 

F-box-Nictaba proteins 

In general, F-box proteins, composed of a conserved N-terminal F-box motif and a highly variable C-

terminal domain, are known to play a crucial role in selective UPS-mediated protein degradation 

(Lannoo et al., 2008; Skaar et al., 2013). More details regarding F-box proteins, and their 

physiological roles in plants can be found in section 1.2. 

 

Cucurbitaceae phloem lectins 

Nictaba motifs have been also identified in the small group of Cucurbitaceae phloem lectins often 

called phloem proteins 2 (PP2s) (Beneteau et al., 2010; Clark et al., 1997; Dinant et al., 2003). Similar 

to Nictaba, the PP2s are homodimers built of 17–25 kDa subunits and exhibit high affinity towards 

GlcNAc oligomers. In contrast to Nictaba, however, they are constitutively expressed and are 

typically localized in phloem exudates. Furthermore, despite relatively high sequence identity and 

similarity to Nictaba (33% and 51%, respectively), they lack an NLS and possess additional unrelated 

N- and C-terminal AA sequences (including the C-terminal cysteine rich pentapeptide necessary for 

inter-molecular disulphide bridge formation with the phloem protein PP1). Therefore, even though 

Nictaba and the Cucurbitaceae PP2 proteins are closely related, most probably they have a different 

function in plants. 
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1.2 Plant F-box proteins in the ubiquitin-26S proteasome system: judges between 

life and death  

Proteins are continuously synthesized and degraded in all living cells and their half-lives may vary 

greatly ranging from just a few minutes or hours up to several weeks (Pratt et al., 2002; Toyama and 

Hetzer, 2013). Importantly, protein turnover is not only required for the elimination of misfolded, 

denatured or damaged proteins, but also plays an essential role in adjusting the abundance of crucial 

regulatory proteins and enzymes. As such, protein degradation is a key post-translational event 

responsible for the regulation of a myriad of physiological processes and enabling rapid cellular 

response to internal as well as external signals.  

A dominant proteolytic pathway in all eukaryotes involves the highly complex and tightly regulated 

machinery localized in the nucleus and cytoplasm of cells, further referred to as the ubiquitin (Ub)–

26S proteasome system (UPS) (Vierstra, 2009). It is estimated that 10% of all intracellular proteins 

are short-lived and that most of them are subjected to proteasomal degradation. Therefore, it is not 

surprising that UPS has been at the center of research interest in the last years. The physiological 

relevance of protein turnover for all living organisms was recognized 10 years ago by awarding Aaron 

Ciechanover, Avram Hershko and Irwin Rose with the Nobel Prize in Chemistry for the discovery of 

Ub-mediated protein degradation (Giles, 2004). 

1.2.1 The ubiquitin-26S proteasome system  

1.2.1.1 Essentials of the UPS machinery 

In the UPS, target proteins to be eliminated are specifically recognized and tagged by covalent 

ligation to Ub molecules for the ultimate degradation by the 26S proteasome (Smalle and Vierstra, 

2004). Ub is a small 8.5 kDa protein built of 76 AA first discovered in 1975 which, as the name 

implies, is ubiquitously present in eukaryotes (Goldstein et al., 1975; Vierstra, 2012). A chain of 

specifically arranged Ub moieties attached to a protein serves as a label directing the protein for 

proteasomal degradation (Thrower et al., 2000). Target proteins can occur either in the nucleus and 

the cytoplasm, but can also be localized in the membranes facing the nucleocytoplasmic 

compartments or may be derived from the ER after retro-translocation into the cytoplasm (Hershko 

and Ciechanover, 1998). The process of protein tagging with the Ub chain relies on a sequential 

action of three enzymes: the Ub-activating enzyme (E1), the Ub-conjugating enzyme (E2) and the Ub-

ligase enzyme (E3) (Fig. 1.4A; Smalle and Vierstra, 2004; Vierstra, 2009). First, the enzyme E1 forms a 

thioester bond between its Cys residue and the C-terminal Gly of an Ub molecule in an ATP-

dependent manner and transfers the activated Ub to a Cys on the E2 enzyme. Then, E2 either 

donates Ub to the E3 or interacts with E3 and transfers the Ub molecule directly to the Lys residue on 

the target protein via an isopeptide bond (Berndsen and Wolberger, 2014).  

 

http://www.plantcell.org/content/16/12/3181#ref-128
http://www.plantcell.org/content/16/12/3181#ref-128
http://www.plantcell.org/content/16/12/3181#ref-128
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This sequential process is repeated several times to attach more Ub moieties to each other through 

specific Lys residues (K48), ultimately giving rise to a polyUb chain necessary for the degradation of 

the substrate by the proteasome (Thrower et al., 2000). The highly selective recognition and binding 

of the target protein is performed by an E3 ligase which, by interacting with both the E2-Ub complex 

as well as with the recognized target, mediates the transfer of a “death tag” to a specific protein. 

Based on their structure and mechanism of Ub transfer, E3 ligases are classified into four major types 

(Fig. 1.4B-D): HECT (Homologous to E6-associated protein C-Terminus), RING (Really Interesting New 

Fig. 1.4  Schematic representation of protein tagging for degradation via the UPS. A, Protein tagging with Ub is based on 

sequential action of three enzymes. First, Ub is activated by an E1 in an ATP-dependent manner. The activated Ub is 

transferred to an E2 and then is attached through an isopeptide bond to the target protein or to another Ub already 

present on the substrate. Protein labeled with a polyUb chain is directed for the degradation by the proteasome. B-D, 

Organization and mechanism for target recognition and ubiquitination by different types of E3s. B, The HECT E3 ligases 

are single polypeptides containing a HECT domain, which forms a thioester intermediate with Ub prior to protein 

ubiquitination. C, The RING or U-box E3 ligases are single polypeptides comprising a structurally related RING or U-box 

domain which binds the E2–Ub and promotes Ub transfer onto the target protein. D, The Cullin-RING ligases (CRL) are 

multisubunit E3s containing a Cullin, RING-box 1 (Rbx1) binding E2-Ub intermediate, and a variable substrate recognition 

module. The SCF-type E3s specifically bind the target via the F-box protein (FBX). The bric-a-brac–tramtrack–broad 

complex (BTB) E3s recognize their targets using BTB proteins. In the DNA damage-binding (DDB) E3s, WD40 domain-

containing DWD proteins specifically bind the target protein. Finally, the anaphase-promoting complex (APC) E3s contain 

over 11 subunits including target-recognition module CDC.  
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Gene), U-Box and CRL (Cullin-RING Ligases) (Downes et al., 2003; Hua and Vierstra, 2011; 

Mazzucotelli et al., 2006; Petroski and Deshaies, 2005a; Stone et al., 2005; Yee and Goring, 2009; 

Vierstra, 2009). The best-characterized are SCF complexes - the CRL-type E3s named after their 

components: Skp1 (S-phase kinase-associated protein 1), Cullin-1/CDC53 and F-box protein (Hua and 

Vierstra, 2011; Petroski and Deshaies, 2005a; Zheng et al., 2002). 

Remarkably, in comparison to other kingdoms, the UPS in plants constitutes an extremely complex 

and multifarious machinery illustrating the importance of selective protein degradation for plant 

physiology. In Arabidopsis, core UPS components are encoded by over 1600 genes, which would 

collectively express nearly 6 % of the proteome (Smalle and Vierstra, 2004; Vierstra, 2009). The 

hierarchical significance of each group of UPS constituents is well reflected by its diversity. In 

Arabidopsis e.g., only 2 out of those >1600 genes encode E1 enzymes (Hatfield et al., 1997), at least 

37 code for E2s (Kraft et al., 2005), while most of them (>1400) encode putative E3 Ub-ligases 

responsible to confer specificity to the system (Mazzucotelli et al., 2006).  

1.2.1.2 Protein degradation by the 26S proteasome system 

 

The 26S proteasome is an ATP-dependent multisubunit and multicatalytic protease complex of ~2.5 

MDa present in the nucleocytoplasmic compartment (Kurepa and Smalle; 2008; Voges et al., 1999; 

Wilk and Orlowski, 1980). It is structurally and functionally conserved in all eukaryotes. The 

proteasome fulfills the role of a cellular recycling machine, which specifically eliminates 

polyubiquitinated proteins by degradation into peptides. The 26S proteasome is composed of a 

cylindrical 20S core particle (CP) capped at either or both ends with the 19S regulatory particle (RP) 

(Finley, 2009). The CP consists of a stack of four heptameric rings surrounding the internal chamber. 

The rings are composed of two different types of subunits: structural α subunits and catalytic β 

subunits. The two outer rings of the cylinder consist of α subunits, which function as docking 

domains for RP. The inner rings built of β subunits possess three distinct proteolytic activities: 

chymotrypsin-like, trypsin-like and peptidylglutamyl-peptide hydrolyzing activity. It is the internal 

chamber of the CP lumen that harbors the active sites of the proteases and thus, this is the very 

place where the target proteins are enzymatically degraded into peptides. The opening to the CP 

lumen is narrow enough to restrict the entry only to the unfolded proteins (Groll and Huber, 2003). 

In turn, the RP of the proteasome serves as the selective gate to the internal proteolytic chamber 

(Kurepa and Smalle; 2008). It is composed of 19 individual subunits, out of which 10 form the lid and 

the other 9 the base. The lid RP Non-ATPase subunits (RPNs) include Ub receptors as well as 

deubiquitinating enzyme (DUB) and therefore are responsible for recognizing ubiquitinated 

substrates, removing the Ub chains and recycling Ub moieties. The base, binding directly to the α ring 

of the 20S CP, contains a ring of six RP Triple-A ATPases (RPTs) which unfold the target protein, open 

the entrance to the proteolysis chamber and transfer the target inside (Smith et al., 2005). 

In brief, a target substrate modified with Lys48-linked polyUb chain is specifically recognized by the 

Ub receptors in the RP lid, deubiquitinated by DUB and unfolded by ATPases localized in the RP base. 

http://journal.frontiersin.org/Journal/10.3389/fpls.2014.00042/full#B43
http://www.nature.com/nrm/journal/v10/n6/full/nrm2688.html#B16
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This unfolded protein is then translocated into the proteolytic chamber of the CP where it ultimately 

gets degraded into peptides. These peptides are further processed by other proteases into the 

constituent AAs reusable in the synthesis of new proteins. 

With 23 genes encoding components of the 20S CP and 31 genes for 19S RP, plants assemble 

multiple proteasome variants with distinct compositions (Yang et al., 2004). Some of these isoforms 

may have a particular cellular localization (either cytoplasm or nucleus), are differentially regulated 

or are uniquely designed to process specific protein substrates (Book et al., 2009).  

1.2.1.3 Physiological functions of the ubiquitin-26S proteasome system in plants 

In the past few years, it was clearly demonstrated that protein modification with Ub as well as 

selective protein degradation by the proteasome represent an essential cellular machinery involved 

in most, if not all, aspects of plant physiology (Vierstra, 2009). Ubiquitination of numerous regulatory 

proteins controls a myriad of signaling and metabolic pathways. The UPS plays a role in plant 

developmental processes (Moon et al., 2004, Schwechheimer and Calderón-Villalobos, 2004; 

Vierstra, 2009) including morphogenesis (Chae et al., 2008; Coates et al., 2006), self-incompatibility 

(SI) (Liu et al., 2014), gameto- and embryogenesis (Wang et al., 2013a), meristem formation (Di 

Giacomo et al., 2013), organ size (Li and Li, 2014), trichome development (Patra et al., 2013b), cell-

cycle progression (Kim et al., 2008) and circadian clock regulation (Cui et al., 2013b). It is crucial for 

plant responses to hormones and for hormone biosynthesis, and in fact several Ub ligases are 

actually functioning as hormone receptors (Dharmasiri et al., 2013; Kelley and Estelle, 2012). 

Moreover, the UPS constitutes a central regulatory mechanism in plant stress signaling upon diverse 

environmental challenges of both abiotic (Guo et al., 2013; Stone, 2014; Zhang et al., 2014) and biotic 

origin (Alcaide-Loridan and Jupin, 2012; Dielen et al., 2010; Dreher and Callis, 2007; Duplan and 

Rivas, 2014; Li et al., 2014b; Magori and Citovsky, 2012; Marino et al., 2012; Trujillo and Shirasu, 

2010). The UPS is also involved in chromatin structure and epigenetics (Bourbousse et al., 2012; Cao 

et al., 2008a; Dhawan et al., 2009; Gu et al., 2009; Hu et al., 2014; Zou et al., 2014). In addition to its 

regulatory function, the UPS also performs a crucial housekeeping role of protein quality control by 

degradation of abnormal, misfolded and denatured proteins, thus preventing aggregate formation 

within the cell (Liu and Li, 2014).  

1.2.2 F-box-proteins and their role in the ubiquitin-26S proteasome system 

The SCF E3 Ub ligases are built up of four major constituents: Skp1, Cullin1/CDC53, an F-box protein 

and a Roc1/Rbx1/Hrt1 RING finger protein (Deshaies, 1999; Petroski and Deshaies, 2005a; Zheng et 

al., 2002). Within SCF complexes, the structural Cullin-1 protein acts as a scaffold which ensures 

optimal exposure of the substrate for ubiquitination. It does so by bringing the catalytic module, that 

is the E2-Ub complex bound through Rbx1, in close proximity to the specifically recognized target 

bound to Cullin1 via the Skp1/F-box protein module (Cardozo and Pagano, 2004; Risseeuw et al., 
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2003). It is the F-box protein which functions as an adaptor for the target protein and establishes the 

substrate specificity of the SCF complex (Skaar et al., 2013). F-box proteins exhibit a typical bipartite 

structure containing a conserved N-terminal F-box domain of 40-50 AA first discovered in cyclin-F 

(Bai et al., 1996; Craig and Tyers, 1999), and a highly variable C-terminal target-binding domain. 

While the F-box motif mediates protein-protein interactions with Cullin1-associated Skp1 and thus 

enables F-box protein incorporation into a functional SCF complex, the C-terminal domain recruits 

proteins destined for proteasomal degradation (Kipreos and Pagano, 2000; Skaar et al., 2013). The F-

box protein family is the largest protein superfamily known and numerous F-box proteins with 

different C-terminal motifs have been identified as SCF components. Based on the substrate-specific 

C-terminal domain, F-box proteins are categorized into three main classes: FBXW and FBXL families 

include F-box proteins with WD-40 and LRR domains, respectively, while members of the FBXO family 

contain other C-terminal domains, e.g. Kelch domains, Armadillo and tetratricopeptide repeats, zinc 

fingers, proline-rich or unknown motifs (Jin et al., 2004). F-box proteins bind only to specific 

substrates which present a certain short, defined degradation signal referred to as the ‘degron’, 

enabling rapid and specific selection of the target protein (Fig. 1.5; Ravid and Hochstrasser, 2008). In 

general, members of FBXW and FBXL families are commonly implied in binding to phosphorylated 

targets through protein-protein interaction with the so-called phosphodegron (Fig. 1.5A; Skaar et al., 

2013). Nevertheless, for some F-box proteins target recruitment relies on different mechanisms. 

Recognition may be dependent on a cofactor (Fig. 1.5B; Lin et al., 2006), can be limited by restricted 

access to the degron (Fig. 1.5C; D’Angiolella et al., 2012) or by modification blocking the degron (Fig. 

1.5D; Rossi et al., 2013). Recruitment can also be controlled via localization of the substrate or the F-

box protein (D’Angiolella et al., 2012; Yao et al., 2007) and may rely on inducible non-covalent 

degrons functioning as a ‘molecular glue’ (e.g. plant hormones; Fig. 1.5E; Sheard et al., 2010; Tan et 

al., 2007), or on covalent degron modifications other than phosphorylation e.g. glycosylation (Fig. 

1.5F; Glenn et al., 2008; Mizushima et al., 2007; Yoshida et al., 2002, 2003, 2005).  

In fact, F-box proteins are themselves tightly regulated by the UPS (de Bie and Ciechanover, 2011). 

Proteasomal degradation of F-box proteins can be mediated either by an another E3 Ub ligase (An et 

al., 2010; Bashir et al., 2004; D’Angiolella et al., 2012; Kim et al., 2003; Klitzing et al., 2011; 

Margottin‑Goguet et al., 2003; Wei et al., 2004) or via the autoubiquitination mechanism in the 

absence of the specific substrate (Galan and Peter, 1999; Scaglione et al., 2007; Yen and Elledge, 

2008).  

 

Interestingly, apart from their canonical function in mediating proteasomal degradation, some F-box 

proteins in yeast and mammals can play an SCF-independent role on their own or in association with 

Skp1 (Hermand, 2006; Jonkers and Rep, 2009). For instance, they can act as chaperones by 

preventing aggregation of aberrant glycoproteins (Nelson et al., 2013; Yoshida et al., 2007), as 

transcription cofactors (Smaldone et al., 2004), or participate in cell cycle (Hermand et al., 2003; 

Kitagawa et al., 1999; Wang et al., 2003), mitochondria distribution and morphology (Dürr et al., 

2006; Kondo-Okamoto et al., 2006), and recycling of endosome components (Galan et al., 2001).  
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Fig. 1.5   Mechanisms of target recognition by F-box proteins (adapted from Skaar et al., 2013). A,  Recognition of 

phosphorylated targets through protein-protein interaction with the phosphodegron. B, Binding of the target dependent on 

a cofactor. C, Recognition of the target limited by restricted access to the degron. D, Degron recognition blocked by a 

modification. E, Binding dependent on an inducible non-covalent degron acting as a ‘molecular glue’. F, Recognition of 

glycosylated targets via protein-carbohydrate interaction.  

1.2.3 Involvement of F-box proteins in plant physiology 

The F-box motif is highly widespread in plants and consequently, F-box proteins constitute one of the 

largest and most heterogeneous protein superfamilies known with a striking variability in C-terminal 

target-binding domains. Hundreds of putative representatives have been identified in different plant 

species including Arabidopsis (> 800 and >1350 members in A. thaliana and A. lyrata, respectively) 

(Gagne et al., 2002; Hua et al., 2011; Kuroda et al., 2002; Yang et al., 2008), M. truncatula (>1100), G. 

max (>700) (Bellieny-Rabelo et al., 2013), O. sativa (> 900) (Jain et al., 2007), P. trichocarpa (>400) 

and Z. mays (>400) (Hua et al., 2011). For comparison, Saccharomyces cerevisiae, Drosophila 

melanogaster and human genomes encode only 20, 27, and 69 putative members of the F-box 

family, respectively (Skaar et al., 2009). Similarly, in plants multiple plant Skp1-like proteins have 
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been identified: e.g. there are 21 Arabidopsis-SKP1-like (ASK) proteins and 28 members in rice 

(Dezfulian et al., 2012; Kong et al., 2004, 2007; Kuroda et al., 2012; Marrocco et al., 2003; Zhao et 

al.,2003), while there is only a single representative in humans and in S. cerevisiae (Kipreos and 

Pagano, 2000). Based on the structure of the domain organization and on the type of C-terminal 

recruitment motif, the plant F-box superfamily has been subdivided in 42 families: apart from the 

well-characterized C-terminal domains like LRR, WD-40, Kelch, TPR, Tubby, RING finger or Armadillo, 

they may contain some other unique motifs which are often plant-specific, e.g. the FBD domain (Jain 

et al., 2007; Kuroda et al., 2002; Xu et al., 2009). This enormous expansion of the class of F-box 

proteins in plants and the impressive variability of their C-terminal substrate-binding motifs, 

altogether with numerous Skp1-like proteins mediating F-box protein interaction with Cullin1, 

suggest that plants could theoretically assemble thousands of different SCF complexes targeting a 

wide collection of diverse proteins involved in a multitude of physiological processes (Vierstra, 2009). 

It is hypothesized that plants, being sessile organisms continuously challenged with a plethora of 

environmental signals, were forced to develop this highly sophisticated and tightly regulated 

machinery of post-translational control, in order to rapidly respond in a specific manner to different 

cues and stresses, which ultimately helps  them to survive. Indeed, F-box proteins are associated with 

many biological events in plant development and stress signaling, including morphogenesis, hormone 

perception and signaling, cell cycle, circadian clock regulation, SI, senescence, responses to abiotic 

stress and plant-pathogen interactions (Guo et al., 2013; Kelley and Estelle 2012; Lechner et al., 

2006; Magori and Citovsky, 2012; Marino et al., 2012; Vierstra, 2009). Nevertheless, despite the large 

progress made during the past decade, only a small fraction of the putative F-box proteins identified 

in plants has been (partially) characterized (Table 1.2).  

1.2.3.1 Phytohormone signaling 

Plant hormones are endogenously synthesized small signaling molecules which regulate all aspects of 

plant growth, development and responses to environmental cues (Santner et al., 2009). UPS-

mediated protein degradation has been implicated in almost every signaling pathway by regulating 

the expression of genes specific to each hormone, including auxin, cytokinin, JA, gibberellin (GA), 

ethylene (ET), salicylic acid (SA), ABA, brassinosteroid (BR) and strigolactone (SL) (Dharmasiri et al., 

2013; Kelley and Estelle, 2012). Studies over the past decade have shown that in most of these 

pathways F-box proteins are the key signaling components acting as hormone receptors responsible 

for signal perception and transduction. Degradation substrates can be recruited to F-box proteins via 

degrons composed of both a small hormone molecule and a specific target protein sequence. The 

molecular mechanisms of this interaction rely on hormones which can either act as a ‘molecular glue’ 

filling the gaps between the F-box proteins and their substrates, extending the binding surface and 

stabilizing the interaction, or might cause an allosteric change leading to the exposure of interaction 

domains (Lumba et al., 2010; Skaar et al., 2013).  
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Table 1.2   Overview of plant and pathogen F-box proteins with demonstrated involvement in plant physiology. 

Process Species F-box proteins 
Target-binding 

domain 

Confirmed/ 
putative 

target 
References 

Auxin signaling A. thaliana 
TIR1 

AFB1-5 
LRR Aux/IAA 

Calderón Villalobos et al., 2012; 
Dharmasiri et al., 2005a, b; Gray 
et al., 2001; Greenham et al., 
2011; Hayashi, 2012; Kepinski 
and Leyser, 2005; Peer, 2013; 
Tan et al., 2007; 

JA signaling A. thaliana COI1 LRR JAZ 

Chini et al., 2007; Sheard et al., 
2010; Thines et al., 2007; 
Wasternack and Hause; 2013; 
Xie et al., 1998; Xu et al., 2002; 
Yan et al., 2013; 

GA signaling 
A. thaliana 

SLY1 
SNE 

GGF 
and 
LSL 

D
E
L 
L
A 
s 

GAI 
RGA 

RGL1-3 GA signaling 

O. sativa GID2 SLR1 

Ethylene 
signaling 

A. thaliana 

EBF1-2 LRR 
EIN3 
EIL1 

An et al., 2010; Gagne et al., 
2004; Guo and Ecker., 2003; Ji 
and Guo, 2013; Merchante et 
al., 2013; Potuschak et al., 2003; 
Qiao et al., 2009;  

ETP1-2 FBA EIN2 

ABA signaling A. thaliana 

TLP9 
Tubby 

domains 
N/D 

Koops et al., 2011; Lai et al., 
2004; Zhang et al., 2008; EDL3 Leucine-zipper 

DOR N/D 

Strigolactone 
signaling 

A. thaliana MAX2/ORE9 

LRR 

BES1 Beveridge et al., 1996; 
Drummond et al., 2012; Jiang et 
al., 2013; Smith and Li, 2014; 
Stirnberg et al., 2002, 2007; 
Wang et al., 2013b; Zhou et al., 
2013; 

O. sativa D3 D53 

P. sativum RMS4 N/D 

P. hybrida MAX2a N/D 

Root 
development 

A. thaliana 

ARABIDILLO1-2 Arm-repeats 

N/D 
Coates et al., 2006; Dong et al., 
2006; Schwager et al., 2007; 
Zheng et al., 2011 

CEG/SFL61 N/D 

VBFs LRR 
LRR AUF1-2 

Floral 
development 

A. thaliana UFO N/D 

N/D 
Chae et al., 2008; Hepworth et 
al., 2006; Ingram et al., 1997; Ni 
et al., 2004; Samach et al., 1999; 

Antirrhinum 
majus 

FIM Kelch repeats 

Senescence 
O. sativa 

FBK12 Kelch repeats SAMS1 
Chen et al., 2013; Woo et al., 
2001; Yan et al., 2007; 

D3 LRR D53? 

A. thaliana MAX2/ORE9 LRR BES1? 

Nodulation L. japonicus TML Kelch repeats N/D Takahara et al., 2013; 

Cell cycle A. thaliana 

SKP2A 

LRR 

E2FC 
DPB 

del Pozo et al., 2002, 2006; del 
Pozo and Manzano, 2013; 
Jurado et al., 2010; Kim et al., 
2008; Ren et al., 2008b; Zhao et 
al., 2012a; 

SKP2B KRP1 

FBL17 KRP3-7 

Light signaling A. thaliana 
EID1 Leucine-zipper N/D Dieterle et al., 2001; Harmon 

and Kay, 2003; Marrocco et al., 
2006; 

AFR Kelch repeats N/D 

Circadian clock 
regulation 

A. thaliana 

ZTL 
LKP2 

 

Kelch repeats 

TOC1 
PRR5 

 

Baudry et al., 2010; Fornara et 
al., 2009; Imaizumi et al., 2003, 
2005; Ito et al., 2012; Kiba et al., 
2007; Kim et al., 2003; Mas et 
al., 2003; Nelson et al., 2000; 
Sawa et al., 2007; Schultz et al., 
2001; Somers et al., 2000, 2004; 
Takase et al., 2011; 

FKF1 
TOC1 
PRR5 

CDF1-2 
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Self-
incompatibility 

Solanaceae 
Plantaginaceae 

Rosaceae 
SLFs FBA S-RNAses 

Huang et al., 2006; Kubo et al., 
2010; Li et al., 2014c; Liu et al., 
2014; Qiao et al., 2004a, b; 
Sijacic et al., 2004; Sonneveld et 
al., 2005; Takayama and Isogai, 
2005; 

Abiotic stress 
responses 

A. thaliana 

FBP7 N/D 

N/D 

Bu et al., 2014; Calderón-
Villalobos et al., 2007; Chen et 
al., 2008; Chen et al., 2014; Li et 
al., 2014d; Maldonado-Calderón 
et al., 2012; Zhou et al., 2014; 

At5g21040 WD40 

MAX2/ORE9 LRR 

PP2-B11 CRD 

C. annuum CaF-box LRR 

P. vulgaris FBS1 N/D 

T. aestivum FBA1 AMN1 

Defense 
responses 

A. thaliana 

CPR1/CPR30 FBA 
SNC1 
RPS2 

Cheng et al., 2011; Gou et al., 
2009, 2012; He et al., 2012; Kim 
and Delaney, 2002; Ralhan et 
al., 2012; Wang et al., 2014; 
Zaltsman et al., 2010;  

COI1/coi1rsp LRR N/D 

SON1 FBA N/D 

VBF CRD VIP1 

N. benthamiana 
N. tabacum 

S. lycopersicum 

ACIF1 
(ACRE189) 

LRR 
N/D 

van den Burg et al., 2008;  

O. sativa DRF1 N/D Cao et al., 2008b; 

Manipulation of 
host SCF 

machinery by 
plant pathogens 

A. tumefaciens VirF N/D 
VIP1 
VirE2 

Magori and Citovsky, 2012; 
Tzfira et al., 2001, 2004; 

R. solanacearum GALA1,5,6,7 LRR N/D 
Angot et al., 2006; Poueymiro 
and Genin, 2009; 

Poleroviruses 
Enamovirus 

P0 N/D AGO1 

Baumberger et al., 2007; 
Bortolamiol et al., 2007; Csorba 
et al., 2010; Pazhouhandeh et 
al., 2006; 

Nanovirus Clink LxCxE RBR 
Aronson et al., 2000; Lageix et 
al., 2007; 

Domains: CRD, carbohydrate-recognition domain; FBA, F-box-associated motif; GGF and LSL, domain name corresponds to 

the conserved AA residues; LOV, light-oxygen-voltage domain; LRR, leucine reach repeats; PAS, Per-Arnt-Sim domain; N/D, 

non-defined. 

 

Auxin signaling 

Auxins play a cardinal role in the regulation of plant growth and developmental processes ranging 

from embryogenesis to senescence (Peer, 2013; Woodward and Bartel, 2005). Auxin responsive 

genes in Arabidopsis are under the control of transcription factors called Auxin Response Factors 

(ARFs) which are negatively regulated by interaction with the complex of transcriptional repressors 

Aux/IAA (Auxin/Indole-3-acetic acid) and TOPLESS (TPL) co-repressor protein (Fig. 1.6; Szemenyei et 

al., 2008). Under increased auxin concentration Aux/IAAs are polyubiquitinated and directed for 

proteasomal degradation through specific interaction with the F-box proteins TRANSPORT INHIBITOR 

RESPONSE1 (TIR1) or AUXIN SIGNALING F-BOX 1-5 (AFB1-5) associated within the SCFTIR1/AFB1-5 

complex (Gray et al., 2001; Dharmasiri et al., 2005b; Greenham et al., 2011; Hayashi, 2012), 

ultimately leading to the derepression of auxin responsive genes. In this system, the F-box proteins 

TIR1/AFB1-5 were initially identified as auxin receptors (Dharmasiri et al., 2005a; Kepinski and Leyser, 

2005), whereas auxin serves as a ‘molecular glue’, enhancing and stabilizing the interaction between 

TIR1/AFBs and Aux/IAA proteins (Tan et al., 2007). Nevertheless, it has recently been demonstrated 

that the assembly of the co-receptor complex consisting of both the TIR1/AFB and an Aux/IAA 

protein is crucial for efficient binding of auxin (Calderón-Villalobos et al., 2012). 



Chapter 1 - Introduction ______________________________________________________________ 

32 
 

 

 
 
Fig. 1.6 Schematic representation of auxin signaling via the SCF-type E3 Ub ligase SCF

TIR1/AFB 
(adapted from Dharmasiri et 

al., 2013). (1) At low auxin levels, Aux/IAA and the TPL co-repressor interacts with the transcriptional factor ARF repressing 

gene transcription. (2) At high levels, auxin functions as molecular glue to promote the interaction between Aux/IAA and 

the TIR1/AFB proteins enhancing the ubiquitination of Aux/IAA repressors. (4) Ubiquitinated Aux/IAA is degraded through 

the 26S proteasome allowing (5) transcription of auxin-inducible genes. 

 

Jasmonate signaling 

Jasmonates, including JA and its derivatives, are plant signaling molecules mediating plant stress 

responses and are involved in plant growth and development (Wasternack and Hause, 2013). The 

mechanism of jasmonate signal perception and transduction in Arabidopsis strikingly resembles the 

one of auxin signaling (Pérez and Goossens, 2013). In association with other co-repressors (including 

TPL) the jasmonate ZIM-domain (JAZ) proteins block JA-mediated transcription by interaction with 

MYB/MYC transcription factors triggering JA-mediated transcription (Pauwels et al., 2010; Shyu et al., 

2012). As a part of the SCFCOI1 complex (Xie et al., 1998; Xu et al., 2002; Yan et al., 2013) the F-box 

protein CORONATINE-INSENSITIVE1 (COI1) specifically recognizes the JAZ proteins and directs them 

for degradation by the proteasome, resulting in MYB/MYC transcription factors release and induction 

of JA-responsive gene transcription (Chini et al., 2007; Thines et al., 2007). Both COI1 and JAZ 

proteins function as co-receptors for JA-Ile, the physiologically active form of jasmonate which 

stabilizes the COI1-JAZ interaction via the molecular glue mechanism (Sheard et al., 2010).  

 

Gibberellin signaling  

Gibberellins (GAs) are growth regulators controlling seed development and germination, but are also 

involved in organ elongation and flowering time (Hedden and Thomas, 2012). Similar to auxin and JA 
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signaling, GA-responsive genes are activated by degradation of DELLA transcriptional repressors (e.g. 

GAI in Arabidopsis and SLR1 in rice) which under low GA concentration, inhibit transcription by 

binding to PIF (PHYTOCHROME INTERACTING FACTORS) transcription factors (Hauvermale et al., 

2012; Hussain et al., 2005; Ikeda et al., 2001; Itoh et al., 2005). Nevertheless, the GA signal 

perception is not performed by the F-box protein nor by its substrate, but by a separate soluble 

receptor called Gibberellin Insensitive Dwarf 1 (GID1). So far, this receptor has been identified in rice 

(Ueguchi-Tanaka et al., 2005), barley (Chandler et al., 2008) and three orthologs GID1a, GID1b, and 

GID1c have been also identified in Arabidopsis (Griffiths et al., 2006; Nakajima et al., 2006). The GA-

bound GID1 receptor interacts with DELLAs and presumably causes their conformational change 

promoting recognition and binding to the corresponding SCF complex (Hirano et al., 2010; Murase et 

al., 2008; Willige et al., 2007). The identified SCF-associated F-box proteins targeting DELLAs for 

degradation by the proteasome include Arabidopsis SLEEPY1 (SLY1) and SNEEZY (SNE) (Ariizumi et al., 

2011; Dill et al., 2004; Fu et al., 2004; McGinnis et al., 2003; Strader et al., 2004) as well as rice 

GIBBERELLIN INSENSITIVE DWARF2 (GID2) (Gomi et al., 2004; Sasaki et al., 2003).  

 

Ethylene signaling 

Ethylene (ET) is a gaseous hormone regulating seed germination, senescence, abscission as well as 

plant responses to abiotic and biotic stresses (Merchante et al., 2013). ET signaling is a very complex 

mechanism and SCF-associated F-box proteins are involved at several levels. Activation of ET-

response genes in Arabidopsis is dependent on two positive transcriptional regulators: ETHYLENE 

INSENSITIVE 3 (EIN3) and EIN3-Like (EIL1). They are regulated through the interaction with two F-box 

proteins, EIN3-Binding F-box 1 (EBF1) and EBF2 (Gagne et al., 2004; Guo and Ecker, 2003; Potuschak 

et al.,2003). In the absence of ET, SCFEBF1/2 mediates ubiquitination and subsequent proteasomal 

degradation of EIN3/EIL1 (Fig. 1.7). At increased concentrations of the hormone, EBF1/2 themselves 

are subjected to proteasomal degradation, while consequently the levels of EIN3/EIL1 increase (An et 

al., 2010). Nevertheless, stability of EIN3/EIL1 relies on an additional factor, the ETHYLENE 

INSENSITIVE2 (EIN2) protein. EIN2 is an ER transmembrane protein with a hydrophilic C-terminus at 

the cytoplasmic side (EIN2-CEND) which is cleaved off and translocated to the nucleus in response to 

the ET signal (Ji and Guo, 2013; Qiao et al., 2012; Wen et al., 2012). The EIN2-CEND prevents 

EIN3/EIL1 degradation, either by down-regulation of EBF1/2 expression (An et al., 2010) or via a yet 

unidentified mechanism, leading to the activation of ET-response genes. Furthermore, EIN2 is also 

tightly regulated by multiple mechanisms including SCF-mediated protein degradation. ET is 

perceived via the membrane-bound receptors ETR1, ERS1, ETR2, ERS2 and EIN4 located in the ER 

which act as negative regulators of ET signaling. In the absence of the hormone, ET receptors activate 

another ER membrane-associated protein, the CONSTITUTIVE TRIPLE RESPONSE1 (CTR1), which is a 

Ser/Thr kinase phosphorylating EIN2, hereby blocking the cleavage and nuclear transport of EIN2-

CEND (Ju et al., 2012).  
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Fig. 1.7 Schematic representation of ET signaling via SCF-type E3 Ubligase SCF
EBF1/2 

(adapted from Dharmasiri et al., 2013). 

The ET receptor ETR1 and the EIN2 protein are localized in the ER membrane. (1) When there is no ET, the C-terminal end of 

EIN2 (EIN2-CEND) is phosphorylated through CTR1 and activated ETR1. (2) This allows the EIN3 transcriptional factor to 

interact with the F-box proteins EBF1/EBF2 enhancing the EIN3 ubiquitination (3) and degradation, (4) resulting in inhibition 

of gene transcription. (5) When ET binds to ETR1, ETR1 and CTR1 are deactivated inhibiting the phosphorylation of EIN2-

CEND. This results in dephosphorylation of CEND and proteolytic cleavage. CEND is then translocated into the nucleus and 

will block the ubiquitination of EIN3. (6) Accumulation of EIN3 results in ET-induced gene transcription.  

 

 

Upon ET binding the receptors become inactivated, what in turn inhibits CTR1 and permits positive 

regulation of downstream ET signaling through the EIN2 protein and EIN3/EIL1 transcription factors. 

Finally, the F-box proteins EIN2 TARGETING PROTEIN 1 and 2 (ETP1-2) have been demonstrated to 

trigger degradation of EIN2 in the absence of ET (Qiao et al., 2009). In contrast, after ET signal 

recognition, ETP1-2 expression is decreased allowing the accumulation of EIN2.  

 

Abscisic acid signaling  

ABA plays an important role in seed and bud dormancy, embryo and seed development, 

reproduction as well as both abiotic (drought, salt, osmotic) and biotic stress responses. ABA 

signaling is rather complex and includes multiple steps requiring proteasomal degradation (Cutler et 

al., 2010; Lee and Luan, 2012). A few F-box proteins in Arabidopsis are also involved, although their 

targets have not been established yet. F-box protein TLP9 has been suggested to participate in the 

ABA signaling pathway by conferring sensitivity to ABA during seed germination and early seedling 

development (Lai et al., 2004). The EID1-LIKE PROTEIN3 (EDL3) is proposed to direct negative 
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regulators of ABA signaling for proteasomal degradation (Koops et al., 2011). Furthermore, Drought 

Tolerance Repressor (DOR) inhibits the ABA-induced stomatal closure and probably regulates ABA 

biosynthesis in Arabidopsis under drought stress via the UPS (Zhang et al., 2008). 

 

Strigolactone signaling 

Strigolactones (SLs) are the most recently identified class of phytohormones. They are synthesized in 

the root and play crucial roles in lateral shoot branching, root hair elongation and lateral root 

formation (Brewer et al., 2012; Koltai, 2014; Smith and Li, 2014). Although the SL signaling 

mechanism is still unclear, it has been shown that the F-box proteins MORE AXILLARY BRANCHES2 

(MAX2), DWARF3 (D3), RAMOSUS4 (RMS4) and MAX2a in Arabidopsis, rice, pea and petunia, 

respectively, are essential for the SL hormone response (Beveridge et al., 1996; Drummond et al., 

2012; Jiang et al., 2013; Stirnberg et al., 2002, 2007). In addition, it has been demonstrated in 

Arabidopsis and rice that SCFMAX2/D3 regulates SL-responsive gene expression by targeting 

transcription factors BES1/D53 for degradation (Jiang et al., 2013; Wang et al., 2013b; Zhou et al., 

2013). 

1.2.3.2 Plant development and morphogenesis 

F-box proteins play a pivotal role in almost every aspect of plant development by mediating plant 

hormone signaling. Nevertheless some F-box proteins seem to regulate developmental processes, 

such as root and flower development, without being directly implicated in hormone perception and 

signal transduction. Whereas two related F-box proteins ARABIDILLO-1 and ARABIDILLO-2 have been 

demonstrated to promote root branching in Arabidopsis (Coates et al., 2006), the F-box protein 

CEGENDUO (CEG, AtSFL61), which is induced by auxin, decreases lateral root formation (Dong et al., 

2006). Additionally, four proteins belonging to the VIER F-BOX PROTEINE family (VFB; German for 

FOUR F-BOX PROTEINS) are required for lateral root formation and normal growth in general 

(Schwager et al., 2007). Moreover, the auxin-responsive F-box proteins called AUXIN UP-REGULATED 

F-BOX PROTEIN1 and 2 (AUF1 and 2) are important positive regulators of root elongation presumably 

by targeting a positive effector controlling auxin movements and mediating the interplay between 

auxin and cytokinin signaling (Zheng et al., 2011). These findings indicate that lateral root 

development might be tightly regulated by a complex crosstalk between degradation pathways 

mediated by different F-box proteins. 

Two F-box proteins involved in flower formation and development have been described in plants: the 

UNUSUAL FLORAL ORGANS (UFO) from Arabidopsis and its ortholog FIMBRIATA (FIM) in Antirrhinum, 

which regulate multiple aspects of floral morphogenesis (Hepworth et al., 2006; Ingram et al., 1997; 

Ni et al., 2004; Samach et al., 1999). It has been demonstrated that UFO as a component of the SCF 

complex performs the role of a DNA-associated transcriptional co-factor in regulating APETALA3 gene 

expression by promoting LEAFY transcription factor activity in a protein degradation-dependent 

manner (Chae et al., 2008). 
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Also leaf senescence, seed size as well as grain number are under control of SCF-dependent 

degradation regulation. An F-box protein from rice, FBK12 (F-box protein containing a Kelch repeat 

motif), interacts with and targets S-ADENOSYL-L-METHIONINE SYNTHETASE1 (SAMS1) for 

proteasomal degradation (Chen et al., 2013). Thereby, it delays senescence and germination and 

promotes increased seed size presumably via modulation of ET levels. In addition, the proteins 

MAX2/ORE9 and D3 F-box crucial for SL signaling in Arabidopsis and rice, respectively, have been 

shown to accelerate leaf senescence (Woo et al., 2001; Yan et al., 2007). Furthermore, MAX2 

positively regulates photomorphogenesis and development, including optimization of seed 

germination, by modulating multiple hormone pathways other than SLs and in SL-independent 

manner (Shen et al., 2012). 

Recently, an F-box protein called TOO MUCH LOVE (TML) has been described as a key factor for 

proper organogenesis of root nodules during the final stage of autoregulation of nodulation in the 

model legume Lotus japonicas. It is suggested to suppress nodulation signaling prior to rhizobial 

infection by targeting the transcription factor associated with nodule formation for degradation 

(Takahara et al., 2013). 

1.2.3.3 Cell cycle 

Protein degradation mediated by SCF complexes also regulates the cell cycle. Studies have shown 

that the A. thaliana S-Phase Kinase-Associated Protein 2A (SKP2A) is an auxin-binding F-box protein 

which controls proteolysis of the cell cycle repressors E2-promoter binding factor C (E2FC) and E2F 

dimerization partner B (DPB) (del Pozo et al., 2002, 2006; del Pozo and Manzano, 2013; Jurado et al., 

2010). In the presence of auxin SKP2A mediates proteasomal degradation of E2FC and DPB, and thus 

promotes cell division. Interestingly, auxin also enhances UPS-driven degradation of SKP2A itself, 

acting as a factor preventing overfunction of the SCF mechanism. Two other F-box proteins, SKP2B 

and FBL17, are implicated in positive regulation of cell cycle progression by targeting cyclin-

dependent kinase inhibitors, the so-called Kip-related proteins (KRPs), for SCF-mediated proteasomal 

degradation (Kim et al.; 2008; Ren et al., 2008a; Zhao et al., 2012a). 

1.2.3.4 Light signaling and circadian clock regulation 

F-box proteins are also involved in plant responses to light by regulation of the signaling pathway of 

the red and far-red light absorbing photoreceptor phytochrome A (phyA). While EMPFINDLICHER IM 

DUNKELROTEN LICHT (EID1) is a negative regulator of the phyA signaling pathway (Dieterle et al., 

2001; Marrocco et al., 2006), the F-box protein ATTENUATED FAR-RED RESPONSE (AFR) is responsible 

for increased light sensitivity presumably by mediating degradation of a repressor of phyA signaling 

(Harmon and Kay, 2003). Until now, no targets have been found for EID1 nor for AFR. 

More information is available regarding the control of photoperiod through proteasomal 

degradation. This process includes three photoreceptor F-box proteins containing an N-terminal 

LIGHT, OXYGEN OR VOLTAGE (LOV) domain (functioning as a blue-light-sensing domain) and a C-

terminal Kelch repeat domain with an F-box motif in between. These proteins are called ZEITLUPE 
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(ZTL), FLAVIN-BINDING/KELCH-REPEAT/F-box 1 (FKF1) and LOV KELCH PROTEIN2 (LKP2) (Ito et al., 

2012). All three constitute the main regulators of the circadian clock in Arabidopsis by binding and 

targeting of the transcriptional regulators TIMING OF CAB EXPRESSION 1 (TOC1) as well as PSEUDO 

RESPONSE REGULATOR 5 (PRR5) implicated in photoperiodic flowering response for degradation 

(Baudry et al., 2010; Kiba et al., 2007 Mas et al., 2003; Schultz et al., 2001; Somers et al., 2000, 2004). 

FKF1 additionally selects CYCLING DOF FACTOR 1 and 2 (CDF1-2) for degradation, which are 

transcriptional repressors of the CONSTANS crucial in circadian clock-dependent flowering (Fornara 

et al., 2009; Imaizumi et al., 2003, 2005; Nelson et al., 2000; Sawa et al., 2007). Interestingly, ZTL 

itself is also degraded via the 26S proteasome in a circadian phase-specific manner (Kim et al., 2003), 

while FKF1 stability is modulated by both ZTL and LKP2 (Takase et al., 2011). Altogether, ZTL, LKP2 

and FKF1 F-box proteins cooperate through UPS-mediated control of transcriptional regulators in 

order to allow measurement of photoperiod and corresponding adaptation of flowering time (Ito et 

al., 2012). 

1.2.3.5 Self-incompatibility 

In Solanaceae, Plantaginaceae and Rosaceae species a group of F-box proteins function in 

gametophytic SI, a process enhancing diversity by preventing from self-pollination and thus from 

inbreeding (Takayama and Isogai, 2005). In gametophytic SI, the pistil produces a set of polyallelic 

ribonucleases encoded in the S locus (S‐RNases) which are transported into the growing tubes from 

both self and non‐self pollen. In self pollen tubes, S‐RNases are cytotoxic by degradation of RNA, 

ultimately leading to SI. In contrast, in the non-self tubes, S‐RNases become specifically recognized 

and targeted for proteasomal degradation by corresponding polyallelic S-locus F-box proteins (SLFs) 

(Huang et al., 2006; Kubo et al., 2010; Li et al., 2014c; Liu et al., 2014; Qiao et al., 2004a, b; Sijacic et 

al., 2004; Sonneveld et al., 2005). Consequently, a non-self pollen tube can grow further towards the 

ovary. The exact mechanism that allows differentiation between self and non-self recognition is not 

completely understood yet. Nevertheless, it is hypothesized that this phenomenon might rely on 

steric hindrance, high specificity of self/non‐self pairs where interaction between self S-RNases and 

SLFs is impossible, or on the fact that self S-RNases activate auto-ubiquitination and subsequent 

degradation of self SLFs (Hua et al., 2008; Kubo et al., 2010). 

1.2.3.6 Abiotic stress responses 

Several F-box proteins have been associated with plant responses to abiotic stress factors. A cold- 

and heat-inducible F-box protein from Arabidopsis, FBP7, is apparently a key factor for protein 

synthesis under temperature stress (Calderón-Villalobos et al., 2007). In turn, the Arabidopsis F-box 

protein encoded by At5g21040 negatively regulates inorganic phosphate starvation responses (Chen 

et al., 2008). Recently, two Arabidopsis F-box proteins have been shown to play a role in plant 

responses to drought stress. The MAX2 protein, known for its role in SL signaling, involvement in leaf 

senescence and photomorphogenesis, has been demonstrated to be crucial for the plant response to 

drought and osmotic stress during seed germination and seedling growth (Bu et al., 2014). The 
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mechanism by which MAX2 can control many diverse signaling pathways remains unclear although it 

is suggested that it might associate in many different SCFMAX2 complexes and target specific 

substrates involved in distinct signaling pathways at various developmental stages or in a tissue-

specific manner (Bu et al., 2014; Shen et al., 2012). The other drought-related F-box protein is the 

phloem protein 2-B11 (AtPP2-B11) (Li et al., 2014d). AtPP2-B11 expression is markedly induced upon 

drought treatment and its over-expression leads to drought hypersensitivity. It can interact with 

several Arabidopsis Skp1-like (ASK) proteins suggesting functionality in SCF complexes. AtPP2-B11 

also binds a protein associated with desiccation, called AtLEA14 (late embryogenesis abundant 

protein 14), and decreases its levels under drought conditions. Also in wheat an F-box protein called 

TaFBA1 has recently been identified, which is upregulated upon water and salt stress as well as after 

ABA treatment (Zhou et al., 2014). Its overexpression in tobacco conferred increased plant resistance 

to drought stress. In pepper, an F-box protein predominantly expressed in stems and seeds, called 

CaF-box, is up-regulated after treatment with various abiotic stress factors including cold and salt 

stress as well as after application of ABA and SA. It is therefore postulated that CaF-box fulfills an 

important role in pepper in the regulation of plant defense responses to abiotic stress (Chen et al., 

2014). Likewise, an F-box protein from bean, PvFBS1, is induced upon stress application including 

wounding, osmotic stress as well as after application of MeJA, SA and ABA. It is suggested to function 

in the general plant response to stress (Maldonado-Calderón et al., 2012).  

1.2.3.7 Plant-pathogen interactions 

F-box proteins play an essential role in plant immune responses through their involvement in 

hormone pathways crucial for plant defense, i.e. JA, SA and ET signaling. However, numerous F-box 

proteins have been indentified which function in plant-pathogen interactions independently from 

hormone signaling regulation.  

 

Plant F-box proteins in responses to pathogen infection 

Similar to membrane-associated pattern recognition receptor (PRR) proteins recognizing pathogen- 

or microbe-associated molecular patterns (PAMPs/MAMPs) and damage-associated molecular 

patterns (DAMPs), also intracellular NLR (NB-LRR) immune receptors exist which detect specific 

pathogen effectors and trigger a downstream cascade of defense signaling (Muthamilarasan and 

Prasad, 2013; Wirthmueller et al., 2013). These resistance (R) proteins need to be tightly regulated 

and, apparently, they are often under the control of E3 Ub ligases (Duplan and Rivas, 2014). In 

Arabidopsis it has been demonstrated that two NLR R proteins, SNC1 (suppressor of npr1-1, 

constitutive 1) and RPS2 (resistant to Pseudomonas syringae 2), are specifically recognized and 

targeted for proteasomal degradation by the SCF-associated F-box protein CPR1/CPR30 (constitutive 

expresser of pathogenesis-related (PR) genes 1/30) preventing over-accumulation of these R proteins 

and excessive immune responses in healthy plants (Cheng et al., 2011; Gou et al., 2009, 2012). In 

turn, loss-of-function CPR1/CPR30 mutants exhibit constitutive activation of PR genes, accumulation 

of the defense hormone SA and enhanced resistance to P. syringae infection. Another example is the 
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COI1 F-box protein known for its role in JA-dependent signaling via the SCFCOI1 complex. It appears 

that COI1 can also participate in JA-independent signaling by increasing Arabidopsis susceptibility to 

fungal infection or, in the coi1rsp allelic form, by regulating accumulation of the innate NB-LRR 

immune receptor (He et al., 2012; Ralhan et al., 2012). Moreover, the F-box-protein ACIF1 (Avr9/Cf-

9-induced F-box 1; also called ACRE189) as part of the SCFACIF1 complex, is required for cell death and 

SA-mediated defense responses activated upon pathogen recognition in tobacco and tomato plants 

(van den Burg et al., 2008). ACIF1 homologs in A. thaliana (VFBs) are apparently associated with 

differential expression of stress-responsive genes. Another Arabidopsis F-box protein SON1 

(suppressor of NIM1-1) is implicated in the negative regulation of defense signaling pathways against 

Peronospora parasitica and P. syringae independently of SA accumulation and systemic acquired 

resistance (SAR) (Kim and Delaney, 2002). Furthermore, the rice defense-related F-box protein 

(DRF1), inducible upon infection with the blast fungus Magnaporthe grisea and treatment with the 

chemical inducer of plant defense pathways benzothiadiazole, is a positive regulator of plant defense 

responses. Its overexpression in tobacco increases plant resistance to Tomato Mosaic Virus (ToMV) 

and P. syringae (Cao et al., 2008b). Until now, the ACIF1, SON1 and DRF1 targets have not been 

identified. 

 

Pathogen strategies to  hijack host SCF machinery 

Strikingly, pathogens have evolved strategies to counteract plant defenses and promote efficient 

infection by the synthesis of effectors or even F-box proteins able to reprogram the plant SCF 

machinery and to direct host cells to work for the benefit of the intruder (Alcaide-Loridan and Jupin, 

2012; Magori and Citovsky, 2011b).  

 

F-box proteins of pathogen origin 

The first F-box protein identified in prokaryotes and demonstrated to function in eukaryotic host cells 

was the VirF protein from Agrobacterium tumefaciens, a pathogen causing crown gall disease by 

genetic transformation of plants (Schrammeijer et al., 2001; Tzfira et al., 2004). After A. thaliana 

transformation, A. tumefaciens translocates the VirF protein, single-stranded T-DNA coated with 

VirE2 proteins as well as other effectors into the host cell via the type IV secretion system (Magori 

and Citovsky, 2012). VirE2 interacts with the plant VIP1 protein (VirE2 interacting protein 1), 

facilitating the nuclear import of VirE2-coated T-DNA (Tzfira et al., 2001). Then, by exploitation of the 

host UPS constituents in the nucleus, a functional SCFVirF complex is formed (Schrammeijer et al., 

2001) required for proteasomal degradation of VirE2 and host VIP1 prior to T-DNA integration into 

the plant genome (Magori and Citovsky, 2012; Tzfira et al., 2004). Interestingly, the Arabidopsis VIP1-

binding F-box protein (VBF) targeting VIP1 for proteasomal degradation via the SCFVBF complex is 

actually induced during infection with Agrobacterium, suggesting that VBF might be another host 

component manipulated by the pathogen to promote T-DNA incorporation (Zaltsman et al., 2010; 

Wang et al., 2014). Other F-box proteins of pathogen origin have been identified in Ralstonia 

solanacearum: four GALA type III secretion effector proteins comprise F-box domains and can 

interact with A. thaliana ASK1 and ASK2 (Angot et al., 2006). At present, SCFGALA host substrates have 
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not been discovered yet. Since a knockout of GALAs significantly diminishes R. solanacearum 

virulence, it can be concluded that these proteins are of crucial importance for the pathogen 

infection strategy (Poueymiro and Genin, 2009). 

Also viruses have been demonstrated to encode F-box proteins and use them to hijack the host SCF 

system. The P0 proteins from the Polero- and Enamovirus are F-box proteins which associate with 

plant SCF components and mediate degradation of the ARGONAUTE1 (AGO1) protein crucial for the 

RNA-induced silencing complex (RISC) (Baumberger et al., 2007; Bortolamiol et al., 2007; Csorba et 

al., 2010; Fusaro et al., 2012; Pazhouhandeh et al., 2006). Consequently, they suppress the host RNA 

silencing system and enhance viral infectivity. The F-box protein Clink (for cell cycle link) encoded by 

the Nanovirus interferes with cell cycling by interaction with retinoblastoma-related proteins (RBR) 

responsible for blocking cell-cycle progression. In this way Clink directs cells into DNA synthesis and 

thus promotes intensive replication of the viral genome (Aronson et al., 2000; Lageix et al., 2007).  

 

Plant hormone analogs of pathogen origin 

Apart from synthesizing their own F-box proteins, pathogens can also control the plant SCF 

machinery and cell signaling by production of hormones or hormone analogs which manipulate host 

F-box proteins. An excellent example of mimicry used by plant pathogens is the bacterial toxin 

coronatine produced by P. syringae (Geng et al., 2012). Generally, plant defense responses against 

bacteria including Pseudomonas rely on the activation of the SA-dependent pathway (Pieterse et al., 

2012). Yet, coronatine structurally and functionally mimics the bioactive conjugate Ja-Ile responsible 

for activation of JA-mediated defense responses by interaction with an F-box protein COI1 and 

promoting SCFCOI-mediated proteasomal degradation of JAZ transcriptional repressors (Sheard et al., 

2010; Thines et al., 2007). Surprisingly, coronatine turns out to be approximately 1000-fold more 

active than the plant Ja-Ile in binding COI1 and its substrates (Katsir et al., 2008). Hence, it may 

induce the JA signaling pathway antagonistic to the SA pathway and as a consequence perturb plant 

defense reactions (Geng et al., 2012; Pieterse et al., 2012; Uppalapati et al., 2007). P. syringae also 

interferes with plant auxin signaling by synthesis of IAA (Glickmann et al., 1998) leading to enhanced 

virulence by modulating plant susceptibility to infection (Fu et al., 2011a; Mutka et al., 2013). 

Although the mechanism is still unclear, it is hypothesized that the IAA of pathogenic origin could be 

perceived by plants similarly to the endogenous hormone via the IAA receptor, i.e. the F-box protein 

TIR1, and subsequently activate auxin-regulated gene expression (Fu and Wang, 2011; Tan et al., 

2007). In turn, the necrotrophic fungal pathogen of rice, Gibberella fujikuroi, produces GAs. 

Apparently, GA impedes JA-mediated plant resistance to necrotrophs by promoting F-box protein-

driven degradation of DELLA repressors and subsequent activation of the GA-signaling pathway 

(Navarro et al., 2008). 
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1.2.4 Carbohydrate-binding F-box proteins 

The majority of plant F-box proteins contain at their C-terminus protein-binding domains (including 

LRR and Kelch repeats) recognizing substrates based on protein-protein interactions (Gagne et al., 

2002; Hua et al., 2011; Jain et al., 2007; Kuroda et al., 2002; Xu et al., 2009; Yang et al., 2008). Most 

often, they target specific phosphorylated targets via recruitment of phosphodegrons (Skaar et al., 

2013). Nevertheless, taking into account the high diversity in C-terminal motifs within the FBXO 

family, substrate recognition might depend on many different mechanisms and on other covalent 

modifications. Accordingly, a decade ago the first F-box proteins with a CRD have been described in 

mammals (Glenn et al., 2008; Mizushima et al., 2007; Yoshida et al., 2002, 2003, 2005) and soon 

afterwards also plant-specific glycan-binding proteins have been identified (Lannoo et al., 2008). 

1.2.4.1 Mammalian sugar-binding F-box proteins  

The sugar-binding F-box proteins (Fbs proteins) containing a C-terminal CRD in mammals form a 

small family of proteins which direct glycoproteins for UPS-mediated degradation via carbohydrate-

protein interactions (Yoshida, 2007). So far, the family includes five related proteins Fbs/Fbg1-2 and 

Fbg3-5, which comprise a conserved G domain structurally homologous to the carbohydrate binding 

domains of the mammalian lectins galectin and PNGase F (Glenn et al., 2008). All five  

Fbs members can be incorporated into an SCF complex (Glenn et al., 2008; Yoshida et al., 2002, 

2003). Interestingly, they exhibit diverse carbohydrate binding activities: Fbs1 and Fbs2 specifically 

recognize the core chitobiose (GlcNAc2) of high-Man N-glycans, Fbg4 and 5 more preferentially bind 

complex glycans, while Fbg3 is apparently deprived of lectin activity (Glenn et al., 2008; Hagihara et 

al., 2005; Mizushima et al., 2004, 2007; Yoshida et al., 2002, 2003). Interestingly, Yoshida and co-

workers have demonstrated that Fbs1/2 as part of SCF complexes play an essential role in 

glycoprotein homeostasis by targeting misfolded or unassembled glycoproteins into the ERAD system 

(Yoshida et al., 2003; Yoshida et al., 2005; Yoshida and Tanaka, 2010). Eukaryotic cells have 

developed a mechanism of ER protein quality control preventing from such danger (Helenius and 

Aebi, 2004; Liu and Li, 2014). In the ER, nascent proteins are modified with a high-Man N-linked 

glycan facilitating proper protein folding and serving as a specific marker of the folding state. If 

folding fails, the Man3-9GlcNAc2 N-glycan on misfolded proteins is specifically recognized as a signal 

for degradation. Subsequently, these proteins get translocated from the ER into cytosol for UPS-

mediated degradation (Hüttner and Strasser, 2012; Meusser et al., 2005). Though the core GlcNAc2 

motif of N-glycans in correctly folded proteins is not accessible to lectins, the chitobiose core in 

denatured (unfolded) glycoproteins becomes more exposed. Accordingly, it has been shown that 

SCFFbs1/Fbs2 bind exclusively to denatured glycoproteins in the cytosol and act as E3 Ub ligases in the 

ERAD pathway (Yoshida, 2003; Yoshida et al., 2005; Yoshida and Tanaka, 2010). 
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1.2.4.2 Plant F-box proteins with a lectin domain 

Hitherto, no functional Fbs proteins targeting misfolded or incompletely assembled glycoproteins for 

ERAD have been described in plants. Nevertheless, evidence has been presented that plants express 

a small family of putative F-box proteins comprising a C-terminal lectin-like domain which could 

presumably recognize and bind glycans and/or glycoproteins in a carbohydrate-specific manner 

(Delporte et al., 2015; Dinant et al., 2003; Lannoo et al., 2008; Van Damme et al., 2008). The C-

terminal domain of most of these proteins is homologous to Nictaba, the nucleocytoplasmic lectin 

from tobacco plants (Chen et al., 2002; Lannoo, 2007) identified as the prototype of the Nictaba-

related protein family as described above (Delporte et al., 2015). Strikingly, Nictaba can bind high-

Man and bi-antennary complex N-glycans and exhibits the highest affinity towards chitotriose as well 

as to the Man3GlcNAc2 core (Gheysen, 2011; Lannoo et al., 2006b). Thus the specificity of Nictaba 

resembles that of the mammalian Fbs1 and Fbs2 proteins (Glenn et al., 2008; Yoshida et al., 2002, 

2003). What is more, the three-dimensional model of Nictaba is characterized by a β-barreled 

structure similar to the C-terminal lectin domain of the mammalian Fbs1 protein (Mizushima et al., 

2004; Schouppe et al,. 2010). Based on these observations it is hypothesized that F-box proteins 

containing a C-terminal Nictaba-like domain are functional analogs of the mammalian Fbs proteins 

responsible for targeting misfolded or incompletely assembled glycoproteins for ERAD (Fig. 1.8; 

Lannoo et al., 2008).  

Apart from the Nictaba-related plant-specific F-box proteins, two putative Man-binding F-box 

proteins have been found in Arabidopsis which contain a C-terminal domain homologous to jacalin 

(Van Damme et al., 2008), a lectin isolated from the seeds of jack fruit (Artocarpus integrifolia) 

(Sastry et al., 1986). 

 

Putative F-box proteins with a Nictaba domain are widespread in the plant kingdom 

Detailed screening of different plant genome and transcriptome databases revealed that F-box 

proteins comprising a C-terminal Nictaba domain are well conserved and widespread in the plant 

kingdom (Delporte et al., 2015; Lannoo et al., 2008). Homologs have been found in dicots (A. 

thaliana, C. sativus, S. lycopersicum, P. trichocarpa), in monocots (O. sativa) as well as in lower plants 

(S. moellendorffii, P. patens). Nictaba domain-containing F-box proteins classified as F-type Nictaba-

like proteins (Delporte et al., 2015) are subdivided into 4 types depending on their domain 

organization. The F0 type represents the proteins which consist exclusively of an N-terminal F-box 

motif and a C-terminal Nictaba domain connected by a linker sequence. Putative F-box-Nictaba 

proteins which additionally contain an unrelated short (<50 AA) N-terminal domain but no C-terminal 

sequence are the type F1 proteins, the ones with a short N-terminal domain and a C-terminal 

sequence form the F2 group, while F-box-Nictaba proteins with a medium long (50-100 AA) N-

terminal domain are of the F3 type.  
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Fig. 1.8 Scheme representing the hypothetical role of plant-specific Fbs proteins belonging to the F-box-Nictaba family in 

ERAD. (1) A correctly folded protein will be transported from the ER to the Golgi complex for further processing. (2) A 

misofolded protein carrying the Man3-9GlcNAc2 N-glycan will be recognized and translocated from the ER into the cytosol. 

(3) In the cytosol, the N-glycan will be specifically bound by the Nictaba domain of an Fbs protein incorporated in the SCF 

complex and will become covalently labeled with Ub. (4) The protein tagged with a polyUb chain will be targeted for (5) 

degradation by the 26S proteaseome. Blue squares – GlcNAc residues, green circles – Man residues. 

 

 

The highest number of Nictaba-related F-box protein-related sequences has been found in 

Arabidopsis which encodes approximately 30 homologs, although for some of them evidence at the 

level of cDNA or EST sequences is missing. Interestingly, the representatives show high AA sequence 

similarity in their F-box domain as well as in the Nictaba domain, corresponding to >90% and >40%, 

respectively. In addition, the general exon/intron structure is retained, where the first exon encodes 

the F-box domain, and the other two exons encode the Nictaba domain. As shown by the AA 

sequence alignment of the Nictaba (sequence encoded by AF389848) from N. tabacum cv. Samsun 

NN with Nictaba domains of Nictaba-related F-box proteins from A. thaliana (Fig. 1.9), the regions 

previously shown as conserved among Nictaba homologs from different plant species (Schouppe et 

al., 2010; Fig. 1.3A), are strongly preserved in all sequences analyzed. Also, in most of the protein 

sequences, the AAs crucial for lectin activity of Nictaba (Trp15 and Trp22; Schouppe et al., 2010) are 

well conserved (although Trp15 shows lower degree of conservation), suggesting that most likely 

these Nictaba-related sequences represent functional carbohydrate-binding proteins.  Nevertheless 

the conservation of a few AA does not allow to predict the carbohydrate-binding specificity of a 

protein, since other AA outside the glycan-binding site will also play a role. 
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Fig. 1.9   Multiple sequence alignment of the amino acid sequences of of the complete (165 AA) Nictaba protein (cDNA 
clone AF389848) from N. tabacum cv. Samsun NN and of Nictaba-related F-box proteins from A. thaliana. The multiple 
sequence analysis was performed using the Clustal Omega sequence analysis tool 
(http://www.ebi.ac.uk/Tools/msa/clustalo; Sievers et al., 2011) and was visualized using Jalview 
(http://www.jalview.org). Nictaba and AGI names of the Nictaba-related F-box proteins from Arabidopsis, together with 
the corresponding length of the Nictaba domains, are indicated in front of the sequences. AAs crucial for lectin activity 
of Nictaba (Schouppe et al., 2010) are indicated with red markers. The consensus histogram shown below the alignment 
presents the percentage of the modal residue per column, where a ‘+’ symbol indicates that the modal value is shared 
by more than one residue. The conservation histogram presents a quantitative alignment annotation measured as a 
numerical index reflecting the conservation of physico-chemical properties for each column of the alignment 
(Livingstone and Barton, 1993). Conserved columns score highest and the next most conserved columns contain 
substitutions to AAs of the same physico-chemical class. Increased conservation is visualised on the alignment as higher 
intensity of blue shading of the columns.  

 

As shown by the phylogenetic tree reflecting the evolutionary relationships between the F-box 

proteins containing a C-terminal Nictaba domain from A. thaliana (Fig. 1.10), proteins encoded by 

genes located in the same chromosomal regions are clustered together. This indicates that these 

Nictaba domains are closely related and suggests that their expansion is associated with tandem 

gene duplication. Indeed, it has been reported that plant F-box genes often form tandem arrays in 

the same chromosomal regions and that extensive gene duplications have contributed to the 

evolution of many subsets of the F-box gene superfamily (Hua et al., 2011; Jain et al., 2007; Yang et 

al., 2008; Xu et al., 2009). 

 

Fig. 1.10   Phylogenetic analysis of Nictaba-related F-box proteins from Arabidopsis showing the evolutionary relationship 
between the proteins. Phylogenetic tree was constructed with the AA sequences of the Nictaba domains of Nictaba-related 
F-box proteins from Arabidopsis aligned with the Clustal Omega sequence analysis tool as shown in Fig. 1.9  
(http://www.ebi.ac.uk/Tools/msa/clustalo; Sievers et al., 2011). The phylogenetic tree was generated using the neighbor-
joining method and was visualized using Jalview (http://www.jalview.org). Numbers at the nodes and the lengths of the 
branches indicate the relative evolutionary distance.  

http://www.ebi.ac.uk/Tools/msa/clustalo
http://www.ebi.ac.uk/Tools/msa/clustalo
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Physiological role in plant stress signaling and involvement in the UPS 

Both Nictaba from tobacco as well as some jacalin-related lectins belong to the group of 

nucleocytoplasmic plant lectins which are characterized by their stress-inducible expression and as 

such are hypothesized to play an important role in plant stress signaling (Lannoo and Van Damme, 

2010). Indeed, Nictaba is up-regulated after jasmonate application as well as after insect herbivory. 

Furthermore, Nictaba interacts with the core histone proteins through their O-GlcNAc modification 

(Delporte et al., 2014a; Schouppe et al., 2011) suggesting a role in the regulation of defense-related 

gene expression (Delporte, 2013). Likewise, also the nucleocytoplasmic jacalin-related proteins have 

been shown to be involved in diverse plant stress responses (Al Atalah et al., 2014a,c; de Souza Filho 

et al., 2003; Moons et al., 1997b; Qin et al., 2003; Shinjo et al., 2011). Consequently, in view of the 

general association of F-box proteins with a multitude of different developmental and stress-related 

processes as well as the presumed role of nucleocytoplasmic plant lectins in stress signaling, it is 

tempting to speculate that plant-specific F-box proteins with a C-terminal lectin domain might not 

only be involved in the elimination of unfolded proteins via the ERAD pathway, but could also play a 

signaling role in the nucleus and cytoplasm of plant cells by recognizing specific glycans or 

glycoproteins.  

 

Table 1.3 gives an overview of the plant-specific F-box proteins containing a C-terminal lectin domain 

identified in A. thaliana with special focus on the information available regarding their putative 

physiological role in plants, i.e. potential interactors, expression profile and subcellular localization. 

Most of the proteins are predicted to localize in the nucleus and/or the cytoplasm, and three of them 

(F-box-Nictaba (Lannoo, 2007), VBF (Wang et al., 2014; Zaltsman et al., 2010) and SKIP12 (Li et al., 

2014d) encoded by At2g02360, At1g56250 and At1g80110, respectively) have already been 

experimentally confirmed as nuclear or nucleocytoplasmic proteins. About half of the putative 

carbohydrate-binding F-box proteins have already been demonstrated to interact with at least one 

ASK protein, indicating that they can be associated into SCF complexes. These plant Fbs-like proteins 

preferentially associate with ASK1-2 and ASK11-12, which generally show a broad interaction 

potential and are quite commonly bound by many diverse Arabidopsis F-box proteins (Dezfulian et 

al., 2012; Gagne et al., 2002; Kuroda et al., 2012; Risseeuw et al., 2003; Takahashi et al., 2004). Only 

a few plant Fbs proteins can also assemble with other ASKs. Almost all proteins for which expression 

information is available, are stress-inducible predominantly by abiotic but also after biotic challenges. 

Interestingly, the majority of these F-box proteins are particularly expressed in floral organs as well 

as in pollen and seeds. Strikingly, such flower- , pollen- and seed-specific expression pattern is also 

characteristic for many of the ASK proteins including those demonstrated as binding partners for 

plant Fbs proteins (Dezfulian et al., 2012; Kuroda et al., 2012; Marrocco et al., 2003; Takahashi et al., 

2004; Zhao et al., 2003). 
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Aside from ASKs, SKIP12, VBF as well as At2g02300 have already been demonstrated to interact also 

with other proteins. At2g02300 apparently can bind the yet uncharacterized protein LSU1 (low sulfur 

protein 1) and the transcription factor TCP14 (Arabidopsis Interactome Mapping Consortium, 2011), 

while two other proteins have been studied in more detail and were already briefly mentioned in 

section 1.2.3 with respect to their role in plant responses to (a)biotic stresses. The first one, called 

VIP1-binding F-box protein (VBF) encoded by At1g56250, is involved in plant-pathogen interactions 

during Arabidopsis infection with A. tumefaciens (Wang et al., 2014; Zaltsman et al., 2010). VBF 

regulates gene expression by targeting the VIP1 transcription factor for proteasomal degradation via 

the SCFVBF complex (Zaltsman et al., 2010). Apparently, VIP1 interacts with pathogen virulence factor 

VirE2 and thereby is exploited by the bacterium for nuclear import of its VirE2-coated T-DNA (Tzfira 

et al., 2001). After fulfilling this role it is targeted for degradation altogether with VirE2 by the 

pathogen F-box protein VirF, allowing T-DNA uncoating and incorporation into the plant genome 

(Magori and Citovsky, 2012; Schrammeijer et al., 2001; Tzfira et al., 2004). Since VBF is induced 

during infection with Agrobacterium it has been suggested that it could be hijacked by the pathogen 

to promote T-DNA integration by even more efficient uncoating via degradation of the VIP1-VirE2 

complex (Zaltsman et al., 2010). However, recent findings indicate that another pathogen virulence 

factor, VirD5, actually competes with VBF for binding to VIP1 in the nucleus, preventing from too 

rapid degradation of the VirE2-VIP1 coat proteins by the host UPS (Wang et al., 2014).  

The other F-box protein with a Nictaba domain which has been partially characterized is the 

Arabidopsis phloem protein 2-B11 (AtPP2-B11) encoded by At1g80110. It was shown to negatively 

regulate plant responses to drought stress. AtPP2-B11 expression is significantly up-regulated after 

drought treatment and its over-expression leads to drought hypersensitivity during seed germination 

and in mature plants. AtPP2-B11 also binds a protein associated with desiccation, named LEA14 (late 

embryogenesis abundant protein 14) and decreases its levels under drought conditions. 

Furthermore, AtPP2-B11 over-expression results in altered gene expression of several abiotic stress-

related markers (Li et al., 2014d). 

 

Apart from the latest experimental evidence for the role of VBF and AtPP2-B11 in plant stress 

responses, F-box proteins with a C-terminal lectin-like domain are poorly studied. In fact, none of 

these proteins has been confirmed as a functional lectin. In view of the fact that glycosylation is 

recently emerging as a highly complex coding system of crucial importance for cell signaling (Rüdiger 

and Gabius, 2009; Pilobello and Mahal, 2007), functional characterization of the plant carbohydrate-

binding F-box proteins and unraveling their presumed role in glycoprotein degradation via the UPS 

might shed a new light on the cellular mechanisms underlying plant development and stress 

physiology. 
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Nictaba-related lectin domain interacts with N-acetyllactosamine structures. FEBS Open Bio 2, 151–

158.  
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2.1 Abstract 

The Arabidopsis thaliana genome contains a small group of bipartite F-box proteins, consisting of an 

N-terminal F-box domain and a C-terminal domain sharing sequence similarity with Nictaba, the 

jasmonate-induced glycan-binding protein (lectin) from tobacco. Based on the high sequence 

similarity between the C-terminal domain of these proteins and Nictaba the hypothesis was put 

forward that the so-called F-box-Nictaba proteins possess carbohydrate-binding activity and 

accordingly can be considered functional homologs of the mammalian sugar-binding F-box or Fbs 

proteins which are involved in proteasomal degradation of glycoproteins. To obtain experimental 

evidence for the carbohydrate-binding activity and specificity of the A. thaliana F-box-Nictaba 

proteins both the complete F-box-Nictaba sequence of one selected Arabidopsis F-box protein (in 

casu At2g02360) as well as the Nictaba-like domain only were expressed in Pichia pastoris and 

analyzed by affinity chromatography, agglutination assays and glycan microarray binding assays. Both 

proteins reacted similarly and screening of two different types of glycan arrays revealed that they 

recognize N- and O-glycans containing N-acetyllactosamine (Galβ1-3GlcNAc and Galβ1-4GlcNAc), 

poly-N-acetyllactosamine ([Galβ1-4GlcNAc]n), Lewis A (Galβ1-3(Fucα1-4)GlcNAc), Lewis X (Galβ1-

4(Fucα1-3)GlcNAc, Lewis Y (Fuc1-2Gal1-4(Fuc1-3)GlcNAc) and blood type B (Galα1-3(Fucα1-

2)Galβ1-3GlcNAc) motifs as well as β1-4-linked galactose oligomers and, with lower affinity, 

feruloylated α1-5-L-arabinobiose/triose glycans. These results demonstrated that the C-terminal 

Nictaba-like domain provides the F-box-protein with a carbohydrate-binding activity which is 

preferentially directed against glycan structures with a terminal galactose residue. Based on these 

findings one can reasonably conclude that at least the A. thaliana F-box-Nictaba protein encoded by 

At2g02360 can act as a carbohydrate-binding protein. The results from the glycan array assays 

revealed differences in sugar-binding specificity between the F-box protein and Nictaba, indicating 

that the same carbohydrate-binding motif can accommodate unrelated oligosaccharides. 

2.2 Introduction 

The discovery of Nictaba, a jasmonate-induced lectin in tobacco (N. tabacum) leaves, made an 

important contribution to plant glycobiology during the last decade (Chen et al., 2002; Van Damme 

et al., 2004). For the first time evidence was presented that application of one plant hormone 

induced the expression of a specific lectin in plants. In addition, the identification of Nictaba as a 

cytoplasmic/nuclear lectin preferentially interacting with GlcNAc oligomers put the search for the 

physiological role of plant lectins in a new perspective. Subsequent in silico analyses revealed that 

the 165 AA residue subunit of the Nictaba homodimer represents a structural (carbohydrate-binding) 

motif that might well be ubiquitous in terrestrial plants.  

True orthologs/homologs consisting of only Nictaba domain(s) are not widespread but numerous 

chimera proteins could be identified which possess a Nictaba domain fused to unrelated N- and C-

terminal domains. Moreover, in silico analyses revealed that all currently sequenced plant genomes 
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contain genes encoding proteins with a Nictaba-like domain either or not fused to an unrelated 

domain (Van Damme et al., 2008). For some of the expressed proteins, evidence could be presented 

that they possess lectin activity owing to their Nictaba domain. For example, the well documented 

family of phloem lectins from Cucurbitaceae, also known as the PP2 proteins (Read and Northcote, 

1983; Sabnis and Hart, 1978) groups proteins with an active GlcNAc-binding Nictaba-like domain 

linked to an undefined N-terminal domain and a short cysteine-rich C-terminal peptide. The PP2-A1 

protein from Arabidopsis is composed of an N-terminal domain followed by a Nictaba domain and 

has been shown to exhibit a carbohydrate-binding specificity similar to Nictaba (Beneteau et al., 

2010).  

A comprehensive analysis of the Arabidopsis genome/transcriptome revealed the occurrence of 

chimera proteins in which a Nictaba-like domain is C-terminally fused to an F-box domain (Dinant et 

al., 2003; Gagne et al., 2002; Lannoo et al., 2008). F-box domains are conserved, structural motifs of 

40 – 50 AA residues commonly used in F-box proteins as a protein-protein interaction domain 

involved in the direct binding of F-box proteins to the protein Skp1 (Bai et al., 1996). Complexes 

consisting of Skp, Cullin and an F-box protein (SCF complexes) play a role in Ub labeling of proteins 

destined for proteasomal degradation (Petroski and Deshaies, 2005a). Within F-box proteins, F-box 

domains are mostly used in concert with other (C-terminal) protein-protein interaction domains such 

as LRR or WD repeats. Based on this bipartite structure, F-box proteins can assemble into functional 

SCF complexes and recruit proteins that are destined for degradation to the complex for Ub labeling 

(Lechner et al., 2006).  

Although these F-box-Nictaba like sequences were first identified in Arabidopsis, homologs occur in 

all plant genomes sequenced thus far. Moreover, most plant transcriptomes comprise sequences 

encoding F-box-Nictaba chimers indicating that this group of proteins is widely expressed in plants 

(Lannoo et al., 2008). Though not conclusive the apparently ubiquitous occurrence and expression of 

the genes indicate that the F-box-Nictaba proteins might fulfill a universal role in plants. Due to the 

presence of the F-box domain it is tempting to hypothesize that the F-box-Nictaba proteins are 

somehow involved in a proteasomal protein degradation process. This hypothesis follows the 

concept that the F-box-Nictaba proteins can be considered functional homologs of the mammalian 

Fbs proteins. These mammalian Fbs proteins also consist of an N-terminal F-box domain and a C-

terminal carbohydrate-binding domain (unrelated to Nictaba), and are known to play a role in 

cytosolic proteasomal degradation of glycoproteins (Yoshida and Tanaka, 2010). Interestingly, the F-

box-Nictaba protein under study, has been shown to interact with Skp1 homologs expressed in 

Arabidopsis (Arabidopsis Interactome Mapping Consortium, 2011; Takahashi et al., 2004).  

To test the hypothesis of being functional homologs of the mammalian Fbs proteins the presumed 

carbohydrate-binding activity of the Nictaba domain of the plant F-box-lectin needs to be supported 

by experimental evidence. Sequence alignments indicated that the deduced AA sequences of the 

Nictaba domain of A. thaliana F-box-Nictaba proteins share approximately 40% overall sequence 

similarity with Nictaba itself (Lannoo et al., 2008). However, since this cannot guarantee that the 

carbohydrate-binding activity and specificity are conserved the lectin activity of the Arabidopsis F-

box-Nictaba protein encoded by At2g02360 was investigated in detail. The At2g02360 sequence was 
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selected because it shares the highest sequence similarity (64%) to Nictaba. To corroborate the 

carbohydrate-binding properties of this F-box-Nictaba protein the recombinant full length protein as 

well as the composing Nictaba domain were produced in P. pastoris and subsequently the 

recombinant proteins were purified and characterized. Here we show that both the entire F-box-

Nictaba protein and its Nictaba domain possess carbohydrate-binding activity and exhibit virtually 

the same specificity. Studies using CFG glycan arrays revealed that both proteins preferentially bind 

N- and O-glycans containing N-acetyllactosamine (LacNAc) (Galβ1-3GlcNAc and Galβ1-4GlcNAc), 

poly-LacNAc ([Galβ1-4GlcNAc]n), Lewis A (Galβ1-3(Fucα1-4)GlcNAc), Lewis X (Galβ1-4(Fucα1-

3)GlcNAc, Lewis Y (Fucα1-2Galβ1-4(Fucα1-3)GlcNAc) and blood type B (Galα1-3(Fucα1-2)Galβ1-

3GlcNAc) motifs. Furthermore, screening of the plant glycan microarrays revealed interaction with 

β1-4-linked Gal oligomers and, to a lesser extent, with feruloylated α1-5-L-arabinobiose/triose 

glycans. Collectively, these data suggest that F-box-Nictaba exhibits specificity towards glycan 

structures containing a terminal Gal residue. This specificity differs from the preferential binding of 

the tobacco lectin to high-Man N-glycans (Lannoo et al., 2006b; Schouppe et al., 2010) which 

illustrates once more that the same structural motif can accommodate different oligosaccharides 

depending on the atomic structure of the lectin binding site(s). 

2.3 Materials and methods  

2.3.1 Cloning of expression vectors for Arabidopsis F-box-Nictaba and its Nictaba domain 

for recombinant expression in P. pastoris 

Cloning and heterologous expression of recombinant proteins were performed using the 

EasySelectTM Pichia Expression Kit from Invitrogen (Invitrogen, Carlsbad, CA, USA). The full-length 

cDNA template for At2g02360 (BX820545) was ordered from INRA (Institut National de la Recherche 

Agronomique), Centre de Toulouse, Unité de Recherche 1258-CNRGV (Centre National de Ressources 

Génomiques Végétales) (Castanet-Tolosan Cedex, France). The full-length F-box-Nictaba cDNA 

sequence was amplified by PCR using the forward primer evd553 and a reverse primer evd554 

(supplementary Table A2.1) under the following PCR conditions: 2 min denaturation at 95˚C, 30 

cycles of 15 s - 95˚C, 30 s - 60˚C, 1 min 20 s - 72˚C, additional 5 min elongation at 72˚C. Amplification 

of the Nictaba domain alone was achieved with forward primer evd360 and reverse primer evd359 

(supplementary Table A2.1) using the following PCR conditions: 2 min denaturation at 94˚C, 25 cycles 

of 15 s - 94˚C, 30 s - 50˚C, 1 min - 72˚C, additional 5 min elongation at 72˚C. The amplified sequences 

were double digested with the restriction enzymes PmlI and SacII (Fermentas, St. Leon-Rot, 

Germany) and the resulting fragment was cloned in the shuttle vector pPICZαA. After transformation 

into E. coli Top10F cells using heat shock transformation E. coli transformants were selected on LB 

agar plates containing zeocin (100 µg/ml) and checked by colony PCR using 5’ and 3’- AOX1 specific 

primers (supplementary Table A2.1). PCR conditions were as follows: 12 min at 94˚C, 30 cycles of 15 s 
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- 94˚C, 30 s - 48˚C, 1 min - 72˚C, additional 5 min elongation at 72˚C. Plasmids from transformed E. 

coli colonies were purified using the E.Z.N.A. Plasmid Mini kit I (Omega Bio-Tek, Norcross, GA, USA). 

Afterwards, the sequences of the fusion constructs were verified by DNA sequencing (LGC Genomics, 

Berlin, Germany).  

2.3.2 Transformation of P. pastoris and expression analysis 

The plasmid DNA from selected E. coli cells was purified using the NucleoBond® Xtra Midi kit 

(Macherey-Nagel, Düren, Germany) and linearized using the restriction enzyme PmeI (plasmid 

construct for full-length F-box-Nictaba) or SacI (plasmid construct for Nictaba domain) (Fermentas) 

with overnight incubation at 37˚C. Subsequently, P. pastoris competent cells were transformed with 

the linearized expression vector using electroporation (Bio-Rad, Hercules, CA, USA) with the following 

pulse settings: 25 µF, 1.5 kV and 125 Ω. Transformants were selected on YPDS plates (1% yeast 

extract, 2% peptone, 2% dextrose, 1M sorbitol, 2% agar) containing 300 µg/ml zeocin.  

2.3.3 Optimization of recombinant protein expression in P. pastoris  

For expression analysis, several colonies were inoculated in 5 ml BMGY medium containing 1% yeast 

extract, 2% peptone, 1.34% yeast nitrogen base with ammonium sulfate and without AAs, 4x10-5% 

biotin, 100 mM potassium phosphate (pH 6.0), 1% glycerol and 100 µg/ml zeocin. Recombinant 

protein expression was optimized by testing different temperatures of culture incubation and 

different concentrations of methanol were used to induce recombinant protein expression. Cultures 

were grown at 22˚C or 30˚C in a shaker set at 220 rpm. After 24h of incubation Pichia cells were 

washed twice with sterilized water and transferred to 10 ml BMMY medium (BMGY medium 

containing 1% or 2% of methanol instead of 1% of glycerol). Cultures were grown for 4 days under 

the same conditions as before. Induction of recombinant protein expression was achieved by adding 

methanol twice a day (once in the morning and once in the evening) to a final concentration of 1% or 

2%. Proteins in the culture medium were precipitated with trichloroacetic acid (10% final 

concentration) and analyzed by SDS-PAGE and Western blotting. 

2.3.4 Large scale production of recombinant proteins 

For expression of the recombinant proteins in large cultures, transformed P. pastoris colonies were 

inoculated into 10 ml BMGY medium and grown for 24h at 22˚C in a shaker at 220 rpm. Afterwards, 

cultures were transferred to 50 ml BMGY in 250 ml Erlenmeyer flasks and allowed to grow until the 

culture reached an optical density between 2 and 6 at 600 nm. Cells were then washed twice with 

sterilized water and resuspended in 250 ml of BMMY medium in 1L Erlenmeyer flasks. Cultures were 
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grown for 3 days under the same conditions as before. Induction of recombinant protein expression 

was achieved by adding methanol twice a day until a final concentration of 1%. After 3 days of 

methanol induction, cultures were centrifuged for 10 min at 3,000 g and the culture medium was 

collected. Proteins from the culture medium were precipitated using ammonium sulfate at a final 

concentration of 80%. The culture medium with precipitated proteins was stored at 4˚C until use.  

2.3.5 Protein purification using column chromatography 

Purification of recombinant proteins was achieved by 5 chromatographic steps. The culture medium 

with precipitated proteins was centrifuged at 17,000 g for 25 min and the resulting pellet was 

resuspended in phosphate buffered saline. After adjusting the ammonium sulfate concentration to 1 

M and setting the pH to 7, the protein solution was loaded on a phenyl Sepharose column (GE 

Healthcare, Uppsala, Sweden) equilibrated with 1 M ammonium sulfate (pH 7). The column was 

washed with 1 M ammonium sulfate (pH 7) and eluted with 20 mM 1,3- diaminopropane. This eluted 

protein fraction was then loaded on a Q Fast Flow column equilibrated with 20 mM 1,3-

diaminopropane. After washing with equilibration buffer bound proteins were eluted using 0.5 M 

NaCl/100 mM Tris-HCl (pH 8.7) buffer. After adding imidazole to a final concentration of 25 mM, the 

eluate from the Q Fast Flow column was applied on a Ni-Sepharose column (GE Healthcare) 

equilibrated with 0.5 M NaCl /25mM imidazole/100 mM Tris-HCl (pH 8,7) buffer to purify the His6-

tagged protein. The column was washed using the equilibration buffer and then stepwise elution of 

bound proteins was performed with 0.5 M NaCl/100 mM Tris-HCl (pH 8.7) buffer with increasing 

imidazole concentrations ranging from 50 to 250 mM imidazole. Fractions eluted from the Ni-

Sepharose column were pooled and 1 M ammonium sulfate was added. After adjusting the solution 

to pH 7 the eluate was loaded on an ovomucoid-conjugated Sepharose 4B column equilibrated with 

1 M ammonium sulfate (pH 7.0). After washing the ovomucoid-conjugated column with 1 M 

ammonium sulfate (pH 7.0), the bound proteins were eluted using 20 mM 1,3-diaminopropane. 

Finally this protein fraction was concentrated on a small Q Fast Flow column. The purified proteins 

were eluted into 0.5 M NaCl/20 mM 1,3-diaminopropane (pH 8.7) buffer. The purity of the protein 

samples after each purification step was verified by SDS-PAGE and Western blot analysis.  

2.3.6 SDS-PAGE and Western blot 

SDS-PAGE was performed using 15% polyacrylamide gels under reducing conditions (Laemmli, 1970). 

Proteins were visualized by gel staining with Coomassie Brilliant Blue R-250. For Western blot 

analysis, samples separated by SDS-PAGE were electrotransferred to 0.45 µm polyvinylidene fluoride 

membranes (BiotraceTM PVDF, PALL, Gelman Laboratory, Ann Arbor, MI, USA). Membranes were 

blocked with 5% (w⁄v) milk powder in Tris-buffered saline (TBS: 150 mM NaCl, 10 mM Tris, 0.1% (v⁄v) 

Triton X-100, pH 7.6). Afterwards blots were incubated for 1 h with a mouse monoclonal anti-His6 (C-
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terminal; Invitrogen) or a mouse monoclonal anti-c-Myc antibody (Invitrogen) diluted 1⁄5,000 in TBS, 

washed 3 times in TBS and finally incubated with the 1⁄1,000 diluted rabbit anti-mouse IgG 

secondary antibody labeled with horseradish peroxidase (Dako Cytomation, Glostrup, Denmark). 

Immundetection was performed using a colorimetric assay with 3,3’-diaminobenzidine 

tetrahydrochloride (Sigma-Aldrich, St Louis, MO, USA) as a substrate. All washes and incubations 

were conducted at room temperature on a platform with gentle shaking. 

2.3.7 Agglutination assays 

Agglutination assays to check for lectin activity of purified recombinant protein fractions were 

performed as described by Al Atalah et al. (2011). 10 µl of purified protein fractions (0.5 mg/ml) were 

mixed with 10 µl 1 M ammonium sulfate and 30 µl of a 2% solution (in 1x PBS) of trypsin-treated 

rabbit red blood cells (Bio-Mérieux, Marcy l’Etoile, France). Agglutination was observed after 20 min. 

2.3.8 N-terminal sequence analysis  

Samples of purified recombinant F-box-Nictaba protein and its Nictaba domain alone were analyzed 

by SDS-PAGE, electroblotted onto a BioTrace™ polyvinylidene fluoride membrane (Gelman 

Laboratory) and stained with a 1:1 mix of Coomassie Brilliant Blue and methanol. Protein bands were 

excised from the membrane and the N-terminal sequence was determined by Edman degradation on 

a capillary Procise 491cLC protein sequencer without alkylation of cysteines (Applied Biosystems). 

2.3.9 Analysis of recombinant proteins on CFG glycan microarrays 

The printed microarrays containing glycans covalently-coupled to glass slides and validated using 

glycan-binding molecules (http://glycomics.scripps.edu/coreD/DGlycanArrayReagent.pdf) are 

described by Blixt et al. (2004). Printed array version 5.0 used for the analyses is reported here 

(http://www.functionalglycomics.org/static/consortium/resources/resourcecoreh8.shtml). Purified 

proteins were labeled using the Alexa Fluor®488 Protein Labeling Kit (Invitrogen) following the 

manufacturer’s instructions. The labeled proteins diluted in binding buffer (TBS containing 10 mM 

CaCl2, 10 mM MgCl2, 1% (w⁄v)  BSA, 0.05% (v/v) Tween 20) to 200 µg/ml were applied to separate 

microarray slides and incubated under a cover slip for 1 h in a dark, humidified chamber at room 

temperature. Then, the cover slips were gently removed in a solution of TBS containing 0.05% (v/v) 

Tween 20 and washed by dipping the slides four times in successive washes of TBS containing 0.05% 

(v/v) Tween 20, TBS, and deionized water. After the last wash, the slides were spun in a slide 

centrifuge for approximately 15 s to dry. Immediately after that, the slides were scanned in a 

PerkinElmer ProScanArray MicroArray Scanner using an excitation wavelength of 488 nm and 

http://glycomics.scripps.edu/coreD/DGlycanArrayReagent.pdf
http://www.functionalglycomics.org/static/consortium/resources/resourcecoreh8.shtml
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ImaGene software (BioDiscovery Inc., El Segundo, CA USA) to quantify the fluorescence. The data 

were reported as average Relative Fluorescence Units (RFU) of four replicate values after removal of 

the high and low values of the six replicates of each glycan presented on the array. The complete 

primary data set for each protein is available on the website of the Consortium for Functional 

Glycomics (http://www.functionalglycomics.org). 

2.3.10 Analysis of recombinant proteins on plant glycan microarrays 

The plant glycan microarrays containing glycans printed on nitrocellulose membrane are described 

by Pedersen et al. (2012) and have been provided by Prof. WGT Willats (Department of Plant and 

Environmental Sciences, University of Copenhagen, Denmark). In short, glycan arrays were first 

incubated for 1 h in blocking solution consisting of 3% (w⁄v) BSA in 1x phosphate-buffered saline (1x 

PBS). Then, the arrays were probed for 2 h with 10 µg/ml of purified proteins dissolved in blocking 

solution. Afterwards, arrays were washed 3 times in 1x PBS and incubated for 1 h with a mouse 

monoclonal anti-His6 antibody (Thermo Scientific) diluted 1⁄3,000 in blocking solution. Next, they 

were washed again and incubated for 1 h with a rabbit anti-mouse polyclonal secondary antibody 

coupled to alkaline phosphatase (Thermo Scientific) diluted 1⁄10,000 in blocking solution. Prior to 

detection, arrays were washed in 1x PBS and finally briefly rinsed with ultrapure MilliQ water. 

Immunodetection was performed using the chromogenic 5-bromo-4-chloro-3-indolyl 

phosphate/nitro-blue tetrazolium substrate prepared by dissolving ½ of SIGMAFAST® BCIP/NBT 

tablet (Sigma-Aldrich) in 10 ml of ultrapure MilliQ water. The reaction was stopped by washing the 

arrays with ultrapure MilliQ water as soon as detection signals became visible. All washes and 

incubations were conducted at room temperature on a platform with gentle shaking. As negative 

control, a plant glycan array was probed with blocking solution.   

Arrays were scanned with a flatbed scanner (Canoscan Lide 25, Canon, Diegem, Belgium) at 1200 dpi. 

Signal intensities were assessed via the ImageJ software package using the MicroArray Profile plugin 

(by Dougherty and Rasband; OptiNav, Inc.) and were corrected by subtracting the local background 

measured in the closest proximity of the array spots. The significance cut-off or signal intensity was 

calculated as the highest intensity value for blank sample score plus standard error of all blank 

intensities. 

http://www.functionalglycomics.org/
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2.4 Results 

2.4.1 Trp residues essential for glycan binding are conserved in the Arabidopsis F-box-

Nictaba protein  

Sequence alignments revealed that the Nictaba domain of the Arabidopsis F-box-Nictaba protein 

At2g02360 (AtPP2-B10) exhibits 52% and 64% sequence identity and similarity at the AA level, 

respectively, with the Nictaba sequence deduced from the cDNA encoding the N. tabacum leaf lectin 

(Chen et al., 2002). According to a recently reported three-dimensional model for Nictaba (Schouppe 

et al., 2010), an electronegatively charged region on the protein surface was predicted as the glycan-

binding site. Mutational analyses of two tryptophan residues (Trp15 and Trp22) located in the N-

terminal half of the Nictaba domain revealed that these two residues are essential for glycan binding 

activity of the tobacco lectin since replacement of these Trp residues by Leu completely abolished 

the interaction of the mutant protein with the glycan array (Schouppe et al., 2010). Interestingly, 

sequence alignments of the Nictaba domain of At2g02360 and the tobacco lectin itself (Fig. 2.1) 

revealed that these Trp residues (Trp118 and Trp125 in At2g02360) are highly conserved in the F-box 

protein suggesting potential lectin activity for the Arabidopsis F-box-Nictaba protein with a similar 

sugar specificity as the one reported for the lectin from tobacco. 

 

 
Fig. 2.1   Sequence alignment of Nictaba and the Arabidopsis F-box-Nictaba protein. 
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2.4.2 Recombinant protein expression in P. pastoris  

To corroborate the glycan-binding activity and specificity of At2g02360 both the holoprotein (AA 

residues 1-272) and the composing Nictaba domain (AA residues 95-272) were expressed in the yeast 

P. pastoris. Sequences corresponding to the full-length protein and the Nictaba domain, respectively, 

were amplified by PCR and cloned in the pPICZαA vector, which was subsequently transferred into P. 

pastoris strain KM71H. Expression of recombinant F-box-Nictaba as well as the Nictaba domain was 

tested in small scale experiments. For each construct, several cultures were incubated at 30°C and 

recombinant protein expression was induced using 2% methanol according to Al Atalah et al. (2011). 

In order to detect a signal of recombinantly produced proteins it was necessary to extract protein 

from 10 ml of medium. As shown in Fig. 2.2A, a few cultures transformed with the F-box-Nictaba 

construct were producing His-tagged protein. Nevertheless, instead of the expected 35 kDa protein, 

two distinct bands could be detected at approximately 55 kDa. The specificity of the signal was 

confirmed by a Western blot assay using an anti-c-Myc antibody on the protein extracts from the 

same Pichia culture (results not shown). All tested cultures for Nictaba-like domain expression were 

producing His-tagged protein with different yields (Fig. 2.2B). Instead of one band of approximately 

24 kDa, however, two separate signals were detectable around 26 kDa.  

The appearance of recombinant F-box-Nictaba as a protein of much higher molecular weight (MW) 

than calculated based on its AA sequence, could suggest some post-translational modification. This 

modification could be due to the fact that the protein is synthesized on the ER and will be secreted 

by Pichia into the medium. One of the most common and highly complex post-translational 

modifications performed by P. pastoris on secreted proteins is glycosylation (Macauley-Patrick et al., 

2005). Many proteins recombinantly expressed in P. pastoris as secreted proteins have been shown 

to be extensively N- and O-glycosylated. In fact, several reports describe a recombinant protein size 

increase due to hypermannosylation by over 20 kDa (Heimo et al., 1997; Teh et al., 2011; Trimble et 

al., 2004). Alternatively, it could be speculated that F-box-Nictaba forms dimers by disulphide bond 

formation during protein passage through the ER and Golgi before final secretion. 

 

Due to very low yields of recombinant protein production, the conditions for growth and induction of 

P. pastoris were optimized to enhance recombinant protein expression. Normally, 30°C is 

recommended for optimal growth of Pichia and allows successful recombinant protein expression 

(Pichia Expression Kit, Invitrogen; Al Atalah et al., 2011). However, it has been reported that cultures 

grown at lower temperatures might be more favorable in view of recombinant protein yield by 

limiting extracellular proteolysis and minimizing aggregate formation (Dragosits et al., 2009; Huang 

et al., 2011; Jahic et al., 2003; Li et al., 2001; Shi et al., 2003). Thus, our first approach to optimize 

protein yield included growth and induction of yeast cultures at 22°C. First trials were performed 

using the Pichia colony showing the highest expression level for the Nictaba-like domain at 30°C. As 

shown in Fig. 2.2C (upper part), the Nictaba domain was well detectable (altogether with some 

protein degradation products) in the crude protein extract originating from 1 ml of medium from the 

culture grown at 22°C. In contrast, when the culture was grown at 30°C the protein band for the 
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Nictaba domain  was barely visible. There were no clear differences in recombinant protein 

expression levels when induction was performed with 1% vs. 2% methanol (Fig. 2.2C. lower panel).  

Based on this finding, new experiments were performed with several Pichia colonies with incubation 

of cultures at 22°C and induction of recombinant protein expression using 1% methanol. Fig. 2.2D 

and E show the resulting protein expression with these new culture settings.  Fig. 2.2D demonstrates 

that recombinant F-box-Nictaba was present in most of the protein extracts prepared from 1 ml 

culture medium of transformed yeast cells. Interestingly, the protein was detectable as a single 

polypeptide and its size corresponded to the calculated 35 kDa, in contrast to the results obtained for 

cultures grown at  30°C and treatment with 2% methanol (Fig. 2.2A). Similarly, all tested cultures for 

Nictaba domain expression were efficiently producing the recombinant protein of roughly correct 

size, although two separate His6-tag-labeled polypeptides were still detectable (Fig. 2.2E). Some 

bands were also visible far below 26 kDa, presumably constituting degradation products. Thus, the 

lower incubation temperature of Pichia cultures significantly enhanced recombinant protein yield for 

both the full-length F-box-Nictaba and its Nictaba domain only. In general, recombinant protein yield 

per ml of culture appeared higher for the Nictaba-like domain than for the F-box-Nictaba, regardless 

of growth and induction conditions.  

The Pichia strains with the highest expression levels were selected and used for the production of the 

recombinant proteins.  
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2.4.3 Large scale production of recombinant proteins and protein purification  

SDS-PAGE analysis followed by Western blot analysis of crude protein extracts confirmed the 

successful expression of the His-tagged full-length protein as well as of the Nictaba domain in Pichia 

large scale fed batch cultures (Figs. 2.3A-B). Both recombinant proteins were purified using a 

combination of ion exchange chromatography, metal affinity chromatography on a Ni-Sepharose 

column and affinity chromatography on an ovomucoid-Sepharose 4B matrix. SDS-PAGE and Western 

blot analysis confirmed the purity of the protein preparations (Figs. 2.3C-D). Yields amounted to 

approximately 250 µg and 500 µg per liter culture for the recombinant full-length F-box protein and 

recombinant Nictaba-like domain, respectively. The molecular mass of the recombinant F-box-

Nictaba was estimated 37-38 kDa, which is in good agreement with the calculated molecular mass of 

34.9 kDa of the recombinant protein (including a c-Myc epitope and a His6-tag). Unlike the 

recombinant F-box-Nictaba, which yielded a single polypeptide, the purified recombinant Nictaba 

domain yielded two major polypeptides of approximately 26 and 24 kDa, respectively. N-terminal AA 

sequencing of the recombinant Nictaba domain yielded the sequence EAEAEFSVXLEEA with 85% 

sequence identity to the N-terminus of the recombinant protein expressed in Pichia, and revealed 

that the higher molecular mass of the 26 kDa polypeptide is due to an incomplete removal of the N-

terminal secretion sequence needed to direct the expressed proteins into the culture medium. The 

protein patterns shown in Figures 2.3A-D suggest partial degradation of the recombinant proteins. 

Nevertheless, these polypeptides could be detected using specific anti-His antibodies after 

purification on the ovomucoid column. Taken into account that the smaller protein polypeptides 

were also bound to the ovomucoid column these polypeptides also exhibit carbohydrate-binding 

activity.  
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Fig. 2.3   SDS-PAGE and Western blot pictures of unpurified and purified protein fractions. A, Crude protein extract from P. 

pastoris culture medium containing the recombinant F-box-Nictaba protein (50 µg/lane). B, Crude protein extract from P. 

pastoris culture medium containing the recombinant Nictaba domain from At2g02360 (50 µg/lane). C, Purified recombinant 

F-box-Nictaba protein (2 µg/lane). D, Purified recombinant Nictaba domain from At2g02360 (2 µg/lane). M: protein marker; 

lane 1 for each panel: SDS-PAGE image; lane 2 for each panel: Western blot image. 

2.4.4 Lectin activity of recombinant F-box-Nictaba 

The fact that both recombinant proteins could be isolated by affinity chromatography on 

immobilized ovomucoid, a highly glycosylated protein carrying high-Man N-glycans, already indicated 

that they possess carbohydrate-binding activity. Furthermore agglutination assays with the purified 

proteins also yielded a positive reaction in an agglutination test with rabbit erythrocytes (Results not 

shown).  

Nevertheless, in order to study the F-box-Nictaba lectin specificity more sophisticated methodology 

was used. Glycan microarray technology, comprising a wide range of diverse carbohydrates 
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immobilized on a solid support, has become a powerful tool for exploring carbohydrate-mediated 

interactions in a high-throughput mode (Park et al., 2013). Glycan array screening has been 

extensively used in glycomics for a fast assessment of carbohydrate-binding properties of antibodies 

and lectins and quantitative analysis of protein-carbohydrate interactions, as well as in biological and 

biomedical research for detection of cells and pathogens or identification of anti-glycan antibodies 

for clinical diagnostics (Katrlík et al., 2011; Liang and Wu, 2009; Park et al., 2008). In this work, two 

different types of glycan microarrays were used to identify the carbohydrate-binding specificity of 

both recombinant proteins. The glycan-binding activity of purified F-box-Nictaba and its Nictaba-like 

domain produced in P. pastoris as well as of Nictaba from tobacco recombinantly expressed and 

purified before (Schouppe et al., 2010) was determined using the printed glycan array_v5.0 available 

from the Consortium for Functional Glycomics (USA) containing over 600 purified and synthesized 

glycan structures (Blixt et al., 2004; overview of glycan structures on glycan array_v5.0 are available 

at http://www.functionalglycomics.org/static/consortium/resources/resourcecoreh16.shtml). 

Furthermore, the lectin activity of purified F-box-Nictaba and its Nictaba-like domain produced in P. 

pastoris and the recombinant Nictaba protein from tobacco produced and purified as described by 

Vandenborre et al. (2008) was tested on plant glycan microarrays (Department of Plant and 

Environmental Sciences, University of Copenhagen, Denmark) (Pedersen et al., 2012). These glycan 

arrays are nitrocellulose arrays with 126 different carbohydrate structures spotted on them. The 

glycans are predominantly plant-specific structures including both oligo- as well as polysaccharides. 

All saccharide structures are printed in duplicates at three different concentrations: 1, 0.2 and 0.04 

mg/ml as well as 2, 0.4 and 0.08 mg/ml for poly- and oligosaccharides, respectively. An overview of 

all carbohydrates and their location on the array is presented in supplementary Tables A2.2 and A2.3. 

2.4.4.1 F-box-Nictaba interacts with N-acetyllactosamine structures 

Table 2.1 summarizes the top 30 glycan structures most significantly (%CV < 40%) bound by the 

Nictaba domain of Arabidopsis F-box-Nictaba on the printed CFG glycan array_v5.0. As shown in 

Table 2.1, the Nictaba domain as well as the full-length F-box-Nictaba protein showed interaction 

towards both N- and O-glycans containing type 1 and type 2 LacNAc (Galβ1-3GlcNAc and Galβ1-

4GlcNAc) and poly-LacNAc type 2 ([Galβ1-4GlcNAc]n) structures as well as Lewis A (Galβ1-3(Fucα1-

4)GlcNAc), Lewis X (Galβ1-4(Fucα1-3)GlcNAc), Lewis Y (Fucα1-2Galβ1-4(Fucα1-3)GlcNAc) and blood 

type B (Galβ1-3(Fucα1-2)Galβ1-3GlcNAc) epitopes. It is apparent that the presence of the F-box 

domain does not hamper the glycan-binding capacity of the lectin domain since the glycan 

interaction profile of the full-length protein is very similar to the one obtained for the lectin domain. 

Therefore, the Nictaba domain present in the Arabidopsis At2g02360 protein can be considered a 

functional lectin domain which exhibits specificity for the Gal-GlcNAc sequence, both in a β1-3 and a 

β1-4 linkage.  

 

 

 

http://www.functionalglycomics.org/static/consortium/resources/resourcecoreh16.shtml
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Table 2.1   Overview of the top 30 glycan structures with highest reactivity on the glycan array for the Nictaba domain of F-

box-Nictaba from A. thaliana tested at 200 µg/ml on glycan array version 5.0. The most recurrent structures are shown at 

the bottom and are coloured in the table as follows: type 1 LacNAc motifs – red, type 2 LacNAc motifs – dark blue, Lewis A 

structures – orange, Lewis X structures – violet,  Lewis Y structures – blue and type-1 B antigen structures – green. Glycan 

structures for which the % RFU  for Nictaba from tobacco are > 10 % are marked in gray. The core motif of N-glycans known 

to be bound by tobacco Nictaba with the highest affinity (Man3GlcNAc2; Gheysen, 2011) is highlighted in yellow.  
a 

% RFU, Percentage relative fluorescence units: relative value of the signal intensity for a glycan, calculated as % ratio of 

RFU of this glycan to the RFU of the glycan which showed the highest interaction on the array with the particular protein. 

Glycans which showed the highest interaction on the array were: glycan # 115 for the Nictaba domain and F-box-Nictaba 

from A.thaliana; glycan # 473 for Nictaba from tobacco - see Table 2.2. 

 

Glycan structure 

% RFU
a
 

Glycan  
# 

Nictaba 
domain 

F-box-
Nictaba 

Nictaba 
from 

tobacco 

115 Galα1-3Galβ1-3GlcNAcβ-Sp0 100 100 0.12 

34 (3S)Galβ1-4(6S)GlcNAcβ-Sp0 76 42 0.13 

25 (3S)Galβ1-4Glcβ-Sp8 51 14 0.19 

102 Galα1-3(Fucα1-2)Galβ1-3GlcNAcβ-Sp0 48 28 0.13 

534 Fucα1-4(Galβ1-3)GlcNAcβ1-2 Manα-Sp0 47 25 0.15 

330 Neu5,9Ac2α2-3Galβ1-3GlcNAcβ-Sp0 44 14 0.04 

26 (3S)Galβ1-4(6S)Glcβ-Sp0 42 14 0.10 

396 
Galα1-3Galβ1-3(Fucα1-4)GlcNAcβ1-2Manα1-6(Galα1-3Galβ1-3(Fucα1-4)GlcNAcβ1-
2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAc-Sp19 

35 32 14 

275 Neu5Acα2-6Galβ-Sp8 35 8.1 0.10 

314 Manα1-6Manβ-Sp10 34 16 0.35 

126 Galβ1-2Galβ-Sp8 33 9.2 0.10 

366 
Fucα1-4(Galβ1-3)GlcNAcβ1-2Manα1-6(Fucα1-4(Galβ1-3)GlcNAcβ1-2Manα1-3)Manβ1-
4GlcNAcβ1-4(Fucα1-6)GlcNAcβ-Sp22 

32 11 13 

23 6S(3S)Galβ1-4GlcNAcβ-Sp0 32 11 0.15 

325 
Galβ1-3GlcNAcβ1-2Manα1-6(Galβ1-3GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-
4GlcNAcβ-Sp19 

30 9.3 83 

29 (3S)Galβ1-3GalNAcα-Sp8 29 7.0 0.14 

252 Neu5Acα2-3Galβ1-4(6S)GlcNAcβ-Sp8 29 14 2.4 

395 
Galα1-3Galβ1-3GlcNAcβ1-2Manα1-6(Galα1-3Galβ1-3GlcNAcβ1-2Manα1-3)Manβ1-
4GlcNAcβ1-4GlcNAc-Sp19 

27 16 6.5 

420 
Galβ1-4(Fucα1-3)GlcNAcβ1-2Manα1-6(Galβ1-4(Fucα1-3)GlcNAcβ1-2Manα1-3)Manβ1-
4GlcNAcβ1-4(Fucα1-6)GlcNAcβ-Sp22 

27 9.8 13 

72 Fucα1-2Galβ1-4(Fucα1-3)GlcNAcβ-Sp0 27 2.9 0.10 

527 Neu5Acα2-3Galβ1-3GlcNAcβ1-2Manα-Sp0 27 5.8 3.4 

156 Galβ1-4(6S)Glcβ-Sp0 26 7.6 0.27 

92 GalNAcα1-3GalNAcβ-Sp8 26 7.5 0.25 

69 Fucα1-2Galβ1-3GlcNAcβ-Sp8 25 7.4 0.09 

24 (3S)Galβ1-4(Fucα1-3)(6S)Glc-Sp0 23 5.3 0.34 

468 Galα1-3(Fucα1-2)Galβ1-3GalNAcα-Sp8 23 0.9 0.22 

560 
Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-6(Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-2)Manα1-
6(Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-2Manα1-3)Manα1-4GlcNAcβ1-4GlcNAc-Sp24 

23 28 10 

36 (3S)Galβ1-4GlcNAcβ-Sp0 22 14 0.11 

110 Galα1-4(Galα1-3)Galβ1-4GlcNAcβ-Sp8 22 18 0.36 

22 6S(3S)Galβ1-4(6S)GlcNAcβ-Sp0 22 14 0.10 

273 Neu5Acα2-6Galβ1-4Glcβ-Sp0 22 1.5 0.15 

 
Type 1  
LacNAc 

 
 

 
 

 
Type 2  
LacNAc 

 
 

 
 

 
Lewis A 

 

 

 
Lewis X 

 

 

 
Lewis Y 

 

 

 
Type-1 B antigen 
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Moreover, Table 2.1 shows that out of the top 30 glycans preferentially bound by the Nictaba 

domain of F-box-Nictaba, only 5 carbohydrate structures were efficiently recognized by Nictaba from 

tobacco (glycans marked in gray, showing  % RFU > 10 %  for Nictaba). These are the only glycans in 

the top 30 presented in Table 2.1 which, apart from LacNAc-related structures, comprise also the 

core Man3GlcNAc2 motif of N-glycans (highlighted in yellow) known to be bound by tobacco Nictaba 

with the highest affinity (Gheysen, 2011).  

 

Previously, lectin from tobacco plants was shown to preferentially interact with GlcNAc oligomers 

and high-Man N-glycans when tested on the first generation arrays (v2.1, v3 and v4) (Lannoo et al., 

2006b; Schouppe et al., 2010). A new screening using the latest available array v5 showed that 

Nictaba from tobacco also recognizes structures comprising LacNAc motifs (Table 2.2). However, in 

contrast to the Nictaba domain from the Arabidopsis F-box-Nictaba protein under study (Table 2.1), 

the tobacco lectin interacts with LacNAc-containing structures which are exclusively present as part 

of complex N-glycans containing the core Man3GlcNAc2 motif, but does not bind to simple 

lactosamine motifs. Table 2.2 also reveals that the full-length F-box Nictaba or its Nictaba domain can 

moderately interact with some of the LacNAc-containing complex N-glycans (at % RFU >10 %, but not 

exceeding 30 %) from the top 30 carbohydrate structures recognized by the tobacco lectin. 

Nevertheless, it is clearly demonstrated that in contrast to Nictaba, they cannot efficiently bind high-

Man N-glycans and GlcNAc oligomers.  

 

 

 

 

 

 

 

 

 

 

Table 2.2   Overview of the top 30 glycan structures with highest reactivity on the glycan array for Nictaba from tobacco 

tested at 200 µg/ml on glycan array version 5.0. The most recurrent structures are shown at the bottom of the table. 

The core motif of N-glycans known to be bound by tobacco Nictaba with highest affinity (Man3GlcNAc2; Gheysen, 2011) 

is highlighted in yellow. Glycan structures for which the % RFU for F-box-Nictaba from A. thaliana or for its Nictaba 

domain are > 10 % are marked in gray. Motifs preferentially bound on the glycan array by the Nictaba domain of F-box-

Nictaba from A. thaliana (presented in Table 2.1) are coloured as follows: type 1 LacNAc motifs – red, type 2 LacNAc 

motifs – dark blue, Lewis A structures – orange, Lewis X structures – violet,  Lewis Y structures – blue and type-1 B 

antigen structures – green.  
a 

% RFU, Percentage relative fluorescence units: relative value of the signal intensity for a glycan, calculated as % ratio of 

RFU of this glycan to the RFU of the glycan which showed the highest interaction on the array with the particular 

protein. Glycans which showed the highest interaction on the array were: glycan # 115 for the Nictaba domain and F-

box-Nictaba from A.thaliana (see Table 2.1); glycan # 473 for Nictaba from tobacco. 
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Glycan structure 

% RFU
a
 

Glycan 
# 

Nictaba 
domain 

F-box-
Nictaba 

Nictaba 
from 

tobacco 

473 
Fucα1-2Galβ1-4(Fucα1-3)GlcNAcβ1-2Manα1-6(Fucα1-2Galβ1-4(Fucα1-3)GlcNAcβ1-2Manα1-3)Manβ1-
4GlcNAcβ1-4(Fucα1-6)GlcNAcβ-Sp24 

1.2 5.4 100 

216 Manα1-6(Manα1-3)Manα1-6(Manα1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-Sp12 2.5 6.1 99 

325 Galβ1-3GlcNAcβ1-2Manα1-6(Galβ1-3GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-Sp19 30 9.3 83 

302 Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-6(Galβ1-4GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-Sp12 7.2 31 79 

212 Manα1-2Manα1-6(Manα1-3)Manα1-6(Manα1-2Manα1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-Sp12 4.2 3.7 78 

362 Fucα1-2Galβ1-4GlcNAcβ1-2Manα1-6(Fucα1-2Galβ1-4GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-Sp20 19 18 73 

364 Galα1-3Galβ1-4GlcNAcβ1-2Manα1-6(Galα1-3Galβ1-4GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-Sp20 15 16 72 

352 Manα1-6(Galβ1-4GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-Sp12 3.6 6.1 71 

51 Manα1-6(Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-Sp13 1.2 0.71 70 

581 
GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-2Manα1-6(GlcNAcβ1-
3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-
4(Fucα1-6)GlcNAcβ-Sp19 

1.1 1.9 68 

372 
Galα1-3(Fucα1-2)Galβ1-4GlcNAcβ1-2Manα1-6(Galα1-3(Fucα1-2)Galβ1-4GlcNAcβ1-2Manα1-3)Manβ1-
4GlcNAcβ1-4GlcNAcβ-Sp20 

15 8.5 68 

53 GlcNAcβ1-2Manα1-6(GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-Sp13 2.4 3.0 67 

350 Galβ1-4GlcNAcβ1-2Manα1-3Manβ1-4GlcNAcβ1-4GlcNAc-Sp12 2.4 1.2 67 

545 
Fucα1-2Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-2Manα1-6(Fucα1-2Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-
2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-Sp24 

3.1 19 67 

486 
Galβ1-4GlcNAcβ1-6(Galβ1-4GlcNAcβ1-2)Manα1-6(Galβ1-4GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4(Fucα1-
6)GlcNAcβ-Sp24 

1.2 2.6 66 

191 GlcNAcβ1-4GlcNAcβ1-4GlcNAcβ1-4GlcNAcβ1-4GlcNAcβ1-Sp8 6.4 3.7 66 

575 
GlcNAcβ1-3Galβ1-4GlcNAcβ1-2Manα1-6(GlcNAcβ1-3Galβ1-4GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4(Fucα1-
6)GlcNAcβ-Sp24 

2.2 3.8 66 

328 
Galβ1-4(Fucα1-3)GlcNAcβ1-2Manα1-6(Galβ1-4(Fucα1-3)GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-
Sp20 

2.9 20 65 

459 
Galβ1-4GlcNAcβ1-6(Galβ1-4GlcNAcβ1-2)Manα1-6(Galβ1-4GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-
Sp19 

6.2 8.3 65 

217 Manα1-6(Manα1-3)Manα1-6(Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-Sp12 1.9 19 65 

550 
GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-2Manα1-6(GlcNAcβ1-3Galβ1-4GlcNAcβ1-
3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-Sp25 

18 2.2 63 

577 
GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-2Manα1-6(GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-
2Manα1-3)Manβ1-4GlcNAcβ1-4(Fucα1-6)GlcNAcβ-Sp24 

3.1 1.8 62 

561 Galα1-3Galβ1-4GlcNAcβ1-2Manα1-6(Galα1-3Galβ1-4GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAc-Sp24 1.8 21 62 

211 Manα1-6(Manα1-2Manα1-3)Manα1-6(Manα1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-Sp12 3.5 2.5 61 

541 
GlcNAcβ1-3Galβ1-4GlcNAcβ1-2Manα1-6(GlcNAcβ1-3Galβ1-4GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-
4GlcNAcβ-Sp25 

2.4 2.9 60 

347 Manα1-6(Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAc-Sp12 5.7 5.6 59 

485 Manα1-6(Manα1-3)Manβ1-4GlcNAcβ1-4(Fucα1-6)GlcNAcβ-Sp19 1.2 0.87 59 

582 
Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-2Manα1-
6(Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-2Manα1-
3)Manβ1-4GlcNAcβ1-4(Fucα1-6)GlcNAcβ-Sp19 

2.2 19 59 

405 Galα1-4Galβ1-4GlcNAcβ1-2Manα1-6(Galα1-4Galβ1-4GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-Sp24 4.6 8.0 58 

543 
Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-2Manα1-6(Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-2Manα1-3)Manβ1-
4GlcNAcβ1-4GlcNAcβ-Sp24 

2.0 5.4 56 
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2.4.4.2 F-box-Nictaba interacts with galactose oligomers and arabinan oligosaccharides 

Probing the plant glycan arrays with the purified proteins of interest exhibiting carbohydrate-binding 

activity towards glycans present on the array results in a specific dot pattern as presented in Fig. 

2.4A. Quantitative analysis of pixel intensities for all spots on the arrays after screening with F-box-

Nictaba as well as with its Nictaba domain revealed that both proteins demonstrate very similar 

glycan-binding properties, although the signal intensities in general are lower for the complete F-box-

Nictaba protein. In line with this result, a general observation was made that F-box-Nictaba appears 

to be much less stable in solution than its Nictaba domain. Also, it has been suggested that F-box 

proteins are regulated via an autoinhibitory mechanism and a non-occupied F-box domain impedes 

substrate binding, thereby ensuring that free F-box proteins do not compete with complete SCF 

complexes for access to targets (Chae et al., 2008; Deshaies, 1999). Fig. 2.4B and Fig. 2.5 present the 

outcome for the Nictaba domain which is representative for both proteins (for comparison with the 

full-length protein see supplementary Fig. A2.1A and Fig. A2.3). Carbohydrate structures with highest 

reactivity are marked in Fig. 2.4B with their glycan ID and a color corresponding to the bars as shown 

in Fig. 2.5, which presents interaction for the top 10 glycan structures for each glycan dilution with 

highest reactivity on the array. These results demonstrate that F-box-Nictaba and its Nictaba-like 

domain preferentially bind Gal-containing motifs including 6²-β-D-galactosyl-β1-4-D-galactotriose, 6²-

α-D-galactosyl-β1-4-D-galactotriose and 4²,6²-α-D-digalactosyl-β1-4-D-galactobiose with strongest 

affinity to 6²-β-D-galactosyl-β1-4-D-galactotriose. This carbohydrate structure presents the highest 

signal intensities in almost all concentrations and is the only glycan still detectable in two technical 

replicates in the spots with the lowest glycan concentration (Fig. 2.5C and Fig. A2.3B). Reactivity of 

the recombinant proteins with D-galactose, β1-4-D-galactobiose and β-1-4-D-galactopentose (glycan 

IDs 65-67) is only detectable for the spots with the highest glycan concentration and their signal 

intensities are below the score of top 40 carbohydrates (results not shown). This suggests that F-box-

Nictaba shows the strongest affinity towards a specific arrangement of β1-4-linked Gal units. Apart 

from the clear preference for Gal-containing structures, a lower signal is also detected for 

feruloylated α1-5-L-arabinobiose/triose and glucose.  

Probing the plant glycan array with the Nictaba protein from tobacco confirmed previous studies 

reporting  its specificity towards GlcNAc oligomers (Chen et al., 2002; Gheysen, 2011; Lannoo et al., 

2006b). As depicted in supplementary Fig. A2.1B and Fig. A2.4 Nictaba shows the highest affinity for 

hexaacetyl-chitohexaose (GlcNAc6) and the signal intensity for interaction gradually drops with 

decreasing number of GlcNAc units as follows: GlcNAc6 > GlcNAc5 > GlcNAc4. 

It has to be noted that particularly F-box-Nictaba and its Nictaba-like domain, but also to a lesser 

extent Nictaba from tobacco, were binding to some polysaccharides on the plant glycan array in an 
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aspecific way. These structures are marked with blue boxes (Fig. 2.4B and Fig. A2.1). These 

polysaccharides include the gum and β-glucan samples (IDs 8-11 and 22–28) and are reported by the 

provider to be problematic due to high viscosity, which may create satellites (smaller and unprecise 

dots). Beacause of this issue, they have been printed on the array at different concentrations than 

the remaining polysaccharides. Indeed, these so-called satellites become evident following detection. 

Spots corresponding to these glycans are also clearly visible already on the non-probed arrays 

presented in supplementary Fig. A2.2A (but not detectable in the negative control, Fig. A2.2B), 

suggesting that they might interact aspecifically with the lectins. For this reason these 

polysaccharides have been excluded from the analysis. 

 

 

 
Fig. 2.4  Grayscale images of the scanned plant glycan microarray probed with a recombinant Nictaba-like domain of F-box-

Nictaba from Arabidopsis (10 µg/ml) and immunodetected as described in Materials and methods. A, Red boxes mark 

negative controls (BSA); green boxes mark blanks. B, Glycan structures of highest reactivity are marked with their glycan ID 

and colors corresponding to the bars in Fig. 2.5. Arrows indicate decreasing concentration of the detected glycan sample. 

Blue boxes mark those glycans for which the reaction appears to be aspecific.  
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2.5 Discussion 

2.5.1 F-box-Nictaba is a functional lectin 

Judging from the results of the ovomucoid affinity chromatography, the agglutination assays and the 

glycan array analysis it can be concluded that the Arabidopsis F-box-Nictaba protein encoded by 

At2g02360 is a functional lectin. Parallel experiments with the Nictaba domain demonstrated that 

the lectin activity of At2g02360 resides in its C-terminal Nictaba domain. Based on the high sequence 

similarity between the C-terminal Nictaba domain of the Arabidopsis protein At2g02360 and Nictaba 

from tobacco leaves it was tempting to speculate that the F-box-Nictaba protein exhibited the same 

or at least similar glycan-binding properties as Nictaba and accordingly would interact preferentially 

with GlcNAc oligomers, and high-Man and complex N-glycans. However, glycan array analysis clearly 

demonstrated that the Arabidopsis F-box-Nictaba protein exhibits a substantially different 

carbohydrate-binding specificity. Based on the CFG glycan microarray analysis F-box-Nictaba 

recognizes type 1 and type 2 LacNAc, type 2 poly-LacNAc, Lewis A, Lewis X, Lewis Y, and type-1 B 

antigen motifs. Screening of the plant glycan microarrays revealed that F-box-Nictaba can interact 

with Gal oligomers composed of more than two specifically arranged β1-4-linked Gal units. F-box-

Nictaba also binds to feruloylated α1-5-L-arabinobiose/triose glycans, though with lower affinity. It 

should be noted that the Gal-containing motifs including 6²-β-D-galactosyl-β1-4-D-galactotriose, 6²-

α-D-galactosyl-β(1-4-D-galactotriose and 4²,6²-α-D-digalactosyl-β1-4-D-galactobiose which gave the 

strongest interaction signal on the plant-specific arrays, represent carbohydrate structures which 

were chemically synthesized and are not known to occur in plants (Pedersen et al., 2012). However, 

the feruloylated α1-5-linked arabino-oligosaccharides are of plant origin as they have been prepared 

by enzymatic digestion of sugar beet pulp (Ralet et al., 1994). Altogether, these glycan array data 

indicate that F-box-Nictaba preferentially binds glycan motifs comprising (a) terminal Gal unit(s) 

linked to GlcNAc or other Gal residues.  

It is intriguing that both recombinant proteins (full-length F-box-Nictaba and its Nictaba domain) are 

capable of agglutinating red blood cells. This property requires a multivalent lectin, whereas F-box-

Nictaba comprises a single carbohydrate-binding domain. This observation, altogether with the fact 

that recombinant F-box-Nictaba secreted by P. pastoris occurs as a protein of much higher MW than 

expected, points towards the possibility of F-box-Nictaba dimerization. Within the AA sequence of F-

box-Nictaba there are eight Cys residues which could contribute to disulphide bond formation. This 

seems particularly possible in a concentrated protein solution (e.g. crude protein extract of P. 

pastoris medium or concentrated pure protein fraction), where self-association of proteins is strongly 

enhanced (Snoussi and Halle, 2005). Strikingly, several F-box proteins in yeast and mammals have 

been demonstrated to form dimers (Hao et al., 2007; Kominami et al., 1998; Li and Hao, 2010; Suzuki 

et al., 2000; Tang et al., 2007; Welcker and Clurman, 2007). Certainly this issue should be studied 
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further, particularly with regard to the potential consequences of F-box-Nictaba dimerization for its 

functionality. 

2.5.2 Occurrence of LacNAc motifs  

In the last few years LacNAc structures have been studied most intensively in higher animals where 

they are responsible for blood group determination, cell-to-cell recognition and adhesion processes 

(Stanley and Cummings, 2009). Different glycans containing LacNAc motifs have been also found in 

bacteria and viruses (Monzavi-Karbassi et al., 2004; Preston et al., 1996; Wang et al., 2000). 

However, in plants only Lewis A motifs have been identified so far. These structures are localized at 

the cell surface (membrane-bound) or can be found in glycoproteins secreted by plant cells or in the 

Golgi apparatus where they are synthesized (Fitchette et al., 1999; Fitchette-Lainé et al., 1997; 

Maeda and Kimura, 2014; Maeda et al., 2010; Melo et al., 1997). Although Lewis A structures are 

widespread within the plant kingdom including monocots, dicots and gymnosperms there has been 

some controversy to the presence of Lewis A motifs in A. thaliana and other members of the 

Brassicaceae family (Fitchette et al., 1999; Fitchette-Lainé et al., 1997; Rayon et al., 1999; Wilson et 

al., 2001). Nevertheless, it has been unambiguously shown that A. thaliana contains the 

indispensable enzymatic machinery and can synthesize Lewis A structures. Léonard et al. (2002) 

demonstrated that A. thaliana possesses an active α1,4-fucosyltransferase (FUT13) capable of α1,4-

fucosylation of the GlcNAc residue within the Galβ1-3GlcNAc structures. These Lewis A epitopes 

were detected in the plasma membrane and the Golgi vesicles of A. thaliana cells. Furthermore, 

Strasser et al. (2007) reported the presence and activity of the β1,3-galactosyltransferase (GALT1) in 

A. thaliana responsible for the formation of Galβ1-3GlcNAc, a structure required for the synthesis of 

Lewis A structures. It has also been shown that the expression of Lewis A motifs in A. thaliana is 

tissue specific with relatively high levels in pedicels, stems and nodes, moderate levels in siliques and 

shoot apex, and relatively low levels in flowers and roots, whereas it was not detectable in leaves, 

which could explain previous problems in the detection of this glycan motif. Therefore, it seems 

evident that A. thaliana synthesizes Lewis A structures, however, most probably at substantially 

lower levels than other plants and/or the expression of the glycosyltransferases involved (i.e. β1,3-

galactosyltransferase and α1,4-fucosyltransferase) is tissue and/or time specific. Unlike the type 1 

LacNAc (Galβ1-3GlcNAc) and Lewis A motifs, the other structures recognized by the Arabidopsis F-

box-Nictaba protein on the glycan array have not been reported in plants. However, this is not 

surprising since plants are missing the gene encoding β1,4-galactosyltransferase, the enzyme crucial 

for the biosynthesis of Galβ1-4GlcNAc structures (Bakker et al., 2001). As a consequence, neither 

type 2 poly-LacNAc nor Lewis X epitopes can be synthesized by plants. Several research groups have 

shown that transgenic lines in which the human or rat β1,4-galactosyltransferase gene was 

introduced into the plant genome are capable of producing the mammalian-type Lewis structures 

(Karg et al., 2010; Rouwendal et al., 2009). Similarly, up till now no structures related to blood group 

B antigens could be identified in plants, which most probably also results from the lack of the 
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necessary enzyme, the α1,3-galactosyltransferase. Clearly, no putative α1,3-galactosyltransferase 

gene has been identified in the genome of A. thaliana.  

2.5.3 Occurrence of feruloylated α1-5-arabino-oligosaccharides 

Arabino-oligosaccharides are components of plant cell wall polymers including hemicelluloses and 

pectins (Caffall and Mohnen, 2009; Harholt et al., 2010; Scheller and Ulvskov, 2010). Feruloylated α1-

5-arabinans are mostly reported as side chains α1-4-linked to rhamnose residues in the 

rhamnogalacturonan I (RGI) backbone of pectins, forming the branched RGI structure in plant cell 

walls. The substitutions with ferulic acid can either be present as monomers or as dimers through 

oxidative coupling with other side chains and as such can cross-link pectin molecules (Levigne et al., 

2004; Ralet et al., 2005; Waldron et al., 1997). Structurally heterogeneous feruloylated arabino-

oligosaccharide side chains of RGI have been well described in different plant species, especially in 

sugar beet (Levigne et al., 2004; Ralet et al., 1994, 2005; Sato et al., 2013), spinach (Ishii and Tobita, 

1993), potato (Bush et al., 2001; ØBro  et al., 2004), soybean (Huisman et al., 2001; Nakamura et al., 

2002) and apple (Peña and Carpita, 2004). The α1-5-linked arabino-oligosaccharides have also been 

identified in the Arabidopsis cell walls (Pettolino et al., 2012; Verhertbruggen et al., 2009, 2013). The 

synthesis of feruloylated α1-5-linked arabinose oligomers requires the activity of α1,5-Ara-

transferases (AraT) and feruloyl transferase (Caffall and Mohnen, 2009). One putative α1,5-AraT has 

been identified in Arabidopsis, called ARABINAN DEFICIENT1 (ARAD1) encoded by At2g35100 

(Harholt et al., 2006), which is a type II membrane protein localized  in the Golgi apparatus. It has 

been demonstrated that loss-of-function arad1 mutants present a reduced arabinan content in the 

cell wall. Next to ARAD1, 7 additional Arabidopsis homologs have been found (Harholt et al., 2006). 

Genes involved in feruloylation of cell wall components have been identified in rice (Mitchell et al., 

2007; Piston  et al., 2010), but no feruloyl transferase responsible for arabinan feruloylation has been 

identified in A. thaliana. 

2.5.4 Other lectins recognizing β-galactosides 

A well-known group of lectins with specificity towards β-galactosides such as [Gal(NAc)β1-

3/4GlcNAc] are the galectins. Galectins are widely expressed and have been found in mammals, 

birds, insects, fish, nematodes, sponges and some fungi. Galectin-like sequences have also been 

predicted in the genome of the plant A. thaliana (Cooper and Barondes, 1999; Cummings and Liu, 

2009). Most members of the galectin family are able to interact with simple β-galactosides such as di- 

or tri-saccharides, but their affinity is relatively weak. In contrast, galectin binding to natural β-

galactoside-containing glycoconjugates is of much higher affinity (Cummings and Liu, 2009). To date, 

the human galectin family comprises 15 members, each with different sugar specificity towards the 

di-saccharide LacNAc, poly-LacNAc and internal LacNAc present in poly-LacNAc (Stowell et al., 2008). 



Chapter 2 - Carbohydrate-binding activity of F-box-Nictaba __________________________________ 
 

76 
 

Several members of the galectin family are primarily located in the nucleus and the cytoplasm of 

cells. Within the cytoplasm there appears to be a selective targeting of the individual galectins to 

sub-compartments of the cytoplasm, to sub-cellular organelles and to sub-regions within membranes 

(Liu et al., 2002). Although galectins lack a classical signal sequence and are synthesized on free 

ribosomes, they can also be secreted by non-classical export to the outer plasma membrane and 

extracellular matrix (Delacour et al., 2009; Schneider et al., 2010). As a consequence, the same 

galectin can have a dual localization inside as well as outside cells depending on the cell type where it 

is expressed (Arnoys and Wang, 2007; Newlaczyl and Yu, 2011). A common feature of secreted 

(soluble) galectins is the cross-linking of glycoconjugate ligands located at the cell surface and within 

the extracellular matrix. This cross-linking is based on the interaction of the galectins with LacNAc 

structures decorating the extracellular ligands. Through this mechanism, galectins modulate 

important processes such as cell adhesion, migration, polarity, chemotaxis, inflammation, 

proliferation and apoptosis (Bi et al., 2011; Boscher et al., 2011; Garner and Baum, 2008; Liu and 

Rabinovich, 2010; Vasta, 2009). Secreted galectins as well as intracellular galectins also deliver a 

variety of intracellular signals to the relevant intracellular signal-regulation pathways to modulate 

mitosis, apoptosis and cell-cycle progression. Important to note is that unlike the secreted galectins, 

the galectins present in the nucleus and the cytoplasm commonly interact with their intracellular 

ligands based on protein-protein interactions rather than using lectin-glycan interactions (Liu et al., 

2002). However, as was reported for galectin-3, galectins need a functional carbohydrate-binding 

domain for proper protein interactions with a redundant pre-mRNA splicing factor shuttling between 

the nucleus and cytoplasm, and the addition of LacNAc or lactose can perturb some of these 

interactions (Yang et al., 1996). According to Haudek et al. (2010) studying the dynamics of galectin-

3, exportins and importins are used to target the galectin to its proper sub-compartment. However, 

mutational analysis of the carbohydrate-binding domain of galectin-3 or addition of LacNAc can 

perturb this protein-protein interaction based targeting and may even affect apoptosis of cells 

(Gaudin et al., 2000; Salomonsson et al., 2010). Hence, the significance of the LacNAc-binding activity 

of galectins remains a challenge to be explored in more detail. 

Outside the galectin family, also other lectins have been described to interact with LacNAc containing 

sugars and glycoproteins. One fungal (cytoplasmic) ricin-B like lectin from the mushroom Clitocybe 

nebularis was recently shown to recognize LacdiNAc (Pohleven et al., 2012). Furthermore, several 

plant lectins have been reported to interact with LacNAc structures, including the lectin from Arum 

maculatum (Allen, 1995), the Erythrina cristagalli lectin (Teneberg et al., 1994), and PHA-E/L from 

Phaseolus vulgaris (Kaneda et al., 2002).  All these lectins are located in the plant vacuole and hence 

can be used as defense proteins. Recent evidence also supports the presence of a LacNAc binding 

lectin in the nucleocytoplasmic compartment of the plant cell, such as the EULS3 protein from A. 

thaliana (Van Hove et al., 2011) and the jacalin-related lectins from rice (Orysata), Calystegia sepium 

(Calsepa) and Morus nigra (Morniga M) (Al Atalah et al., 2011).  
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2.5.5 Relevance of plant lectin F-box-Nictaba  

This is the first report of the characterization of a sugar-binding F-box protein in plants. Sugar-binding 

F-box proteins are already known since 2002, when they were first discovered in mammals (Yoshida 

and Tanaka, 2010). Unlike the plant Fbs family, the mammalian Fbs protein family is a very small 

group consisting of only 5 homologous proteins, referred to as FBG1-FBG5. FBG1 and FBG2 exhibit 

carbohydrate-binding specificity towards high-Man N-glycans similar to the glycan specificity 

reported for Nictaba (Glenn et al., 2008; Yoshida et al., 2005). Both FBG1 and FBG2 have been 

proposed to play a role in protein quality control by recognizing and targeting misfolded or 

incompletely assembled glycoproteins for degradation through the ERAD pathway (Yoshida and 

Tanaka, 2010). Based on the striking similarities between the Fbs proteins and Nictaba for what 

concerns their localization pattern in the nucleus and cytoplasm of the cell, the three-dimensional 

conformation of the lectin domain and the carbohydrate-binding properties the hypothesis was put 

forward that the nucleocytoplasmic Arabidopsis F-box-Nictaba protein might be a functional 

homolog of the mammalian FBG1 and FBG2 proteins in plants (Lannoo et al., 2008). However, the 

glycan arrays show that the plant F-box-Nictaba protein encoded by At2g02360 recognizes and binds 

Gal oligomers as well as type 1 LacNAc, Lewis A structures, type 2 poly-LacNAc, Lewis X and Y 

epitopes and blood group B antigens. As such, the sugar-binding specificity of the plant Fbs protein 

resembles better the one reported for the mammalian Fbs proteins FBG4 and FBG5, which exhibit 

strong affinity towards sulfated glycan structures and different glycans with type 2 LAcNAc (Galβ1-

4GlcNAc) motifs (see supplementary Table A2.4). Supplementary Table A2.4 gives an overview of the 

glycan-binding properties of the members of the mammalian Fbs protein family. Comparative 

analysis shows that within the mammalian Fbs protein family there is a wide divergence in 

carbohydrate-binding activity. While the mammalian Fbs protein FBG1 is highly specific to high-Man 

N-glycans, FBG2 strongly binds not only high-Man but also complex N-glycans and sulfated glycan 

structures. FBG3 does not exhibit carbohydrate-binding activity at all. Hence, although the 

mammalian Fbs proteins share high sequence similarity, they differ substantially in their glycan-

binding properties. Due to the diversity in carbohydrate-binding specificity the different Fbs proteins 

are suggested to play divergent roles in the glycome regulation in mammals (Glenn et al, 2008). 

Likewise, it seems that the carbohydrate-binding site of F-box-Nictaba has developed a different 

specificity from the one of the Nictaba protein from tobacco, despite the similarity at the sequence 

level. Taken into account that the Arabidopsis genome contains a whole family of homologous F-box-

Nictaba proteins which slightly differ in the sequences of the Nictaba domains it is likely that these 

chimera proteins show broad differences in their fine specificities. Therefore it cannot be excluded 

that other plant F-box-Nictaba proteins might have carbohydrate-binding properties that are more 

similar to that of Nictaba.  

What is more, the demonstration of differences in specificity between Nictaba and F-box-Nictaba, 

indicating gene divergence within the family of Nictaba-related lectins, urges for extreme caution 

when making predictions regarding the specificity of lectins. Previously it was also shown that gene 

divergence within the legume lectin family (Loris et al., 1998), the jacalin-related lectins (Rougé et al., 
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2003), the GNA-related lectins (Fouquaert et al., 2009b) and recently also within the EUL family (Van 

Hove et al., 2011) has resulted in changes in carbohydrate-binding specificity. Thus, although 

molecular modeling of the lectin structure and the glycan-binding site is possible, it is a highly 

complex procedure and certainly does not allow to draw conclusions regarding the specificity of 

lectins solely based on their AA sequences. For instance, molecular modeling of the EUL domains 

from different types of EUL-related proteins sharing high sequence similarity with the lectin domain, 

showed a very similar fold with conserved AAs in the binding site. Despite that, however, glycan 

microarray screening revealed that the glycan-binding site of the EUL domain from different EUL-like 

proteins can accommodate distinct carbohydrate structures, including high-Man N-glycans, the type-

1 B antigen and Gal-containing motifs (Fouquaert and Van Damme, 2012). 
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3.1 Abstract 

Within the genome of Arabidopsis thaliana, a small group of F-box proteins has been identified  

consisting of an F-box domain linked to a domain homologous to the glycan-binding protein Nictaba. 

Nictaba is a GlcNAc-binding protein originally identified in tobacco leaves, which expression is up-

regulated after jasmonate treatment and insect herbivory and which has been shown to increase the 

plant’s resistance towards insects. In Chapter 2, the Arabidopsis F-box-Nictaba protein, encoded by 

the gene At2g02360, has been shown to be a functional lectin that can bind N- and O-glycans 

containing N-acetyllactosamine (LacNAc) structures, Lewis A, Lewis X, Lewis Y and type-1 B antigen 

motifs.  

Here, we present a detailed qRT-PCR expression analysis of At2g02360 in A. thaliana plants upon 

different stresses and hormone treatments. The expression of the F-box-Nictaba gene was enhanced 

after plant treatment with the defense-related plant hormone salicylic acid (SA) and after plant 

infection with the virulent Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000). 

Histochemical staining of Arabidopsis plants expressing a pAt2g02360:GUS reporter construct 

displayed preferential activity of the At2g02360 promoter sequence in non-glandular trichomes 

present on young rosette leaves. Meta-analysis database searches revealed co-expression of 

At2g02360 with genes involved in disease and plant defense responses. Transgenic A. thaliana plants 

impaired in F-box-Nictaba gene expression and plants overexpressing F-box-Nictaba showed 

differential gene expression in comparison to wild type (WT) plants during heat stress and after Pst 

DC3000 infection. Moreover, A. thaliana plants overexpressing the F-box-Nictaba protein 

demonstrated reduced disease symptoms after Pst DC3000 infection. Taken together, our data 

suggest that this Arabidopsis F-box-Nictaba gene is involved in SA-related plant defense responses. 

3.2 Introduction 

F-box proteins represent one of the largest and most diverse protein families with more than 700 

members in the plant kingdom (Gagne et al., 2002; Jain et al., 2007; Hua et al., 2011). They are 

named after their highly conserved N-terminal protein-protein interaction motif of approximately 50 

AA residues, known as the F-box domain. The majority of the F-box proteins function as part of SCF-

type Ub E3 ligases (Petroski and Deshaies 2005) in which the F-box protein comprises the substrate-

binding module. F-box proteins are assembled into active SCF complexes through a direct binding of 

the F-box motif with the SCF core protein Skp1 (S-phase kinase-related protein 1). Through their 

variable C-terminal substrate-binding domain, F-box proteins bind specifically to and deliver 

appropriate substrates to the SCF complex for ubiquitin (Ub)-mediated proteolysis by the ubiquitin-

proteasome system (UPS) (Skaar et al., 2013) (Chapter 1, Section 1.2).  

 

The impressive number of F-box proteins in plants (especially when compared to fungi and animals) 

and the extensive diversity of their C-terminal target-binding domains contribute to the ability of SCF 
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complexes to target a wide variety of substrates. Therefore, it is not surprising that F-box proteins 

are involved in numerous cellular processes within plant development and stress signaling. Genetic 

approaches already revealed an essential role for F-box proteins in plant hormone perception and 

signaling in case of ABA, auxin, ET, GA as well as MeJA (Kelley and Estelle 2012). In addition, F-box 

proteins were reported to be involved in circadian clock control, photomorphogenesis and flowering 

(Somers et al., 2004; Lechner et al., 2006; Ito et al., 2012), leaf senescence (Woo et al. 2001), self-

incompatibility (Qiao et al., 2004a,b) and responses to various (a)biotic stresses (Calderon-Villalobos 

et al., 2007; Zhang et al., 2008; Cheng et al., 2011; Bu et al., 2013).  

F-box proteins recognize their substrates in several ways. In most cases, the F-box proteins contain C-

terminal protein-protein interaction motifs such as LRR and WD-40 repeats that bind phosphorylated 

proteins. These F-box proteins are referred to as FBXL and FBXW proteins, respectively. However, 

phosphorylation-based substrate-binding is not the only mechanism for F-box proteins to recruit a 

target for degradation. Recent analyses have shown that multiple newly discovered F-box proteins 

(the so-called FBXO proteins) combine various recognition mechanisms which enable tight regulation 

of substrate selection by the F-box protein and each complementary SCF complex (Skaar et al., 

2013). Amongst these new FBXO proteins, glycan-binding F-box proteins were first discovered in 

mammals about 10 years ago (Yoshida et al., 2002; Yoshida and Tanaka 2010). Recently, they were 

also reported in plants with the finding of F-box-Nictaba proteins, consisting of an F-box domain 

linked to a glycan-binding domain resembling the tobacco lectin Nictaba (Lannoo et al., 2008; 

Stefanowicz et al., 2012) (see Chapter 2).  

 

In the mouse and human genome, at least five Fbs genes have been identified (Yoshida and Tanaka 

2010), among which FBG1, FBG2 and FBG5 which bind to high-Man N-glycosylated proteins (Glenn et 

al., 2008) (supplementary Table A2.4). NMR studies showed that the C-terminal substrate-binding 

domain of both FBG1 and FBG2 specifically interacts with the inner N,N’-diacetylchitobiose (GlcNAc2) 

core of high-Man N-glycans present on incompletely folded or denatured glycoproteins. Since FBG1 

and FBG2 do not target free Man structures or non-glycosylated proteins, it was concluded that both 

Fbs proteins function as glycan-binding F-box proteins in SCF complexes involved in the ERAD 

pathway (Yoshida et al., 2005). In this pathway, proteins which fail to fold correctly or assemble into 

oligomeric complexes in the lumen of the ER are retro-translocated to the cytosol, where they are 

captured by an SCFFBG1/2 complex before degradation by the UPS  (Hoseki et al., 2010). 

 

The genome of A. thaliana contains multiple genes encoding F-box proteins with a putative glycan-

binding or lectin-like domain. These proteins are referred to as the Arabidopsis F-box-Nictaba family, 

since their C-terminal domain highly resembles the N-glycan-binding jasmonate-inducible tobacco 

lectin Nictaba (Lannoo et al., 2008; Delporte et al., 2015). This plant F-box protein family groups 

approximately 30 members which all share over 90% and 40-64% sequence similarity in the F-box 

domain and the Nictaba domain, respectively. Due to the presence of the F-box domain linked to a 

lectin-like C-terminal substrate-binding domain, it is tempting to speculate that these F-box-Nictaba 

proteins also function as substrate adaptors in an ERAD-like degradation pathway in plants similar to 
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the mammalian Fbs proteins. The three-dimensional model of the tobacco protein Nictaba 

(Schouppe et al., 2010) shows striking similarity to the β-barreled structure of the C-terminal lectin 

domain of the mammalian FBG1 protein (Mizushima et al., 2004). Furthermore, both Nictaba and 

FBG1 show comparable glycan-binding properties towards the inner core structure of N-glycans 

(Lannoo et al. 2006; Glenn et al., 2008). However, detailed analysis of the sugar specificities for the 

Arabidopsis F-box-Nictaba protein with the highest sequence homology to Nictaba revealed the 

unexpected binding of its Nictaba domain to N- and O-glycans containing (poly)N-acetyllactosamine 

(LacNAc) (Galβ1-3GlcNAc and Galβ1-4GlcNAc) structures, Lewis A (Galβ1-3(Fucα1-4)GlcNAc), Lewis X 

(Galβ1-4(Fuc1-3)GlcNAc) and Lewis Y (Fuc1-2Galβ1-4(Fuc1-3)GlcNAc) motifs, as well as to β1-4-

linked Gal oligomers and feruloylated α1-5-L-arabinobiose/triose glycans. Only minor interaction was 

reported with Man3GlcNAc2 and Man5-8GlcNAc2 N-glycans (Stefanowicz et al.,  2012; Chapter 2). 

 

To determine whether the Arabidopsis F-box protein encoded by At2g02360 is involved in stress 

signaling pathways, wild type Arabidopsis plants were treated with a wide range of (a)biotic stress 

factors (including plant hormones, heat, cold, osmotic stress and pathogen infections) and an 

extensive expression profiling analysis was performed to identify changes in gene expression after 

different treatments. Quantitative real-time reverse-transcriptase polymerase chain reaction (qRT-

PCR) revealed an up-regulation of F-box-Nictaba gene expression after SA treatment and 

Pseudomonas syringae pv. tomato strain DC3000 infection. β-glucuronidase (GUS) histochemical 

assays showed preferential activity of the At2g02360 promoter sequence in leaf trichomes of 

transgenic Arabidopsis plants. When compared to WT plants, A. thaliana plants overexpressing the F-

box-Nictaba protein exhibited a lower degree of leaf damage after infection with Pst DC3000 and a 

higher expression of the WRKY70 gene encoding a SA-related transcription factor. Transgenic 

Arabidopsis plants with either reduced or enhanced F-box-Nictaba expression also exhibited 

differential expression of the Hsp70b gene during heat stress, when compared to WT plants. The F-

box-Nictaba gene expression levels themselves were also affected in the transgenic plants by 

different stress conditions. Altogether, our data suggest a role for the F-box lectin protein in plant 

defense-related pathways.  

3.3 Materials and methods 

3.3.1 Plant materials and growth conditions 

Seeds of WT A. thaliana ecotype Columbia-0 (Col-0) were purchased from Lehle Seeds (Round Rock, 

Texas, USA). Seeds of SALK T-DNA insertion mutant lines associated with the At2g02360 locus 

SALK_007866 and SALK_085735C (further referred to as knockout lines KO4 and KO6, respectively) 

(Alonso et al., 2003), were obtained from the European Arabidopsis Stock Centre (NASC, University 

of Nottingham, UK).  
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To establish in vitro cultures, dry seeds were surface sterilized by washing the seeds for 4 min in 70% 

(v/v) ethanol and 10 min in 6% (v/v) bleach, followed by rinsing three to four times with sterile 

distilled water. Sterilized Arabidopsis seeds were sown on sterile filter paper which was placed on 

top of solid Murashige and Skoog (MS) medium (Duchefa, Haarlem, The Netherlands). To establish 

non-in vitro grown plants, Arabidopsis seeds were directly sown into artificial soil (Jiffy-7, 44 mm Ø) 

(AS Jiffy Products, Drobak, Norway) or into expanded clay granules (> 4mm Ø). To break dormancy, 

the seeds were stratified at 4°C for 3 days in the dark. Afterwards, seeds were transferred to a 

controlled growth chamber set at 21°C with a 16/8 h light/dark photoperiod for seed germination 

and plant development. Only for infection experiments, seeds were kept in a growth chamber 

(Conviron Germany GmbH, Berlin, Germany) set at 21°C with a 12/12 h light/dark photoperiod. All 

trays containing seedlings and plants grown in artificial soil or granules were watered regularly to 

keep them moist. For At2g02360 gene expression analysis in WT A. thaliana plants (Col-0) grown 

under standard growth conditions, plant samples were collected from different developmental 

stages as defined by Boyes et al. (2001). Early stage plant materials (cotyledons, 4 leaves and 8 leaves 

stage) were collected from in vitro grown plants and included the complete seedlings, whereas the 

other samples were taken from plants grown in artificial soil. Root material was collected from plants 

grown in granules.  

3.3.2 Chemical reagents 

6-benzylaminopurine (BAP), gibberellic acid (GA3) and MeJA were purchased from Sigma-Aldrich 

(Bornem, Belgium). ABA and ethephon were obtained from Acros Organics (Geel, Belgium). SA, IAA 

and salt (NaCl) were obtained from Duchefa, whereas mannitol was purchased from VWR (Leuven, 

Belgium). MG132 was obtained from Enzo Life Sciences (Antwerpen, Belgium). Prior to use, 

appropriate amounts of MeJA, SA, ABA, IAA and GA3 were dissolved in 100% ethanol, whereas BAP 

and MG132 were dissolved in 100% dimethyl sulfoxide (DMSO) (VWR). Ethephon, NaCl and mannitol 

were dissolved in water.  

3.3.3 Hormone treatments and abiotic stress application 

In vitro grown 16-day-old seedlings were used. The filter papers containing germinated seedlings 

were carefully transferred from the MS agar plates to Petri dishes filled with liquid MS medium 

containing either a hormone solution (100 µM concentration in case of ABA, BAP, ethephon, GA3, IAA 

or MeJA and 300 µM concentration in case of SA), 50 µM MG132, 150 mM NaCl or 100 mM mannitol 

and incubated at 21°C for appropriate times. Controls were kept on liquid MS medium containing an 

equal volume of the corresponding solvent (ethanol, DMSO or water). Cold and heat stress were 

applied by incubating the MS agar plates with the seedlings in the dark either at 4°C or 37°C, 

respectively. Concomitant controls were incubated at 21°C in the dark. For every stress application 
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20-30 seedlings were collected for RNA extraction at several time points after stress initiation, frozen 

in liquid nitrogen immediately and stored at -80°C prior to RNA extraction and qRT-PCR analysis.  

3.3.4 Infection assays 

Both the Pseudomonas syringae pv. tomato strain DC3000 and the Botrytis cinerea strain B05.10 

were a kind gift from Prof. dr. M. Höfte (Phytopathology, Ghent University, Belgium). Infection assays 

were performed as described elsewhere (Pieterse et al., 1996, Katagiri et al., 2002; Audenaert et al., 

2002) with some minor modifications.  

The Pseudomonas bacteria were grown in liquid King’s B medium at 28°C at 200 rpm till the culture 

reached the mid to late log phase growth (OD600 = 0.6 – 1.0). Then, the culture was centrifuged at 

2500 g for 10 min. Bacterial cells were re-suspended in 10 mM MgSO4 to obtain a bacterial solution 

of OD600 = 0.05, corresponding to 2.5 x 107 cfu /ml of Pseudomonas bacterial cells. This infection 

solution was supplemented with 0.05% Silwet-77 (GE Specialty Materials (Suisse) S.a.r.l., Switzerland) 

prior to use. A mock solution consisted of 10 mM MgSO4 supplemented with 0.05% Silwet-77. The 

Botrytis strain was maintained on regular potato dextrose agar plates at 21°C. To stimulate its 

sporulation, the plates were incubated for 10 days at 21°C under a 12/12 h UV/dark light regime. At 

the day of infection, Botrytis spores were harvested from 10-day-old cultures by washing the plates 

with distilled water containing 0.01% Tween-20 (VWR). After filtration over a nylon membrane (20 

µm Ø), the conidia were counted using a Bürker counting chamber. An inoculation solution 

containing 5 x 105 conidia / ml was prepared in ½ strength potato dextrose broth medium. The mock 

solution consisted of the same components without spores.  

One hundred individually grown 5-week-old WT Arabidopsis plants were inoculated with either the 

infection or the mock solutions by 1) spraying the rosette leaves until run-off in case of infection with 

Pseudomonas or by 2) the droplet technique in case of infection with Botrytis. In the latter case, a 10-

µl droplet of either the infection or the mock solution was added on the upper side of three 

randomly chosen rosette leaves from each plant. One day before treatment up till two days after 

bacterial infection, the plants were maintained at 100% relative humidity to increase the infection 

efficiency. In the fungal assay, the plants were kept at 100% relative humidity during the entire 

experiment. During infection, the plants were kept separately in a controlled Conviron growth 

chamber at 21°C with a 12/12 h light/dark photoperiod. At indicated time points post infection, 

rosette leaves of 8-10 randomly chosen plants were frozen in liquid nitrogen and stored at -80°C 

prior to RNA extraction and qRT-PCR analysis. 

3.3.5 RNA extraction, cDNA synthesis and RT-PCR analysis 

All collected plant samples were ground into a fine powder with a mortar and pestle and RNA 

extracted using TRI reagent (Sigma-Aldrich) according to the manufacturer’s instructions. To remove 
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any residual genomic DNA, samples were treated with 2 units of RNase-free DNaseI (Fermentas, St. 

Leon-Rot, Germany) for 30 min at 37°C. After addition of 2 µl EDTA (25mM), the DNase enzyme was 

inactivated by incubation at 65°C for 10 min. The RNA concentration and purity were measured with 

a Nanodrop 2000 Spectrophotometer (Thermo Scientific, USA). First-strand cDNA was synthesized 

from 1 µg of DNA-free total RNA with 1 µl of 50 µM oligo(dT)20 using the M-MLV transcriptase kit 

(Invitrogen) and then diluted 2.5x with RNAse-free water. cDNA quality was checked by RT-PCR using 

primers specific for the SUMO-conjugating enzyme UBC9 gene (supplementary Table S1). Reactions 

included 1.5 µl cDNA, 1 µl dNTPs (10 mM), 1 µl forward primer (10 µM), 1 µl reverse primer (10 µM), 

2 µl 10x KEY buffer (VWR), 0.2 µl Taq-polymerase (VWR) and water up to the volume of 20 µl. PCR 

conditions were as follows: 5’ 95°C – 40x (45’’ 95°C – 30’’ 57°C – 30‘’ 72°C) – 5’ 72°C. PCR 

amplification products were verified by gel electrophoresis on a 2.5% agarose gel in 0.5x TAE buffer.  

3.3.6 Quantitative RT-PCR  (qRT-PCR) analysis 

qRT-PCR analyses were performed using the SensiMix SYBR kit (Bioline Reagents Ltd, London, UK). 

The reaction mixture contained the following components: 1x SensiMix™ SYBR, 2 ng/μl first-strand 

cDNA and 500 nM of gene-specific forward and reverse primers (primers listed in supplementary 

Table A3.1) in a total volume of 20 μl. For hormone and stress treatments specific positive control 

genes were included (according to Goda et al., 2008; Kim et al., 2010b; Nishizawa-Yokoi et al., 2010; 

Besseau et al., 2012; Espunya et al., 2012) (supplementary Table A3.1). qRT-PCR was carried out in a 

Rotor-Gene 3000 (Corbett Life Science) using Rotor Discs (Qiagen, Hilden, Germany). The program 

was as follows: 10’ 95°C – 45x (25’’ 95°C – 25’’ 60°C – 20‘’ 72°C) – 5’ 72°C ending with a melting curve 

generation (gradual increase of temperature from 72°C to 95°C rising by 1°C / step). The output data 

were generated by the Rotor-Gene 6 software and the results were statistically analyzed via the 

REST-384 software (Corbett Research, Pfaffl et al., 2002). For each treatment two independent 

biological replicates were analyzed with two or three technical replicates. Data normalization of gene 

expression was performed using the reference genes PP2A, TIP41 and UBC9 (Czechowski et al., 2005). 

3.3.7 Selection of SALK lines with knockout (KO) expression of At2g02360 

 

Two lines with a T-DNA insertion site within the exon sequences of the At2g02360 locus were 

retrieved from the SALK database (http://signal.salk.edu/cgi-bin/tdnaexpress). Both lines were 

selected on MS agar plates supplemented with 75 mg/l kanamycin (Duchefa) and tested for 

homozygosity by PCR on total genomic DNA. For each SALK line a different set of three primers was 

used, including the left border primer of the T-DNA insertion (LBb1.3) as well as two line-specific 

primers (the left (LP) and the right genomic primer (RP)) (supplementary Table A3.2). For each line, 

two PCR reactions were set up with the primer combinations: LP+RP and LBb1.3 + RP. Identical PCR 

http://signal.salk.edu/cgi-bin/tdnaexpress
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reactions were performed on genomic DNA exctracted from A. thaliana WT plants. The DNA quality 

was checked by PCR using ACT2 primers (supplementary Table A3.2). Reactions included 200 ng 

gDNA, 2 µl dNTPs (10 mM), 1 µl forward primer (10 µM), 1 µl reverse primer (10 µM), 2.5 µl 10x Extra 

buffer (VWR), 0.125 µl Taq-polymerase (VWR) and water up to the volume of 25 µl. Cycling 

parameters used were 2’ 94°C – 30x (15” 94°C – 30” 52°C – 1’ 72°C)– 5’ 72°C. Gene expression of F-

box-Nictaba in SALK lines was analyzed by RT-PCR using primers evd790 and evd791 for amplification 

of the full-length F-box-Nictaba sequence (supplementary Table A3.2) and cDNA quality was checked 

using PP2A primers (supplementary Table A3.1). Cycling parameters used were 2’ 94°C – 35x (15” 

94°C – 30” 55°C – 1’ 72°C)– 5’ 72°C. qRT-PCR using F-box-Nictaba-specific primers (evd786 and 

evd787; supplementary Table A3.1) was performed to quantify gene expression levels. Homozygous 

and confirmed KO plants were used for both thermotolerance and infection experiments.  

3.3.8 Construction of vectors for the GUS reporter system and for overexpression of 

untagged F-box-Nictaba 

The pAt2g02360:GUS reporter construct as well as the CaMV 35S:At2g02360 construct were 

generated using the GatewayTM cloning technology (Invitrogen). A 1806 nt At2g02360 promoter 

fragment (including the 5’ UTR from At2g02360) was amplified by a two-step PCR starting from total 

genomic DNA extracted from 3-week old WT A. thaliana Col-0 plants. The At2g02360 sequence was 

amplified by a two-step PCR starting from the cDNA clone BX820545 (INRA, Centre de Toulouse, 

Unité de Recherche 1258-CNRGV, Castanet-Tolosan Cedex, France). Reactions included 200 ng gDNA 

or 10 ng pDNA, 2 µl dNTPs (10 mM), 1 µl forward primer (10 µM), 1 µl reverse primer (10 µM), 2.5 µl 

10x KEY buffer (VWR), 0.125 µl Taq-polymerase (VWR) and water up to the volume of 25 µl. In the 

first step, primers were used to generate an At2g02360 promoter sequence (primers evd555 and 

evd556) and an At2g02360 gene sequence (primers evd1046 and evd1047) including parts of the 

attB1 and attB2 Gateway adaptor sites at their 5’ and 3’ sequences, respectively (supplementary 

Table A3.3). Primer sequences for promoter amplification were made based on At2g02360 gene 

information as available on the TAIR server (TAIR10). Cycling parameters used were: 2’ 94°C – 30x 

(15” 94°C – 30” 55°C – 2’ 72°C) – 8’ 72°C for promoter amplification and 2’ 94°C – 30x (15” 94°C – 30” 

57°C – 2’ 72°C) – 5’ 72°C for At2g02360 gene sequence amplification. In the second step, primers 

evd2 and evd4 were used to complete the attB sites (supplementary Table A3.3). Cycling parameters 

used were 2’ 94°C – 5x (15” 94°C – 30” 50°C – 2’ 72°C) – 20x (15” 94°C – 30” 55°C – 2’ 72°C) – 8’ 72°C  

for promoter amplification and 2’ 94°C – 5x (15” 94°C – 30” 50°C – 2’ 72°C) – 25x (15” 94°C – 30” 

57°C – 1’ 72°C) – 5’ 72°C  for At2g02360 gene sequence amplification. AttB-PCR products were then 

cloned via the pDONR221 donor vector (Invitrogen) into the pKGWFS7.0 or pK7WG2.0 destination 

vector for promoter and gene sequence, respectively, (Karimi et al. 2002) using the GatewayR BP and 

LR ClonaseTM mixes (Invitrogen). The binary vectors containing the pAt2g02360:GUS construct or 

CaMV 35S:At2g02360 construct were sequenced and introduced into A. tumefaciens strain GV3101 

using electroporation. 
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WT Arabidopsis Col-0 plants were transformed using the floral-dip method (Clough and Bent, 1998) 

Transgenic progenies were selected on MS agar plates supplemented with 75 mg/l kanamycin. 

Integration of the T-DNA into the plant genome was checked by PCR on genomic DNA extracted from 

3-week-old seedlings using GUS-specific primers GUS-F and GUS-RV or kanamycin-specific primers 

evd463 and evd261 (supplementary Table A3.3). PCR conditions were as follows: 2’ 94°C – 25x (15” 

94°C – 30” 52°C – 1’ 72°C) – 8’ 72°C for the pAt2g02360:GUS reporter construct or 2’ 94°C – 30x (15” 

94°C – 30” 52°C – 1’ 72°C) – 5’ 72°C for the CaMV 35S:At2g02360 construct. Plants homozygous for 

the promoter:GUS construct in the T3 generation were used for the histochemical assays. Plants 

homozygous for the CaMV 35S:At2g02360 construct (overexpression (OE) lines) in the T4 generation 

were tested by qRT-PCR and Western blot analysis and used for the thermotolerance and infection 

experiments.  

3.3.9 Histochemical GUS assays 

The GUS assay was performed according to Jefferson (1987) with minor adaptations. Arabidopsis 

seedlings and plants of different ages were first placed in 90% acetone for 30 min at 4°C. After three 

washes for 5 min in 0.1 M phosphate buffer (pH 7.0), plants were incubated for 30 min at 37°C in 

GUS pre-incubation buffer (i.e. 0.1 M phosphate buffer supplemented with 0.5 mM K-ferricyanide 

(VWR) and 0.5 mM K-ferrocyanide (VWR)). Afterwards, seedlings were transferred to the GUS assay 

buffer (i.e. GUS pre-incubation buffer supplemented with 2 mM 5-bromo-4-chloro-3-indolyl β-D-

glucuronic acid (X-Gluc (Fermentas), dissolved in DMSO)) and incubated overnight at 37°C in the 

dark. The reaction was stopped by washing the plants three times in phosphate buffer for 10 min. 

Microscopic analysis was performed on a Nikon eclipse TE2000-e microscope (Nikon Belux, Brussels, 

Belgium) and a Leica DFC400 microscope (Leica, Heerbrugg, Germany) using the NIS-Elements and 

Leica Application Suite software packages, respectively.  

3.3.10 Bioinformatic analyses 

Promoter sequences were scanned for the presence of cis-elements identical or similar to motifs 

registered in the two plant cis-acting regulatory elements databases: PlantCARE (Lescot et al., 2002) 

and PLACE (Higo et al., 1999). The AGRIS information server was also searched for At2g02360 

promoter-related data (Yilmaz et al., 2011). A transcriptome analysis was performed using a protein 

BLAST search in the translated EST databases (TBLASTN) from Arabidopsis. Large scale expression 

data sets and microarray data as available on the eFP browser (Winter et al. 2007) were analyzed to 

obtain a hypothetical expression dataset for the At2g02360 gene in Arabidopsis cells and tissues. To 

retrieve genes co-expressed with the At2g02360 gene, co-expression meta-analyses were performed 

using Genevestigator (Hruz et al., 2008), ATTED-II (Obayashi et al., 2011), Expression Angler (Toufighi 

et al., 2005) and the CSB.DB co-response database (Steinhauser et al., 2004). The reliability of co-
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expression was scored by the databases based on a Pearson's correlation coefficient in the range of 0-

1. Genes with a co-expression correlation score above the cut-off of 0.5 were listed and organized 

with a Venn diagram to present the genes retrieved from more than one database as shared 

elements. 

3.3.11 Development of an anti-F-box-Nictaba antibody 

A peptide-based antibody specific against the F-box-Nictaba protein has been produced in a guinea 

pig  production platform by the Thermo Scientific custom antibody service. Based on the analysis of 

the AA sequence of the F-box-Nictaba protein with the Antigen Profiler software of Thermo Scientific 

(http://www.pierce-antibodies.com/custom-antibodies/peptide-design-antigen-profiler.cfm) the 

peptide (201CFSEAIRRGRRNVVKPKQRE220) was selected for immunization. Before and after 

immunization, sera of selected animals were tested by Western blot for reactivity against purified 

(recombinant) F-box-Nictaba and its Nictaba domain (described in Chapter 2) as well as against total 

protein extracts from WT A. thaliana plants and WT Arabidopsis PSB-D cells (i.e. a dark-grown cell 

line from the VIB Department of Plant Systems Biology, Ghent University). 

3.3.12 Protein extraction 

The protein extracts used to test the anti-F-box-Nictaba antibody were extracted using 20 mM 1,3-

diaminopropane. The total protein extracts used to analyse transgenic OE lines were extracted with 

1xPBS containing a mix of protease inhibitors including 1mM PMSF and 1 µg/ml of pepstatin, 

leupeptin and aprotinin (all from Sigma). All extractions were performed by grinding the material 

with a mortar and pestle in the presence of the corresponding extraction solution. The resulting 

crude protein extracts were transferred to 1.5 ml eppendorf tubes, centrifuged at 4°C for 10 min at 

12,000 rpm. Supernatants were collected for subsequent SDS-PAGE and Western blot analysis. 

3.3.13 SDS-PAGE and Western blot analysis 

SDS-PAGE and Western blot analyses were performed as described in Chapter 2, Section 2.3 with 

modifications as follows. Western blot analysis for prescreening of guinea pig sera was performed 

using 1/10 diluted sera as primary antibodies and a HRP-coupled goat anti-guinea pig IgG antibody 

(1/10,000) (Invitrogen) as secondary antibody. For the final antibody test, the anti-F-box-Nictaba 

serum (1/500 diluted) was used as primary antibody, together with a HRP-coupled goat anti-guinea 

pig IgG antibody (1/10,000) (Invitrogen) as secondary antibody, followed by an additional 1h 

incubation with PAP (peroxidase-anti-peroxidase) (1/2,000) (Sigma). 

http://www.pierce-antibodies.com/custom-antibodies/peptide-design-antigen-profiler.cfm
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3.3.14 Phenotypic analysis of transgenic A. thaliana plants  

3.3.14.1 Germination rate assessment 

For the germination assay, two hundred surface sterilized seeds of WT A. thaliana plants and of 

transgenic KO plants (impaired in At2g02360 gene expression) and OE plants (overexpressing the F-

box-Nictaba gene At2g02360) were directly sown on MS agar plates (25 seeds/line/plate). After 

three days of stratification, plates were transferred to a controlled growth chamber set at 21°C with 

a 16/8 h light/dark photoperiod and germinated seeds were counted daily for five days.  

3.3.14.2 Leaf size analysis 

Approximately hundred fully expanded rosette leaves collected from 5-week-old WT A. thaliana 

plants as well as from transgenic F-box-Nictaba-specific KO and OE plants were scanned with a 

flatbed scanner (Canoscan Lide 25, Canon, Diegem, Belgium) at 1200 dpi. Scans of single leaves were 

processed with the ImageJ software package. The leaf area was measured with the APS Assess 2.0 

program (Lamari, 2008) using 1200 dpi calibration.  

3.3.14.3 Thermotolerance assessment 

Thermotolerance experiments were performed according to the protocol adapted from Chae et al. 

(2013) and Li et al. (2013). About fifty seeds of WT A. thaliana plants as well as of transgenic F-box-

Nictaba-specific KO and OE plants were directly sown on MS agar plates (25 seeds/line/plate). After  

3 days of stratification, the plants were transferred to a controlled growth chamber set at 21°C with a 

16/8 h light/dark photoperiod for one week. Then, 7-day-old seedlings were incubated at different 

temperatures for the assessment of heat stress tolerance. For basal thermotolerance, plants were 

treated with 45°C for 1h and put back to 21°C for recovery. For acquired thermotolerance, plants 

were first pre-treated with 37°C for 1h and then allowed to recover at 21°C for 3h before final  

treatment with the heat stress at 45°C for 1h, after which plants were again transferred to 21°C. At 

indicated time points, samples were taken for gene expression analysis by qRT-PCR. Survival rates 

were calculated six days after treatments, where seedlings showing obvious etiolation appearance 

were considered dead. 

3.3.14.4 Response to Pseudmonas syringae infection 

Approximately sixty individually grown 5-week-old WT A. thaliana plants as well as transgenic F-box-

Nictaba-specific KO and OE plants were inoculated with either the Pst DC3000 infection or the mock 

solutions as described above.  At 0, 3 and 4 days post infection (dpi) approximately hundred leaves 

were collected for each line and were scanned with a flatbed scanner (Canoscan Lide 25) at 1200 dpi. 

Scans of single leaves were processed with the ImageJ software package. Leaf damage was 
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determined as % lesion of the total leaf and was quantified using the disease assessment software of 

the APS Assess 2.0 program (Lamari, 2008).  

3.4 Results 

3.4.1 In silico expression analysis indicates that At2g02360 is a stress-responsive 

gene 

To obtain information related to the gene regulatory elements in the promoter sequence of the F-

box-Nictaba encoding gene At2g02360 in Arabidopsis, an in silico survey was performed using the 

PLACE, PlantCARE and AGRIS databases which contain both experimentally validated and predicted 

information about upstream regions of annotated Arabidopsis genes including cis-regulatory 

elements and transcription factor binding sites. The 1800 nt upstream region of the At2g02360 gene 

was used as the input sequence (see supplementary Fig. A3.1). The regular core promoter elements, 

i.e. the CAAT box, CCAAT box and TATA box, were found 15, 3 and 3 times respectively, indicating 

that the sequence encodes a promoter sequence.  

Analysis of this promoter sequence for tissue or stress-related elements yielded a list of many 

putative cis-regulatory elements related to responsiveness towards hormonal stress as well as abiotic 

stress signaling. According to both the PLACE and PlantCARE databases, which gather resources for 

different vascular plants, light-responsive elements such as GATA boxes, CT1CONSENSUS and I boxes 

constituted the largest group, followed by putative drought stress-responsive elements such as 

MYB1AT and MYCCONSENSUSAT, a salt-responsive element and many hormone-responsive 

elements, including elements responsive towards auxin, ABA, SA, GA and ET. In contrast, the survey 

of Arabidopsis-specific AGRIS database resulted in a much shorter list of putative cis-elements 

including only the SA-responsive W-box element (binding site for WRKY transcription factors), an 

ABA-responsive DPBF1&2 binding site, a MYB4 binding site (indicative for environmental stress 

response) and a LFY consensus site. A complete overview of all putative cis-regulatory elements 

identified by PLACE, PlantCARE and AGRIS can be found in supplementary Table A3.4. Interestingly, 

the F-box-Nictaba promoter sequence was found to also contain some putative cis-acting elements 

which are associated with gene-specific expression in trichomes (supplementary Fig. A3.3). 

A transcriptome analysis by TBLASTN searches against the Arabidopsis EST database indicated 

expression of At2g02360 upon various hormone and abiotic stress treatments (Results not shown). 

The eFP browser comprises gene expression data mostly gathered from ATH1 affymetrix microarray 

and genome tilling array experiments. Screening of this data set revealed that during normal 

development of A. thaliana At2g02360 was seemingly more expressed in rosette and cauline leaves 

compared to other tissues of the plant. Upon heat stress (38°C) and SA treatment (10 µM) the 

At2g02360 gene was up-regulated by 2-fold in all plant tissues. Similarly, mannitol (300 mM) 

treatment resulted in 2-fold elevated At2g02360 expression levels, more specifically in the leaves. 
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Infection with a virulent Pseudomonas species also enhanced At2g02360 expression. In contrast, 

At2g02360 expression was two times down-regulated after salt treatment. However, before drawing 

conclusions this putative stress-regulated expression of At2g02360 needs to be confirmed by a 

functional analysis.  

3.4.2 Expression of the F-box-Nictaba gene throughout the development of WT A. 

thaliana plants 

Since the A. thaliana genome encodes multiple F-box-Nictaba related genes with similar DNA 

sequences, primers to perform qRT-PCR were designed to bind to the most distinct fragments of the 

At2g02360 coding sequence (most different from other F-box-Nictaba homologs in A. thaliana). Out 

of two primer pairs tested only the combination evd786–evd787 (supplementary Table A3.1) yielded 

a single PCR amplification fragment after electrophoresis on agarose gel. Sequencing of this fragment 

returned exclusively the At2g02360 sequence confirming that the primers are specific for the gene of 

interest.  

To determine the expression pattern for F-box-Nictaba in WT A. thaliana plants during normal 

development, RNA samples were extracted from plant material collected at different developmental 

stages originating from plants grown under standard conditions and used in qRT-PCR analyses. As 

illustrated in Fig. 3.1A, At2g02360 was expressed during all developmental stages and in every tissue 

tested. Only in roots from young plants and in flowers, there was a slightly lower expression of 

At2g02360 compared to the youngest stage tested (i.e. cotyledons stage).  

3.4.3 F-box-Nictaba gene expression is up-regulated after SA application and heat 

shock treatment 

In order to evaluate the experimental setup and successful induction of plant stress specific 

responses, positive control genes were included for all hormone and stress treatments 

(supplementary Table A3.1). These genes have previously been experimentally demonstrated as 

hormone- or stress-inducible (according to Goda et al., 2008; Kim et al., 2010b; Nishizawa-Yokoi et al., 

2010; Besseau etal., 2012; Espunya et al., 2012). In this study, all positive control genes were 

significantly up-regulated after application of different hormones and stresses (Results not shown). 

The uniform expression profile of F-box-Nictaba gene observed throughout plant development (Fig. 

3.1A) changed considerably when Arabidopsis plants were subjected to exogenous stress treatments. 

After 1 hour of SA treatment, At2g02360 expression was slightly down-regulated compared to the 

mock treatment, but At2g02360 mRNA levels were significantly up-regulated after 3 h of SA 

application with a maximal increase in expression level of almost 4-fold after 10 h of SA application. 

Transcript levels in treated plants slightly dropped after 24 h but were still 2-fold higher than in the 

untreated plants. Transcript levels for the SA-inducible transcription factor WRKY70 were up-
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regulated faster and reached much higher levels compared to F-box-Nictaba expression levels (Fig. 

3.1B).  

Also heat stress enhanced F-box-Nictaba gene expression with a maximal up-regulation of almost 3-

fold after 10 h of heat stress compared to control plants. However, the expression of the positive 

control gene Hsp70b, encoding a heat shock-responsive chaperone protein, was enhanced much 

faster and reached much higher mRNA levels compared to those measured for At2g02360 (Fig. 3.1C). 
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Fig. 3.1   Relative transcript levels of At2g02360 in WT A. thaliana Col-0 plants determined by qRT-PCR analyses of two 

independent biological experiments. n=2; error bars ± SE. Asterisks indicate statistically significant differential expression 

compared to control samples (*p<0.05; **p<0.01). A, At2g02360 expression levels measured at different developmental 

plant stages (as presented in Fig. 3.3 and according to Boyes et al., 2001) and in different organs of Arabidopsis plants 

grown under standard conditions. Expression levels are presented relatively compared to the At2g02360 expression level 

determined in the cotyledons stage. B, At2g02360 and At3g56400 (encoding WRKY70) expression levels in 16-day-old 

Arabidopsis seedlings after 300 µM SA treatment, presented relatively compared to gene expression levels determined in 

the mock-treated plants. C, At2g02360 and At1g16030 (encoding Hsp70b) expression levels in 16-day-old Arabidopsis 

seedlings after a 37°C heat shock treatment, presented relatively compared to gene expression levels determined in the 

mock-treated plants. 
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Other hormones (ABA, GA3, BAP) and abiotic stress treatments (NaCl and proteasome inhibitor 

MG132) either did not affect F-box-Nictaba gene expression at all, down-regulated it slightly as was 

the case for treatments with IAA, MeJA and cold, or resulted in an early and very low (1,5-fold) up-

regulation (mannitol) (supplementary Fig. A3.2). As for the ethephon treatment, F-box-Nictaba was 

first slightly down-regulated, but then increased 2-fold after 10 h of treatment. In view of this 

apparent up-regulation, an additional later time point (24 h) was also analyzed but did not reveal any 

differential expression for this treatment. The experiment was performed again by treatment of 

plantlets with a higher ethephon concentration (300 µM), but also here, no differential expression of 

the F-box-Nictaba gene was detected for any of the tested time points (Results not shown). 

3.4.4 F-box-Nictaba expression is up-regulated in WT A. thaliana plants after 

Pseudomonas infection but is slightly down-regulated by fungal infection 

To investigate At2g02360 expression after biotic stress application, 5-week-old WT A. thaliana Col-0 

plants were infected with the virulent hemibiotrophic bacterium P. syringae pv. tomato strain 

DC3000 (Pst DC3000) and with the necrotrophic fungus B. cinerea strain B05.10. mRNAs sampled 

from infected rosette leaves were analyzed for At2g02360 transcript levels in qRT-PCR assays.  

 

As illustrated in Fig. 3.2A-C, bacterial infection of WT plants with Pst DC3000 strongly enhanced the 

expression of both control genes WRKY70 (Fig. 3.2A) and PR1 (Fig. 3.2B) with 14- and 18-fold at 1 and 

2 dpi, and up to over 1500-fold at 3 dpi, respectively, compared to mock-sprayed plants. The F-box-

Nictaba mRNA levels were significantly up-regulated approximately 2.5-fold at 1, 2 and 7 dpi. The 

expression dropped at 3 and 5 dpi but was still higher than in the mock-treated plants (Fig. 3.2C). 

 

Fungal infection of WT plants with B. cinerea mildly affected F-box-Nictaba mRNA levels compared to 

mock-treated plants (Fig. 3.2F). At 2 and 3 dpi, At2g02360 expression levels were almost 2-fold 

reduced. The expression of the control gene PR1 was not significantly altered upon Botrytis infection 

apart from very small down-regulation at 4 dpi (Fig. 3.2E). In contrast, the expression of the control 

gene PDF1.2 was highly up-regulated after Botrytis infection reaching a maximum of 50 times 

increase in infected tissues at 3 dpi (Fig. 3.2D).  

 

 
 



Chapter 3 - Role of F-box-Nictaba in plant stress responses __________________________________ 
 

95 
 

 
Fig. 3.2   Relative transcript levels of At2g02360 and selected positive control genes determined by qRT-PCR in 5-week-old 

WT A. thaliana Col-0 plants after pathogenic infection. Expression levels are presented relatively compared to the gene 

expression levels determined in the mock-treated plants. Values were obtained by two independent biological replicates. 

n=2; error bars ± SE. Asterisks indicate statistically significant differential expression compared to mock-treated plants 

(*p<0.05; **p<0.01). A-C, Relative expression of At3g56400 (encoding WRKY70) (A), At2g14610 (encoding PR1) (B) and 

At2g02360 (encoding F-box-Nictaba) (C) after infection of WT Arabidopsis plants with Pst DC3000. D-F, Relative expression 

of At5g44420 (encoding PDF1.2) (D), At2g14610 (encoding PR1) (E) and At2g02360 (F) after infection of WT Arabidopsis 

plants with B. cinerea strain B05.10. 
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3.4.5 The F-box-Nictaba promoter is particularly active in leaf trichomes 

To test the activity of the 5’-upstream region of the At2g02360 gene, a promoter At2g02360:GUS 

reporter construct was created and introduced into A. thaliana plants of Col-0 background. Three 

independent lines were isolated and used in histochemical assays. In a parallel experiment, a 

CaMV35S:GUS line was used as the positive control. Preliminary experiments performed on 14-day-

old pAt2g02360:GUS seedlings revealed a distinct and localized GUS staining in the leaf trichomes 

(Fig. 3.3A). Subsequently, plants grown under standard conditions were also analyzed at different 

developmental stages as depicted in Fig. 3.3B. Overall, the pAt2g02360:GUS plants showed 

comparable GUS staining patterns for different transgenic lines, but the intensity of the GUS staining 

differed amongst plants (Fig. 3.3C). In the very young seedlings (stage 0.7) no GUS staining was 

detected in any of the tested plants. In the cotyledons and 2 leaves stage (stages 1.00 and 1.02), 

plantlets showed a first weak GUS activity spread over the mesophyll cells but absent from the shoot 

meristem, the hypocotyl or the root system. When plants developed (from stage 1.08 onwards), a 

very intense GUS activity was observed all over the petioles and in the majority of the trichomes 

present on the shoot meristem and first leaves. The very specific, localized GUS staining in the 

trichomes present on newly developing leaves remained throughout further development of the 

plants. In plantlets of stage 1.10 and older (i.e. rosette stage), GUS staining was prominently visible in 

trichomes present on new leaves and in the petioles, the major leaf vein and some parts with 

mesophyll cells of older leaves. Trichomes present on older leaves also showed GUS staining, 

especially in the trichomes located in close proximity of the petiole, but their GUS staining was less 

intense compared to the staining detected in trichomes residing on young leaves. In flowering plants 

(stage 6.90), GUS staining was mainly visible in the flowers, some siliques and in some major veins 

and trichomes located in close proximity of these veins on rosette and cauline leaves. The 

CaMV35S:GUS control plants showed an intense blue, homogeneous GUS staining pattern in all 

organs and tissues of the plants, throughout all developmental stages tested (results not shown). 
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Fig. 3.3   Histochemical analysis of pAt2g02360:GUS Arabidopsis lines. A, Preliminary GUS assay result performed on 14-day-

old plantlets. B, Different developmental plant stages analyzed throughout the assays (according to Boyes et al., 2001). C, 

GUS staining data for selected developmental stages. Panels 1.08z1 and 1.08z2 represent  a closer look of trichomes present 

on new leaves; panel 6.90a shows a closer look of trichomes present on flower buds; panel 6.90b represents a close-up of 

rosette leaves. Scale bars represent 1 mm. 
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3.4.6 At2g02360 is co-expressed in a network of defense-related genes  

To predict the putative function of At2g02360 and to identify other Arabidopsis genes which are 

functionally related, the gene co-expression network for At2g02360 was built using the meta-analysis 

databases Genevestigator, ATTED-II, Expression Angler and the CSB.DB co-response database (Fig. 

3.4 and supplementary Table 3.1). This search revealed that one third of the retrieved co-expressed 

genes are involved in plant defense responses against pathogens. More than half of these defense-

related genes was revealed by at least two of the four screened databases. Two of them, At3g28940 

and At3g28950 (both encoding AIG2 (avrRpt2-induced gene 2)-like protein) are co-expressed 

according to all four databases and showed a high co-expression correlation score (>0.70). 

Furthermore, At1g64280 (encoding regulatory protein NPR1) retrieved by ATTED-II and CSB.DB, as 

well as At4g19660 (encoding regulatory protein NPR4) shown by ATTED-II and Genevestigator, are 

key regulators of plant responses against bacterial pathogens and their function relies on or is 

modulated by the UPS (Fu et al., 2012; Spoel et al., 2009). Two resources (ATTED-II and CSB.DB) also 

returned a gene encoding WRKY25 (At2g30250), a stress-induced transcription factor recognizing the 

W-box sequences functioning as a negative regulator of SA-mediated defense responses to P. 

syringae (Zheng et al., 2007). 

 

 
Fig. 3.4   Gene co-expression network for the F-box-Nictaba gene (At2g02360) defined by a meta-analysis databases search 

using Genevestigator, ATTED-II, Expression Angler and the CSB.DB co-response database. Scoring systems used by different 

databases to determine the reliability of co-expression rely on a Pearson's correlation coefficient in the range of 0-1. 

Coefficient of ‘1’ indicates a strong relationship for gene expression regulation and ‘0’ indicates no relationship. Genes with 

co-expression correlation score above the cut-off of 0.5 were retrieved. Genes indicated by more than one tool are 

presented as shared elements. Genes related to defense responses against pathogens are shown in red and in bold. 

Genes related to heat stress responses are underlined. Genes involved in the UPS are shown in italics. 
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Table 3.1   Genes co-expressed with At2g02360 defined by a meta-analysis databases search using Genevestigator, ATTED-
II, Expression Angler and the CSB.DB co-response database. 

 

Gene ID Gene name 
Co-expression 

score 

At1g06650 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein  0.72 

At1g07000 Exocyst subunit exo70 family protein B2 0.51 

At1g13990 Uncharacterized protein 0.51 

At1g15890  Probable disease resistance protein At1g15890 0.55 

At1g21130 Indole glucosinolate O-methyltransferase 4 0.52 

At1g30910 Molybdenum cofactor sulfurase-like protein  0.67 

At1g34750 Probable protein phosphatase 2C 10 0.59 

At1g55450 S-adenosyl-L-methionine-dependent methyltransferases superfamily protein 0.68 

At1g57630 Disease resistance protein RPP1-WsB 0.51 

At1g64280 Regulatory protein NPR1  0.58 

At1g66880 Serine/threonine protein kinase 0.73 

At1g67970 Heat stress transcription factor A-8  0.71 

At1g72890 TIR-NBS class of disease resistance protein 0.55 

At1g80960 F-box protein At1g80960  0.53 

At2g06050 12-oxophytodienoate reductase 3 0.51 

At2g25450 Probable 2-oxoacid dependent dioxygenase 0.52 

At2g30250 Probable WRKY transcription factor 25 0.58 

At2g31800 Integrin-linked protein kinase family protein 0.69 

At2g33530 Serine carboxypeptidase-like 46 0.70 

At2g34840 Coatomer subunit epsilon-2  0.52 

At3g01170 Ribosomal protein L34e superfamily protein 0.57 

At3g09830 Protein kinase family protein 0.65 

At3g11230 Yippee family putative zinc-binding protein  0.74 

At3g18270 Uncharacterized protein 0.56 

At3g26210 Cytochrome P450 71B23  0.69 

At3g26600 Armadillo repeat only 4 protein  0.69 

At3g27610 Nucleotidylyl transferase domain-containing protein 0.73 

At3g28940 AIG2(avrRpt2-induced gene 2)-like protein  0.71 

At3g28950 AIG2(avrRpt2-induced gene 2)-like protein  0.71 

At3g50480  RPW8-like protein 4 0.56 

At4g00355 Uncharacterized protein 0.55 

At4g00955 Uncharacterized protein 0.50 

At4g02410 L-type lectin (Concanavalin A)-domain containing receptor kinase IV.3 0.66 

At4g08470 Putative mitogen-activated protein kinase MEKK3 0.79 

At4g16950  Uncharacterized protein 0.53 

At4g18580 Uncharacterized protein 0.52 

At4g19660  Regulatory protein NPR4 0.51 

At4g20110 Vacuolar-sorting receptor 7 0.53 

At4g23270 Cysteine-rich receptor-like protein kinase 19 0.66 

At4g24990 Membrane-anchored ubiquitin-fold protein 3 0.55 

At4g33300 Probable disease resistance protein At4g33300 0.71 

At5g03200 Protein LOG2-LIKE UBIQUITIN LIGASE 1  0.54 

At5g04170 Calmodulin-like protein 50 0.54 

At5g05750 DNAJ heat shock N-terminal domain-containing protein 0.53 

At5g07910 Uncharacterized protein 0.54 

At5g13030 Uncharacterized protein 0.64 

At5g23490 Uncharacterized protein 0.56 

At5g25980 Myrosinase 2 0.73 

At5g27840 Serine/threonine-protein phosphatase PP1 isozyme 8 0.56 

At5g37070 Uncharacterized protein  0.65 

At5g39020 Malectin/receptor-like protein kinase family protein  0.68 

At5g39950 Thioredoxin H2 0.61 

At5g40170 Receptor like protein 54 0.50 

At5g45500  RNI-like superfamily protein 0.53 

At5g65910  BSD domain-containing protein 0.51 
 

For each gene its co-expression correlation score with At2g02360 is shown. In case of genes indicated by more than one 

tool, the highest correlation score is shown.  

Red and in bold: genes related to defense responses against pathogens 

Underlined: genes related to heat stress responses 

In italics: genes involved in the UPS 

http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT1G15890
http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT3G50480
http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT5G65910
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Two other genes co-expressed with F-box-Nictaba are related to the UPS: the gene encoding the F-

box protein At1g80960 (according to ATTED-II) and the At5g03200 gene encoding the LOG2-like Ub 

ligase 1 (ATTED-II and CSB.DB). Finally, two genes encode heat stress-related proteins: At5g05750 

(revealed by ATTED-II and Genevestigator) - a DNAJ heat shock N-terminal domain-containing 

protein, and At1g67970 (ATTED-II and Expression Angler) - a heat stress transcription factor A-8. One 

of the genes, At4g08470, is also co-expressed according to all four databases (next to the two genes 

encoding AIG2-like proteins) and showed a very high co-expression correlation score (>0.70). It 

encodes a putative mitogen-activated protein kinase MEKK3, thus presumably functions in protein 

phosphorylation.  

3.4.7 Phenotypic analysis of transgenic A. thaliana plants with altered F-box-Nictaba 

expression. 

Since F-box-Nictaba gene expression was significantly up-regulated after SA and infection with Pst 

DC3000 as well as after heat stress application, it was suggested that F-box-Nictaba plays a role in 

plant defense responses. Thus, to investigate the relevance of F-box-Nictaba for plant resistance 

towards stress, it was checked whether altered F-box-Nictaba expression would influence the 

resistance of Arabidopsis plants to selected stress treatments. For this purpose transgenic 

Arabidopsis plants were used, which are impaired in F-box-Nictaba gene expression (KO lines) as well 

as lines which overexpress F-box-Nictaba (OE lines). 

3.4.7.1 Validation of the F-box-Nictaba-specific antibody 

In order to confirm the overexpression of F-box-Nictaba in the transgenic A. thaliana lines, a specific 

antibody was required which could distinguish the F-box-Nictaba protein encoded by At2g02360 

from the other highly homologous F-box proteins with a Nictaba domain (for overview see Delporte 

et al., 2015). To avoid aspecific reactivity, an antibody against F-box-Nictaba has been developed 

based on a 20 AA peptide (201CFSEAIRRGRRNVVKPKQRE220) present in the most distinct region of the 

Nictaba domain of the F-box-Nictaba sequence. 

Out of two selected immunized guinea pigs, the serum of only one of the animals was reactive 

against the purified F-box-Nictaba protein and Nictaba domain (Fig. 3.5, lanes 1 and 2) without 

detecting the tobacco lectin Nictaba (Fig. 3.5, lane 5) and producing only a moderate background in 

the lanes containing total protein extracts from WT Arabidopsis plants and cells (Fig. 3.5, lanes 3 and 

4). The negative control, where serum before immunization was used as primary antibody, returned 

no signal at all with little background (result not shown). The peptide-based antibody should 

therefore be specifically directed against the F-box-Nictaba  protein from A. thaliana.  
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Fig. 3.5   Specificity test of the anti-F-box-Nictaba antibody on different purified proteins and total protein extracts from WT 

A. thaliana plants and cells by Western blot using the serum of immunized animal PY0147 (1/500 dilution) as primary 

antibody. M: protein marker; Lane 1: purified recombinant F-box-Nictaba (1 µg); Lane 2: purified recombinant Nictaba 

domain of F-box-Nictaba (1 µg); Lane 3: total protein extract from WT A. thaliana plants (50 µg); Lane 4: total protein 

extract from WT A. thaliana cells (50 µg); Lane 5: purified recombinant Nictaba from tobacco (1 µg). 

3.4.7.2 Selection of transgenic KO and OE lines  

 

Line SALK_085735C (KO6) is a true KO mutant impaired in F-box-Nictaba gene expression 

 

The SALK population comprises single, segregating flank-tagged T-DNA insertion lines generated by 

Dr. Joseph Ecker (The Salk Institute in California, USA) via A. tumefaciens vacuum infiltration of 

Arabidopsis ecotype Col-0 (Alonso et al., 2003). In the past decade, these mutant lines have been 

widely exploited for functional genetic studies in A. thaliana (Ulker et al., 2008). 

Based on the information retrieved from the SALK database, two SALK T-DNA lines have been 

selected with a T-DNA insertion in  exon sequences of At2g02360, i.e. in SALK_007866 (KO4) and 

SALK_085735C (KO6) (Fig. 3.6A).  

 

KO4 and KO6 plants were tested for homozygosity by PCR on total genomic DNA using the left border 

primer of the T-DNA insertion (LBb1.3) as well as the line-specific left (LP) and right (RP) genomic 

primers spanning the insertion site (supplementary Table A3.2; Fig. 3.6B-C). By using gene-specific 

primers spanning the insertion site (primer combinations 1 and 3), PCR products of 1067 bp and 1060 

bp expected for WT allele were amplified from WT DNA but not from mutant DNA. PCRs with the T-

DNA-specific primer and RP gene-specific primers (primer combinations 2 and 4) showed products in 

the range of 700 bp for mutant DNAs, but not for the WT line (Fig. 3.6B). This is in good agreement 

with the expected products for mutant alleles of 795 bp and 746 bp for KO4 and KO6, respectively. 

Thus, both tested SALK T-DNA insertion lines are homozygous.  
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A 

 

B 

 

C 

 

Fig. 3.6   Selection of transgenic KO lines. A, Genomic organization of the F-box-Nictaba gene (At2g02360) (1-1363 bp) with 

indicated sites of T-DNA insertions within the gene as in the mutant lines KO4 (SALK_007866) and KO6 (SALK_085735C). 

Binding positions for primers used for testing of mutant lines are marked with arrows and corresponding primer names. B, 

PCR on genomic DNA of WT plants and mutant T-DNA insertion lines KO4 and KO6 demonstrating homozygosity of the 

transgenic lines. Lanes 1: Primer combination LPKO4+RPKO4; Lanes 2: Primer combination LBb1.3 + RPKO4; Lanes 3: Primer 

combination LPKO6+RPKO6; Lanes 4: Primer combination LBb1.3 + RPKO6. WT: WT allele, Mut: mutant allele. C, DNA quality 

tested with actin (ACT2) primers. M: DNA marker; NTC: no template control. 

 

 

Next, RT-PCR and qRT-PCR were performed to analyze whether the F-box-Nictaba transcript is indeed 

absent in the two presumed KO lines. As presented in Fig. 3.7A, the full-length F-box-Nictaba 

sequence (819 bp) could be amplified both in cDNA of WT plants and of KO4 plants, but not in cDNA  

samples of KO6 plants. Fig. 3.7B clearly demonstrates that F-box-Nictaba transcript levels in the KO4 

line are indeed not reduced but are 3-fold higher than in the WT plants. In contrast to line KO4, F-

box-Nictaba expression in the KO6 mutant line is over 20-fold lower than in the WT plants. 

Altogether, these data demonstrate that the KO6 line is a true KO line and that despite T-DNA 

insertion, F-box-Nictaba is still expressed in the KO4 plants. Most probably, the T-DNA sequence 

present in the At2g02360 sequence in the KO4 line was not inserted at the predicted insertion point, 

but is rather introduced at the 3’UTR of the gene where it does not prevent At2g02360 from 

transcript expression. What is more, since the KO4 plants present an even higher F-box-Nictaba 



Chapter 3 - Role of F-box-Nictaba in plant stress responses __________________________________ 
 

103 
 

expression than the WT plants it could be hypothesized  that the T-DNA insertion occurred at a site 

of a negative regulatory sequence of the At2g02360 gene. Therefore, these KO4 plants were 

excluded from subsequent plant phenotypic and physiological assays. 

 

 

 
 

Fig. 3.7   Expression analysis of F-box-Nictaba in putative KO lines. A, RT-PCR on cDNA isolated from 3-week-old WT plants 

and from mutant T-DNA insertion lines KO4 and KO6. M: DNA marker; FbN: F-box-Nictaba gene; PP2A: protein phospatase 2 

reference gene. B, Relative expression of F-box-Nictaba in 3-week-old A. thaliana plants of selected SALK lines designated 

as KO4 (SALK_007866) and KO6 (SALK_085735C) in comparion to WT plants. Expression analysis was determined by qRT-

PCR on a pooled sample of 10 plants; n=1; error bars ± SE.  

 

 

The F-box-Nictaba  gene At2g02360 is highly up-regulated in the generated OE lines 

  

Five homozygous transgenic A. thaliana lines (T4 generation) for overexpression of F-box-Nictaba 

protein were selected on kanamycin. qRT-PCR analysis was performed to quantify F-box-Nictaba 

gene overexpression. Fig. 3.8A demonstrates that all five lines overexpress the F-box-Nictaba gene. 

The highest expression is presented by lines OE9 and OE6, reaching almost 300- and 250-fold up-

regulation, respectively. Lines OE2, OE4 and OE11 show lower (but still very high) overexpression of 

the F-box-Nictaba reaching transcript levels of approximately 80-100 times higher than in the WT 

plants. 

Two lines, OE4 and OE6, showing different levels of F-box-Nictaba gene overexpression were 

selected for further phenotypic analyses of transgenic plants. Prior to experiments, both lines were 

checked by Western blot for the presence of elevated amounts of the F-box-Nictaba protein. As 

shown in Fig. 3.8B, a distinct band of approximately 70 kDa was visible in protein extracts of the OE6 

line. No clear and distinct signal was detectable in the protein extract of OE4 plants. Nonetheless, as 

revealed by qRT-PCR analysis (Fig. 3.8A), the overexpression level of F-box-Nictaba in line OE4 is 

approximately 2.5 times lower than that in the OE6 line. Therefore, the Western blot analysis has 

been repeated with double amount of total protein loaded. Although the background signal 

increased due to the high protein load, a separate band of 70 kDa was distinguishable in the OE4 lane 
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but not in the protein extracts from both the KO6 and WT plants (Fig. 3.8C). Therefore, despite 

relatively low levels of recombinant protein synthesis, both OE lines overexpress F-box-Nictaba and 

were considered suitable for further experiments. Interestingly, the molecular weight (MW) of the 

expressed protein is over 2 times higher than the calculated size for F-box-Nictaba (31.3 kDa).  

 

 

A 

 

B 

 

C  

 

Fig. 3.8   Expression analysis of F-box-Nictaba gene and protein in 3-week-old A. thaliana OE plants. A, Relative expression 

of F-box-Nictaba in five different OE lines in comparion to WT plants. Expression analysis was determined by qRT-PCR on a 

pooled sample of 10 plants; n=1; error bars ± SE. B-C, Western blot of total protein extracts from WT A. thaliana plants and 

transgenic knockout (KO6) and overexpression (OE4 and OE6) plants immunodetected with the anti-F-box-Nictaba 

antibody. B, Immunodetection of F-box-Nictaba in 50 µg of total protein extracts from WT, KO6 as well as OE4 and OE6 

plants. C, Immunodetection of F-box-Nictaba in 100 µg of total protein  extracts from WT, KO6 and OE4 plants. M: protein 

marker; C+: positive control - purified Nictaba domain of F-box-Nictaba (1 µg). The position of the polypeptide presumably 

corresponding to F-box-Nictaba is indicated with black marker.  

 

3.4.7.3 Transgenic plants perform similar as WT plants during normal growth conditions  

Neither the KO6 line, nor the two overexpression lines showed an obvious altered phenotype 

throughout development of plants grown under optimal conditions. In vitro germination assays did 

not reveal any differences in transgenic seed germination rates in comparison to the seeds of WT A. 

thaliana plants (Fig. 3.9A-B). Similarly, measurements of the size of fully developed rosette leaves 

showed that altered F-box-Nictaba gene expression did not affect vegetative development of 

Arabidopsis plants (Fig. 3.9C-D). 
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Fig. 3.9   Phenotypic analyses of transgenic plants with altered F-box-Nictaba expression. A and B, Assessment of seed 

germination rates performed by daily calculation of the percentage of germinated seeds starting from the first day of 

incubation in the growth chamber until day 5. The analysis included two independent biological replicates. n=2; error bars ± 

SE. C and D, Measurement of rosette leaf size in 5-week-old plants. The analysis included two independent biological 

replicates. n=2; error bars ± SE. Statistical analyses were performed using Student’s t-test (p<0.05). 

3.4.7.4 Transgenic A. thaliana plants with altered F-box-Nictaba expression show differential F-

box-Nictaba and Hsp70b gene expression after heat stress 

Based on the qRT-PCR gene expression analysis, which revealed F-box-Nictaba up-regulation after 

treatment with heat stress (Fig. 3.1C), thermotolerance experiments were performed on transgenic 

A. thaliana plants with altered F-box-Nictaba expression. Basal thermotolerance assays included 

plant treatment with heat stress at 45˚C for 1 h with subsequent recovery at 21˚C for 6 days. For 

acquired thermotolerance experiments, plants were initially pretreated with 37˚C for 1 h and were 

allowed to recover for 3 h at 21˚C. Then, the plants were exposed to 45˚C for 1 h with subsequent 

recovery at 21˚C for 6 days. 
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As depicted in Fig. 3.10, there were no significant differences in plant survival 6 days post heat stress 

applications between transgenic lines and WT plants, regardless of the type of thermotolerance 

(basal or acquired) tested.  Survival rates after basal thermotolerance experiment were in the range 

of 10-20%. Hereby, the transgenic line OE6 presented a higher survival rate (approx. 24%) than WT 

plants (approx. 16%), whereas only 8% of OE4 plants survived the stress treatment (Fig. 3.10B). In 

contrast, over 90% of plants of each genetic background subjected to the acquired thermotolerance 

experiment survived the heat stress treatments with neglegible differences between lines tested.  

 

 
Fig. 3.10   Survival of WT and transgenic A. thaliana plants with altered F-box-Nictaba expression subjected to basal and 

acquired thermotolerance experiments. Analysis was performed in two independent biological replicates. n=2; error bars ± 

SE; p<0.05. A, Survival rates of WT and KO6 A. thaliana plants determined 6 days after heat stress treatments. B, Survival 

rates of WT, OE4 and OE6 A. thaliana plants plants determined 6 days after heat stress treatments. 

 

 

Even though survival rates of transgenic and WT plants treated with heat stress were comparable, 

some differential gene expression was observed for the F-box-Nictaba gene (At2g02360) and the 

Hsp70b gene (At1g16030). According to Fig. 3.11A, positive control gene Hsp70b encoding a heat 

shock protein 70b was significantly 2-fold down-regulated  in KO6 mutant line in comparison to the 

WT plants after the basal thermotolerance experiment, both after 1h of heat stress as well as 24h 

after the treatment. No statistically significant differences were shown at the beginning (0h) of the 

experiment. However, the lower expression level of Hsp70b in KO6 in comparison to WT line at 1h 

and 24h is likewise observed in mock-treated plants, although there the gene is even 10-fold down-

regulated in KO6 plants after 24h. Thus the differential Hsp70b expression in KO6 plants might be 

associated with F-box-Nictaba KO expression.  

F-box-Nictaba transcript levels (Fig. 3.11B) in mock-treated KO6 plants were stable over the 

timecourse of the basal thermotolerance experiment and remained at a very low level of 0.03-0.04 of 
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relative expression versus WT plants. Interestingly, after heat stress F-box-Nictaba expression in the 

KO6 plants significantly raised more than 10-fold up to the relative expression level of 0.5 at 24h. 

 

Similar to the KO line, despite no effect of F-box-Nictaba gene overexpression on the survival of 

transgenic plants after heat stress, the OE plants demonstrated a slightly altered Hsp70b gene 

expression during the basal thermotolerance assessment (Fig. 3.11C). Untreated OE plants did not 

show very different expression of the Hsp70b gene except for some slight 1.5- to 2-fold higher levels 

in comparison to WT plants at several of the time points tested. Yet, the Hsp70b gene was 9-fold and 

3-fold more upregulated in the OE4 and OE6 plants, respectively, in comparison to WT plants 24h 

after heat stress. 

Interestingly, significant alteration of F-box-Nictaba expression was observed in the OE plants  

subjected to heat stress during the basal thermotolerance experiments (Fig. 3.11D). Overexpression 

levels in both lines gradually significantly decreased as the experiment progressed. This effect is not 

visible in mock-treated plants for the basal thermotolerance experiment. In OE4 line 20-fold 

overexpression at the beginning of the experiment decreased to 7-fold up-regulation at 1h in 

comparison to heat-treated WT plants, while after 24h F-box-Nictaba gene expression level in OE4 

plants was comparable to the one in the corresponding heat-treated WT plants (Fig. 3.11D). F-box-

Nictaba transcript levels in line OE6 dropped over 10 times 24h after heat stress in comparison to the 

mock-treated plants. Since at the same time F-box-Nictaba in the WT plants was considerably 

induced by heat stress, the 600-fold F-box-Nictaba overexpression in mock-treated OE6 plants 

compared to the corresponding WT plants was reduced down to the 4-fold up-regulation level in 

comparison to WT plants 24 h after heat stress. 

 



C
h

ap
te

r 
3

 -
 R

o
le

 o
f 

F-
b

o
x-

N
ic

ta
b

a 
in

 p
la

n
t 

st
re

ss
 r

es
p

o
n

se
s 

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

  
 

1
0

8
 

 

B
as

al
 t

h
er

m
o

to
le

ra
n

ce
  

H
s

p
7

0
b

0
h

1
h

2
4

h

Relative expression level (log10)

01

1
0

1
0

0

F
-b

o
x

-N
ic

ta
b

a

0
h

1
h

2
4

h

Relative expression level (log10)

0
,0

1

0
,11

W
T

 m
o
c

k

W
T

 h
e
a

t 
s
tr

e
s

s

K
O

6
 m

o
c

k

K
O

6
 h

e
a
t 
s

tr
e
s

s

A
B

H
s

p
7

0
b

  
  
  
0

h
1

h
2

4
h

Relative expression level (log10)

0
,0

1

0
,11

1
0

1
0

0
C

F
-b

o
x

-N
ic

ta
b

a

  
  
  
0

h
1

h
2

4
h

Relative expression level (log10)
0
,11

1
0

1
0

0

1
0

0
0

W
T

 m
o
c

k

W
T

 h
e
a

t 
s
tr

e
s

s

O
E

4
 m

o
c

k

O
E

4
 h

e
a
t 
s

tr
e
s

s

O
E

6
 m

o
c

k

O
E

6
 h

e
a
t 
s

tr
e
s

s

D

a

a

b

c

b
b

a
a

a
a

a
a

a

a
a

a

b

b

a

b

c
e

d

c

d

b

a

e

b

c

d
d

b
b

c

d

a
b

b
b

c
c

d
d

a

b

c

d

c

d

 

 Fi
g.

 3
.1

1
  

 R
e

la
ti

ve
 t

ra
n

sc
ri

p
t 

le
ve

ls
 o

f 
p

o
si

ti
ve

 c
o

n
tr

o
l 

ge
n

e 
A

t1
g

1
6

0
3

0
 (

en
co

d
in

g 
H

sp
7

0
b

) 
an

d
 A

t2
g

0
2

3
6

0
 (

en
co

d
in

g 
F-

b
o

x-
N

ic
ta

b
a)

 i
n

 7
-d

ay
-o

ld
 s

ee
d

lin
gs

 o
f 

tr
an

sg
e

n
ic

 A
. 

th
a

lia
n

a
 p

la
n

ts
 

d
u

ri
n

g 
th

e 
b

as
al

 t
h

er
m

o
to

le
ra

n
ce

 e
xp

er
im

e
n

t.
 A

 a
n

d
 C

, R
el

at
iv

e 
e

xp
re

ss
io

n
 o

f 
H

sp
7

0
b

 in
 K

O
6

 li
n

e 
(A

) 
an

d
 in

 li
n

es
 O

E4
 a

n
d

 O
E6

 (
C

).
 B

 a
n

d
 D

, R
el

at
iv

e 
ex

p
re

ss
io

n
 o

f 
F-

b
o

x-
N

ic
ta

b
a

 in
 K

O
6

 li
n

e 
(B

) 

an
d

 i
n

 l
in

es
 O

E4
 a

n
d

 O
E6

 (
D

).
 G

en
e 

e
xp

re
ss

io
n

 l
ev

el
s 

w
er

e 
ca

lc
u

la
te

d
 r

el
at

iv
e 

to
 t

h
e 

ex
p

re
ss

io
n

 i
n

 m
o

ck
-t

re
at

ed
 W

T 
p

la
n

ts
 a

t 
0

 d
p

i. 
Fo

r 
ea

ch
 t

im
e 

p
o

in
t 

d
if

fe
re

n
t 

le
tt

er
s 

in
d

ic
at

e 
st

at
is

ti
ca

lly
 

si
gn

if
ic

an
t 

d
if

fe
re

n
ti

al
 e

xp
re

ss
io

n
 b

et
w

ee
n

 d
if

fe
re

n
t 

lin
e

s 
an

d
 c

o
m

p
ar

ed
 t

o
 m

o
ck

-t
re

at
ed

 p
la

n
ts

 (
p

<0
.0

5
).

 V
al

u
es

 w
er

e 
o

b
ta

in
e

d
 f

ro
m

 t
w

o
 in

d
ep

e
n

d
en

t 
b

io
lo

gi
ca

l r
ep

lic
at

e
s.

 n
=2

; 
e

rr
o

r 
b

ar
s 

±
 

SE
. 

4
5

°C
 

2
1

°C
 

2
1

°C
 

4
5

°C
 

2
1

°C
 

2
1

°C
 

4
5

°C
 

2
1

°C
 

2
1

°C
 

4
5

°C
 

2
1

°C
 

2
1

°C
 



Chapter 3 - Role of F-box-Nictaba in plant stress responses __________________________________ 
 

109 
 

According to Fig. 3.12A, the positive control gene Hsp70b did not show any differential expression in 

the KO6 line in comparison to WT plants at the beginning of the acquired thermotolerance 

assessment experiment. However, at 5 h and 24 h, the Hsp70b expression was lower in the KO6 line 

in comparison to WT plants. In turn, at 5 h, the Hsp70b expression level was significantly a 4-fold 

higher in mock-treated KO6 plants compared to mock-treated WT plants.  

F-box-Nictaba transcript levels in KO6 plants at the beginning of the acquired thermotolerance 

experiment were approximately 30 times lower than in the corresponding WT plants, but raised after 

1 h at 37°C, and before the final 45°C heat treatment (at 4 h) reached transcript levels comparable to 

those in WT plants (Fig. 3.12B). After the end of the heat stress treatments F-box-Nictaba expression 

levels dropped in KO6 line down to 0.2 relatively to the expression in WT plants. In general, F-box-

Nictaba expression levels in mock-treated KO6 plants remained significantly lower than in the mock-

treated WT plants during the time course of the acquired thermotolerance experiment, except at 1 h, 

when the F-box-Nictaba expression level in KO6 plants was not significantly different from its level in 

the WT plants. 

 

OE4 and OE6 lines assessed for acquired thermotolerance presented significantly 2- to 4-fold 

reduced Hsp70b expression levels in comparison to WT plants during the timecourse of the 

experiment (Fig. 3.12C).  

Similar to the basal thermotolerance assessment, F-box-Nictaba gene expression changed as the 

acquired thermotolerance experiment progressed, but the effect was not that tremendous (Fig. 

3.12D). In OE4 line the F-box-Nictaba expression levels were very variable: 20-fold overexpression 

dropped to 3-fold up-regulation in comparison to the stress-treated WT plants after pre-treatement 

with 37°C for 1 h, then the transcript levels increased up to 17-fold overexpression prior to heat 

shock with 45°C, and finally decreased again down to 3- and 4- fold up-regulation in comparison to 

WT plants after 1 h of heat shock with 45°C and after 24 h, respectively (Fig. 3.12D). Somewhat 

similar changes were observed in mock-treated plants of line OE4. In OE6 line 300-350-fold 

overexpression at 0h was progressively reduced to 45-fold up-regulation level as measured after 24 h 

(Fig. 3.12D).   

 

In general, the KO line shows lower expression levels of Hsp70b in comparison to the WT plants upon 

heat stress treatment in both thermotolerance experiments (Fig. 3.11A and 3.12A). In contrast, heat-

treated OE lines show higher transcript levels of this gene compared to heat-treated WT plants 

during the basal thermotolerance assay (Fig. 3.11C). However, in the acquired thermotolerance 

experiment, Hsp70b expression levels in the heat-stressed OE lines were usually significantly lower 

than in the corresponding heat-treated WT plants (Fig. 3.12C).  
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3.4.7.5 Plants overexpressing F-box-Nictaba show less damage after P. syringae infection than 

WT plants 

As mentioned above, qRT-PCR revealed F-box-Nictaba up-regulation after treatment with SA as well 

as after bacterial infection (Fig. 3.1B and 3.2C). To investigate the role of F-box-Nictaba in plant 

defense responses against pathogens, WT plants and  transgenic A. thaliana plants with altered F-

box-Nictaba expression levels were infected with the virulent hemibiotrophic bacterium Pst DC3000. 

Since infection results in gradual appearance of chlorotic lesions on the rosette leaves, plant damage 

was assessed by measuring a percent ratio of lesion area relative to the total leaf area. Rosette 

leaves were collected prior to infection (0 dpi) as well as 3 dpi (when the first symptoms of infection 

become visible) and 4 dpi.    

 

As demonstrated in Fig. 3.13A-B, the infection experiment on KO6 line versus WT plants was 

successful and lead to clear disease symptoms characterized by leaf lesions constituting up to 20 % 

and 30 % of total leaf area at 3 and 4 dpi, respectively. Nevertheless, no significant differences in 

lesion size could be observed between the KO6 line impaired in F-box-Nictaba expression and WT 

plants.  

 

 

Although the infection experiment on the OE lines was successful, it resulted in weaker disease 

symptoms in both transgenic and WT plants when compared to the previous setup (Fig. 3.13C-D). At 

3 dpi, lesions occupied 4 and 5 % of total leaf area in OE4 and OE6 plants and 6 % in WT plants, but 

no significant differences were detected (Fig. 3.13D). In contrast, at 4 dpi, lesions became clearly 

visible in WT plants and were particularly localized next to the main leaf vein at the site of connection 

between petiole and lamina, while symptoms where much less obvious for OE plants (Fig. 3.13C). 

Based on lesion area measurements (Fig. 3.13D), OE4 and OE6 plants developed significantly reduced 

lesions 4 dpi (at the level of 6.9 and 5.6 %) in comparison to the WT plants. 
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A 
 
 

 
4 dpi 

 

B 

 

C 

 
4 dpi 

 

D 
 

 
Fig. 3.13   Development of disease symptoms in WT and transgenic A. thaliana plants after infection with Pst DC3000. A and 

C, Selected images of leaves collected from infected plants and analyzed 4 dpi. B and D, Disease symptoms in infected WT, 

KO6, OE4 and OE6 A. thaliana plants measured at indicated time points as percent ratio of chlorotic lesion area relative to 

the total leaf area. Analysis was performed for two independent biological replicates. n=2; error bars ± SE. Asterisks indicate 

statistically significant differences compared to the WT plants (p<0.05). 
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qRT-PCR analysis demonstrated no differential expression for any of the two positive controls 

(WRKY70 and PR1) neither in infected nor in the mock-treated KO6 plants (Fig. 3.14A-B). Also F-box-

Nictaba expression remained stable and very low (20-100-fold lower than in the WT plants) 

throughout the whole experiment (Fig. 3.14C). 

 

On the other hand some differences were observed in the OE plants. WRKY70 gene was significantly 

2-fold down-regulated in both OE lines 0 dpi as well as 1 dpi in infected plants (Fig. 3.14D). At 2 dpi, 

however, WRKY70 expression in both lines increased and was 4 and 3 times higher in OE4 and OE6 

lines, respectively, in comparison to the infected WT plants. However, some raise in WRKY70 

transcript levels was also revealed in the mock-treated OE6 plants. As presented in Fig. 3.14E, PR1 

levels in the mock-treated OE plants were generally significantly lower down to 7 times in 

comparison to the WT plants. But, following Pst DC3000 infection its transcript levels become 

comparable to those in WT plants (except for some down-regulation in OE4 line at 2 dpi and in OE6 

line at 4 dpi). F-box-Nictaba expression levels in OE4 line remained relatively stable over the 

timecourse of the infection experiment with 150-200-fold overexpression versus corresponding WT 

plants (Fig. 3.14F). Finally, even though it seems that overexpression of F-box-Nictaba in line OE6 

progressively decreases over time, a similar trend is observable in the mock-treated plants, and as 

such the effect is not associated with Pst DC3000 infection. 
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3.5 Discussion 

In the past years our knowledge on UPS-mediated protein degradation in plants has widely expanded 

and it appears to be a critical regulatory mechanism for most cellular and physiological processes in 

plants (Vierstra 2009; Dielen et al., 2010). In this report we show an extended expression profiling of 

the glycan-binding F-box-Nictaba protein from A. thaliana, integrating qRT-PCR, GUS histochemical 

assays and gene (co)-expression meta-analyses as well as phenotypic analyses of transgenic plants 

overexpressing F-box-Nictaba or impaired in its synthesis. The data presented strongly suggest the 

involvement of F-box-Nictaba in plant defense responses. 

3.5.1 F-box-Nictaba is a stress-inducible gene responsive to SA, bacterial infection and 

heat stress 

During normal growth and development of WT A. thaliana plants, the expression of the F-box-

Nictaba gene was not particularly pronounced at neither of the developmental stages nor in any 

tested tissue sample (Fig. 3.1A). This result is in good agreement with the meta-analysis database 

search performed through Genevestigator (supplementary Fig. A3.4), which revealed a uniform 

stable At2g02360 gene expression across the lifecycle of A. thaliana. This search also indicated that 

F-box-Nictaba is generally expressed at low to medium levels, indicating that a basal expression of 

At2g02360 is required throughout plant development. 

Nevertheless, an extensive expression profiling of the F-box-Nictaba gene upon treatments with 

different plant hormones and abiotic stresses revealed that its stable expression is noticeably 

changed after treatment with SA as well as after heat stress (Fig. 3.1B-C), indicating that the protein 

might be involved in stress signaling pathways.  

Treatment with SA, a plant hormone critical for defense responses against pathogens (Vlot et al., 

2009), resulted in an up-regulation of F-box-Nictaba gene expression with a gradual increase in 

transcript levels reaching the maximal 4-fold rise after 10 h, followed by a slight drop in transcript 

levels after 24 h of SA application (Fig. 3.1B). The fold change in expression was slightly higher than 

shown by the microarray data available on the eFP browser (Winter et al., 2007). As indicated in the 

Table A3.4, the At2g02360 promoter sequence contains multiple W-box-containing regions, 

corresponding to cis-regulatory elements [(C/T)TGAC(C⁄T)] specifically recognized and bound by the 

plant-specific family of WRKY transcription factors (Yamasaki et al., 2012). Since most WRKY proteins 

are involved in plant stress responses (Rushton et al., 2010) including pathogen infection (Eulgem 

and Somssich, 2007; Pandey and Somssich, 2009), it is highly probable that inducible expression of F-

box-Nictaba upon SA treatment is under the control of (a) SA-dependent WRKY transcription 
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regulator(s). This is also supported by the expression profile of the positive control gene WRKY70, 

which encodes a SA-inducible protein activating downstream expression of defense-related genes 

encoding e.g. PR proteins (Li et al., 2004; Ren et al., 2008b). WRKY70 was up-regulated much faster 

than F-box-Nictaba and reached a peak expression already after 3 h of SA application (Fig. 3.1B). This 

delay in maximal expression for the F-box-Nictaba gene in comparison to one of the key SA-

dependent WRKY transcription factors suggests that F-box-Nictaba is a late SA-responsive gene. The 

search for the genes co-expressed with F-box-Nictaba (Fig. 3.4 and Table 3.1) revealed a WRKY25 

gene (At2g30250). WRKY25 is a stress- and SA-inducible transcription factor shown to recognize W-

box sequences and to function as a negative regulator of SA-mediated defense responses to P. 

syringae (Zheng et al., 2007). Expression analysis of the F-box-Nictaba gene in WRKY-specific mutant 

lines could bring more definite insights in the mode of transcriptional regulation of F-box-Nictaba 

and could show if expression relies on the upstream induction of WRKY transcription regulator(s).  

Next, as depicted in Fig. 3.2C, infection of WT A. thaliana plants with the virulent Pst DC3000, a 

hemibiotrophic bacterium pathogenic to A. thaliana and activating the SA-dependent plant defense 

pathway (Katagiri et al., 2002; Glazebrook, 2005; Nomura et al., 2005), resulted in a 2.6-fold increase 

in F-box-Nictaba gene expression. This transcript level is only slightly lower than the one observed 

after treatment with SA (Fig. 3.1B) and comparable to the microarray expression data available on 

the eFP browser (Winter et al., 2007). As expected, Pst DC3000 strongly enhanced the expression of 

two control genes, encoding the SA-inducible transcription factor WRKY70 (Fig. 3.2A) and PR1 (Fig. 

3.2B) a well documented WRKY70-regulated marker of SA-dependent responses and SAR (Li et al., 

2004; Ren et al., 2008b; Vlot et al., 2009). In contrast, infection with the necrotrophic fungus B. 

cinerea strain B05.10, which activates a JA/ET-dependent plant resistance pathway (Thomma et 

al.,1999; Wasternack and Hause, 2013), only slightly affected F-box-Nictaba mRNA levels by down-

regulation of At2g02360 2 and 3 dpi (Fig. 3.2F). Consistently, MeJA and ET, the two hormones 

involved in the plant signaling pathway upon fungal infection, initially also had a minor down-

regulating effect on F-box-Nictaba expression (supplementary Fig. A3.2). The mutual antagonism in 

stress signaling cross-talk between SA and JA is well documented (Pieterse et al., 2012; Thaler et al., 

2012). Whereas B. cinerea generally triggers the JA/ET-dependent pathway (Thomma et al., 1999), El 

Oirdi et al. (2011) demonstrated in tomato that the fungus can activate at the same time SA-

dependent defenses, which suppresses the JA-induced defenses by hormone antagonism, ultimately 

leading to increased plant susceptibility. However, in our experiments the JA/ET-responsive positive 

control gene PDF1.2 (Thomma et al., 1999) was highly up-regulated (Fig. 3.2D), confirming the 

activation of the JA/ET-signaling pathway. It has previously been shown that B. cinerea also 

significantly induces PR1 expression in A. thaliana (Ferrari et al., 2003; La Camera et al., 2011). 

However, the influence of B. cinerea infection on the levels of PR1 expression can vary greatly, since 

for instance Cabot et al. (2013) reported only 3-fold increase in PR1 expression during such 

experiment in Arabidopsis. In this work the expression of the SA pathway marker PR1 was not 

significantly affected in A. thaliana by B. cinerea (Fig. 3.2E), thus there was no noticeable activation 

of the SA-dependent defenses. Since F-box-Nictaba expression was up-regulated in WT A. thaliana 
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plants after SA treatment and Pst DC3000 infection but not upon MeJA/ethephon treatment or 

infection with Botrytis, it is reasonable to conclude that F-box-Nictaba is playing a role in SA-

mediated plant defense reactions to pathogen infection. Accordingly, the co-expression data as 

presented in Fig. 3.4 and Table 3.1 show F-box-Nictaba co-expression in a network of defense-related 

genes. Interestingly, two of them, At1g64280 (encoding regulatory protein NPR1) and At4g19660 

(encoding regulatory protein NPR4), are both key regulators of plant responses against bacterial 

pathogens and their function relies on or is modulated by the UPS (Fu et al., 2012; Spoel et al., 2009). 

Notably, the NPR1 protein is the direct activator of several WRKY transcription factors (Spoel et al., 

2009; Wang et al., 2006). In turn, NPR4 has been demonstrated to be one of the SA receptors which 

functions as an adaptor of the Cullin3 Ub ligase to mediate NPR1 degradation in a SA-regulated 

manner (Fu et al., 2012). Also, two strongly co-expressed genes At3g28940 and At3g28950 (revealed 

by all four screened databases), are encoding the AIG2 (avrRpt2-induced gene 2)-like proteins 

possibly involved in plant responses to pathogen infection (Reuber and Ausubel, 1996). 

As delineated from Fig. 3.1C, F-box-Nictaba was up-regulated not only after pathogen infection but 

also after heat stress with a similar, up to 3-fold increase in expression. Here, the positive control 

gene Hsp70b, encoding a heat shock-responsive chaperone preventing protein aggregation and 

mediating protein folding (Sung et al., 2001), demonstrated a fast and high up-regulation. As such, it 

appears that F-box-Nictaba expression is responsive towards both biotic as well as abiotic stresses, 

which is in good agreement with the gene expression data from the ATH1 affymetrix microarray 

available at the eFP browser (Winter et al., 2007). This finding should not be surprising since the 

cross-talk between biotic and abiotic stress signaling pathways is quite common and has been 

extensively studied in recent years (Cao et al., 2011; Lee and Luan, 2012; Cheng et al., 2013; Xiao et 

al., 2013). There is also considerable evidence emerging for the relation between pathogen infection 

and thermotolerance in plants (Clarke et al., 2004; Cronjé et al., 2004; Snyman and Cronjé, 2008). 

The points of convergence between different pathways are usually transcription factors (e.g. WRKYs) 

and kinases which are molecular players common to multiple networks and integrating different 

stress signals to fine-tune plant responses towards environmental stress. F-box-Nictaba up-

regulation upon heat stress might thus be driven by heat shock-activated transcription factors which 

could bind to the heat shock-responsive cis-elements (CCAATBOX1) present in the At2g02360 

promoter sequence (supplementary Table A3.4), but also by heat stress-induced WRKY transcription 

factors (Rushton et al., 2010) activating F-box-Nictaba expression through the multiple W-box motifs 

[(C/T)TGAC(C/T)] in its promoter sequence. 

3.5.2 F-box-Nictaba expression is pronounced in non-glandular A. thaliana trichomes  

As presented in Fig. 3.3B, GUS histochemical assays showed preferential activity of the At2g02360 

promoter in non-glandular leaf trichomes of transgenic A. thaliana plants. The highly prominent GUS 

staining in the trichomes present mostly on young leaves was visible throughout the development of 

the plants and was consistent in all independent transgenic lines tested. Non-glandular trichomes are 
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epidermal hairs on the surface of most plant aerial organs, characterized by a unicellular dendritic 

structure with a stalk and three to four branches. They are implicated in transpiration control, 

thermotolerance and protection against insects, diseases and UV irradiation (Johnson, 1975; 

Mauricio and Rausher, 1997; Traw and Bergelson, 2003; Dalin et al., 2008). Although the non-

glandular trichomes are presumably non-secreting, they do express genes involved in biosynthesis of 

secondary compounds (anthocyanins, flavonoids and glucosinolates) suggesting their putative role in 

plant defense against pathogens (Walker et al., 1999; Serna and Martin, 2006; Jakoby et al., 2008; 

Frerigmann et al., 2012). Transcript profiling of Arabidopsis trichomes revealed WRKY transcription 

factors in the top genes highly expressed in trichome tissue (Jakoby et al., 2008; Dai et al., 2010). In 

line with the presumed WRKY-dependent regulation of F-box-Nictaba, several putative cis-regulatory 

elements reported to be responsible for trichome-specific gene regulation could be identified in the 

F-box-Nictaba promoter sequence (supplementary Fig. A3.3), including eight MYB-like recognition 

sites (AACCAAAC) (Ni et al., 2008) and five T/G-box elements (AACGTG) (Shangguan et al., 2008). In 

view of the intriguing pronounced F-box-Nictaba promoter activity in Arabidopsis trichomes, further 

experiments, which are described in Chapter 4, were performed to corroborate F-box-Nictaba 

expression in these structures. 

3.5.3 Altered F-box-Nictaba gene expression affects plant responses towards stress  

Transgenic A. thaliana plants, either deficient in F-box-Nictaba protein or overexpressing it, do not 

present any clearly distinct phenotype throughout their lifecycle under normal growth conditions. 

Thus, it seems unlikely that F-box-Nictaba is playing an essential role in any of the fundamental 

processes of plant development and morphogenesis. This is in a good agreement with the relatively 

stable F-box-Nictaba expression in WT A. thaliana plants during development and among different 

tissues (Fig. 3.1A). However, since it has been demonstrated that F-box-Nictaba gene expression is 

induced after treatment with SA, bacterial infection and heat shock (Fig. 3.1B-C and Fig. 3.2C), it was 

investigated whether transgenic plants would perform differently from WT plants under unfavorable 

conditions. SA- and pathogen-inducible proteins in plants have been reported to increase plant 

resistance when recombinantly overexpressed, while their downregulation or knockout resulted in 

more severe disease development (Dóczi et al., 2007; Shim et al., 2013; Xiao and Chye, 2011). As 

presented in Fig. 3.13C-D, Arabidopsis plants overexpressing F-box-Nictaba exhibited significantly 

reduced disease symptoms compared to WT plants 4 dpi with Pst DC3000. Thus, it could be 

anticipated that the KO line should exhibit higher susceptibility to Pst DC3000 infection. Yet, no clear 

differences were seen between the performance of the KO plants and WT plants (Fig. 3.13A-B). As 

previously reported (Delporte et al., 2015; Lannoo et al., 2008), the A. thaliana genome contains 

more than 20 homologous genes encoding F-box-proteins with a Nictaba domain for which evidence 

of expression is available. They show relatively high AA sequence similarity with F-box-Nictaba 

encoded by At2g02360 in both their F-box domain as well as Nictaba domain at the level of  >90% 

and > 40%, respectively. Therefore, it is likely that some of these genes show functional redundancy 

http://jxb.oxfordjournals.org/search?author1=Xiao-Xia+Shangguan&sortspec=date&submit=Submit
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and could fulfill the same or at least a similar role, e.g. by recognizing common targets for 

degradation. For instance, protein redundancy with respect to the function in plant resistance to Pst 

DC3000 infection has been demonstrated by Maekawa et al. (2012) for two Ub ligases from 

Arabidopsis, i.e. ATL31 and ATL6, sharing 65% of sequence identity in their AA sequences. While 

overexpression of either of them provided increased resistance to the plants, separate single 

mutants did not reveal any robust phenotype after infection. However, increased susceptibility to Pst 

DC3000 infection was observed in double mutant plants. Also, no clear phenotype was reported for 

the Arabidopsis mutants impaired in the synthesis of the SA- and pathogen-inducible legume lectin-

like  protein SAI-LLP1, while its overexpression limited proliferation of the avirulent strain Pst Avr-

Rpm1 (Armijo et al., 2013). Since there is evidence for basal expression of genes  encoding  other  

SAI-LLP1-like proteins in Arabidopsis, functional redundancy has been suggested as the possible 

cause underlying the results. Recently, the functional redundancy has been discussed for the 

Arabidopsis group of F-box protein genes expressed during male gametogenesis (Ikram et al., 2014). 

Consequently, although the F-box-Nictaba protein encoded by the At2g02360 is involved in plant 

defense responses to pathogen infection, it will not play an essential role on its own, but will rather 

act as one partner in a complex network of proteins. 

Proteins demonstrated to increase or decrease plant resistance against pathogen infection including   

Pst DC3000 are most often involved in the modulation of expression of PR genes (Dóczi et al., 2007; 

Lim et al., 2014; Shim et al., 2013; Xiao and Chye, 2011). Thus, aside from the phenotypic analysis of 

the infected plants, we also investigated the possibility of dissimilarities between WT and transgenic 

lines by checking the expression levels of the defense marker genes WRKY70 and PR1, an early and a 

late responsive  gene, respectively (Li et al., 2004; Ren et al., 2008b). Hereby, no differences were 

detected for the KO plants (Fig. 3.14A-B), which was in agreement with the lack of an apparent 

distinct phenotype for the KO6 line. In contrast, expression of the two genes in both OE lines seemed 

to be reduced compared to WT plants prior to infection, but increased after inoculation with the 

pathogen (Fig. 3.14D-E). The beneficial effect of an initial down-regulation of WRKY70 and PR1 on the 

enhanced resistance to Pst DC3000 in plants overexpressing F-box-Nictaba is interesting but rather 

puzzling, and thus requires more in-depth studies to unravel the mechanism behind it.  

 

Finally, we have also performed basal and acquired thermotolerance experiments on the transgenic 

Arabidopsis plants in view of F-box-Nictaba up-regulation after heat stress. While plants 

characterized by basal thermotolerance are capable of growing under high temperatures, those with 

acquired thermotolerance can only survive lethal heat stress after initial pre-treatment with a 

moderate heat application (Clarke et al., 2004; Larkindale et al., 2005). Contrary to the infection 

assays with Pst DC3000, no clear positive or negative phenotype effects could be detected in both 

basal and acquired thermotolerance tests as survival rates were comparable for all plants (Fig. 3.10). 

However, remarkable changes have been demonstrated in F-box-Nictaba expression (Fig. 3.11B and 

D as well as 3.12B and D). Even though the overexpression of the F-box-Nictaba gene in transgenic 

plants was very high (approximately 350-fold overexpression in OE6 line) or moderately high 

(approximately 20-fold overexpression in OE4 line) at the beginning of the thermotolerance assays, 



Chapter 3 - Role of F-box-Nictaba in plant stress responses __________________________________ 
 

120 
 

transcript levels in both lines were progressively decreasing as the experiments advanced in time. 

The reduction in overexpression of F-box-Nictaba was mostly pronounced in the basal 

thermotolerance experiment (Fig. 3.11D), with a reduction of 10 times for the OE6 line 24 h after 

heat stress in comparison to mock-treated plants. Consequently, at the end of the experiment (24 h 

post heat shock), OE6 remained an overexpression line with only 4-fold up-regulation of F-box-

Nictaba in comparison to the heat-stressed WT plants, and the OE4 line had comparable F-box-

Nictaba mRNA levels to those in the corresponding heat-treated WT plants. No such drastic effects of 

heat stress on CaMV 35S promoter-driven expression were reported in plants and thermotolerance 

assessment experiments were successfully performed using this expression system (Chae et al., 

2013; Li et al., 2013; Liu and Charng, 2013; Macková et al., 2013). It has been reported though for 

tissue cultures of the moss Physcomitrella patens that over-expression under the 35S promoter is 

lower when cultures are kept in the dark (Saidi et al., 2009). Nevertheless, Chae et al. (2013) also 

performed heat stress treatments in dark conditions on Arabidopsis plants over-expressing a gene 

controlled by the 35S promoter. In this case, the thermotolerance assay was reported to be 

successful. Furthermore, it has to be noted that F-box-Nictaba over-expression in the OE lines did not 

return to its initial levels during the recovery period (21°C in light conditions) as measured at 24 h, 

but remained significantly reduced. 

Thus, since the overexpression levels were remarkably reduced, it is not surprising that a specific 

phenotype of the presumed overexpression lines was not observed. In contrast, the overexpression 

of F-box-Nictaba in OE4 and OE6 plants was not negatively affected after Pst DC3000 infection (Fig. 

3.14F) and the transgenic plants presented an increased resistance towards bacterial infection.  

Conversely, in KO6 plants which were assessed for thermotolerance, the F-box-Nictaba transcript 

levels were increased up to a similar level detected in WT plants after heat stress (Fig. 3.11B and 

3.12B). Although this increased level of transcripts in the KO line is most probably a result of a read-

through transcription past the T-DNA insert (Ulker et al., 2008; Wang, 2008; Zubko et al., 2011), the 

promoter still seems to be responsive to heat stress. Again, as in the case of the Pst DC3000 

infection, the fact that there cannot be assigned a distinguishable phenotype for the heat-stressed 

KO plants might result from the protein redundancy within the family of Nictaba-related F-box 

proteins. Interestingly, KO6 plants subjected to the basal thermotolerance assay showed 2-fold lower 

expression levels for Hsp70b (Fig. 3.11A), while in OE lines this gene becomes significantly more 

upregulated than in the WT plants (Fig. 3.11C). No such consistent effects were detected in the 

acquired thermotolerance experiments (Fig. 3.12C ).  

These findings strongly suggest that F-box-Nictaba is needed during plant responses to heat stress, at 

certain optimal levels. Although F-box-Nictaba was highly overexpressed in the transgenic plants 

under the control of the strong CaMV 35S promoter, F-box-Nictaba expression might be tightly 

regulated post-transcriptionally in Arabidopsis plants. Indeed, the expression of genes can be highly 

regulated at both transcriptional and post-transcriptional level (Floris et al., 2009; Ruszka et al., 

2012). Post-transcriptional gene regulations occur at the levels of pre-messenger RNA (mRNA) 

processing (capping, splicing, and polyadenylation), mRNA stability, and mRNA translation. 

Alternative splicing should not be an issue here in the transgenic plants, since only the coding 
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sequence of the F-box-Nictaba gene was cloned under the control of the 35S promoter. Another 

option could be the regulation of mRNA stability by RNA silencing, a mechanism involved in gene 

expression control during plant development, responses to viral infection and in response to abiotic 

stress (Kruszka et al., 2012; Molnar et al., 2011; Wang et al., 2012). It acts through small non-coding 

RNAs (sRNAs) and can result in cleavage of the target mRNA or in translation repression. sRNAs can 

be induced or downregulated under specific stress conditions and thereby either repress negative 

regulators of stress tolerance or allow the accumulation of positive regulators.  

 

Based on the phenotypic analysis of the transgenic plants under pathogen infection and heat stress 

conditions, it can be concluded that F-box-Nictaba is clearly involved in plant responses towards 

stress. Nevertheless, it is intriguing how responses of transgenic plants differ depending on whether 

abiotic stress or biotic challenges are applied. There is an evident crosstalk between SA and heat 

response pathways, however, the exact molecular mechanism of SA signaling in thermotolerance 

remains unclear and requires further research (Clarke et al., 2004, 2009; Larkindale et al., 2005; 

Snyman and Cronjé, 2008; Zhang and Wang, 2011). 
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4.1 Abstract 

Trichomes in Arabidopsis are large cells present as dendritic protuberances on different plant aerial 

organs. They have been extensively studied as a model structure to investigate the molecular 

mechanism underlying cell differentiation in plants. Trichomes in Arabidopsis are generally suggested 

to be involved in plant defense against different environmental stresses, although little is known 

regarding their exact roles in plant protection. Previously, it has been shown that the promoter of the 

At2g02360 gene encoding the Arabidopsis F-box-Nictaba protein exhibits preferential activity in the 

trichomes. F-box-Nictaba is a lectin capable of binding galactose oligomers as well as N- and O-

glycans containing N-acetyllactosamine (LacNAc) structures, Lewis A, Lewis X, Lewis Y and type-1 B 

antigen motifs. It is suggested to play a role in plant defense responses against pathogen infection 

presumably by binding specific glycosylated proteins and targeting them for proteasomal 

degradation. In order to further corroborate the trichome-specific expression of the F-box-Nictaba 

gene we have performed qRT-PCR analysis on trichomes isolated from A. thaliana leaves. Our results 

confirmed the histochemical staining experiments and demonstrated high At2g02360 transcript 

levels in the trichomes. Furthermore, also significant amounts of the F-box-Nictaba protein could be 

immunodetected in the trichomes. Finally, two genes encoding a specific galactosyl- and 

fucosyltransferase involved in the synthesis of Lewis A structures in Arabidopsis, were demonstrated 

to have differential expression in the trichomes. Altogether, these findings provide new insights in 

the physiological role of F-box-Nictaba in plants.   

4.2 Introduction 

Trichomes are specialized epidermal cells which can be present as protuberances on different plant 

aerial organs such as leaves, stems, petioles, petals or the seed coat (Johnson, 1975). They are 

involved in a broad range of biological processes and are commonly associated with plant defense 

against diverse environmental stress factors. In general, trichomes can be grouped into two distinct 

types: (1) the simple non-glandular trichomes and (2) the glandular secreting trichomes (Wagner et 

al., 2004). Since glandular secreting trichomes can exude phytochemicals adversely affecting 

herbivores, insects and pathogens, they are mostly studied in view of their role in plant protection 

(Tissier, 2012a). In contrast, the simple type trichomes in Arabidopsis are considered as an excellent 

model to investigate the molecular mechanism underlying cell differentiation and pattern formation 

in plants (Pesch and Hülskamp, 2009; Schellmann and Hülskamp, 2005). Arabidopsis trichomes are 

large unicellular cells characterized by a typical dendritic structure with a stalk and three to four 

branches, present and well distinguishable (even by naked eye) on most aerial organs, with exception 

of hypocotyls and cotyledons. 

Trichomes originate from the protodermal cells in primordia of developing leaves. While surrounding 

epidermal cells continue normal division, the cells destined to develop into trichomes cease to divide 

and undergo at least four endoreduplication cycles with DNA replication but without mitosis or 
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cytokinesis (Walker et al., 2000). Consequently, the trichome cell size increases, changes its growth 

direction into perpendicular to the leaf surface and undergoes branching. As a result, a mature 

branched trichome has an average DNA content of 32C (Hülskamp et al., 1994; Schnittger and 

Hülskamp, 2002). The production, morphology, distribution and number of trichomes is spatially and 

temporally regulated. For instance, their morphology varies between different organs: trichomes on 

rosette leaves contain three to four branches, whereas those present on cauline leaves and stems 

are less branched or completely unbranched, respectively (Telfer et al., 1997).  

 

Over the years evidence has accumulated that trichome development in Arabidopsis is based on a 

highly complex and tightly controlled regulatory network of over 30 different genes, including 

multiple transcriptional activators and repressors (Pattanaik et al., 2014; Schellmann and Hulskamp, 

2005). This network comprises three major groups of transcription factors activating trichome 

development: R2R3 MYBs (including MYB0/GLABROUS1 (GL1) and MYB82; Kirik et al., 2001, 2005; 

Liang et al., 2014), a basic helix-loop-helix (bHLH) factor (including paralogs GLABROUS3 (GL3), 

ENHANCER OF GLABROUS3 (EGL3), TRANSPARENT TESTA 8 (TT8) and AtMYC1; Maes et al., 2008; 

Payne et al., 2000; Symonds et al., 2011; Zhang et al., 2003; Zhao et al., 2012b), and a WD40 repeat 

(WDR) protein (TRANSPARENT TESTA GLABRA 1 (TTG1; Walker et al., 1999). Altogether, these 

regulatory proteins form a trimeric MBW complex MYB(GL1)-bHLH(GL3/EGL3)-WDR(TTG1) which 

triggers expression of the homeodomain protein called GLABROUS2 (GL2) responsible for inducing 

trichome formation (Rerie et al., 1994).  

Seven single repeat R3 MYBs act as negative regulators of trichome development and include 

TRIPTYCHON (TRY), CAPRICE (CPC), ENHANCER OF TRY and CPC 1, 2 and 3 (ETC1,2,3), TRICHOMELESS 

1 and 2 (TCL1,2) (Gan et al., 2011; Kirik et al., 2004a, 2004b; Schellmann et al., 2002; Schnittger et al., 

1999; Wada et al., 1997, Wang et al., 2007; Wester et al., 2009). These negative regulators compete 

with the R2R3 MYBs for binding the bHLH factor to form a repressor complex (Ishida et al., 2008; 

Yang and Ye, 2013; Wang and Chen, 2014). 

In parallel with the major activator–repressor system, other mechanisms may also modulate 

trichome development. In a depletion mechanism the bHLH factor traps the intercellularly 

transported activator protein TTG1, resulting in the lack of TTG1 in neighboring cells and 

development of bHLH-TTG1-rich cells into trichomes (Bouyer et al., 2008; Balkunde et al., 2011). 

Moreover, the activatory MBW complex up-regulates the expression of genes encoding the 

repressors (TRY/CPC). These repressors can move to neighboring cells to form a repressor complex 

inhibiting trichome formation. Apart from the core MYB-bHLH-WDR TFs, a group of C2H2 zinc finger 

transcription factors has been implicated in positive regulation of trichome development (Yan et al., 

2014). 

Phytohormones such as GA3, JA, cytokinins, BR and SA play an important role in trichome formation 

in Arabidopsis (Perazza et al., 1998; Traw and Bergelson, 2003; Gan et al., 2007a, 2007b; Maes et al., 

2008; Qi et al., 2011, 2014; Yoshida et al., 2009). GA3, JA and wounding (stress associated with JA-

signaling) as well as cytokinins trigger trichome formation in plants through up-regulation of key 

transcription factor genes (Maes et al., 2008; Perazza et al., 1998; Traw and Bergelson, 2003). In 
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contrast, SA is a negative regulator of trichome development and significantly reduces the number 

and density of trichomes in Arabidopsis (Traw and Bergelson, 2003). This negative effect is associated 

with the well-described antagonistic interaction between JA and SA-dependent pathways in 

Arabidopsis (Gimenez-Ibanez and Solano, 2013; Pieterse et al., 2012; Thaler et al., 2012). 

 

Even though the research on Arabidopsis trichomes is mainly focused on cell differentiation and 

pattern formation, trichomes have also been reported to play an important defensive role in plants. 

Trichomes in Arabidopsis provide mechanical protection against abrasion, wounding and insect 

herbivory, protect from water loss, light and temperature stress as well as UV irradiation damage 

(Dalin et al., 2008; Wagner et al., 2004; Werker, 2000). They reduce wind velocity and maintain a 

highly water-saturated microenvironment, consequently limiting excessive transpiration through 

stomata. They might absorb water and nutrients as well as facilitate seed dispersal and pollen 

collection. Even dead trichomes may still serve a purpose in water absorption, seed dispersal and 

protection from abrasion. Being of the non-glandular type, the Arabidopsis trichomes are not 

presumed to secrete chemicals or signals negatively influencing insects or pathogens. Nonetheless, 

these trichomes have been demonstrated to express genes related to secondary metabolism and to 

synthesize secondary metabolites from a variety of classes (anthocyanins, flavonoids and 

glucosinolates) (Ebert et al., 2010; Frerigmann et al., 2012; Jakoby et al., 2008; Mauricio and Rausher, 

1997; Serna and Martin 2006; Walker et al., 1999). Moreover, disease-related proteins like PR1, 

RPP5-like protein or TIR-NBS-LRR have been reported in trichomes of Arabidopsis (Bruner, 2009; 

Wienkoop et al., 2004). Interestingly, evidence has been provided that high-level expression of an 

anti-fungal hydrolase in Arabidopsis trichomes using a transgenic approach confers an increased 

plant resistance to the phytopathogenic fungus B. cinerea (Calo et al., 2006). It is thus hypothesized 

that apart from providing a physical barrier against abiotic damage and herbivory, A. thaliana 

trichomes might additionally be implicated in chemical-based defense and stress signaling responses 

against insects and pathogens.  

 

Previously, the promoter of the Arabidopsis gene At2g02360 encoding F-box-Nictaba has been 

demonstrated by GUS histochemical staining to be particularly active in the trichomes located on 

young rosette leaves (Chapter 3, Section 3.4.5). Also, eight MYB-like recognition sites and five T/G-

box elements, which are cis-regulatory elements involved in trichome-specific gene regulation (Ni et 

al., 2008; Shangguan et al., 2008), have been found in the promoter sequence of At2g02360 (Fig. 

A3.7), suggesting that this gene might be preferentially expressed in the trichomes. In order to 

investigate in more detail F-box-Nictaba gene expression in the trichomes, we have performed a qRT-

PCR analysis on trichomes isolated from the leaves of A. thaliana plants of two ecotypes, i.e. 

Columbia-0 (Col-0) and Landsberg erecta-0 (Ler-0). This analysis clearly showed that At2g02360 

expression was indeed pronounced in the trichomes, particularly in those of Ler-0 background. This 

result was further supported by immunodetection experiments which revealed a much higher F-box-

Nictaba content in the protein extracts from trichomes originating from A. thaliana Ler-0 plants. 

Furthermore, we studied the expression of genes encoding enzymes required for the synthesis of 
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Lewis A structures in Arabidopsis, i.e. β1,3-galactosyltransferase (GALT1) and α1,4-fucosyltransferase 

(FUT13). Lewis A motifs in plants have been identified either on the cell surface or on glycoproteins 

secreted by plant cells and as such are presumably involved in plant-pathogen interactions and in 

stress signaling (Fitchette et al., 1999; Léonard et al., 2002; Melo et al., 1997). Gene expression 

analysis demonstrated that both GALT1 and FUT13 are highly up-regulated in the trichomes isolated 

from the leaves of A. thaliana Ler-0 plants, suggesting that carbohydrate motifs specifically 

recognized by F-box-Nictaba could also be abundant in these plant structures. These data confirm 

the pronounced occurrence of F-box-Nictaba in the trichomes and thus further support the 

hypothesis of its role in plant defense responses.  

4.3 Materials and methods  

4.3.1 Plant material 

Seeds of WT A. thaliana ecotype Columbia-0 (Col-0) were purchased from Lehle Seeds (Round Rock, 

Texas, USA). Seeds of WT A. thaliana ecotype Landsberg erecta-0 (Ler-0) (NW20) and the mutant 

GLABRA1 (N64) were obtained from the European Arabidopsis Stock Centre (NASC, University of 

Nottingham, UK). Arabidopsis seeds were sown in pot soil. To break dormancy, the sown seeds were 

first stratified at 4°C for 3 days in the dark. Afterwards, seeds were transferred to a controlled growth 

chamber (Conviron Germany GmbH, Berlin, Germany) set at 21°C with a 12/12 h light/dark 

photoperiod for seed germination and plant development. Rosette leaves were collected from 3-, 4- 

and 5-week-old plants (corresponding to developmental stages 1.10, 3.90 and 6.10, respectively, as 

defined by Boyes et al., 2001). These leaves were either ground to a fine powder with a mortar and 

pestle and frozen at -80°C until further processing (RNA or protein extraction) or were immediately 

used for trichome isolation. 

4.3.2 Trichome isolation 

Leaf trichomes were isolated from rosette leaves according to Marks et al. (2008) with minor 

modifications. This method combines incubation of leaves in an EGTA-containing solution with 

vortexing in the presence of small glass beads (60–80 μm Ø) for fast and efficient isolation of intact 

trichomes. Extended incubation in EGTA weakens the connection between trichomes and 

surrounding epidermal cells via chelation of Ca2+ ions present in the pectins of the cell wall. As the 

attachment of the trichomes to leaves is already weakened by the action of EGTA, glass beads 

dislodge the trichomes protruding from the leaf surface, by bumping into them during intensive 

vortexing. Such isolated trichomes are then retrieved from the solution by filtering them out on a 

100-μm cell strainer. 
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In short, approx. 2,5 g of rosette leaves were collected into a 50 ml BD Falcon tube containing 50 mg 

glass beads (60-80 µm Ø; Grace, Breda, The Netherlands) and 15 ml of a 1x EGTA/K-PBS solution 

(containing 50 mM EGTA, 100 mM KCl, 8 mM K2HPO4, 8 mM KH2PO4, pH 7.5). In total 10 tubes were 

prepared to isolate 1 batch of trichomes. All tubes were mixed using a Vortex machine at maximum 

speed (four cycles of 30 s mixing and 30 s rest on ice). Afterwards, solutions were filtered through a 

sieve (600 µm Ø) and collected in a beaker. Trichomes trapped in the plant material residing on the 

sieve were released by washing with 15 ml of 1x K-PBS solution (100 mM KCl, 8 mM K2HPO4, 8 mM 

KH2PO4, pH 7.5). The trichome solution was then filtered through a cell strainer (100 µm Ø, BD 

Falcon). Trichomes residing on the cell strainer were transferred to an 1.5 ml eppendorf tube using 

1x K-PBS. Finally, the solution was centrifuged at 150 g for 1.5 min at 4°C and the supernatant was 

carefully removed. Purified trichomes were immediately frozen in liquid nitrogen and stored in -80°C 

until further processing. Yield, purity and integrity of the isolated trichomes was assessed by 

transmission microscopy using a Leica DFC400 microscope (Leica) using the Leica Application Suite 

software packages. 

4.3.3 Total RNA extraction 

For total RNA extraction, 1 ml TRI Reagent (Sigma-Aldrich) and 50 mg glass beads (300 µm Ø, Sigma-

Aldrich) were added to approx. 60,000 – 80,000 trichomes (isolated from 25 g of rosette leaves). The 

solution was vortexed at max speed (five cycles of 20 s mixing and 20 s rest on ice). For RNA 

extraction from unprocessed rosette leaves, 1 ml TRI Reagent was added to approx. 100 mg samples 

previously ground to a fine powder with a mortar and pestle. Trichome and complete leaf tissue 

extracts were then processed according to the manufacturer’s recommendations. 

4.3.4 cDNA synthesis and RT-PCR analysis 

DNase treatment of extracted RNA, cDNA synthesis and RT-PCR were performed as described in 

Chapter 3, Section 3.3.5, ‘RNA extraction, cDNA synthesis and RT-PCR analysis’. 

4.3.5 qRT-PCR analysis 

qRT-PCR analysis was performed as described in Chapter 3, Section 3.3.6, ‘Quantitative RT-PCR (qRT-

PCR) analysis’. 
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4.3.6 Protein extraction 

For protein extraction, approx. 300,000 trichomes were re-suspended in 200 µl of 50 mM Tris–HCl 

(pH 7.5) and mixed together with approx. 150 mg of 300 µm glass beads at max speed (five cycles of 

20 s mixing and 20 s rest on ice). The resulting suspension was then centrifuged at 12,000 rpm for 10 

min at 4°C, and the supernatant was collected. Another 200 µl of 50 mM Tris–HCl (pH 7.5) was added 

to the remaining pellet and the suspension was again vortexed and centrifuged. The resulting 

supernatant was collected as described above. All supernatants together constituted the final 

trichome protein extract.  

Protein from rosette leaves was extracted by grinding leaves to a fine powder with a mortar and 

pestle, adding 1 ml of 50 mM Tris–HCl (pH 7.5) to approx. 100 mg  of powdered samples and grinding 

them a second time. The resulting crude extract was transferred to a 1.5 ml eppendorf tube and 

centrifuged at 12,000 rpm for 10 min at 4°C. The  protein concentration of all samples was 

determined using the Nanodrop 2000 Spectrophotometer (Thermo Scientific).  

4.3.7 Western blot analysis 

10 µg of total protein extracts were analyzed by SDS-PAGE in gradient (4-15%) Mini-PROTEAN®TGX™ 

precast polyacrylamide gels (Biorad) under reducing conditions (Laemmli, 1970) and subsequent 

Western blot analysis.  After transfer of the proteins onto a 0.45 µm PVDF membrane (BiotraceTM 

PVDF, PALL), the membrane was blocked with 5% (w/v) BSA in Tris-buffered saline for 1 h. The 

Arabidopsis F-box-Nictaba protein was then detected by incubation for 1 h incubation with a specific 

primary guinea pig antibody (1/1,000) (see Chapter 3, Section 3.3.11), followed by 1 h with a 

secondary HRP-coupled goat anti-guinea pig IgG antibody (1/15,000) (Invitrogen) and a final 1 h 

incubation with PAP (1/2,000) (Sigma). The PageRuler prestained protein ladder (Thermo Scientific) 

was marked with the WesternBright Chemipen (Isogen Life Science, Belgium). Visualization of the 

immunoreactive proteins was performed by ECL chemiluminescence using the Pierce ECL Western 

blotting Substrate kit (Thermo Scientific) and a ChemiDoc MP imaging system (Biorad). After 

immunodetection the proteins on the blot were visualized by blot staining with Coomassie Brilliant 

Blue R-250. 

4.4 Results 

4.4.1 Isolation of pure and intact trichomes 

To isolate trichomes from rosette leaves of WT A. thaliana Col-0, a procedure developed by Marks et 

al. (2008) was applied. The method relies on chelation of Ca2+ ions present in cell wall pectins, 
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leading to a weakened connection between trichomes and surrounding epidermal cells, resulting in 

efficient detachment of intact and enzymatically active trichomes. To evaluate if this method indeed 

allows to retrieve trichomes which are still biologically active, trichomes isolated from the leaves of 

transgenic p35SCaMV:GUS Arabidopsis plants were subjected to a GUS histochemical assay. Since as 

is presented in Fig. 4.1A these trichomes are stained blue, it could be concluded that they maintained 

their enzymatic activity after purification. In order to get enough trichome material from WT plants 

for subsequent qRT-PCR and immunodetection experiments, the isolation procedure was scaled up 

according to the expected trichome yields reported by Marks et al. (2008). 

As estimated by counting with a hemocytometer, single trichome isolations from rosette leaves of  

WT A. thaliana Col-0 gave satisfactory yields in the range of  60,000 – 80,000 trichomes from approx. 

25 g of leaves. Judging by microscopic analysis (Fig. 4.1B), the isolated trichomes were pure, 

undamaged and thus suitable for subsequent analyses. Depending on the sample, isolated trichomes 

allowed to extract 1.0-5.0 µg of total RNA and 30-40 µg of total protein.   

 

A 

 

B 

 
Fig. 4.1   Microscopic images of isolated trichomes visualized under transmission light. A, Trichomes isolated from the 

rosette leaves of transgenic p35SCaMV:GUS Arabidopsis plants subjected to a GUS histochemical assay after  purification. B, 

Trichomes isolated from the rosette leaves of 4-week-old WT A. thaliana Col-0 plants. Scale bars represent 100 µm. 

4.4.2 Gene expression analysis 

4.4.2.1 F-box-Nictaba is predominantly expressed in the trichomes of A. thaliana plants 

Given the apparent activity of the pAt2g02360:GUS reporter construct in trichomes present on the 

shoot meristem, first leaves and young rosette leaves in the transgenic A. thaliana GUS lines (see 

Chapter 3, Section 3.4.5), the expression of the F-box-Nictaba gene was quantified by qRT-PCR in 

trichomes purified from WT A. thaliana Col-0 rosette leaves originating from 3-, 4- and 5-week-old 
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plants (corresponding to developmental stages 1.10, 3.90 and 6.10, respectively, as defined by Boyes 

et al. 2001). The At2g02360 mRNA levels measured in trichomes were slightly higher than those 

measured in unprocessed rosette leaves (containing trichomes) (Fig. 4.2A). At all tested time points 

the F-box-Nictaba expression was increased in the trichomes up to approximately 1.5-fold in 4-week-

old plants and 2-fold in 3- and 5-week-old plants.  
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Fig. 4.2   Relative transcript levels of At2g02360 in the trichomes isolated from rosette leaves of WT Arabidopsis Col-0 and 

Ler-0 plants compared to the corresponding gene expression levels in unprocessed rosette leaves from WT Col-0, WT Ler-0 

and GLABRA1 Arabidopsis plants measured in 3-, 4- and 5-week-old plants. Relative transcript levels were determined by 

qRT-PCR analyses of two independent biological experiments. n=2; error bars ± SE (*p<0.05; **p<0.01). Asterisks indicate 

statistically significant differential expression compared to control samples (unprocessed rosette leaf material). A, Relative 

gene expression levels in the trichomes of Col-0 background compared to unprocessed rosette leaves of Col-0 background. 

B, Relative gene expression levels in the trichomes of Ler-0 background compared to unprocessed rosette leaves of Ler-0 

background (white bars) or compared to unprocessed rosette leaves of GLABRA1 Arabidopsis plants (black bars). C, 

Comparison of gene expression levels of F-box-Nictaba in the trichomes (black bars) and in unprocessed rosette leaves (gray 

bars) of WT Col-0 versus WT Ler-0 Arabidopsis plants. 

 

 

F-box-Nictaba gene expression was also analyzed in rosette leaves of the mutant A. thaliana plants 

completely lacking trichomes. These so-called GLABRA1 plants are impaired in the GL1 gene 

(At3g27920) which encodes a MYB-like transcription factor required for trichome development 

(Oppenheimer et al., 1991). Since the GLABRA1 mutants are made in a Landsberg erecta-0 (Ler-0) 

background, F-box-Nictaba expression was also examined in rosette leaves and in trichomes isolated 

from rosette leaves originating from WT A. thaliana Ler-0 plants. Trichome purification from rosette 

leaves of  Ler-0 plants yielded similar amounts of trichomes as for Col-0 plants. However, trichomes 

of Ler-0 plants seemed to be smaller than trichomes present on Col-0 rosette leaves of the same age 
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(results not shown). In comparison to Col-0 plants, in Ler-0 background the relative expression of the 

F-box-Nictaba gene was much more pronounced in trichomes with an up-regulation of F-box-Nictaba 

mRNA levels of 3.2-fold (although not statistically significant), 150-fold and 25-fold compared to total 

leaf tissue from 3-, 4- and 5-week-old plants, respectively (Fig. 4.2B, white bars). When the 

At2g02360 transcript levels were compared in Ler-0 trichomes to these levels in the trichomeless 

GLABRA1 rosette leaves,  20-, 160- and 175-fold higher expression of At2g02360 was observed in 

trichomes from 3-, 4- and 5-week-old Ler-0 plants, respectively (black bars). 

 

However, the absolute transcript levels for the F-box-Nictaba gene were higher in WT A. thaliana 

leaves of plants with a Col-0 background compared to leaves from WT plants with a Ler-0 

background, at all developmental stages investigated, irrespective whether the isolated trichomes or 

complete rosette leaves of both ecotypes were assessed (Fig. 4.2C). The differential expression was 

most striking when unprocessed rosette leaves were compared (gray bars): At2g02360 mRNA levels 

were approx. 160, 740 and 130 times higher in leaves of 3-, 4- and 5-week-old plants of Col-0 

ecotype, respectively, compared to leaves of the same age from plants with a Ler-0 background. In 

the trichomes isolated from 3-, 4- and 5-week-old WT A. thaliana Col-0 plants F-box-Nictaba gene 

expression was 90-, 7- and 10-fold higher than in the trichomes of 3-, 4- and 5-week-old plants from 

WT A. thaliana Ler-0, respectively (Fig. 4.2C, black bars). 

4.4.2.2 The GALT1 and FUT13 genes are up-regulated in the trichomes of WT A. thaliana Ler-0 

plants but not in the trichomes of WT A. thaliana Col-0 plants 

qRT-PCR analysis was also performed for two genes encoding the enzymes indispensable for Lewis A 

epitope synthesis in A. thaliana: i.e. At1g26810 for β1,3-galactosyltransferase (GALT1) expression 

and At1g71990 for α1,4-fucosyltransferase (FUT13) expression (Fig. 4.3) (Léonard et al., 2002; 

Strasser et al., 2007). 

 

According to Fig. 4.3A, the transcript levels for GALT1 were significantly lower in the trichomes of WT 

A. thaliana Col-0 plants compared to those measured in the unprocessed rosette leaves of the same 

plants at all investigated developmental stages, the lowest value being a 5-fold decrease of GALT1 

expression in trichomes of 4-week-old plants. In 3- and 5-week-old plants GALT1 mRNA levels were 

approximately 2 and 3 times lower in trichomes than in rosette leaves, respectively. FUT13 did not 

show a significant differential expression between trichomes and unprocessed rosette leaves at any 

of the investigated developmental stages (Fig. 4.3B). 
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Fig. 4.3   Relative transcript levels of 

GALT1 (encoded by At1g26810) and 

FUT13 (encoded by At1g71990) in the 

trichomes isolated from rosette leaves 

of WT Col-0 and WT Ler-0 Arabidopsis 

plants vs. corresponding gene 

expression levels in unprocessed 

rosette leaves from WT Col-0, WT Ler-

0 and GLABRA1 Arabidopsis plants 

measured in 3-, 4- and 5-week-old 

plants. Relative transcript levels were 

determined by qRT-PCR analyses in 

two independent biological 

experiments. n=2; error bars ± SE. 

Asterisks indicate statistically 

significant differential expression 

compared to control samples 

(unprocessed rosette leaf material) 

(*p<0.05; **p<0.01). A-B, Relative 

gene expression levels of GALT1 (A) 

and FUT13 (B) in the trichomes of WT 

Col-0 Arabidopsis plants compared to 

unprocessed rosette leaves from WT 

Col-0 Arabidopsis plants. C-D, Relative 

gene expression levels of GALT1 (C) 

and FUT13 (D) in the trichomes of WT 

Ler-0 Arabidopsis plants versus 

unprocessed rosette leaves of WT Ler-

0 Arabidopsis plants or versus 

unprocessed rosette leaves of 

GLABRA1 Arabidopsis plants. E-F, 

Comparison of gene expression levels 

of GALT1 (E) and FUT13 (F) in the 

trichomes and in unprocessed rosette 

leaves of WT Col-0 vs. WT Ler-0 

Arabidopsis plants. 
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In contrast, in trichomes of 3- and 4-week-old WT A. thaliana Ler-0 plants, the expression of the 

GALT1 gene was markedly up-regulated by 7- and 29-fold, respectively, when compared to its levels 

in unprocessed rosette leaves originating from these plants (Fig. 4.3C, white bars). Comparison of the 

GALT1 expression levels in trichomes of WT A. thaliana Ler-0 plants to those in the trichomeless 

GLABRA1 leaves revealed that GALT1 mRNA levels are significantly higher in the trichomes by 5-, 20- 

and 7-fold, respectively, in the three plant stages tested (black bars). The differences in FUT13 

expression levels between trichomes and unprocessed rosette leaves from WT A. thaliana Ler-0 

plants were smaller than for the GALT1 gene expression. As shown in Fig. 5D, FUT13 expression in 

trichomes of 4-week-old plants was only 4 times higher, whereas in 3- and 5-week-old plants there 

was no apparent difference in FUT13 expression in trichome RNA and total RNA of Ler-0 leaf material 

(white bars). When FUT13 expression was compared in WT Ler-0 plants and GLABRA1 (Ler-0) plants 

the  results showed a significant up-regulation by 2.5-fold for FUT13 expression in trichomes of Ler-0 

plants compared to GLABRA1 leaves of 4-week-old plants (black bars).  

 

Interestingly, the up-regulation of the two glycosyltransferases in the Ler-0 trichomes was lower 

when compared to the trichomeless GLABRA1 rosette leaves (black bars) than when compared to the 

complete Ler-0 rosette leaves (white bars; 3-week- and 4-week-old plants in Fig.4.3C, as well as 4-

week-old plants in Fig.4.3D). Only when the GALT1 transcript levels were assessed in 5-week-old 

plants, the up-regulation value in the trichomes was higher when compared to the trichomeless 

GLABRA1 rosette leaves (Fig.4.3C). It has to be noted here that even though the trichomeless 

GLABRA1 plants derive originally from a Ler-0 background (and thus were chosen to measure 

trichome-specific expression in a Ler-0 background) they are not a perfect control. Due to the 

mutation in gl1, they do not only lack trichomes, they are also more susceptible to stress (Xia et al., 

2010). Therefore, it could be that GALT1 gene expression in GLABRA1 plants is changed in 

comparison to the WT Ler-0 plants. Indeed, apparently, the GALT1 expression in the leaves of 

GLABRA1 plants was higher at indicated  time points than in the leaves of Ler-0 plants. Still, this does 

not compromise the result obtained after comparison of GALT1 and FUT13 expression in Ler-0 

trichomes compared to complete Ler-0 leaves, showing significant up-regulation in the trichomes. 

 

 

A comparative analysis of GALT1 gene expression in WT A. thaliana plants of different ecotypes 

showed that the GALT1 gene was 3.5-7 times more expressed in the leaves of Col-0 plants compared 

to the corresponding leaves of Ler-0 plants (Fig. 4.3E, gray bars), with the highest differential 

expression in 4-week-old plants. In contrast, GALT1 gene expression was 3-fold and 30-fold higher in 

the trichomes of 3- and 4-week-old Ler-0 plants than in the corresponding leaves of Col-0 plants (Fig. 

4.3E, black bars). On the other hand, WT A. thaliana Ler-0 plants in general had slightly higher 

transcript levels for FUT13 than the WT A. thaliana Col-0 plants in unprocessed rosette leaves (Fig. 

4.3F, gray bars). More important differences were observed in the trichomes of 3- and 4-week-old 

plants, where the FUT13 transcript level was 2- and 5-fold higher in the Ler-0 background (4.3F, black 

bars). 
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4.4.3 F-box-Nictaba protein occurrence in trichomes 

As already described previously (Chapter 1), F-box-Nictaba protein is a member of the family of 

nucleocytoplasmic plant lectins. Since these types of lectins are presumed to be present in the 

nucleus and cytoplasm of plant cells in minute concentrations (Lannoo and Van Damme, 2010), they 

are rarely detectable by immunodetection methods. Nevertheless, based on the qRT-PCR results 

indicating very high F-box-Nictaba gene up-regulation in the trichomes of A. thaliana plants 

(especially of ecotype Ler-0), Western blot analysis was performed on total protein extracts from 

unprocessed leaf material and from isolated trichomes of 4-week-old WT Col-0 and WT Ler-0 A. 

thaliana plants as well as from unprocessed leaf material from the leaves of mutant GLABRA1 plants 

using a specific anti-F-box-Nictaba antibody. As depicted in Fig. 4.4, two distinct bands could be 

detected in the protein extracts from trichomes of both ecotypes, although the intensity of the 

signals for the trichome extract from Ler-0 was much stronger. Interestingly, the two polypeptides 

have a much higher MW than expected for F-box-Nictaba (31.3 kDa). MW estimation using 

calibration of the protein marker, yielded polypeptides of approximately 61.4 kDa and 68.1 kDa. No 

bands were detected for any of the protein extracts from unprocessed leaves. 

 

 

 
Fig. 4.4   Western blot on total protein extracts purified from unprocessed rosette leaves and trichomes of 4-week-old WT 

Col-0 and WT Ler-0 A. thaliana plants as well as from unprocessed rosette leaves of the mutant GLABRA1 plants. 

Immunodetection was performed using a specific anti- F-box-Nictaba antibody. Equal amounts of proteins (10 µg) were 

loaded in each lane. M: protein marker; C+: positive control (0.2 µg of purified recombinant Nictaba domain of F-box-

Nictaba protein).  
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4.5 Discussion 

4.5.1 F-box-Nictaba expression is pronounced in non-glandular A. thaliana trichomes  

F-box-Nictaba gene expression was quantified in trichomes isolated from rosette leaves of 3-, 4- and 

5-week-old WT A. thaliana Col-0 plants (Fig. 4.2A). The relative expression level of At2g02360 in 

trichomes was calculated in comparison to At2g02360 mRNA levels in unprocessed rosette leaves 

(still comprising trichomes). Intriguingly, despite a clear F-box-Nictaba promoter activity in the 

trichomes, only an approximately 2-fold up-regulation of F-box-Nictaba was detected in the 

trichomes of Col-0 plants. This discrepancy between the GUS staining data and the gene expression 

analysis via qRT-PCR is very likely due to the trichomes still present on the rosette leaves taken as a 

control sample, leading to a considerable underestimation of the expression value. Ideally, gene 

expression in the isolated trichomes should be assessed relatively to rosette leaves devoid of 

trichomes to minimize this effect, but unfortunately extensive tissue damage after trichome isolation 

does not allow reliable RNA isolation from the processed leaf material. To address this issue, F-box-

Nictaba transcript levels were analyzed in rosette leaves of GLABRA1 mutant A. thaliana plants, 

which are completely trichomeless (Oppenheimer et al., 1991). Since those mutant plants were 

created in a Ler-0 background, the expression analysis required trichome isolation from rosette 

leaves of WT A. thaliana Ler-0 plants. Unexpectedly, in contrast to the outcome of the expression 

analysis in Col-0 plants, the trichome-specific expression of F-box-Nictaba gene was already clear in 

Ler-0 background when compared to unprocessed rosette leaves, with a higher gene expression in 

trichomes up to 150 times (Fig. 4.2B). Comparison of F-box-Nictaba expression in Ler-0 trichomes 

compared to trichomeless GLABRA1 rosette leaves showed an even more striking up-regulation in 

trichomes up to 175-fold increase in transcript levels. Therefore, as presumed before based on the 

promoter sequence analysis, most probably F-box-Nictaba gene expression in the trichomes is under 

control of MYB transcription factors (Dubos et al., 2010) which can bind to the multiple MYB-like cis-

regulatory elements present in the F-box-Nictaba promoter (Fig. A3.1; Ni et al., 2008; Shangguan et 

al., 2008). 

One of the reasons why it was not possible to demonstrate a trichome-specific F-box-Nictaba 

expression in Col-0 plants by qRT-PCR, while it was perfectly feasible in Ler-0 plants even when the 

relative expression was measured compared to unprocessed rosette leaves, is the difference in 

trichome density between the two ecotypes. As reported by Larkin et al. (1996) and Symonds et al. 

(2011), Col-0 plants contain approximately 3.5 times more trichomes on their leaves (and slightly 

bigger ones) than Ler-0 plants, and therefore the underestimation of F-box-Nictaba expression in 

trichomes of Col-0 when compared to unprocessed rosette leaves is much more critical. Another 

possible explanation is brought forward by comparison of the absolute transcript levels for the F-

box-Nictaba gene between WT A. thaliana plants with a Col-0 background to WT plants with a Ler-0 

background. As depicted in Fig. 4.2C, absolute transcript levels for the F-box-Nictaba gene were 

higher in Col-0 than in Ler-0 background, irrespective whether transcript levels are compared in 
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isolated trichomes or complete rosette leaves. This result can be confirmed by the microarray 

expression data available for natural variation between Arabidopsis ecotypes on the eFP browser 

(Winter et al., 2007). Nevertheless, the differential expression between the two ecotypes was much 

more prominent when the unprocessed leaf materials were compared. However, despite the 

preferential expression of F-box-Nictaba in Col-0 trichomes as visualized by the GUS assay (Chapter 3, 

Section 3.4.5, Fig. 3.3B), some basal gene expression was also clear in non-trichome parts of the leaf 

(e.g. major leaf vein, Fig. 3.3B – 1.10 and 6.90b). 

 

What is more, there were striking differences in the relative gene expression in the trichomes 

depending on the age of plants (especially between 3- and 4-week-old plants). The changes might be 

related to the prevalence of the trichomes during the development of Arabidopsis plants. Indeed, 

leaves produced early in rosette development lack trichomes on their abaxial side, whereas leaves 

produced later in time possess trichomes on both their adaxial and abaxial sides (Telfer et al., 1997). 

Apparently, the timing of abaxial trichome formation is strongly affected by photoperiod conditions, 

where short day conditions delay the production of leaves with abaxial trichomes and, conversely, 

during long day photoperiod leaves with abaxial trichomes develop faster. Interestingly, photoperiod 

sensitivity of abaxial trichome formation develops gradually over time and exhibits its highest level 

about 24 days after germination (Chien and Sussex, 1996). This timing would correspond well with 

the striking differences observed in the experiments here in the relative gene expression levels in the 

trichomes especially between 3- and 4-week-old plants. 

4.5.2 The genes GALT1  and FUT13 encoding enzymes required for the synthesis of 

glycan structures specifically recognized by F-box-Nictaba are co-expressed in 

A. thaliana trichomes of Ler-0 background  

Previously, the Arabidopsis F-box-Nictaba protein has been shown to be a functional lectin that can 

bind N- and O-glycans containing LacNAc structures, Lewis A, Lewis X, Lewis Y and type-1 B antigen 

motifs (Stefanowicz et al., 2012). As stated in Chapter 2, LacNAc-containing glycans have only been 

discovered in higher animals, parasitic nematodes, viruses and certain pathogenic bacteria in which 

they are present on cell surface glycoproteins and glycolipids (Zhou, 2003; Stanley and Cummings, 

2009; van Die and Cummings 2010). At present, plants (including mosses and ferns as well as seed 

plants) were only reported to contain Lewis A-modified N-glycans. Other LacNAc structures have not 

been identified in plants yet. Since N-glycan modification with Lewis A motifs takes place in the Golgi 

apparatus, plant-specific Lewis epitopes were only shown on some extracellular glycoproteins and on 

membrane-bound glycoproteins present at the plant cell surface (Melo et al., 1997; Fitchette et al., 

1999; Léonard et al., 2002; Koprivova et al., 2003; Viëtor et al., 2003; Parsons et al., 2012). Yet, it is 

not clear if and how the Arabidopsis F-box-Nictaba protein, which is localized in the nucleus and 

cytoplasm of the plant cell, can bind to these plant secreted or membrane-bound Lewis A structures. 

Moreover, in contrast to most plant families (Fitchette-Lainé et al., 1997), the occurrence of Lewis A 
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motifs in Arabidopsis was shown to be generally low and tissue specific with highest levels in 

pedicels, stems and nodes, moderate levels in siliques and shoot apex, but was not detectable in the 

leaves (Strasser et al. 2007). Nevertheless, to our knowledge, Lewis A appearance has not been 

studied yet in A. thaliana trichomes. Thus, since F-box-Nictaba expression is prominent in the 

trichomes, we addressed the important question whether Lewis A motifs could be specifically 

synthesized in the trichomes as well. Analysis of the expression of the genes encoding a β1,3-

galactosyltransferase (GALT1) and α1,4-fucosyltransferase (FUT13), the two enzymes indispensable 

for Lewis A synthesis in A. thaliana (Léonard et al., 2002; Strasser et al., 2007), demonstrated that 

both of them are indeed expressed in trichomes of A. thaliana plants. However, expression analysis 

in the trichomes of Col-0 A. thaliana plants showed that GALT1 mRNA levels were in fact significantly 

2- to 5-fold lower in the trichomes of WT A. thaliana Col-0 plants compared to the complete leaf 

tissue (Fig. 4.3A). FUT13 was not differentially  expressed (Fig. 4.3B). Strikingly, both GALT1 and 

FUT13 were considerably up-regulated in the trichomes of WT A. thaliana with Ler-0 background 

reaching respectively up to 29-fold and 7-fold increase in transcript levels (Fig. 4.3C-D). This result 

strongly resembles the outcome of the F-box-Nictaba gene expression analysis in trichomes (Fig. 

4.2A-B). What is more, all three genes reached their highest trichome-specific expression in 4-week-

old Arabidopsis Ler-0 plants. These data indicate that the two enzymes required for biosynthesis of 

Lewis A structures and the carbohydrate-binding protein F-box-Nictaba are co-expressed in the 

trichomes of A. thaliana Ler-0 plants. Obviously, the fact that Lewis A-containing glycans could be 

synthesized in the trichomes does not indicate that they would be available to F-box-Nictaba within 

the nucleocytoplasmic compartment of the cell. Further studies are required to clarify the issue of 

the availability of specifically glycosylated proteins which could be recognized by F-box-Nictaba and 

targeted for proteasomal degradation. 

4.5.3 The F-box-Nictaba protein is abundant in A. thaliana trichomes  

The F-box-Nictaba protein was detectable in the trichomes isolated from rosette leaves of 4-week-

old WT A. thaliana plants of both Col-0 and Ler-0 ecotypes, while no band for the protein could be 

visualized by Western blot analysis for any of the tested unprocessed leaf materials (Fig. 4.4). This 

result is in agreement with the data from the gene expression analysis by qRT-PCR and the previously 

obtained GUS histochemical staining results (Chapter 3, Section 3.4.5) showing preferential 

At2g02360 gene expression and promoter activity in the trichomes. However, in contrast to the qRT-

PCR data which showed 7-fold higher expression of the F-box-Nictaba gene in the trichomes of 4-

week-old A. thaliana Col-0 plants than in the corresponding trichomes of Ler-0 background (Fig. 

4.2C), F-box-Nictaba protein levels were much higher in the trichomes of Ler-0 plants. Yet, it has to 

be noted that as F-box proteins play a regulatory role in the cell by recognizing and targeting specific 

substrates for proteasomal degradation, likewise they are themselves tightly controlled by the UPS 

(de Bie and Ciechanover, 2011). It has been widely reported that F-box proteins are recognized by E3 

Ub ligases, labeled with Ub, and immediately degraded  by the proteasome (An et al., 2010; Bashir et 
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al., 2004; Kim et al., 2003; Klitzing et al., 2011; Magori and Citovsky, 2011a; Wei et al., 2004). With 

respect to rapid protein turnover, high mRNA levels do not necessarily mean that the corresponding 

F-box protein is abundantly present at  a certain time point or location. What is more, it has been 

demonstrated that proteasomal degradation of F-box proteins can occur via  the autoubiquitination 

mechanism in the absence of the specific substrate (Galan and Peter, 1999; Scaglione et al., 2007; 

Yen and Elledge, 2008).  

Interestingly, while the GALT1 and FUT13 genes required for Lewis A structures biosynthesis are 

highly up-regulated and co-expressed with the F-box-Nictaba gene in the trichomes of 4-week-old 

Ler-0 A. thaliana plants, their transcript levels were actually significantly (30-fold and 5-fold) lower in 

the trichomes of 4-week-old Col-0 plants compared to those in the trichomes of Ler-0 plants. 

As shown in Fig. 4.4, instead of the expected single band of approximately 31.3 kDa, two distinct 

bands could be detected in both trichome extracts corresponding to 61.4 kDa and 68.1 kDa, which is 

roughly double of the expected protein MW. In fact, a very similar double-band pattern of F-box-

Nictaba was previously observed in the protein extracts from the medium of P. pastoris cultures 

recombinantly expressing the His-tagged F-box-Nictaba protein (Chapter 2, Section 2.4.2, Fig 2.2A). 

Interestingly, for some cultures both the protein of expected size as well as the two distinct bands of 

higher MW were detectable (supplementary Fig. A4.1). What is more, transgenic A. thaliana plants 

transformed with a construct for overexpression of F-box-Nictaba protein also produced a protein of 

much higher MW than anticipated (Chapter 3, Section 3.4.7.2, Fig 3.10). The occurrence of two 

clearly separate protein bands is rather puzzling and could point towards protein modification as 

recently demonstrated for the SAI-LLP1 lectin-like glycoprotein (Armijo et al., 2013). Based on the AA 

protein sequence, F-box-Nictaba comprises several putative sites for post-translational modifications 

including one N-glycosylation (Schwarz et al., 2011; Strasser, 2014), six O-GlcNAcylation (Fitchette et 

al., 2007), three N-myristoylation (Boisson et al., 2003; Podell and Gribskov, 2004) and two 

SUMOylation sites (Park et al., 2011) (Fig. 4.5). Until now it was demonstrated that the F-box-Nictaba 

protein recombinantly expressed as secreted protein in P. pastoris was indeed N-glycosylated and 

PNGaseF-driven removal of the glycan moiety resulted in a protein size shift by 2.6 to 3.8 kDa 

(supplementary Fig. A4.2). It has to be pointed out however, that although the sequence carries a 

putative N-glycosylation site, F-box-Nictaba is not predicted to follow the secretory pathway in A. 

thaliana. Clearly, further studies are needed to investigate the possibility of F-box-Nictaba post-

translational modification(s) in vivo, especially in view of the putative relevance of these events for 

the functionality of F-box-Nictaba in the UPS and its physiological role in plants. 
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Fig. 4.5  Amino acid sequence of the F-box-Nictaba protein. Sites for putative post-translational modifications and location 
of Cys residues have been indicated on the sequence. 

4.5.4 Conclusion  

The outstanding over-expression of the carbohydrate-binding protein F-box-Nictaba in Arabidopsis 

trichomes of Ler-0 background in comparison to complete leaves, together with the fact that the two 

enzymes required for the biosynthesis of Lewis A structures are co-expressed in the trichomes of Ler-

0 A. thaliana plants, is  very intriguing and tempt to speculate regarding a possible interaction 

between F-box-Nictaba and these glycan motifs. Obviously, the fact that Lewis A-containing glycans 

are synthesized in the trichomes does not indicate that they are available to F-box-Nictaba within the 

nucleocytoplasmic compartment of the cell. Further studies are required to clarify the issue of the 

availability of specifically glycosylated proteins which could be recognized by F-box-Nictaba and 

targeted for proteasomal degradation. Our results also show that one has to be extremely careful 

when drawing conclusions based on biological data available for the same plant species but of 

different genetic background, as differences may be tremendous. Finally, by demonstrating a 

remarkable over-expression of a stress-related glycan-binding F-box protein and co-expression of the 

two enzymes required for Lewis A structure biosynthesis in Arabidopsis trichomes, our research 

sheds a new light on the putative role of the non-glandular trichomes in plant stress responses and 

glycan  signaling. 
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Plants are constantly challenged with a plethora of different environmental stresses and as sessile 

organisms they cannot avoid these threats. Consequently, both abiotic and biotic stresses 

tremendously affect the productivity of crop plants and constitute a major issue of contemporary 

agriculture and food security worldwide (Godfray et al., 2010; Maxmen, 2013; Oerke, 2006). 

Nevertheless, plants have developed diverse defense mechanisms which enable survival under 

unfavorable conditions. Studies of these natural strategies are necessary in order to understand the 

complexity of plant stress responses and to implement the acquired knowledge in development of 

more resistant, high yield and improved quality crops (Agarwal et al., 2013; Bita and Gerats, 2013; 

Ferry and Gatehouse, 2010; Jewell et al., 2010; Reguera et al., 2012).  

One of the many different plant strategies to respond to environmental cues involves a specific 

group of stress-inducible carbohydrate-binding proteins, called lectins. These specialized proteins are 

presumably playing a role in stress by mediating glycan signaling (Lannoo and Van Damme, 2010; Van 

Damme et al., 2011), however their modes of action are largely unclear. Concurrently, in view of the 

exceptional complexity, glycosylation becomes recognized as a multidimensional coding system with 

important, yet not well studied physiological functions (Rüdiger and Gabius, 2009; Pilobello and 

Mahal, 2007). Another plant stress defense mechanism, which has attracted growing attention of 

numerous reasearch groups in the last years, is the UPS. It is a multifarious machinery responsible for 

the elimination of misfolded or damaged proteins but also playing a pivotal role in controlling  a 

multitude of physiological processes by selective degradation of key regulatory proteins. Particularly 

in plants, this highly complex and tightly regulated system appears to be of crucial importance since 

in no other kingdom the UPS comprises as many remarkably diverse components (Vierstra, 2009). 

The key constituents are the F-box proteins conferring specificity to the UPS by selective recognition 

and interaction with the targets destined for degradation. To date, more than 800 genes encoding 

putative members of the F-box protein family have been found in A. thaliana (Hua et al., 2011), all of 

which could theoretically target different substrates for proteasomal degradation. Thereby, F-box 

proteins regulate a miriad of cellular events and allow fast as well as highly specific plant responses 

to internal and external signals (Guo et al., 2013; Kelley and Estelle 2012; Lechner et al., 2006; 

Marino et al., 2012).  

The function of most of the F-box proteins and their relevance for plant physiology remain very 

vague. In particular, little is known regarding the role of plant F-box proteins in glycan signaling. A 

few years ago, a group of putative plant-specific glycan-binding F-box proteins have been identified 

(Delporte et al., 2015; Dinant et al.,2003; Lannoo et al., 2008), which could presumably function in 

Ub-mediated glycoprotein degradation, and thus integrating both the UPS field and the glycosylation 

system as a mechanism in plant stress signaling. The members of this protein family contain a C-

terminal domain homologous to Nictaba, the nucleocytoplasmic lectin from tobacco plants (Chen et 

al., 2002; Lannoo, 2007), and are widespread in the plant kingdom (Delporte et al., 2015; Lannoo et 

al., 2008).  
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Fig. 5.1 Hypothetical model representing the physiological processes F-box-Nictaba might be involved in in A. thaliana cells. Numbers correspond to the sections in this Chapter. 

•' =-I / ' \ 

·-. 

Q) 
c ro ..... 

..c 
E 
Q) 

E ro 
E 

ro l la 3 ä: 
Q) 

u 

... ............ ... 

• • 
••• 

e SA 
Defense 
proteins 

~ 

,--------------------- - , 
f@ Glycosylated ~ : 
1 effectors I stress signa Is I 1 
I I 
1 regulatory proteins? 1 

' -----------------------/ 

SCfF-box-Nictaba 

= ~ 

I 

Signaling tunetion 
via UPS? 

' / I \ 
I /VVV \ 

Cytosol 

" I 
I 

~ Oefen se /VVV - ,' ói,;;,~;tÏo-;.? 

- - -- - -- -, 
\ 

~~~ I 

\).\(1~ I 
~: 

I 

~) __ ___ ___ ." 

-------- .... 
~ genes t 
\\ 0 F-box-Nictaba j \.... ~ ~ 
\~ 

' ' Nucleus 
~ ~ 

I 
/ 

./ 
-



General discussion and perspectives ____________________________________________________ 
 

147 
 

This PhD work was dedicated to study the physiological relevance of one of these F-box-Nictaba 

homologs from A. thaliana, showing the highest sequence similarity with the Nictaba protein from 

tobacco. Using glycan array technology, detailed expression analyses and experiments on transgenic 

plants, the involvement of F-box-Nictaba in plant physiology and stress responses was investigated. 

This chapter reflects on the significance of the resulting findings, prospects for future reasearch and, 

in broader perspective, how these studies could contribute to bioengineering of more resistant 

plants. Fig. 5.1 presents an overview of processes in which F-box-Nictaba is or might be involved as 

discussed further.  

5.1 Interaction of F-box-Nictaba with glycans 

By means of glycan array technology we have demonstrated that the F-box-Nictaba protein, 

recombinantly expressed in P. pastoris and purified by affinity chromatography, is a functional lectin 

binding glycans through its C-terminal Nictaba-like domain (Chapter 2). Despite the initial hypothesis 

that, similarly to the tobacco Nictaba, F-box-Nictaba would preferentially interact with GlcNAc 

oligomers, the protein showed affinity towards substantially different glycan motifs. The only glycans 

both recognized by F-box-Nictaba and occuring in plants included type 1 LacNAc and Lewis A 

structures and feruloylated α1-5-L-arabinobiose/triose motifs. Obviously, such lectin specificity ruled 

out the suggested role of F-box-Nictaba in the Ub-mediated proteasomal degradation via the ERAD 

pathway of the misfolded or unassembled glycoproteins modified with a Man3-9GlcNAc2 N-glycan. 

Despite that, however, this distinct affinity for glycans does not preclude F-box-Nictaba from 

functioning in glycoprotein degradation via the UPS, but indicates that it will target another class of 

glycoproteins. In fact in mammals, where the first sugar-binding F-box proteins have been described, 

the members of the Fbs family differ in glycan binding specificities, but still all of them can associate 

with the components of the SCF Ub ligase complex, and thus presumably function in UPS (Glenn et 

al., 2008). Likewise, the F-box-Nictaba protein under study has been demonstrated to interact with 

the Arabidopsis Skp1-like (ASK) constituents of the SCF in Arabidopsis (Arabidopsis Interactome 

Mapping Consortium, 2011; Takahashi et al., 2004).  

 

Still, a few questions arise in view of the potential function of F-box-Nictaba in Arabidopsis. First, it 

remains to be elucidated what is the function and significance of the recognition of these 

carbohydrate structures by F-box-Nictaba in A. thaliana. In order to answer this question the spatial 

distribution and possible interaction between F-box-Nictaba and its putative glycosylated ligands, i.e. 

glycoproteins containing type 1 LacNAc, Lewis A structures and/or feruloylated arabinans, needs to 

be investigated in more detail. Microscopical analyses have shown that F-box-Nictaba is located in 

the nucleocytoplasmic compartment of the plant cell (Lannoo, 2007). Unfortunately, little is known 

regarding carbohydrate structures present in the nucleus and cytoplasm (Funakoshi and Suzuki, 

2009; Maeda and Kimura, 2014; Maeda et al., 2010). At present, Lewis A epitopes have been 

reported only at the cell surface or in glycoproteins secreted by plant cells or in the Golgi apparatus 
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(Fitchette et al., 1999; Léonard et al., 2002; Melo et al., 1997; Strasser et al., 2007), while α1,5-

arabinans occur exclusively in the cell wall (Pettolino et al., 2012; Verhertbruggen et al., 2009, 2013). 

Since apart from Lewis A in Golgi stacks, the recognized structures have not been detected within 

any intracellular compartment of the plant cell further experiments are needed to investigate the 

location of F-box-Nictaba protein and the presence of type 1 LacNAc structures and feruloylated 

α1,5-arabinans in plant tissues, plant cells and subcellular compartments.  

Second, the function of the recognized carbohydrate structures in plant physiology is not understood 

well. Although the biological role of  Lewis A epitopes in plants still remains unknown, in mammals 

they are involved in the cell-to-cell recognition, in selectin-dependent cell adhesion processes and in 

interactions with pathogens (Stanley and Cummings, 2009). Thus, by analogy, it could be 

hypothesized that Lewis A motifs present at the plant cell surface might also be involved in cell-to-

cell communication or in plant-pathogen interactions. Moreover, secretion of glycoproteins 

containing Lewis A epitopes could suggest a putative role in stress signaling (Fitchette et al., 1999; 

Léonard et al., 2002; Melo et al., 1997). Somewhat more information is available regarding the role 

of the arabinans in plants (Caffall and Mohnen, 2009; Harholt et al., 2010). The feruloylated α1,5-

arabinans have an important structural function in providing crosslinks between pectic 

polysaccharides via oxidative dimerization of feruloyl groups (Levigne et al., 2004; Ralet et al., 2005; 

Waldron et al., 1997). Owing to their high mobility (Ha et al., 2005), arabinans influence plant cell 

wall flexibility upon water deficit stress (Moore et al., 2008; Tang et al., 1999). It has been 

demonstrated that a decreased content of arabinans stiffens the plant cell wall and affects plant 

responses to mechanical stress (Jones et al. 2003, 2005; Ulvskov et al., 2005; Verhertbruggen et al., 

2013). The α1,5-arabinans are associated with fruit ripening in apple (Peña and Carpita, 2004) and 

are developmentally regulated in potato (Bush et al., 2001). Feruloylated arabinans in the cell walls 

of guard cells turn out to be essential for stomatal movements, which become blocked after 

treatment with an endoarabinanase specific for α1,5-arabinan or with feruloyl  esterase (Jones et al. 

2003, 2005). Furthermore, α1,5-arabino-oligosaccharides are implicated in plant-pathogen 

interactions. The Arabidopsis arad1 mutant with reduced arabinan content in the cell walls has been 

shown more susceptible to infection with the fungal pathogen B. cinerea, which is known to exploit a 

range of cell wall hydrolases as part of its invasion strategy (including the recently identified novel α-

1,5-L-endoarabinanase; Nafisi et al., 2014).  

 

Thus, it appears that both Lewis A motifs and α1,5-arabinans are associated with plant defense 

responses and this could correspond well to the emerging role of F-box-Nictaba in plant-pathogen 

interactions described in Chapter 3. During the infection pathogens damage the plant cell wall using 

degradation enzymes (as the α-1,5-L-endoarabinanase from B. cinerea; Nafisi et al., 2014), resulting 

in the release of damage-associated molecular patterns, which are the cell wall fragments  serving as 

a signal for a plant to activate the intracellular defense machinery (Nühse, 2012; Wirthmueller et al., 

2013). Yet, these fragments do not enter the cell, but are perceived extracellularly by membrane-

bound receptors. Nevertheless, plants can also synthesize numerous endogenous peptide signals in 

response to pathogen infection (Matsubayashi, 2014). They are usually produced as prepropeptides, 
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thus undergo postranslational proteolytic processing and modification including glycosylation. 

Actually, several of these peptides have been reported to be glycosylated with three residues of α-

arabinose, however, they follow the secretory pathway. In contrast, the signaling plant peptide 

effectors localized in the cytosol, like the heat- and Pst DC3000-inducible kiss of death peptide 

activating programmed cell death, are not anticipated to be glycosylated (Blanvillain et al., 2011; 

Huffaker et al., 2006).  

On the other hand, in view of the presumed role of F-box-Nictaba in plant defense against 

pathogens, putative targets could also be of foreign origin. Different glycans containing LacNAc and 

arabinan motifs have been found in the cell walls of mammalian bacteria and viruses and apparently 

are important for the virulence of these pathogens (Alderwick et al., 2011; Mishra et al., 2012; 

Monzavi-Karbassi et al., 2004; Preston et al., 1996; Wang et al., 2000). Fucosylated lactosamines 

participate in adhesion of the HIV-1 envelope glycoprotein to dendritic cells  (Monzavi-Karbassi et al., 

2004). Lactosamine motifs from lipooligosaccharides of Gram-negative bacteria are one of the main 

virulence factors allowing adhesion to mammalian cells (Preston et al., 1996). The 

lipopolysaccharides of most Helicobacter pylori strains contain complex carbohydrates structurally 

related to the human blood group antigens (Lewis X, Y, A). Thereby, the bacteria exploit molecular 

mimicry of mammalian epitopes to avoid immune recognition for both persistent infection and 

pathogenesis (Wang et al., 2000). Furthermore, cell walls of mycobacteria comprise 

lipoarabinomannan containing linear α1,5-Ara polymers and branched α1,2/3-Ara structures which 

are powerful immunomodulatory lipoglycans (Alderwick et al., 2011; Mishra et al., 2012). If similar 

structures are present in plant pathogens, they could also constitute important pathogenicity factors. 

Presumably, they could then be detected by the plant during infection as PAMPs and trigger 

downstream defense processes (Newman et al., 2013). However,  these signals are not targeted into 

plant cells but are recognized by membrane-bound receptors. In contrast, bacteria like Pst DC3000 

have developed a sophisticated virulence mechanism involving a type III secretion system, which 

enables the delivery of a mixture of diverse bacterial effector proteins into the plant cell where they 

will suppress plant immune responses and promote disease susceptibility (Lindeberg et al., 2012). 

Glycosylation of secreted proteins by bacteria is rarely reported (Nothaft and Szymanski, 2010). 

 

So, all these carbohydrate-related structures remain speculative interactors for F-box-Nictaba. 

Therefore, in order to investigate the physiological role of F-box-Nictaba and its interaction with 

glycans within A. thaliana cells, future research should focus on the identification of the interacting 

partners localized in the nucleus and cytoplasm of plant cells and their characterization in view of 

possible modification with carbohydrate structures. Certainly, it would be interesting to include both 

untreated plants, as well as heat-stressed, SA-treated and infected plants to distinguish between 

normal state and stress-related interactions and to possibly identify targets of non-plant source. 

Preliminary assays could be performed by a pull-down technique using recombinant F-box-Nictaba 

and Nictaba domain proteins which are now available (as described in Chapter 2). Results could be 

further confirmed by more elaborated techniques including tandem affinity purification (Xu et al., 

2010) and bimolecular fluorescence complementation for interaction studies in vivo (Kerppola, 
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2008). These experiments would also reveal whether F-box-Nictaba interacts with the components of 

the SCF machinery, and thus if the protein could function in proteasomal degradation of 

(glyco)proteins. Additionally, F-box-Nictaba protein variants with a deficient carbohydrate binding 

activity could be used to validate the relevance of the protein-carbohydrate interactions. Likewise, 

phenotypic analysis of transgenic A. thaliana plants overexpressing such mutant forms of F-box-

Nictaba might bring valuable insight in the physiological role of the carbohydrate-binding properties 

of F-box-Nictaba in Arabidopsis plants. 

Furthermore, since F-box-Nictaba encoded by At2g02360 is just one of the multiple Nictaba 

homologs containing an N-terminal F-box domain in A. thaliana, it would be relevant to extend the 

research by functional studies of other members of the family. Since the AAs essential for glycan 

binding activity are conserved in most F-box-Nictaba homologs, it is likely that at least some of them 

are also functional lectins. Judging from the distinct glycan-binding properties between F-box-Nictaba 

and Nictaba, other homologs may theoretically exhibit yet another distinct specificity, a specificity 

comparable to the one of F-box-Nictaba or could present glycan-binding properties similar to those 

of Nictaba. Consequently, the latter (putative) representatives of the F-box-Nictaba family could still 

be identifed as functional homologs of the mammalian Fbs proteins playing a role in the ERAD 

pathway (Yoshida and Tanaka, 2010). 

5.2 Stress-inducible expression of F-box-Nictaba 

As presented in Chapter 3, an extensive expression analysis of At2g02360, the gene encoding F-box-

Nictaba, has been performed in A. thaliana plants which were grown under optimal growth 

conditions, as well as treated with different plant hormones, biotic and abiotic stresses. Based on the 

outcome of these experiments, it could be concluded that F-box-Nictaba gene expression is generally 

low and stable during the life cycle of Arabidopsis plants without any obvious tissue specificity. 

Interestingly, F-box-Nictaba expression is significantly up-regulated in plants (1) following treatment 

with SA, a plant hormone involved in plant defense responses towards pathogen infection, (2) after 

infection with the virulent hemibiotrophic bacterium Pst DC3000, and (3) after heat stress. This 

stress-inducible expression pattern suggests that F-box-Nictaba has a role in plant stress responses, 

more particularly in SA-mediated plant-pathogen interactions, presumably via glycan signaling.  

 

SA is an immune signal produced by plants in response to pathogen challenge, and which is essential 

for providing broad spectrum resistance (Vlot et al., 2009). Upon infection, SA initiates transcriptional 

reprogramming in order to induce systemic acquired resistance (SAR) crucial for plant survival. 

Similar to all other plant hormones (Dharmasiri et al., 2013), the SA signaling pathway is tightly 

regulated via the UPS, although the mode of signal perception somewhat differs and does not 

include F-box protein(s). Fu et al. (2012) have recently identified the receptors for SA, and proposed 

the mechanism of SA perception and its role in triggering localized programmed cell death (PCD) and 

establishing SAR (Fig. 5.2). In Arabidopsis, the central role in SAR activation is attributed to the 



General discussion and perspectives ____________________________________________________ 
 

151 
 

transcription cofactor named nonexpresser of PR genes 1 (NPR1). Whereas NPR1 is required for basal 

resistance and for the activation of SAR, it negatively regulates pathogen effector-triggered PCD and 

suppresses the hypersensitive response (HR) (Rate and Greenberg, 2001; Spoel et al., 2009). It has 

been demonstrated that NPR1 paralogues, NPR3 and NPR4, are SA receptors which function as the 

BTB (bric-a-brac–tramtrack–broad complex) adaptors of the Cullin3 Ub ligase and specifically 

recognize and target NPR1 for proteasomal degradation in a SA-dependent manner (Fu et al., 2012; 

Fig. 5.2). In the absence of pathogens, NPR1 remains in the cytoplasm as an oligomer. However, upon 

infection, its disulphide bonds are reduced and transcriptionally active monomers of NPR1 are 

translocated into the nucleus to act as cofactors for transcription factors inducing defense-related 

genes (Mou et al. 2003). Nevertheless, NPR1 in the nucleus is further tightly regulated by NPR3 and 

NPR4 in response to different SA levels. Although both NPR3 and NPR4 are SA receptors and target 

NPR1 for proteasomal degradation, SA binding differently affects their ability to interact with NPR1 

(Fu et al., 2012). Whereas SA promotes the NPR1-NPR3 interaction functioning as a molecular glue, 

SA binding inhibits the interaction between NPR1 and NPR4. What is more, NPR3 binds SA with lower 

affinity than NPR4. Consequently, in SA-deficient mutants CUL3NPR4 constantly targets NPR1 for 

degradation leading to enhanced susceptibility (Fig. 5.2A). Thus, plants maintain basal SA levels 

necessary to block some of the NPR1–NPR4 interactions ensuring the basal resistance (Fig. 5.2B). 

During pathogen infection however, SA levels increase both locally and systemically and form a 

concentration gradient from the infection site (Dorey et al., 1997). In infected cell where the SA level 

is the highest, NPR1 is targeted for proteasomal degradation via  CUL3NPR3, resulting in the activation 

of HR  and PCD (Fig. 5.2C). In turn, a  lower SA level in the neighbouring cells is limitingthe NPR1–

NPR3 interaction. Therefore, NPR1 can accumulate, restrict the spread of HR and PCD and establishes 

SAR (Fig. 5.2D). 

 

 
 

Fig. 5.2  Model of SA perception in determining cell death and survival in response to pathogen challenge (adapted from Fu 

et al., 2012). A, In SA-deficient plants, CUL3
NPR4  

targets NPR1 for proteasomal degradation causing enhanced susceptibility. 

B, In WT plants, a basal SA level reduces  CUL3
NPR4

-mediated NPR1 degradation by blocking NPR4 and confers basal 

resistance. C and D, Upon pathogen infection, SA levels increase locally and systemically. The highest  level of SA in infected 

cells promotes CUL3
NPR3

-driven degradation of NPR1 and leads to effector-triggered immunity (ETI) and PCD  (C).  In  the 

neighbouring cells, lower SA levels limit NPR1-NPR3 interaction and allow NPR1 to accumulate, inhibit PCD and establish 

SAR (D). Ub, Ubiquitin; TF, transcription factor. 
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Interestingly, co-expression analyses presented in Chapter 3 revealed that F-box-Nictaba is co-

expressed with genes encoding NPR1 and NPR4 (At1g64280 and At4g19660, respectively), 

supporting the putative involvement of F-box-Nictaba in SA-mediated plant-pathogen interactions.  

Several other plant lectin-like proteins have been reported to be involved in plant defense against 

pathogens (Arnaud et al., 2012; Bouwmeester et al., 2011, 2014; Desclos-Theveniau et al., 2012; 

Singh et al., 2012), and some of them are regulated in a SA-dependent manner (Armijo et al., 2013; 

Bouwmeester and  Govers, 2009; Huang et al. 2013). However, most of these lectin-like proteins are 

reported to be membrane-bound proteins acting as receptors, which could recognize the glycan-

containing extracellular PAMPs/DAMPs and effectors (Wirthmueller et al., 2013). In contrast, the 

anticipated role of F-box-Nictaba in the UPS requires the localization of this protein in the nucleus 

and/or cytoplasm of plant cells. Indeed, F-box-Nictaba has been previously demonstrated to be a 

nucleocytoplasmic protein (Lannoo, 2007). Similarly, the lectin-like protein PP2-A1 from Arabidopsis 

(encoded by At4g19840), predicted to be localized in the nucleus (Lannoo, 2007), has been recently 

demonstrated to have inducible expression in Arabidopsis plants after infection with Pst DC3000 and 

ET, to act as molecular chaperone and exhibited antifungal activity (Lee et al., 2014). Another F-box-

Nictaba homolog, named VBF which stands for VIP1-binding F-box protein and encoded by 

At1g56250, showed inducible expression in Arabidopsis plants upon A. tumefaciens and E. coli 

infection, and regulated gene expression by directing the VIP1 transcription factor for proteasomal 

degradation, but its extact role in pathogen infection remains unclear (Wang et al., 2014; Zaltsman et 

al., 2010). Another F-box-Nictaba homolog AtPP2-B11 (encoded by At1g80110) is up-regulated after 

drought treatment and negatively regulates plant responses to drought stress (Li et al., 2014d). Both 

At1g56250 and At1g80110 homologs have already been experimentally confirmed to encode nuclear 

or nucleocytoplasmic proteins, although the carbohydrate binding activities of these proteins (VBF 

and PP2-B11) have not been described yet. Altogether, these data demonstrate that the F-box-

Nictaba homolog investigated in this work is not the only stress-inducible representative of this 

protein family.  

Although F-box-Nictaba is induced upon SA treatment, it still needs to be confirmed that the 

expresssion after pathogen infection is indeed SA-dependent. To corroborate this issue, F-box-

Nictaba expression during Pst DC3000 infection should be also checked in A. thaliana  plants 

impaired in the SA pathway. The commonly used Arabidopsis plants to evaluate SA-dependent 

regulation of physiological processes include NahG transgenic lines and sid2 mutants. NahG plants 

synthesize bacterial salicylate hydroxylase, which leads to substantial reduction in endogenous SA 

levels (Friedrich et al., 1995). Sid2 plants are mutated in the ICS1 gene encoding isochorismate 

synthase required for SA synthesis from chorismate in A. thaliana plants (Wildermuth et al., 2001). 

Until now, we only performed qRT-PCR experiments on NahG plants infected with Pst DC3000 and 

indeed, no significant up-regulation of F-box-Nictaba could be detected (Results not shown). Yet,  

these plants are also characterized by the accumulation of catechol upon SA degradation. 

Apparently, catechol mediates an inappropriate production of hydrogen peroxide and thus may 

cause effects attributed to SA deficiency (van Wees and Glazebrook, 2003). Additional experiments 
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with the sid2 mutant lines impaired in the biosynthesis of SA would certainly allow to draw more 

definite conclusions.  

 

Furthermore, since in silico promoter analysis indicated that the At2g02360 promoter sequence 

contains multiple W-box cis-elements as possible targets for WRKY transcription regulators 

commonly associated with stress responses (Bakshi and Oelmüller, 2014; Pandey and Somssich, 

2009), it is suggested that F-box-Nictaba expression is controlled by the SA-inducible WRKY proteins. 

Also, F-box-Nictaba is co-expressed with the NPR1 and NPR4 proteins, which are the key regulators 

of plant defense against bacterial pathogens activating several WRKY transcription factors (Wang et 

al., 2006). To verify the hypothesis of WRKY-mediated regulation of F-box-Nictaba,,its expression 

should be analyzed in mutant lines impaired in the synthesis of these transcription factors (e.g. 

wrky70, wrky18; Knoth et al., 2007; Wang et al., 2006). Finally, to get better insights in the regulation 

of F-box-Nictaba expression during stress, the At2g02360 promoter activity could be visualized by a 

GUS assay on the pAt2g02360:GUS plants (Chapter 3) after treatments with SA, pathogen infection 

and heat stress. 

 

It has been demonstrated that SA signaling, commonly associated with pathogen infection, is also 

playing an important role in thermotolerance in plants (Clarke et al., 2004, 2009; Larkindale et al., 

2005; Zhang and Wang, 2011). Even though the exact mechanism behind SA involvement in plant 

responses to heat stress is still unknown, their signaling crosstalk is evident. For example, pre-

treatment with SA potentiates the accumulation of heat shock proteins after temperature stress 

(Cronjé et al., 2004; Snyman and Cronjé, 2008). NPR1, the  main  regulator  of  the  SAR (mediated by 

SA), is also largely involved in  plant  thermotolerance  (Clarke  et al., 2004; Zhang and Wang, 2011). 

For instance, WRKY39 has been identified as a transcription factor responding to both heat stress as 

well as SA application and  pathogen infection (Dong et al., 2003; Li et al., 2010). As such, WRKY39 

could be a good candidate to be analyzed as possible regulator of F-box-Nictaba gene expression by 

using e.g. the wrky39 mutant A. thaliana plants.  

The transgenic Arabidopsis plants overexpressing F-box-Nictaba only showed reduced leaf damage 

after infection with the virulent bacterium Pst DC3000. Nonetheless, the phenotypic analyses 

described in Chapter 3 should be extended by more detailed analyses including the assessment of 

bacterial growth, cell death and reactive oxygen species (ROS) production to get a better insight into 

the plant defense responses underlying the phenotype. Since KO plants did not exhibit any obvious 

differential behaviour at neither phenotypic or molecular level after stress treatments most probably 

due to protein redundancy, generation of double mutants for pairs of F-box-Nictaba homologs could 

be considered. Alternatively, in view of the high sequence similarity betweeen different F-box-

Nictaba homologs from Arabidopsis, several homologs could be targeted for silencing using 

appropriately designed RNAi constructs.  

As demonstrated in Chapter 3, infection with the necrotrophic fungus B. cinerea lead to slight down-

regulation of F-box-Nictaba gene expression. It has been reported that the fungus can manipulate 

the plant defense machinery for its own benefit (El Oirdi et al., 2011; La Camera et al., 2011). 
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Therefore it would be interesting to check the performance of transgenic plants subjected to 

infection with B. cinerea. On the other hand, expression analysis of F-box-Nictaba in Arabidopsis 

plants after infection with an avirulent Pseudomonas strain could clarify whether F-box-Nictaba 

might also play a role in the gene-for-gene plant resistance (Martin et al., 2003). Moreover, even 

though the reduction in overexpression of F-box-Nictaba gene in the transgenic lines subjected to 

heat stress highlights the relevance of F-box-Nictaba in plant responses to elevated temperature, it is 

rather puzzling why no similar effect was present after pathogen infection. The reason for such strict 

and directed negative regulation as well as the underlying molecular mechanism still remain open 

questions to be addressed in the future.  

Finally, in order to investigate F-box-Nictaba involvement in plant responses to both biotic and 

abiotic stresses, physiological experiments with a combination of stress applications using 

pretreatments with SA/heat stress could be performed on the transgenic plants overexpressing F-

box-Nictaba gene and plants impaired in its expression. Taking into account that in their natural 

environment plants are constantly and simultaneously exposed to multiple stress factors of both 

abiotic and biotic origin, identification of the molecular points of convergence is of crucial 

importance for the development of broad-spectrum stress-tolerant crop plants. Indeed, this 

approach has become recently the focus of plant research (Abuqamar et al., 2009; Atkinson and 

Urwin, 2012; Kissoudis et al., 2014; Rasmussen et al., 2013; Qiao et al., 2013). 

 

Another issue is whether the physiological role of F-box-Nictaba in plant stress responses relies on 

the UPS signaling. Indeed, F-box-Nictaba has already been confirmed by yeast two hybrid screening 

to interact with four different ASK proteins, namely ASK1, ASK2, ASK11 and ASK12 (AIMC, 2011; 

Takahashi et al., 2004). ASKs are adaptor proteins enabling interaction of F-box proteins with the rest 

of the SCF-type Ub ligase. Thus, it seems that F-box-Nictaba could form the SCFF-box-Nictaba complex and 

target specifically recognized (glyco)proteins for proteasomal degradation. As shown by the results of 

plant treatment with MG132, proteasome inhibition did not affect F-box-Nictaba gene expression. 

Typically, proteasome inhibition is performed to check whether a specific protein undergoes 

proteasomal degradation and not to investigate gene expression. Nonetheless, theoretically we 

could expect that F-box-Nictaba could be induced, since the target for F-box-Nictaba would not be 

efficiently eliminated from the cells. However, it does not have to be the case. F-box-Nictaba could 

be tightly regulated posttranscriptionally or posttranslationally rather than at transcriptional level. 

Alternatively, it could be that F-box-Nictaba does not target (glyco)proteins for proteasomal 

degradation. Although the best characterized role of Ub is related to the selective protein 

degradation via the 26S proteasome, ubiquitination constitutes a much more elaborated regulatory 

mechanism which, apart from targeting proteins for proteasomal degradation, controls a variety of 

cellular processes in plants including protein (in)activation, localization, modulation of protein-

protein interactions, DNA repair and gene transcription (Walsh and Sadanandom, 2014). These 

diverse effects are related to different types of substrate ubiquitination: proteins can be mono-, 

multimono- or as well as polyubiquitinated. Furthermore, each Ub contains seven lysines as potential 

points of ubiquitination by another Ub: K6, K11, K27, K29, K33, K48, and K63 (Saracco et al., 2009; 
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Walsh and Sadanandom, 2014). Hence,  if  F-box-Nictaba indeed functions in SCF compexes, it might 

equally well label its substrates with non-K48-linked Ub chains and affect these proteins in a different 

way than by tagging for degradation. Alternatively, F-box-Nictaba has a UPS-independent role as it 

has been already demonstrated for other F-box proteins (Galan et al., 2001; Hermand et al., 2003; 

Kitagawa et al., 1999; Smaldone et al., 2004; Nelson et al., 2007; Yoshida et al., 2007). Certainly, 

future studies should investigate the putative function of F-box-Nictaba in the UPS. Interaction 

studies including tandem affinity purification (Xu et al., 2010) and bimolecular fluorescence 

complementation (Kerppola, 2008) would evaluate if indeed the protein can interact with different 

ASK proteins in vivo. Furthermore, interaction experiments could be performed by a pull-down 

technique using the available recombinant F-box-Nictaba and Nictaba domain proteins, to identify 

possible substrates of F-box-Nictaba and determine how their stability in plants is affected by 

proteasome inhibition. Also it should be checked what is the effect of F-box-Nictaba knockout and 

overexpression in plants on the prevalence and ubiquitination state of the target proteins, both in 

normal growth condiitions as well as after stress application. Finally, different components of the 

SCFF-box-Nictaba complex as well as the putative targets could be recombinantly expressed and used in 

ubiquitination assays to reconstitute and confirm the presumed mechanism in vitro (Petroski and 

Deshaies, 2005b). 

5.3 F-box-Nictaba occurence in trichomes 

GUS histochemical staining experiments performed on transgenic plants (Chapter 3) allowed to 

visualize a preferential F-box-Nictaba promoter activity localized in the leaf trichomes. The 

hypothesis of pronounced expression of F-box-Nictaba in trichomes has been further confirmed by 

qRT-PCR and immunodetection analyses on isolated trichomes (Chapter 4). These results were also 

supported by the identification of cis-regulatory elements responsible for trichome-specific gene 

regulation in the F-box-Nictaba promoter (Ni et al., 2008; Shangguan et al., 2008). Even though 

substantial dissimilarities in the prevalence level have been reported between two different A. 

thaliana ecotypes tested, the trichome-specific expression of F-box-Nictaba in Ler-0 background was 

evident. In fact, apparently Col-0 and Ler-0 ecotypes present generally differential trichome-related 

phenotypes including trichome density and spacing (Larkin et al., 1996).  

The strikingly high up-regulation of the F-box-Nictaba gene in the trichomes of Ler-0 plants lead us to 

consider a possible trichome-specific role distinct from its role in other plants cells. Multiple genes 

with trichome-specific expression, e.g. GL1, GL3, TRY, CPC, GL2, are encoding key regulators of 

trichome development and their mutations lead to diverse abnormal trichome-related phenotypes 

(Kirik et al., 2005; Maes et al., 2008; Rerie et al., 1994; Wester et al., 2009). However, transgenic F-

box-Nictaba-deficient plants and plants overexpressing F-box-Nictaba do contain trichomes,  thus the 

F-box-Nictaba trichome-specific expression does not seem pivotal for trichome development. 

Nonetheless, effects of F-box-Nictaba overexpression and knockout in trichomes should be still 
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investigated at the molecular level and it should be checked in more detail if trichome density and 

structure are not affected in these transgenic plants. 

Based on the emerging involvement of the Arabidopsis non-glandular trichomes in stress signaling 

and as a source of chemical-based defense against invaders (Bruner, 2009; Calo et al., 2006; 

Frerigmann et al., 2012; Wienkoop et al., 2004), it is tempting to speculate that F-box-Nictaba 

expression in trichomes might be implicated in plant stress responses, possibly via glycan signaling. 

Indeed, Marks et al. (2008) showed that arabinose-containing carbohydrates are abundantly present 

in the cell walls of Arabidopsis trichomes. In contrast, although Lewis A glycan structures recognized 

by F-box Nictaba are reported at very low levels in Arabidopsis (Fitchette et al., 1999; Léonard et al., 

2002; Melo et al., 1997; Strasser et al., 2007), yet no information is available regarding their 

occurence in trichomes. In Chapter 4 we were able to demonstrate that the enzymes indispensable 

for Lewis A synthesis in A. thaliana were significantly up-regulated in the trichomes of WT A. thaliana 

with Ler-0 background. Of course, this does not prove the efficient synthesis of Lewis A motifs in 

trichomes and does not indicate that they would be accesible to F-box-Nictaba. Preliminary 

immunodetection studies using the JIM84 antibody specific for Lewis A motifs (Fitchette et al., 1999) 

performed on protein extracts from isolated trichomes unfortunately did not bring satisfactory 

results. Further experiments are required to confirm the presence and, more importantly, cellular 

localization of Lewis A structures in trichomes. Similarly, the subcellular localization of F-box-Nictaba 

in the trichomes should be investigated. Even though transgenic A. thaliana plants overexpressing an 

EGFP-fusion construct of F-box-Nictaba have been generated, no recombinant protein could be 

detected (Results not shown). As an alternative approach, immunolocalization of the native protein 

could be performed in the isolated trichomes, both in untreated plants and after SA/heat-stress 

application (Zhang and Oppenheimer, 2004). It would also be worthwhile to analyze the expression 

of the genes encoding different glycosyltransferases, genes involved in plant defense against 

pathogens and those related to heat stress in the trichomes isolated from transgenic A. thaliana 

plants impaired in F-box-Nictaba expression and those overexpressing the protein.  

 

Furthermore, the question remains if F-box-Nictaba would still function in trichomes as a component 

of the SCF complex mediating selective glycoprotein degradation via the proteasome, or whether it 

might play a UPS-independent role, as it has been demonstrated for mammalian F-box proteins with 

a highly tissue-specific expression (Jonkers and Rep, 2009; Nelson et al., 2007; Yoshida et al., 2007; 

Zhao et al., 2013). Clearly, the UPS in trichomes is a fully functional and very active machinery: it 

post-translationally controls the key regulators of trichome development and it is implicated in the 

endoreduplication process (Pattanaik et al., 2014). Since at the moment identification of the putative 

F-box-Nictaba binding partners is certainly the general bottleneck of the research, interaction studies 

suggested in previous section should definitely also be directed towards unraveling the trichome-

specific aspect of F-box-Nictaba molecular interactions.    

 

Lastly, trichomes and trichome-specific promoters are recently gaining attention as potent targets for 

bioengineering of transgenic plants enhanced in pest and pathogen resistance (Tissier, 2012b). 
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Therefore, studies of a carbohydrate-binding F-box protein involved in glycan-mediated signaling in 

trichomes could provide novel ideas for the potential exploitation of these structures in plant 

protection from adverse environmental conditions. 

5.4 Post-translational regulation of F-box-Nictaba  

Throughout the experimental research presented in this work an unexpected molecular size of F-box-

Nictaba was a recurring issue. Although, based on the AA sequence, the predicted MW of F-box-

Nictaba should be 31.3 kDa, we showed that F-box-Nictaba recombinantly expressed as a secreted 

protein in P. pastoris was detectable in some of the cultures as two distinct bands with a much higher 

MW (approximately 55 kDa) (Chapter 2). Transgenic overexpression A. thaliana plants also 

synthesized F-box-Nictaba as a protein of high MW. However in this case, only a single band 

estimated at approximately 70 kDa was detected (Chapter 3). Finally, native F-box-Nictaba detected 

in protein extracts from trichomes presented a double-band pattern with calculated MW of 61.4 kDa 

and 68.1 kDa (Chapter 4). The repeated occurrence of F-box-Nictaba as a much larger protein than 

anticipated in different biological systems and in independent experiments, often detectable as two 

clearly separate protein bands on Western blot, is very intiguing and could point towards a possible 

protein modification. In silico analyses revealed that the F-box-Nictaba sequence contains putative 

regions for post-translational modifications including one putative N-glycosylation site (Schwarz et 

al., 2011; Strasser, 2014), six O-GlcNAcylation sites (Hart and Akimoto, 2009), three N-myristoylation 

sites (Boisson et al., 2003; Podell and Gribskov, 2004) and two SUMOylation sites (Park et al., 2011) 

(Fig. 4.5). Recombinant F-box-Nictaba protein produced in P. pastoris, characterized by only a slightly 

higher MW, was indeed demonstrated to be N-glycosylated. Yet it is difficult to associate a shift by > 

30 kDa to N-glycosylation, especially in view of the fact that only one putative N-glycosylation site is 

present in the sequence. What is more, F-box-Nictaba was shown to localize to the nucleus and 

cytoplasm of plant cells and is not assumed to be secreted in A. thaliana (Lannoo, 2007). Another 

reason could be O-GlcNAcylation, a modification found on some plant nuclear proteins (Heese Peck 

et al., 1995; Heese Peck and Raikhel, 1998), but here again even the modification of all six available 

sites should not result in such a significant shift in MW. Possible glycosylation of the F-box-Nictaba 

expressed in plant could be verified by comparing its size before and after deglycosylation. In 

contrast, SUMOylation seems much more probable, since one SUMO molecule corresponds to 12 

kDa and SUMOylation may involve protein modification with multiple SUMO units (Park et al., 2011). 

Importantly, SUMOylation affects plant responses to environmental stresses including heat stress 

and defense reactions to pathogen infection. Protein modification with SUMO regulates  its 

subcellualar localization,  modulates protein-protein interactions and influences protein stability by 

antagonizing ubiquitination (Geiss-Friedlander and Melchior, 2007; Gill, 2004). Experiments on the 

SUMOylation of F-box-Nictaba are currently being performed in the lab to investigate this 

hypothesis. 
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Nevertheless, the observed MW of F-box-Nictaba roughly corresponds to double of what we would 

expect. Thus, it could be also speculated that, similarly to its prototype protein from tobacco 

(Nictaba, Chen et al., 2002), F-box-Nictaba forms dimers and reducing conditions of SDS-PAGE were 

not harsh enough to break it. There are eight Cys residues within the AA sequence of F-box-Nictaba 

which could theoretically participate in disulphide bond formation (Fig. 4.5). Provided that F-box-

Nictaba dimerizes, the estimated MW of the dimer would be approximately 62.5 kDa. Although 

stable disulphide bonds are typically formed in the ER in secreted or membrane proteins and are not 

commonly found in the cytosol where the conditions are reducing, it has been demonstrated that 

stress conditions like pathogen infection and heat shock cause cellular redox changes (Baxter et al., 

2013; Mou et al., 2003). In fact, generation of ROS is characteristic for plant responses to both biotic 

and abiotic stresses and is proposed as a key process in the crosstalk (Baxter et al., 2013). SA has 

been found to induce changes in the plant antioxidant system and to protect against heat-induced 

oxidative damage by acting as scavenger of ROS (Clarke et al., 2004; Dat et al.,1998; Larkindale and 

Knight, 2002). An excellent example of protein regulated through the redox changes in the cytoplasm 

is the NPR1 protein. It is retained in the cytoplasm as an oligomer through redox-sensitive 

intermolecular disulphide bonds (Peleg-Grossmanet et al., 2010). However, after pathogen challenge, 

the disulphide bridges are reduced, and NPR1 monomers are released into the nucleus to function as 

transcription cofactors (Mou et al., 2003). Another cytoplasmic protein from Arabidopsis, thioredoxin 

AtTrx-h3, forms various protein structures ranging from low and oligomeric protein species to high 

MW complexes, depending on the heat shock and on the cellular redox status (Park et al., 2009). 

Interestingly, these various forms of the protein are associated with different activities. Under 

normal conditions monomeric/dimeric AtTrx-h3 functions as disulphide reductase, whereas after 

oxidative and heat stress the predominant multimeric form of the protein plays a role  as molecular 

chaperone. In fact, also several F-box proteins funtioning in the UPS in yeast and mammals do 

dimerize. Apparently, dimerization of F-box proteins might influence substrate ubiquitination (Hao et 

al., 2007; Kominami et al., 1998; Li and Hao, 2010; Suzuki et al., 2000; Tang et al., 2007; Welcker and 

Clurman, 2007). Also, some F-box proteins form heterodimers with Skp1 proteins and act 

independently of SCF-mediated degradation process as transcription cofactors, cell cycle regulators, 

in vesicle trafficking (Galan et al., 2001; Hermand et al., 2003; Kitagawa et al., 1999; Smaldone et al., 

2004), or, like the mammalian Fbs proteins, play a role as chaperones to prevent aggregate formation 

(Nelson et al., 2007; Yoshida et al., 2007).  

Disulphide bond formation can be actually predicted in silico, e.g. using DiANNA software for Cys 

state and disulphide bond partner prediction (http://clavius.bc.edu/~clotelab/DiANNA/). The 

software  relies on the presence, location and oxidation state prediction of Cys residues. It indicates 

that there are four possible disulphide bonds within the F-box-Nictaba polypeptide. Input of the 

doubled F-box-Nictaba AA sequence returns four disulphide bonds that might occur with high 

probability between the two polypeptides. In order to verify the hypothesis of F-box-Nictaba 

dimerization, size-exclusion chromatography preserving macromolecular interactions could be 

performed combined with native PAGE.  

http://clavius.bc.edu/~clotelab/DiANNA/
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Clearly, the possibility of F-box-Nictaba (homo/hetero)dimerization and its post-translational 

modification(s) in vivo need to be further studied in more detail, especially in view of the putative 

implication of these events for the functionality of F-box-Nictaba in the UPS and its physiological role 

in plants. 

5.5 Conclusive remarks 

To conclude, the purpose of the research presented in this work was to elucidate the physiological 

role of a putative carbohydrate-binding F-box protein from A. thaliana, F-box-Nictaba. The first 

objective was to investigate the anticipated lectin activity of the protein. It has been demonstrated 

that F-box-Nictaba is a functional lectin and can bind, through its C-terminal Nictaba domain, to 

plant-type glycans including Lewis A motifs and arabino-oligosaccharides. Characterization of the F-

box-Nictaba expression profile in A. thaliana plants was the second goal of the research which was 

accomplished. It was shown that F-box-Nictaba is continuously expressed throughout the lifecycle of 

plants at a relatively low level. However, its expression is induced after stress application including 

SA, pathogen attack and heat stress. It was also demonstrated that F-box-Nictaba is preferentially 

expressed at high levels in the trichomes. The third aim of the project was to show the relevance of 

F-box-Nictaba for plant physiology. Although the underlying mechanism is unknown, it was shown 

that the lectin is involved in plant defense responses against pathogen infection and heat stress.  

Altogether, this study provided evidence for the occurrence of a sugar-binding F-box protein in plants 

and for its role in plant stress physiology. Whether its function in plants is UPS-dependent and relies 

on the carbohydrate-binding activity, remain  open questions until now.   
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SUPPLEMENTARY FIGURES 

 

 
Fig. A2. 1   Grayscale images of the scanned plant glycan microarray probed with a recombinant F-box-Nictaba from 

Arabidopsis (A) and recombinant Nictaba from tobacco (B) tested at 10 µg/ml and immunodetected as described in 

Materials and methods. Glycan structures of highest reactivity for each of the analyzed proteins are marked with their 

glycan ID and colors correspond to the bars in Fig. A2.3 and A2.4. Arrows indicate decreasing concentration of the detected 

glycan sample. Blue boxes mark glycans for which the reaction appears to be aspecific. 
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Fig. A2. 2   Grayscale images of the negative controls for the plant glycan microarray screening including the  scanned non-

probed microarray before the experiment (A) and the scanned microarray probed with antibodies used to detect His6-

tagged proteins (no incubation with a lectin) and immunodetected (B). Blue boxes mark glycans already visible on the array.  
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Fig. A2. 3   Result of the plant glycan array screening with F-box-Nictaba from A. thaliana tested at 10 µg/ml. Results are 

shown for glycans printed at (A) highest (2 mg/ml), (B) intermediate (0.4 mg/ml) and (C) lowest (0.08 mg/ml) concentration. 

Reaction intensities are presented for top 10 glycan structures for each glycan dilution with highest reactivity on the array. 

For glycans detectable in two technical replicates, bars represent their mean value with SD. Colors are representing glycans 

as in Fig A2.1A. 

 

 

                                                                      
Fig. A2. 4   Result of the plant glycan array screening with Nictaba from tobacco tested at 10 µg/ml. Results are shown for 

glycans printed at (A) highest (2 mg/ml), (B) intermediate (0.4 mg/ml) and (C) lowest (0.08 mg/ml) concentration. Reaction 

intensities are presented for top 10 glycan structures for each glycan dilution with highest reactivity on the array. For 

glycans detectable in two technical replicates, bars represent their mean value with SD. Colors are representing glycans as 

in Fig A2.1B.  
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1 GGCCATCTTT TTAACCATTG CTGCATTTTG TTAAAAAACA AATCATATCT 

51 ACAAGTCAGT GAGCTTGTAA AAAATGATCA TATGACATGA GAAAAAGAGA 

101 AGTGAAGGGT TCTTACATGG AGGCGATCAC GGAACATAAG CCCGATTAAG 

151 TAGGGGAGAA CCATGCCAAT GGTGGTTCCA ACCATGATAA TAACAAAACC 

201 GAGACCATAA CCAAAAATCA TCCCAGCTAA CCACATGGAA GGACCAGAAG 

251 GTATCAAGAA CACAGGAAAC AAAGCCAAGG AAACAACAAG GACAATCACG 

301 AGCATAGGAC GGCCAAACGC AGTTGCTTCC CATTGCAAAA TTGGAATAAG 

351 AACCTTCAAT AGAAACAGAC TATTACAATC CAAAGAGCAG AGTATGTGAC 

401 ATGGATCACC ACAAGGAAAT AATCATCAGA AACTTGAGAT TTGAGTAAAG 

451 AAATTACCTT TTGAAACACA AACGGAACTC CCCATTTTCC GAAAACAAGC 

501 GTAAGCAAGA GAGCAACTGC ACATATTCCC AAAGCTTTTA ACCACCACAT 

551 AAATTTCTTA CTCTGCACCT CTGATTGCGA TAGAGACAAC ACGGTTTCAG 

601 CTGGGGAGGC TTCATGAGCC ACAACTAGCC GAACATACTC ATTATCCCTC 

651 ATGTGAGGAG TAGAATTTGC AATATCCTCT CTTGACTCTT TCAATGGGTT 

701 TGACATCAGT GTTCAGAACC TTAAAACTGA AGCCAAAATT CAATATCAGA 

751 GACATAAAAT CACTATTTGT AAGCCATCAA AACAGGAAAA AATCACTGTT 

801 CTATACATTA AACCAACCAA AACCGATCAA GGATAATGGA AACAAACCCT 

851 AGAACATAGC TATATCAATA GATAAACAGA GAGATGATAA AGATGCTTAG 

901 CTTAAAAATC AAAGTATTGA AAAAACTTCA GCAACTTGAA AGACACACAA 

951 AGAGATTACA TACAAGTAAA CGATAACGAA AAAGTAAAGT TAATTACAGA 

1001 AAGAATCAAA ACTCTCCGAA CATAGAAATT TCCGATTACG TCTAAAAAGG 

1051 GGAAAATTCA AACCCAAAAT CAAACGATCA AATACATCAC TAGAGTAATC 

1101 AAATCACTTC GATCTCTCAA TCTAGCTAAA GATCATCACA GGAATTATAA 

1151 AGTAGTAGAG CTAGGGTTTA ACGAATCTCA CAAATCACAC ACTACGGAAA 

1201 CCTAATCAAG CTTCTTGGTA TTAAACGACG GCGTTACGGC GGAGGAAGCT  

1251 TGTACGCCGT CGGAAAAAAC TGGGTTGTTG CGGCGGATTT ACGTTTGTTT 

1301 CAGGTTTAGT GTTGTTTTGC TAGCTTCTCA ACAAGAGAAG CGTGTTTTGT 

1351 GTTTGTTTTT TTTCTTTAAT TCAAATGAAA AATAGATTGT TTGCTTTTAC 

1401 TTAATCTCAT TTTTTATCAA TTTTTTCTTT CGTATTCGTT AGCTTAAGCT 

1451 TTACTTTTCT GGAATAACGA GTCAGACTAT ATTATAAAAA TTCAAAACAA 

1501 ATAATATTCC CACCGTTGAT CCACAATGCA TACCTGACTT GACCTTTTTT 

1551 TAATTGGTTT GTTAGTTTGG AATTTGGATA TTTTCAAAAC CAAATCCTTA 

1601 ACCAACGAAT CCACAATAAT GACCAAAAAA AAACAATGGA GCGTGAAGTA 

1651 GACGCGTGGA TTGTTCACAA ATCAGGGCTA TTTTCGTCAA TATGTAGAAC 

1701 GACTTGAAAT TTTCGTAATC CTTAGGGGTA CTTTCGTAAA TTAATAGAAC 

1751 GACTTGAGAT TTTACACTAG CTTCCGTGGG AGACGGAGAC GAAGATACAA 

1801 GCGTCG 

 

GATABOX  MYBIAT GT1 motif 

GT1CONSENSUS MYBCCONSENSUSAT TGA element 

IBOXCORE GT1GMSCAM4 ARE 

   

 

Fig. A3. 1   At2g02360 promoter sequence, with major putative cis-acting regulatory elements (results according to Place 

database) highlighted. 
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Fig. A3. 2   Relative transcript levels of At2g02360 in 16-day-old WT A. thaliana Col-0 seedlings determined by qRT-PCR 

analyses of two independent biological experiments. n=2; error bars ± SE. Asterisks indicate statistically significant 

differential expression compared to control samples (*p<0.05; **p<0.01). A, At2g02360 expression levels after treatment 

with 100 µM plant hormones. B, At2g02360 expression levels after treatment with cold stress (4°C), 100 mM mannitol and 

150 mM NaCl. C, At2g02360 expression levels in seedlings treated with 50 µM MG132. 

 
  

Hormone treatments

ABA GA3 IAA BAP Ethephon MeJA

R
e

la
ti

v
e

 e
x

p
re

s
s

io
n

 l
e

v
e

l

0

1

2

3
1h

5h

10h

A

**

**

*

**

*

**

*

*

B
MG132 treatment

Time [h]

0 1 2 3 4 5 6 10 24

R
e

la
ti

v
e

 e
x

p
re

s
s

io
n

 l
e

v
e

l

0,0

0,5

1,0

1,5

2,0

Abiotic stresses

Cold Mannitol NaCl

R
e

la
ti

v
e

 e
x

p
re

s
s

io
n

 l
e

v
e

l

0,0

0,5

1,0

1,5

2,0
5h

10h 

24h 

**
**

**



Addendum _________________________________________________________________________ 
 

168 
 

 

1 GGCCATCTTT TTAACCATTG CTGCATTTTG TTAAAAAACA AATCATATCT 

51 ACAAGTCAGT GAGCTTGTAA AAAATGATCA TATGACATGA GAAAAAGAGA 

101 AGTGAAGGGT TCTTACATGG AGGCGATCAC GGAACATAAG CCCGATTAAG 

151 TAGGGGAGAA CCATGCCAAT GGTGGTTCCA ACCATGATAA TAACAAAACC 

201 GAGACCATAA CCAAAAATCA TCCCAGCTAA CCACATGGAA GGACCAGAAG 

251 GTATCAAGAA CACAGGAAAC AAAGCCAAGG AAACAACAAG GACAATCACG 

301 AGCATAGGAC GGCCAAACGC AGTTGCTTCC CATTGCAAAA TTGGAATAAG 

351 AACCTTCAAT AGAAACAGAC TATTACAATC CAAAGAGCAG AGTATGTGAC 

401 ATGGATCACC ACAAGGAAAT AATCATCAGA AACTTGAGAT TTGAGTAAAG 

451 AAATTACCTT TTGAAACACA AACGGAACTC CCCATTTTCC GAAAACAAGC 

501 GTAAGCAAGA GAGCAACTGC ACATATTCCC AAAGCTTTTA ACCACCACAT 

551 AAATTTCTTA CTCTGCACCT CTGATTGCGA TAGAGACAAC ACGGTTTCAG 

601 CTGGGGAGGC TTCATGAGCC ACAACTAGCC GAACATACTC ATTATCCCTC 

651 ATGTGAGGAG TAGAATTTGC AATATCCTCT CTTGACTCTT TCAATGGGTT 

701 TGACATCAGT GTTCAGAACC TTAAAACTGA AGCCAAAATT CAATATCAGA 

751 GACATAAAAT CACTATTTGT AAGCCATCAA AACAGGAAAA AATCACTGTT 

801 CTATACATTA AACCAACCAA AACCGATCAA GGATAATGGA AACAAACCCT 

851 AGAACATAGC TATATCAATA GATAAACAGA GAGATGATAA AGATGCTTAG 

901 CTTAAAAATC AAAGTATTGA AAAAACTTCA GCAACTTGAA AGACACACAA 

951 AGAGATTACA TACAAGTAAA CGATAACGAA AAAGTAAAGT TAATTACAGA 

1001 AAGAATCAAA ACTCTCCGAA CATAGAAATT TCCGATTACG TCTAAAAAGG 

1051 GGAAAATTCA AACCCAAAAT CAAACGATCA AATACATCAC TAGAGTAATC 

1101 AAATCACTTC GATCTCTCAA TCTAGCTAAA GATCATCACA GGAATTATAA 

1151 AGTAGTAGAG CTAGGGTTTA ACGAATCTCA CAAATCACAC ACTACGGAAA 

1201 CCTAATCAAG CTTCTTGGTA TTAAACGACG GCGTTACGGC GGAGGAAGCT  

1251 TGTACGCCGT CGGAAAAAAC TGGGTTGTTG CGGCGGATTT ACGTTTGTTT 

1301 CAGGTTTAGT GTTGTTTTGC TAGCTTCTCA ACAAGAGAAG CGTGTTTTGT 

1351 GTTTGTTTTT TTTCTTTAAT TCAAATGAAA AATAGATTGT TTGCTTTTAC 

1401 TTAATCTCAT TTTTTATCAA TTTTTTCTTT CGTATTCGTT AGCTTAAGCT 

1451 TTACTTTTCT GGAATAACGA GTCAGACTAT ATTATAAAAA TTCAAAACAA 

1501 ATAATATTCC CACCGTTGAT CCACAATGCA TACCTGACTT GACCTTTTTT 

1551 TAATTGGTTT GTTAGTTTGG AATTTGGATA TTTTCAAAAC CAAATCCTTA 

1601 ACCAACGAAT CCACAATAAT GACCAAAAAA AAACAATGGA GCGTGAAGTA 

1651 GACGCGTGGA TTGTTCACAA ATCAGGGCTA TTTTCGTCAA TATGTAGAAC 

1701 GACTTGAAAT TTTCGTAATC CTTAGGGGTA CTTTCGTAAA TTAATAGAAC 

1751 GACTTGAGAT TTTACACTAG CTTCCGTGGG AGACGGAGAC GAAGATACAA 

1801 GCGTCG 

 

 

AACCAAAC/GTTTGGTT MYB-like recognition sites in direct and complementary strand 

 

AACGTG/CACGTT T/G-box elements in direct and complementary strand  

 

Fig. A3. 3   At2g02360 promoter sequence, with highlighted putative cis-acting regulatory elements possibly involved in 

promoter activity in trichomes. Sequence analysis was performed with one mismatch allowed. 
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Fig. A3. 4   Level of At2g02360 expression across the lifecycle of WT A. thaliana Col-0 plants generated using the 
Genevestigator search tool. 
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Fig. A4. 1   Western blot of crude protein extracts from media of P. pastoris cultures transformed with constructs for 

recombinant F-box-Nictaba protein expression. Protein extracts were prepared from 1 ml of medium originating from 

different cultures transformed with constructs for recombinant expression of F-box-Nictaba grown at 22°C and treated with 

1% methanol. Immunodetection was performed using an anti-His antibody. M: protein marker. 

 

 
Fig. A4. 2   Western blot on purified recombinant F-box-Nictaba protein before (-) and after (+) PNGaseF treatment. 
Immunodetection was performed using a specific anti-F-box-Nictaba antibody. M: protein marker. 
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SUPPLEMENTARY TABLES 

 
Table A2. 1   Overview of primers used in molecular cloning of  constructs for recombinant protein expression in P. pastoris. 

 

Target gene/sequence Forward primer (5’-3’) Reverse primer (5’-3’)a 

Full-length F-box-Nictaba 
evd553 
GGACACGTGGGGGAGAAAACGCAGAGTTAAA
TCGG 

evd554 
GCTTCCGCGGCGAGGATTTTAGCAGGTCGGAT
TTC 

Sequence encoding Nictaba domain of F-
box-Nictaba 

evd360 
GGCGGAGAATTCAGCGTATGGTTAGAGAAAG
CGAGTGGG 

evd359 
CCCGCTTGCGGCCGCGAGGATTTTAGCAGGTC
GGATTTC 

AOX1  
evd21 
GACTGGTTCCAATTGACAAGC 

evd22 
GCAAATGGCATTCTGACATCC 
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Table A2. 2   Layout of the plant glycan microarray used in this study. Glycans are designated with numerical IDs as 
presented in Table A2.3. 

 

 
1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 

1 Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink 

2 1 1 1 2 2 2 3 3 3 4 4 4 1 1 1 2 2 2 3 3 3 4 4 4 

3 5 5 5 6 6 6 7 7 7 8 8 8 5 5 5 6 6 6 7 7 7 8 8 8 

4 9 9 9 10 10 10 11 11 11 12 12 12 9 9 9 10 10 10 11 11 11 12 12 12 

5 13 13 13 14 14 14 15 15 15 16 16 16 13 13 13 14 14 14 15 15 15 16 16 16 

6 17 17 17 18 18 18 19 19 19 20 20 20 17 17 17 18 18 18 19 19 19 20 20 20 

7 21 21 21 22 22 22 23 23 23 24 24 24 21 21 21 22 22 22 23 23 23 24 24 24 

8 25 25 25 26 26 26 27 27 27 28 28 28 25 25 25 26 26 26 27 27 27 28 28 28 

9 29 29 29 30 30 30 31 31 31 32 32 32 29 29 29 30 30 30 31 31 31 32 32 32 

10 33 33 33 34 34 34 35 35 35 36 36 36 33 33 33 34 34 34 35 35 35 36 36 36 

11 37 37 37 38 38 38 39 39 39 40 40 40 37 37 37 38 38 38 39 39 39 40 40 40 

12 41 41 41 42 42 42 43 43 43 44 44 44 41 41 41 42 42 42 43 43 43 44 44 44 

13 45 45 45 46 46 46 47 47 47 48 48 48 45 45 45 46 46 46 47 47 47 48 48 48 

14 49 49 49 50 50 50 51 51 51 52 52 52 49 49 49 50 50 50 51 51 51 52 52 52 

15 53 53 53 54 54 54 55 55 55 56 56 56 53 53 53 54 54 54 55 55 55 56 56 56 

16 57 57 57 B B B B B B B B B 57 57 57 B B B B B B B B B 

17 Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink 

18 Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink 

19 B B B B B B B B B B B B B B B B B B B B B B B B 

20 B B B B B B B B B B B B B B B B B B B B B B B B 

21 B B B B B B B B B B B B B B B B B B B B B B B B 

22 Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink 

23 58 58 58 59 59 59 60 60 60 61 61 61 58 58 58 59 59 59 60 60 60 61 61 61 

24 62 62 62 63 63 63 64 64 64 65 65 65 62 62 62 63 63 63 64 64 64 65 65 65 

25 66 66 66 67 67 67 68 68 68 69 69 69 66 66 66 67 67 67 68 68 68 69 69 69 

26 70 70 70 71 71 71 72 72 72 73 73 73 70 70 70 71 71 71 72 72 72 73 73 73 

27 74 74 74 75 75 75 76 76 76 77 77 77 74 74 74 75 75 75 76 76 76 77 77 77 

28 78 78 78 79 79 79 80 80 80 81 81 81 78 78 78 79 79 79 80 80 80 81 81 81 

29 82 82 82 83 83 83 84 84 84 85 85 85 82 82 82 83 83 83 84 84 84 85 85 85 

30 86 86 86 87 87 87 88 88 88 89 89 89 86 86 86 87 87 87 88 88 88 89 89 89 

31 90 90 90 91 91 91 92 92 92 93 93 93 90 90 90 91 91 91 92 92 92 93 93 93 

32 94 94 94 95 95 95 96 96 96 97 97 97 94 94 94 95 95 95 96 96 96 97 97 97 

33 98 98 98 99 99 99 100 100 100 101 101 101 98 98 98 99 99 99 100 100 100 101 101 101 

34 102 102 102 103 103 103 104 104 104 105 105 105 102 102 102 103 103 103 104 104 104 105 105 105 

35 106 106 106 107 107 107 108 108 108 109 109 109 106 106 106 107 107 107 108 108 108 109 109 109 

36 110 110 110 111 111 111 112 112 112 113 113 113 110 110 110 111 111 111 112 112 112 113 113 113 

37 114 114 114 115 115 115 116 116 116 117 117 117 114 114 114 115 115 115 116 116 116 117 117 117 

38 118 118 118 120 120 120 119 119 119 121 121 121 118 118 118 120 120 120 119 119 119 121 121 121 

39 122 122 122 123 123 123 124 124 124 125 125 127 122 122 122 123 123 123 124 124 124 125 125 127 

40 126 126 126 127 127 125 B B B B B B 126 126 126 127 127 125 B B B B B B 

41 Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink 

42 Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink 

43 Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink Ink 

  

Concentrations of printed glycans [mg/ml ] 

Samples 1 - 57: Polysaccharides 1 0,2 0,04 

Samples 58 - 127: Oligosaccharides 2 0,4 0,08 

      

NOTE: Some of the gum and β-glucan samples (IDs 8-11 and 22–28) have been printed at different concentrations (as 

indicated above) than the remaining polysaccharides due to issues with too high viscosity which may create satellites 

(smaller and unprecise dots). Furthermore, there is a mistake in the 3
rd

 dilution of samples 125/127 – these have been 

swapped around, as indicated in the layout.  
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Table A2. 3   List of glycans printed on the plant glycan microarray with corresponding numerical IDs. 

 
ID Glycan name ID Glycan name 
1 Mannan (ivory nut) 65 D-galactose 
2 Galactomannan (carob) 66 β-(1-4)-D-galactobiose 
3 Glucomannan (konjac) 67 β-(1-4)-D-galactopentaose 
4 Xylan (birch) 68 6¹-α-D-galactosyl-β-(1-4)-D-mannobiose 
5 Arabinoxylan (wheat) 69 6¹-α-D-galactosyl-β-(1-4)-D-mannotriose 
6 Xyloglucan (tamarind seed) 70 6¹-α-D-galactosyl-β-(1-4)-D-mannobiose/mannotriose 
7 MLG Lichenan, β-glucan (1-3),(1-4)-β-D-glucan) 71 (1-6³,6⁴)-α-D-digalactosyl-β-(1-4)-D-mannopentaose 
8 β-glucan (yeast), (1-6),(1-3)-β-D-glucan) 72 D-mannose 
9 β-glucan (oat), (1-3),(1-4)-β-D-glucan) 73 β-(1-4)-D-mannobiose 

10 β-glucan (barley flour), (1-3),(1-4)-β-D-glucan) 74 β-(1-4)-D-mannotriose 
11 β-glucan (Euglena gracillis), (1-3),(1-4)-β-D-glucan) 75 β-(1-4)-D-mannotetraose 
12 Carboxymethyl cellulose (CMC 4M) 76 β-(1-4)-D-mannopentaose 
13 Hydroxymethyl cellulose 77 β-(1-4)-D-mannohexaose 
14 Hydroxyethyl cellulose 78 isoprimeverose, α-D-xylopyranosyl-(1-6)-D-glucose 
15 Hydroxypropyl cellulose 79 Xyloglucan heptamer, XXXG~OH (Megazymes) 
16 2-hydroxyethyl cellulose 80 Xyloglucan heptamer, XXXG~OH  (XGO7) 
17 Methyl cellulose 81 Xyloglucan heptamer, XLLG~OH  (XGO9) 
18 Pachyman, (1-3)-β-D-glucan) 82 XG-oligosaccharide (XG14) 
19 Pullulan, (1-6),(1-4)-α-D-glucan 83 β-(1-4)-D-xylobiose 
20 Laminarin 84 β-(1-4)-D-xylotriose 
21 Arabinogalactan, Type II (AGP) 85 β-(1-4)-D-xylotetraose 
22 Locust bean gum, galactomannan rich gum 86 β-(1-4)-D-xylopentaose 
23 Gum Guar 87 β-(1-4)-D-xylohexaose 
24 Gum karaya 88 Aldouronic acids 4²-α-D-glucoronosyl-β-(1-4)-D-xylotetraose 
25 Gum tragacant 89 Glucoronoxylan oligo (XU⁴m²XX) 
26 Gum Ghatti (Indian gum) 90 Glucoronoxylan oligo (U⁴m²XX) 
27 Xanthane gum (Rhodigel 80) 91 Cellobiose, β-(1-4)-D-glucobiose 
28 Xanthane gum (Rhodigel TSC) 92 Cellotriose, β-(1-4)-D-glucotriose 
29 Gum Arabic 93 Cellotetraose, β-(1-4)-D-glucotetraose 
30 Lime pectin DE: 81% (E81) 94 Cellopentaose, β-(1-4)-D-glucopentaose 
31 Lime pectin DE: 15% (B15) 95 Cellohexaose, β-(1-4)-D-glucohexaose 
32 Lime pectin DE: 43% (B43) 96 (1-3),(1-4)-β-D-glucotriose (Mlg3a) 
33 Lime pectin DE: 64% (B64) 97 (1-3),(1-4)-β-D-glucotriose (Mlg3b) 
34 Lime pectin DE: 71% ( B71) 98 (1-3),(1-4)-β-D-glucotetraose (Mlg4a) 
35 Lime pectin DE: 11% (F11) 99 (1-3),(1-4)-β-D-glucotetraose (Mlg4b) 
36 Lime pectin DE: 31% (F31) 100 (1-3),(1-4)-β-D-glucotetraose (Mlg4c) 
37 Lime pectin DE: 58% (F58) 101 Laminaribiose, β-(1-3)-D-glucobiose 
38 Lime pectin DE: 76% (F76) 102 Laminaritriose, β-(1-3)-D-glucotriose 
39 Lime pectin DE: 16% (P16) 103 Laminaritetraose, β-(1-3)-D-glucotetraose 
40 Lime pectin DE: 32% (P32) 104 Laminaripentaose, β-(1-3)-D-glucopentaose 
41 Lime pectin DE: 46% (P46) 105 Laminarihexaose, β-(1-3)-D-glucohexaose 
42 Lime pectin DE: 60% (P60) 106 Maltose, α-(1-4)-D-glucobiose 
43 Lime pectin DE: 66% (P66) 107 Maltotriose, α-(1-4)-D-glucotriose 
44 Lime pectin DE: 76% (P76) 108 Maltopentose, α-(1-4)-D-glucopentaose 
45 Sugar beet pectin with DE 62% &DA 30% 109 Maltohexaose, α-(1-4)-D-glucohexaose 
46 Sugar beet arabinan 110 Maltotetraose, (1-6), (1-4)-α-D-glucotetraose 
47 Linear arabinan 111 Maltoheptaose, (1-6), (1-4)-α-D-glucoheptaose 
48 Pectic galactan, (1-4)-β-D-galactose polymer 112 N-acetyl-2-deoxy-2-amino-D-glucose 
49 RGI (soybean) 113 Diacetyl-chitobiose 
50 RGI (potato) 114 Triacetyl-chitotriose 
51 Lime pectin DE: 0% (E0) 115 Tetraacetyl-chitotetraose 
52 Lemon pectin 116 Pentaacetyl-chitopentaose 
53 Apple pectin 117 Hexaacetyl-chitohexaose 
54 CP Kelco pectin 118 Lactose, D-galactosyl-β-(1-4)-D-glucose 
55 Sigma esterified citrus pectin 119 D-glucose 
56 Feruloylated pectin 120 4²,6²-α-D-digalactosyl-β-(1-4)-D-galactobiose 
57 Feruloylated arabinoxylan 121 6²-β-D-galactosyl-β-(1-4)-D-galactotriose 
58 α-(1-5)-L-arabinobiose 122 6²-α-D-galactosyl-β-(1-4)-D-galactotriose 
59 α-(1-5)-L-arabinotriose 123 α-(1-5)-L-arabinobiose, feruloylated 
60 α-(1-5)-L-arabinotetraose 124 α-(1-5)-L-arabinotriose, feruloylated 
61 α-(1-5)-L-arabinopentaose 125 β-(1-4)-D-galactobiose, feruloylated 
62 α-(1-5)-L-arabinohexaose 126 RGI backbone (chem. synth. Rha-GalA-Rha-GalA-Rha-GalA) 
63 α-(1-5)-L-arabinoheptaose 127 BSA 
64 α-(1-5)-L-arabinooctaose B Blank 
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Table A2. 4   Overview of the glycan-binding properties of the mammalian Fbs proteins family (tested on CFG glycan arrays 

by Henry Paulson Lab, University of Michigan Medical School, Ann Arbor, Michigan USA). 

 

Glycan # IUPAC Glycan Name Mean RFU SD S/N 

FBG1 tested on printed array_v1 (Jan 2006) 
141 Man5_9mix 5579 1424 3,92 

144 Manα1-2Manα1-6(Manα1-3)Manα1-6(Manα2Manα2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-N 4866 990 4,91 

140 Manα1-6(Manα1-3)Manα1-6(Manα1-3)Manβ1-4GlcNAcβ1-4 GlcNAcβ-N 4562 1052 4,34 

142 Manα1-6(Manα1-3)Manα1-6(Manα2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-N 4530 1204 3,76 

145 Manα1-2Manα1-2Manα1-3(Manα1-2Manα1-3(Manα1-2Manα1-6)Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAcβ-N 3801 1835 2,07 

143 Manα1-6(Manα1-2Manα1-3)Manα1-6(Manα2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-N 3334 1227 2,72 

190 Neu5Acα2-6GalNAcα–Sp8 1181 1872 0,63 

2 AGP-A 819 1526 0,54 

17 (4S)Galβ1-4GlcNAcβ-Sp8 770 1483 0,52 

55 Galβ1-3Galβ–Sp8 628 1083 0,58 

FBG2 tested on printed array_v2.1 (Feb 2007) 
199 Man5_9mix 43313 5669 7,64 

198 Manα1-6(Manα1-3)Manα1-6(Manα1-3)Manβ1-4GlcNAcβ1-4 GlcNAcβ-N 41666 6731 6,19 

50 Manα1-3(Manα1-6)Manβ1-4GlcNAcβ1-4 GlcNAcβ-Gly 40992 2433 16,85 

4 Ceruloplasmin 38013 6249 6,08 

192 Manα1-6(Manα1-2Manα1-3)Manα1-6(Manα2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-Asn 37939 6600 5,75 

193 Manα1-2Manα1-6(Manα1-3)Manα1-6(Manα2Manα2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-Asn 35702 16156 2,21 

26 (3S)(6S)Galβ1-4(6S)GlcNAcβ-Sp0 35681 6559 5,44 

197 Manα1-6(Manα1-3)Manα1-6(Manα2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-Asn 33730 5713 5,90 

194 Manα1-2Manα1-2Manα1-3(Manα1-2Manα1-3(Manα1-2Manα1-6)Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAcβ-Asn 33535 14934 2,25 

6 Transferrin 33382 11302 2,95 

5 Fibrynogen 32042 14826 2,16 

1 AGP 31755 8247 3,85 

35 (3S)Galβ1-4(6S)GlcNAcβ-Sp8 30405 13114 2,32 

45 (6S)Galβ1-4(6S)Glcβ-Sp8 29387 7362 3,99 

39 (4S)(6S)Galβ1-4GlcNAcβ-Sp0 27019 11810 2,29 

30 (3S)Galβ1-4(6S)Glcβ-Sp8 25712 9081 2,83 

FBG4 tested on printed array_v2.1 (Feb 2007) 
4 Ceruloplasmin 36198 5578 6,49 

26 (3S)(6S)Galβ1-4(6S)GlcNAcβ-Sp0 35002 6987 5,01 

5 Fibrynogen 34666 8675 4,00 

6 Transferrin 34258 10160 3,37 

45 (6S)Galβ1-4(6S)Glcβ-Sp8 19795 3502 5,65 

3 AGP-B (AGP ConA bound) 19116 3519 5,43 

1 AGP 17319 1666 10,40 

23 β-GlcN(Gc)-Sp8 15805 2288 6,91 

29 (3S)Galβ1-4(6S)Glcβ-Sp0 14603 4221 3,46 

2 AGP-A (AGP ConA flowthrough) 13946 2808 4,97 

113 Galα1-6Glcβ-Sp8 13748 9041 1,52 

35 (3S)Galβ1-4(6S)GlcNAcβ-Sp8 13525 2145 6,31 

164 GlcNAcβ1-3Galβ1-4GlcNAcβ-Sp0 12539 6572 1,91 

41 6-H2PO3Manα-Sp8 12163 1425 8,54 

184 GlcAb-Sp8 11533 5541 2,08 

8 α-D-Glc-Sp8 11476 3264 3,52 

55 Fucα1-2Galβ1-3GalNAcβ1-3Galα-Sp9 11360 1558 7,29 

7 α-D-Gal-Sp8 10684 5526 1,93 

171 (GlcNAcβ1-4)6β-Sp8 10657 4393 2,43 

38 (3S)Galβ-Sp8 10214 3613 2,83 

27 (3S)(6S)Galβ1-4GlcNAcβ-Sp0 10015 2396 4,18 

FBG5 tested on printed array_v2 (Feb 2007) 
4 Ceruloplasmin 47138 986 47,81 

6 Transferrin 35459 6115 5,80 

1 AGP 24908 3201 7,78 

3 AGP-B (AGP ConA bound) 24283 2418 10,04 

2 AGP-A (AGP ConA flowthrough) 23266 5185 4,49 

26 (3S)(6S)Galβ1-4(6S)GlcNAcβ-Sp0 19160 6144 3,12 

45 (6S)Galβ1-4(6S)Glcβ-Sp8 5702 838 6,80 

13 α-L-Rha-Sp8 5323 742 7,17 

30 (3S)Galβ1-4(6S)Glcβ-Sp8 5128 573 8,95 

12 α-L-Fuc-Sp9 4556 2725 1,67 

55 Fucα1-2Galβ1-3GalNAcβ1-3Galα-Sp9 4380 947 4,63 

5 Fibrynogen 4123 722 5,71 

66 Fucα1-2Galβ1-4(Fucα1-3)GlcNAcβ1-3Galβ1-4(Fucα1-3)GlcNAcβ1-3Galβ1-4(Fucα1-3)GlcNAcβ-Sp0 4068 457 8,90 

FBG3 tested on printed array_v2.1 (Feb 2007) 
no glycan binding 

high affinity = mean RFU > 3 * average mean RFU Glycan structures decorating the Fbs-interacting glycoproteins (present on 
glycan arrays) are shown in Table A2.5. lower affinity = average mean RFU <= mean RFU < 3 * average mean RFU 
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Table A2. 5   Glycan structures decorating the Fbs-interacting glycoproteins (present on the CFG glycan arrays). 

 

Ceruloplasmin 

Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-3(Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAcβ-N 

Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-3(Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-4(Fucα1-6)GlcNAcβ-N 

Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-6(Neu5Acα2-6Galβ1-4GlcNAcβ1-2(Neu5Ac2-6Galβ1-4GlcNAcβ1-4)Manα1-3)Manβ1-4GlcNAcβ1-
4GlcNAcβ-N 

Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-6(Neu5Acα2-6Galβ1-4GlcNAcβ1-2(Neu5Ac2-6Galβ1-4Fucα1-3GlcNAcβ1-4)Manα1-3)Manβ1-
4GlcNAcβ1-4GlcNAcβ-N 

Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-6(Neu5Acα2-6Galβ1-4GlcNAcβ1-2(Neu5Ac2-3Galβ1-4GlcNAcβ1-4)Manα1-3)Manβ1-4GlcNAcβ1-
4GlcNAcβ-N 

 

Transferrin 

Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-3(Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-4(Fucα1-6)GlcNAcβ-N 

Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-6(Neu5Acα2-6Galβ1-4GlcNAcβ1-2(Neu5Ac2-6Galβ1-4Fucα1-3GlcNAcβ1-4)Manα1-3)Manβ1-
4GlcNAcβ1-4(Fucα1-6)GlcNAcβ-N 

Galβ1-4GlcNAcβ1-2Manα1-3(Galβ1-4GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAcβ-N 

 
Fibrinogen 

GalNAcβ1-4GlcNAcβ1-4Manα1-6(GalNAcβ1-4GlcNAcβ1-4Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-N–Sp1 

GlcNAcβ1-2Manα1-3(GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-4(Fucα1-6)GlcNAcβ-N-SP1 

NeuAcα2-6Galβ1-4GlcNAcβ1-2Manα1-3(Galβ1-4GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-4(Fucα1-6)GlcNAcβ-N 

NeuAcα2-6Galβ1-4GlcNAcβ1-2Manα1-3(NeuAcα2-6Galβ1-4GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-4(Fucα1-6)GlcNAcβ-N 

NeuAcα2-8NeuAcα2-(3,6)Galβ1-4GlcNAcβ1-2Manα1-3(NeuAcα2-6Galβ1-4GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-4(Fucα1-6)GlcNAcβ-
N 

NeuAcα2-8NeuAcα2-8NeuAcα2-(3,6)Galβ1-4GlcNAcβ1-2Manα1-3(NeuAcα2-6Galβ1-4GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-4(Fucα1-
6)GlcNAcβ-N 

 
a1-Acid 

glycoprotein 
(AGP) 

Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-3(Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAcβ-N 

±Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-6(±Neu5Acα2-6Galβ1-4GlcNAcβ1-2(±Neu5Ac2-6Galβ1-4(±Fucα1-3)GlcNAcβ1-4)Manα1-
3)Manβ1-4GlcNAcβ1-4GlcNAcβ-N 

±Neu5Acα2-6Galβ1-4GlcNAcβ1-2(±Neu5Acα2-3/6Galβ1-4GlcNAcβ1-6)Manα1-6(±Neu5Acα2-6Galβ1-4GlcNAcβ1-2(±Neu5Acα2-
3/6Galβ1-4(±Fucα1-3)GlcNAcβ1-4)Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-N 

Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-2(Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-6)Manα1-6(±Neu5Acα2-3/6Galβ1-4GlcNAcβ1-
2(±Neu5Acα2-3/6Galβ1-4GlcNAcβ1-4)Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-N 
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Table A3. 1   Overview of primers used in qRT-PCR. 

 

  

Target gene Forward primer (5’-3’) Reverse primer (5’-3’) 

F-box-Nictaba gene (At2g02360) evd786 TTGAGCTTGGGGAGTTCTTC evd787 AGAGGATTTTAGCAGGTCGG 

GALT1 ( At1g26810) evd1153 AGTGATGGATGCAAGGATGG evd1154 GAGAGCGTTTGGTTTCTTGG 

FUT13 ( At1g71990) evd1155 TTTCTATGCGCTCGACTCTG evd1156 GAGCCGAATTTGCTACCATC 

PP2A (At1g13320) – reference gene for 
data normalization 

evd727 
TCCGAGATCACATGTTCCAAA
CTC 

evd728 
CCGTATCATGTTCTCCACAACC
G 

TIP41 (At4g34270) – reference gene for 
data normalization 

evd729 
TGAACTGGCTGACAATGGAGT
G 

evd730 
CATGAGCTTGGCATGACTCTC
AC 

UBC9 (At4g27960) – reference gene for 
data normalization 

evd731 
TCCTACTTCATGTAGCGCAGG
AC 

evd732 
TCCTCCAGAATAAGGGCTATC
CG 

ARR5 (At3g48100) – positive control for 
BAP treatment 

evd741 
CCTGATTCTTTCGGCTTACAAT
TT 

evd742 
TGATCAGTCTTGGTTCTATCA
GCAA 

COR15A (At2g42540) – positive control for 
ABA and cold treatment 

evd781 
CAGTGAAACCGCAGATACATT
GGG 

evd782 GGCTTCTTTTCCTTTCTCCTCC 

ERS1 (At2g40940) – positive control for 
ethephon treatment 

evd813 GGTTTGTCGGGCTAATGG evd814 ACCACTGCTACTGCTTGGAC 

GAI (At1g14920) – positive control for GA3 
treatment 

evd743 
AATGAATTGATCTGTTGAACC
GG 

evd744 GGCTTCGGTCGGAAATCTATC 

HsfA2 (At2g26150) – positive control for 
MG132 treatment  

evd1095 
GTGTTGAGGTTGGGCAATAC
G 

evd1096 
TTGCTGTTGCCTCAACCTAACT
AC 

Hsp70b (At1g16030) – positive control for 
heat treatment 

evd735 ATGTATCAGGGTGGTGCTGCT evd736 ACCTCTTCGATCTTGGGACCT 

IAA1 (At4g14560) – positive control for IAA 
treatment 

evd739 AGGACACAGAGCTTCGTTTGG evd740 GTCGTTGTTCTTGCGCTTGT 

JMT (At1g19640) – positive control for 
MeJA treatment 

evd745 
TATGTAAGCTCGCCACGATAC
GCT 

evd746 
AACACGATCAACCGGCTCTAA
CGA 

PDF1.2 (At5g44420) – positive control for B. 
cinerea infection 

evd788 AAGTTGTGCGAGAAGCCAAG evd789 CCATGTTTGGCTCCTTCAAG 

PR1 (At2g14610) – positive control for 
Pseudomonas infection 

evd1019 
GCTACGCAGAACAACTAAGA
GG 

evd1020 GCCTTCTCGCTAACCCACAT 

RD29A (At5g52310) – positive control for 
mannitol and NaCl treatment 

evd749 
ATCACTTGGCTCCACTGTTGTT
C 

evd750 
ACAAAACACACATAAACATCC
AAAGT 

WRKY70 (At3g56400) – positive control for 
SA treatment and Pseudomonas infection 

evd811 CATGGATTCCGAAGATCACA evd812 CTGGCCACACCAATGACAA 
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Table A3. 2   Overview of primers used in testing the SALK lines. 

 

Target gene/sequence Forward primer (5’-3’) Reverse primer (5’-3’)a 

Left border of the T-DNA insertion sequence 
LBb1.3/P99 
ATTTTGCCGATTTCGGAAC  

- 

Genomic primers for KO4 line 
(SALK_007866) 

LP(KO4)/evd1009 
CAGGCAACGAATCGAGAGTAG 

RP(KO4)/evd1010 
AAACTTCGCGATGTATGTTGG 

Genomic primers for KO6 line 
(SALK_085735C) 

LP(KO6)/evd1011 
AATCTCCATCCACCCATCTTC 

RP(KO6)/evd1012 
GTAGACGCGTGGATTGTTCAC 

ACT2 (At3g18780) 
evd280 
GGCTGGATTTGCTGGAGATGATGC 

evd281 
GTACGACCACTGGCATACAGGGA 

full-length F-box-Nictaba (At2g02360) gene 
sequence 

evd790 
CACCATGGGGAGAAAACGCAGAG 

evd791 
TCAGAGGATTTTAGCAGGTCGG 

 

 

Table A3. 3   Overview of all primers used in molecular cloning. 

 

Target gene/sequence Forward primer (5’-3’)a Reverse primer (5’-3’)a 

1806 nt promoter sequence of At2g02360  
evd 555 
AAAAAGCAGGCTTCGGCCATCTTTTTAACCATT
GC 

evd 556 
AGAAAGCTGGGTGCGACGCTTGTATCTTCGTC 

full-length F-box-Nictaba (At2g02360) gene 
sequence 

evd1046 
AAAAAGCAGGCTTCACCATGGGGAGAAAACG
CAGA 

evd1047 
AGAAAGCTGGGTGTCAGAGGATTTTAGCAGG
TCGG 

attB1 and attB2 adaptor sites 
evd 2 
GGGGACAAGTTTGTACAAAAAAGCAGGCT 

evd 4 
GGGGACCACTTTGTACAAGAAAGCTGGGT 

NptII (kanamycine resistance gene) 
evd 463 
GAACAAGATGGATTGCACGCAGG 

evd 261 
TCAGAAGAACTCGTCAAGAAGGCG 

UidA (β-glucuronidase gene) 
GUS-F 
AAAAAGCAGGCTTCGATTTGGAAACGGCAGA
GAAGG 

GUS-RV 
AGAAAGCTGGGTGTTTCTTGTTACCGCCAACG
CG 

a 
Nucleotides underlined are complementary to parts of the attB1 and attB2 gateway cloning sites. 

 

 

Table A3. 4   Putative cis-acting regulatory elements identified with high frequency in the At2g02360 promoter sequence by 

in silico analyses for identical motifs stored in the PLACE (part 1), PlantCARE (part 2) and AGRIS (part 3) databases. 

 

Motif Frequency Description 

PART 1 – PLACE database output 

-300 ELEMENT 3 enhancer for endosperm specific-expression of glutenin 
2SSEEDPROTBANAPA 1 Important for napA promoter 
AACACOREOSGLUB1 5 endosperm-specific expression 
ABRERATCAL 1 Ca2+-responsive element 
ACGTATERD1 4 Expression of erd1, induced by drought stress 
AMYBOX1 3 amylase box 
ANAERO1CONSENSUS 7 motif in promoters of anaerobically induced genes 
ANAERO3CONSENSUS 2 motif in promoters of anaerobically induced genes 
ARFAT 2 response towards auxine 
ARR1AT 29 ARR1 binding site 
ASF1MOTIFCAMV 1 ASF-1 binding site 
BIHD1OS 3 Binding site for transcription factor OsBIHD1 
BOXIINTPATPB 4 Important for NCII promoters 
BOXLCOREDCPAL 1 Core sequence of box-L motif 
CAATBOX1 21 Tissue specific promoter element of legA gene in pea 
CACTFTPPCA1 26 Key component of Mem1 
CANBNNAPA 1 endosperm-specific expression 



Addendum _________________________________________________________________________ 
 

178 
 

CATATGGMSAUR 2 response towards auxine 
CCA1ATLHCB1 1 Response towards light 
CCAATBOX1 3 motif in promoters of heat shock proteins 
CGACGOSAMY3 3 motif in GC-rich regions of rice amylase genes 
CGCGBOXAT 2 Calmodulin-binding domain 
CIACADIANLELHC 1 Necessary for Lhc circadian expression in tomato 
CURECORECR 4 Copper and oxygen responsive element 
DOFCOREZM 26 Binding site for Dof proteins 
DPBFCOREDCDC3 2 bZIP transcription factor, induced by ABA and embryo-specific  
DRE1COREZMRAB17 1 response towards ABA 
E2FCONSENSUS 1 E2F consensus sequence 
EBOXBNNAPA 14 E-box 
EECCRCAH1 2 Consensus motif for enhancer elements EE-1 and EE-2 
ELRECOREPCRP1 1 response towards elicitors 
ERELEE4 3 response towards ET 
GAREAT 3 response towards GA 
GATABOX 15 response towards light and tissue-specific expression 
GT1CONSENSUS 26 GT-1 binding site in light-induced genes 
GT1CORE 3 Involved in binding of GT-1 to box II 
GT1GMSCAM4 8 Involved in pathogen and salt-induced gene expression 
GTGANTG10 15 Involved in expression of the late pollen gene g10 
HEXAMERATH4 2 motif in histon H4 promoter of A. thaliana 
IBOXCORE 7 response towards light 
INRNTPSADB 4 initiator in promoters of genes in tobacco lacking a TATA-box 
LTRE1HVBLT49 1 Response towards low temperature 
LTRECOREATCOR15 1 core of LTRE-1 
MYB1AT 8 response towards drought 
MYB1LEPR 1 Involved in defense regulated gene expression in tomato 
MYB2CONSENSUSAT 3 response towards drought 
MYBATRD22 1 response towards drought 
MYBCORE 3 response towards water stress 
MYBCOREATCYCB1 2 Involved in activation of receptor genes 
MYBGAHV 3 response towards GA 
MYBPLANT 1 MYB binding site 
MYBPZM 2 MYB binding site 
MYBST1 4 MYB binding site 
MYCATERD1 2 response towards drought 
MYCATRD22 2 response towards drought 
MYCCONSENSUSAT 14 response towards drought 
NODCON1GM 3 Noduline sequence 
NODCON2GM 7 Noduline sequence 
NTBBF1ARROLB 2 Tissue specific expression, response towards auxine 
OSE1ROOTNODULE 3 Active in infected cells of root nodules 
OSE2ROOTNODULE 7 Active in infected cells of root nodules 
PALBOXAPC 1 Present in fenylalanine ammoniumlyase genes 
POLASIG2 2 plant polyA signal 
POLASIG3 3 plant polyA signal 
POLLEN1LELAT52 10 Involved in pollen-specific activation of tomato genes 
PREATPRODH 1 pro-osmolarity responsive element 
PRECONSCRHSP70A 7 consensus sequence of the pro-osmolarity responsive element 
PYRIMIDINEBOXHVEPB1 2 pyrimidine-box 
PYRIMIDINEBOXOSRAMY1A 3 pyrimidine-box 
QELEMENTZMZM13 1 Involved in enhancer activity 
RAV1AAT 5 Binding site for transcription factors in A. thaliana 
RBCSCONSENSUS 1 rbcS consensus sequence 
REALPHALGLHCB21 6 Involved in phytochrome regulation 
RHERPATEXPA7 1 Root hair-specific cis-element 
ROOTMOTIFTAPOX1 8 motif in promoter of rolD gene 
SEBFCONSSTPR10A 1 response towards auxine 
SEF3MOTIFGM 3 SEF3 binding site (soybean embryo factor) 
SEF4MOTIFGM7S 3 SEF4 binding site (soybean embryo factor) 
SORLIP1AT 1 response towards light 
SREATMSD 2 Sugar-repressive element 
SURECOREATSULTR11 3 sulfur-responsive element 
SV40COREENHAN 2 SV40 core enhancer 
TAAAGSTKST1 7 TAAG-motif 
TATABOX3 1 TATA-box 
TATABOX5 2 TATA-box 
TATCCAOSAMY 1 element present in α-amylase promoters 
TBOXATGAPB 1 T-box in promoter of GAPB gene 
TGTCACACMCUCUMISIN 1 enhancer involved in fruit-specific expression of cucumisin 
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TRANSINITDICOTS 1 Initiation codon for translation in dicots 
TRANSINITMONOCOTS 1 Initiation codon for translation in monocots 
UP2ATMSD 2 Up2 motif 
VOZATVPP 2 VOZ-binding site involved in pollen development 
WBOXATNPR1 4 W-box 
WBOXHVISO1 4 W-box 
WBOXNTCHN48 3 W-box 
WBOXNTERF3 6 W-box 
WRKY710S 10 W-box 

PART 2 – PlantCARE database output 

G-box 1 response towards light 
GT1 motif 4 response towards light 
MRE 1 response towards light 
TCCC motif 1 response towards light 
TCT motif 2 response towards light 
chs-CMA1a 2 response towards light 
AE-box 2 response towards light 
Box I 2 response towards light 
GA motif 1 response towards light 
GAG motif 1 response towards light 
GATA motif 1 response towards light 
LAMP-element 1 response towards light 
Sp1 1 response towards light 
as-2-box 1 response towards light 
Box 4 1 response towards light 
Gap-box 1 response towards light 
Box-W1 1 Elicitor responsive element 
ELI-box3 1 Elicitor responsive element 
GARE motif 1 response towards GA 
P-box 1 response towards GA 
TGA-element 3 response towards auxine 
CGTCA motif 1 MeJA-responsive element 
TGACG motif 1 MeJA-responsive element 
TCA-element 2 response towards SA 
HSE 1 Heat stress element 
LTR 1 Involved in cold response 
MBS 2 Response towards drought stress 
ARE 3 Essential for anaerobic induction 
TC-rich repeats 1 Involved in defense and stress response 
O2-site 1 Involved in zein metabolism 
Unnamed_6 1 SEF4 binding site 
CCAAT-box 1 MYBHv1 binding site 
Skn-1_motif 2 Involved in endosperm-specific expression 
CAAT-box 36 Promoter element 
TATA-box 30 Promoter element 
CCGTCC-box 1 Involved in meristem specific activation 
circadian 1 Involved in expression of circadiana genes 
A-box 1 Function unknown 
AAGAA-motif 3 Function unknown 
Box E 1 Function unknown 
CTAG-motif 1 Function unknown 
W-box 1 Binding site for WRKY transcription factors 

PART 3 – AGRIS database output 

W-box promoter motif 1 Binding site for WRKY transcription factors 
DPBF1 and 2 binding site motif 1 Binding site for bZIP transcription factors 
MYB4 binding site motif 1 Binding site for MYB4 transcription factor 
LFY consensus binding site motif 1 Binding site for LFY transcription factor 
BOXII promoter motif 1 Function unknown 
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Plants have evolved diverse cellular mechanisms, which allow them to promptly sense and respond 

to external stress signals. In the past decade evidence has accumulated that plant defense against 

stress involves, among others, a specific group of inducible glycan-binding proteins, called lectins. 

These specialized proteins are synthesized by plants at very low (but physiologically relevant) 

concentrations after exposure to particular stress stimuli, such as drought, salt, wounding, microbial 

infection or insect herbivory. Therefore, it is suggested that by recognizing and binding specific glycan 

structures within plant cell, inducible plant lectins play a role in stress signaling pathways. 

Another plant defense strategy against adverse environmental conditions is the ubiquitin-26S 

proteasome system (UPS). The UPS is a highly sophisticated machinery which controls most aspects 

of plant physiology by selective degradation of key regulatory proteins in the nucleus and cytoplasm 

of plant cells. The crucial components of this system are the F-box proteins, which are responsible for 

specific recognition of the target proteins destined for degradation. F-box proteins exhibit a typical 

bipartite structure and comprise an N-terminal F-box-domain and an C-terminal target-binding 

domain. They form the largest protein superfamily known with more than 800 putative 

representatives in Arabidopsis thaliana.  

Most of the F-box proteins recognize substrates for degradation via protein-protein interactions. 

Nevertheless, several years ago, a group of putative carbohydrate-binding F-box proteins have been 

identified in plants, which contain a C-terminal domain homologous to Nictaba, the inducible 

nucleocytoplasmic lectin from tobacco plants. Consequently, it is hypothesized that F-box proteins 

with a lectin-like Nictaba domain could recognize specific carbohydrate structures present on 

glycoproteins and thereby would lead to the degradation of the latter protein. As such, plant proteins 

belonging to the so-called F-box-Nictaba family could presumably play a crucial role in plant stress 

physiology by integrating two defense-associated systems in plant cells: the UPS machinery and 

protein-carbohydrate interactions.  

The F-box proteins with a Nictaba-related domain are widespread in the plant kingdom with more 

than 20 members in A. thaliana. The research of this PhD study was focused on the physiological 

relevance of one of these homologs from A. thaliana encoded by At2g02360 and called F-box-

Nictaba. The lectin-like domain of F-box-Nictaba shows the highest sequence similarity with the 

tobacco lectin and thus it is likely a functional carbohydrate-binding protein. Using glycan-binding 

assays, expression analyses and stress experiments with transgenic plants, the involvement of F-box-

Nictaba in plant physiology and plant defense responses was investigated. 

 

Chapter 1 presents a literature overview on plant lectins and their role in plant defense. Moreover, 

the chapter summarizes recent progress in the field of F-box-mediated protein degradation via the 

UPS and its significance for plant physiology.  

 

In Chapter 2 F-box-Nictaba is characterized at the molecular level. To experimentally corroborate the 

lectin activity of the F-box-Nictaba protein, the complete F-box-Nictaba sequence as well as its 

Nictaba-like domain were produced using the Pichia pastoris expression system, purified by affinity 

chromatography and characterized. Glycan microarray binding assays provided evidence for 
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carbohydrate-binding activity of both proteins, which showed virtually the same specificity, 

confirming that F-box-Nictaba is a functional lectin and can bind glycans via its C-terminal Nictaba 

domain. Screening of a glycan array containing predominantly carbohydrates of mammalian origin 

revealed reactivity towards N- and O-glycans containing N-acetyllactosamine (Galβ1-3GlcNAc and 

Galβ1-4GlcNAc), poly-N-acetyllactosamine ([Galβ1-4GlcNAc]n), Lewis A (Galβ1-3(Fucα1-4)GlcNAc), 

Lewis X (Galβ1-4(Fucα1-3)GlcNAc, Lewis Y (Fuc1-2Gal1-4(Fuc1-3)GlcNAc) and blood type B 

(Galα1-3(Fucα1-2)Galβ1-3GlcNAc) motifs. Analysis of arrays comprising plant-specific carbohydrates 

demonstrated that F-box-Nictaba preferentially recognizes β1-4-linked galactose oligomers and, with 

lower affinity, feruloylated α1-5-L-arabinobiose/triose glycans. Collectively, these results show that F-

box-Nictaba exhibits glycan-binding activity preferentially directed against glycan structures 

containing a terminal galactose residue. What is more, these data revealed that the F-box-Nictaba 

specificity differs from that of Nictaba from tobacco, which specifically recognizes GlcNAc oligomers 

and high-mannose N-glycans.  

Chapter 3 presents a detailed expression profiling of the gene encoding F-box-Nictaba using a 

combination of quantitative RT-PCR (qRT-PCR), β-glucuronidase (GUS) assay and in silico 

(co)expression analysis. It was demonstrated that F-box-Nictaba is continuously and stably expressed 

at a relatively low level throughout the lifecycle of plants grown under optimal conditions. However, 

F-box-Nictaba transcript levels significantly increase after specific stress treatments, including 

salicylic acid (SA), a plant hormone involved in defense responses, infection with Pseudomonas 

syringae pv. tomato DC3000 (Pst DC3000) as well as after heat stress. GUS histochemical staining 

experiments performed on transgenic A. thaliana plants indicated the preferential activity of the F-

box-Nictaba promoter sequence in non-glandular leaf trichomes – structures associated with plant 

protection from adverse environmental conditions. Moreover, database searches revealed co-

expression of F-box-Nictaba with genes involved in disease and plant defense responses.  

Next, this chapter describes the application of selected stresses on transgenic A. thaliana plants with 

a knockout of F-box-Nictaba gene expression and plants overexpressing F-box-Nictaba. It was shown 

that plants overexpressing the F-box-Nictaba protein demonstrated higher expression of the WRKY70 

gene encoding a SA-related transcription factor and exhibited reduced disease symptoms after Pst 

DC3000 infection in comparison to wild type (WT) plants. Also, transgenic Arabidopsis plants with 

either reduced or enhanced F-box-Nictaba expression showed differential expression of the Hsp70b 

gene when compared to WT plants after heat stress. Finally, the F-box-Nictaba transcript levels 

themselves were also affected in the transgenic plants by heat stress conditions.  

 

Based on the results of GUS assays, showing preferential F-box-Nictaba promoter activity in the 

trichomes of Arabidopsis plants, more detailed studies of trichome-specific expression were 

performed in Chapter 4. qRT-PCR experiments confirmed the pronounced F-box-Nictaba gene 

expression in the trichomes, while an immunodetection assay demonstrated significant amounts of 

F-box-Nictaba protein in these defense-related structures. Furthermore, we also analyzed the 

expression of genes encoding the enzymes β1,3-galactosyltransferase (GALT1) and α1,4-
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fucosyltransferase (FUT13), which are required for the synthesis of Lewis A structures in Arabidopsis. 

It was shown that both genes necessary for the production of the glycan motif recognized by F-box-

Nictaba on the glycan arrays are co-expressed in the trichomes. 

 

Finally, Chapter 5 discusses the significance of the research data and provides ideas for future 

studies. To conclude, all evidence gathered in the course of this PhD study shows that F-box-Nictaba 

is a functional lectin and suggests its involvement in plant defense responses directed towards stress 

stimuli of both biotic and abiotic origin. It is hypothesized that the role of F-box-Nictaba in plant 

stress signaling relies on the selective degradation of specific glycosylated proteins via the UPS. 

However, the putative substrates and the underlying mechanism of action remain to be elucidated. 

We believe that this research, altogether with further studies of F-box-Nictaba and other glycan-

binding F-box proteins, will provide valuable insights into the complex network of plant stress 

responses and thus will significantly contribute to the development of more stress-resistant plants in 

the future. 
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Planten hebben verschillende mechanismen ontwikkeld om zeer snel en accuraat een antwoord te 

bieden op externe stress factoren. Zo is in de voorbije tien jaar duidelijk geworden dat o.a. een 

specifieke groep van induceerbare suikerbindende eiwitten, lectinen genaamd, een rol speelt bij de 

verdediging van een plant tegen stress. Deze lectinen worden door de plant in zeer lage, maar 

fysiologisch relevante hoeveelheden aangemaakt na blootstelling aan specifieke stress stimuli, zoals 

droogte, zoutstress, verwonding, pathogene infectie of insectenvraat. Er wordt verondersteld dat 

deze induceerbare plantlectinen een rol spelen in stress signaalpathways door middel van 

herkenning en binding van deze lectinen aan specifieke suikerstructuren in de plantencel zelf.  

Een andere strategie die door planten toegepast wordt in stressafweer maakt gebruik van het 

ubiquitine-26S proteasoom systeem (ook UPS genaamd). Het UPS is een heel gesofisticeerd 

mechanisme dat bijna elke aspect in de plantenfysiologie controleert. De werking berust op de 

specifieke afbraak van belangrijke eiwitten, en dit zowel in de kern als in het cytoplasma van een 

plantencel. De cruciale molecules binnen dit systeem zijn de F-box-eiwitten. Deze eiwitten zijn 

verantwoordelijk voor de specifieke herkenning van doeleiwitten die moeten verwijderd worden. F-

box-eiwitten hebben een typische opbouw bestaande uit een N-terminaal F-box domein en een 

variabel C-terminaal substraat-bindend domein. F-box-eiwitten vormen de grootste superfamilie van 

planteiwitten; in Arabidopsis thaliana zijn er momenteel meer dan 800 beschreven. 

 De meeste F-box-eiwitten herkennen hun substraat via eiwit-eiwit interacties. Enkele jaren geleden 

werd echter een groep van plant F-box-eiwitten ontdekt die een C-terminaal domein hebben dat 

grote gelijkenissen vertoont met Nictaba, het induceerbare nucleocytoplasmatische lectine uit 

tabaksplanten. Er wordt vermoed dat deze F-box-eiwitten met een Nictaba domein specifieke 

suikerstructuren die aanwezig zijn op glycoproteïnen kunnen herkennen en binden wat vervolgens 

kan leiden tot de afbraak van deze glycoproteïnen door het UPS. Op die manier kunnen deze plant F-

box-Nictaba eiwitten een cruciale rol kunnen spelen in plantenafweer door het UPS mechanisme te 

combineren met eiwit-suiker interacties.  

F-box-Nictaba eiwitten zijn wijdverspreid binnen het plantenrijk; momenteel zijn meer dan 20 van 

deze eiwitten geïdentificeerd in A. thaliana. In dit doctoraatsonderzoek werd gefocust op de 

fysiologische karakterisering van één van deze Arabidopsis homologen, namelijk het F-box-Nictaba 

eiwit dat gecodeerd wordt door het At2g02360 gen. Binnen deze groep van homologe eiwitten 

vertoont het C-terminaal substraatbindend domein van dit specifieke F-box-Nictaba eiwit de hoogste 

sequentie-homologie met het tabakslectine Nictaba, waardoor dit F-box eiwit vermoedelijk een 

functioneel suikerbindend eiwit (lectine) is. Door middel van suikerbindings-assays, expressie-

analyses en stress experimenten op transgene planten werd de functionaliteit van het geselecteerde 

F-box-Nictaba eiwit bestudeerd, met focus op de mogelijke rol in de fysiologie en stressafweer van 

Arabidopsis planten. 

 

De literatuurstudie in Hoofdstuk 1 bevat twee luiken. Eerst wordt er een overzicht gegeven van de 

huidige kennis omtrent plantlectinen en hun rol in stressafweer in planten. Daarna wordt een 

synopsis beschreven over plantaardige F-box-eiwitten, hun werking binnen UPS en hun rol binnen de 

fysiologie van planten. 
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In Hoofdstuk 2 wordt de moleculaire karakterisering van F-box-Nictaba beschreven. De lectine-

activiteit van dit Arabidopsis eiwit werd geanalyseerd op basis van recombinante eiwitten die 

geproduceerd en opgezuiverd werden uit de gist Pichia pastoris. Via de glycan array technologie kon 

aangetoond worden dat zowel het geselecteerde (recombinante) F-box-Nictaba eiwit als enkel het C-

terminale domein (met grote homologie tot Nictaba) dezelfde specifieke suikerstructuren herkennen 

en binden. De resultaten uit deze assay bevestigen dus eerdere vermoedens dat het F-box eiwit 

lectine-activiteit vertoont en dat het suikers kan binden via zijn C-terminale Nictaba-homologe 

domein. Wanneer de eiwitten getest werden op ‘glycan arrays’ die hoofdzakelijk dierlijke (humane 

en muis) suikerstructuren bevatten, kon een specificiteit voor het plant F-box-eiwit vastgesteld 

worden voor zowel N- als O-glycanen gesubstitueerd met N-acetyllactosamine (Galβ1-3GlcNAc en 

Galβ1-4GlcNAc), poly-N-acetyllactosamine ([Galβ1-4GlcNAc]n), Lewis A (Galβ1-3(Fucα1-4)GlcNAc), 

Lewis X (Galβ1-4(Fucα1-3)GlcNAc) en Lewis Y (Fuc1-2Gal1-4(Fuc1-3)GlcNAc) motieven en voor 

suikerstructuren typerend voor bloedgroep B (Galα1-3(Fucα1-2)Galβ1-3GlcNAc). Wanneer de 

eiwitten getest werden op ‘glycan arrays’ die plantspecifieke suikerstructuren bevatten, kon een 

specificiteit voor het plant F-box-eiwit aangetoond worden voor 1-4 gekoppelde galactose 

oligomeren en, met lagere affiniteit, voor geferuloyleerde 1-5-L-arabinose/triose suikerstructuren. 

Zodoende kan besloten worden dat F-box-Nictaba een specifieke suikerbindende activiteit vertoont 

voor suikerstructuren die terminaal een galactose unit bevatten. Ondanks de hoge sequentie-

homologie met het tabakslectine is de lectine-activiteit van dit F-box-Nictaba eiwit dus sterk 

verschillend van dit van Nictaba uit tabak, dat zelf specifiek bindt met GlcNAc oligomeren en hoog-

mannose N-glycanen. 

 

In Hoofdstuk 3 wordt een gedetailleerde expressie-analyse beschreven voor het Arabidopsis gen 

At2g02360 dat codeert voor het F-box-Nictaba eiwit, aan de hand van een kwantitatieve RT-PCR 

(qRT-PCR), een -glucuronidase (GUS) assay en een in silico (co)expressie-analyse. Hierbij kon 

aangetoond worden dat F-box-Nictaba continu tot expressie wordt gebracht, in relatief lage 

hoeveelheden, gedurende de hele ontwikkeling van Arabidopsis planten die gecultiveerd werden in 

optimale omstandigheden. De transcript levels voor dit gen werden echter significant verhoogd 

wanneer de planten behandeld werden met specifieke stress factoren, zoals een behandeling met 

het (stress-responsieve) plantenhormoon salicylzuur, infectie met Pseudomonas syringae pv. tomato 

DC3000 (Pst DC3000) en hittestress. Histochemische GUS experimenten toonden aan dat de 

promoter van het F-box-Nictaba gen voornamelijk actief is in een speciaal type van trichomen 

aanwezig op bladeren van Arabidopsis planten. Trichomen zijn specifieke cellulaire structuren die 

geassocieerd worden met de defensieve respons van de plant. In silico analyses gaven dan weer 

bijkomend aan dat F-box-Nictaba samen tot expressie komt met andere genen betrokken in ziekte- 

en stress-afweerrespons.  

In ditzelfde hoofdstuk worden ook stressexperimenten beschreven met transgene A. thaliana 

planten die ofwel geen F-box-Nictaba meer tot expressie brengen (knockout lijnen) of net meer F-

box-eiwit aanmaken (overexpressie-lijnen). Hieruit bleek dat in vergelijking met wild type planten de 

overexpressie-lijnen naast een hogere expressie van F-box-Nictaba ook een hogere expressie 
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vertonen van het WRKY70 gen, dat codeert voor een SA-gerelateerde transcriptiefactor. Deze lijnen 

gaven ook minder ziektesymptomen bij een infectie met de Pseudomonas stam (Pst DC3000) in 

vergelijking met wild type planten. Alle geteste transgene lijnen hadden ook een verschillend 

expressie-patroon voor zowel het Hsp70b gen als het gen voor F-box-Nictaba na een behandeling 

met hittestress in vergelijking met wild type planten.  

  

Omdat de GUS assays wezen op een specifieke promoteractiviteit van het F-box-Nictaba gen in 

trichomen van Arabidopsis planten, werd een uitgebreidere expressie-analyse uitgevoerd voor dit 

gen in deze typische celstructuren. De resultaten van deze analyse worden beschreven in Hoofdstuk 

4. De verhoogde expressie van F-box-Nictaba in blad trichomen kon bevestigd worden op basis van 

zowel qRT-PCR experimenten als van biochemische analyse-technieken (immunodetectie). Verder 

kon via qRT-PCR ook aangetoond worden dat de genen die coderen voor de synthetische enzymen 

noodzakelijk voor de aanmaak van de Lewis A suikerstructuur (d.i. de suikerstructuur die in planta 

door F-box-Nictaba kan worden gebonden) in Arabidopsis (zijnde β1,3-galactosyltransferase (GALT1) 

en α1,4-fucosyltransferase (FUT13)) ook opgereguleerd worden in trichomen.  

 

Tot slot kan men in Hoofdstuk 5 een uitvoerige discussie terugvinden die reflecteert over alle 

resultaten uit dit doctoraatsonderzoek. Verder worden enkele ideeën aangereikt om dit onderzoek 

verder uit te breiden in de toekomst. Samengevat kan men stellen dat werd aangetoond dat het 

geselecteerde F-box-Nictaba eiwit uit A. thaliana een functioneel lectine is, dat een rol kan spelen in 

de afweerrespons van de plant tegen stress stimuli van zowel biotische als abiotische oorsprong. 

Hoewel verondersteld wordt dat F-box-Nictaba functioneert in een UPS-gerelateerd mechanisme, 

blijft het totnogtoe onduidelijk welke de substraten (lees glycoproteïnen) zijn waarmee F-box-

Nictaba interageert en binnenbrengt in het UPS voor afbraak. Onze onderzoeksresultaten met 

betrekking tot de functie van F-box-Nictaba eiwitten verschaffen waardevolle inzichten in het 

complexe netwerk van stress responsen dat bestaat in planten en kunnen bijdragen tot de verdere 

ontwikkeling van resistente gewassen. 
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