| Name | AA | MW
(Da) | BIP | Region | P-site | Modifying enzyme | Functional consequences | |---------------|-----|------------|------|-------------------|-------------------------------------|--|---| | Cx26
=GJB2 | 226 | 26,215 | 9.11 | NT | D2, T5 or
S8 ¹ # | ? | Deafness mutation at S8 ¹ | | | | | | CL | T123 | PKA? | Possible Cx26 _{deaf} mutation: T123N ^{2,3} | | | | | | EL2 | T177 | Intracellular
kinases or
ecto-kinases ² | Formation of docking interaction with the apposed hemichannel ² | | | | | | EL2/TM4
border | S183
T186 | Intracellular
kinases or
ecto-kinases ² | - Regulating hemichannel docking 2,4 - Behaves as dominant-negative with Cx26 4 | | Cx31
=GJB3 | | | | СТ | S263,
S266 | Casein kinase
I | Decrease Cx31 turnover; increase intercellular communication ⁵ | | Cx32
=GJB1 | 283 | 32,025 | 9.19 | NT | T4, Y7, T8
or S11 ¹ # | ? | Charcot-Marie-Tooth disease mutations at Y7, T8, S11, N14 ¹ | | | | | | СТ | S229 ⁶ | PKC | ? | | | | | | СТ | S233 ^{1,6} | cAMP-dPK
or PKC | Increased junctional conductance and an increase in intercellular gap junctional communication mediated by Cx32 gap junctions ⁷ | | | | | | СТ | S240 1# | ? | ? | | | | | | СТ | T243\$ ⁸ | Epidermal
growth factor
receptor ⁹ | Possible role in regulating myelin homeostasis ⁸ | | Cx36
=GJD2 | 321 | 36,093 | 8.95 | CL | S110 ¹⁰⁻¹² | CaMKII ¹⁰
PKA ^{11,12} | Decreased gap junctional communication ¹¹ Possible increase in synaptic efficacy in the form of "run-up" of junctional conductance ¹⁰ | | | | | | CL | T111 ¹⁰ | CaMKII ¹⁰ | Possible increase in synaptic efficacy in the form of "run-up" of junctional conductance ¹⁰ | | | | | | СТ | S293 ¹⁰⁻¹³ | CaMKII ¹⁰
PKA ¹¹⁻¹³ | Decreased gap junctional communication ¹¹ Influence permeability of Cx36 gap junction, but not the trafficking ¹³ AII amacrine cell coupling strength ¹³ Possible increase in synaptic efficacy in the form of "run-up" of junctional conductance ¹⁰ | | | | | | СТ | S315 ¹⁰ | CaMKII 10 | Possible increase in synaptic efficacy | | | | | | | | | in the form of "run-up" of junctional conductance ¹⁰ | |---------------|-----|--------|------|----------|-----------------------|---|--| | Cx37
=GJA4 | 333 | 37,414 | 7.5 | СТ | S319 ¹⁴ | glycogen
synthase
kinase-3 | Reduced gap junctional intercellular communication ^{14,15} | | Cx40
=GJA5 | 358 | 40,38 | 8.81 | CL or CT | S120 or
S345# | PKA ^{16,17} | Increase in intercellular conductivity and permeability 18 | | Cx43 | 382 | 43,008 | 8.96 | СТ | S244 ¹⁹ | ? | ? | | =GJA1 | | | | СТ | Y247 | v-SRC ²⁰⁻²² | Reduced gap junctional communication ^{21,23,24} | | | | | | СТ | S255 | MAPK ^{23,25-27}
P34 ^{cdc2} /cyclin
B ²⁸⁻³⁰
PKA ³¹ | Reduced gap junctional communication ^{23,25,29,30} Reduced cell-cell coupling ³² Cx43 internalization and Cx turnover ^{28-30,33,34} | | | | | | | | | - Gap junction mediated return of growth control ³¹ | | | | | | CT | S257 35 | ? | ? | | | | | | СТ | S262 | MAPK ^{23,27}
PKC ^{27,28,36-41}
P34 ^{cdc2} /cyclin
B ^{29,30,37} | Reduced gap junctional
communication ^{26-31,37-42} Reduced hemichannel opening ³⁶
cardioprotection ^{42,43} | | | | | | | | v-SRC ²²
PKA ³¹ | - Cx43 internalization and Cx
turnover ^{29,30,34} - Gap junction mediated return of | | | | | | СТ | Y265 | v-SRC ²⁰⁻²²
MAPK ^{23,25} | growth control ^{31,39,44} - Regulation of the interaction between Cx43 and ZO-1 ^{45,46} - Reduced gap junctional communication ^{21,23,24} | | | | | | СТ | S279/S28
2 | MAPK ^{23,25} -
27,47 | - Reduced gap junctional communication 31,40,47 | | | | | | | | v-SRC ²²
PKC ⁴⁰
EGFR tyrosine | - Gap junction closure ⁴⁸ | | | | | | СТ | S296 ³⁵ | kinase 48 ? CaMKII 19 | ? | | | | | | СТ | S297 ³⁵ | ? | ? | | | | | | СТ | S306 35,49 | ? | Maintained coupling 49 | | | | | | СТ | Y313 ^{50,51} | EGFR ⁵⁰ | Role in cell-cell or cell-matrix interactions (associated with the cytoskeleton) 50,51 | | | | | | CT
CT | S314 52,53 S325 40,54- 56 S328 40,54,56 S330 38,47,49 | CaMKII ¹⁹ | ? - Regulation of gap junction formation ⁵⁵ - Enhanced gap junctional communication ⁵⁶ | |-----------------|-----|-------|------|-----------------|---|--|--| | | | | | | | CK1 ⁵⁵ | | | | | | | | | | | | | | | | СТ | S364 | PKA ⁵⁷⁻⁶⁰ | - Enhanced gap junction assembly and coupling ^{57,60} | | | | | | СТ | S365 | PKC ^{28,37,38}
PKA ⁶¹
? CaMKII ¹⁹ | Regulation of gap junction formation Cx43 internalization and Cx turnover 40,62 | | | | СТ | СТ | S368 | PKC ^{28,37,38,40}
v-SRC ²² | - Reduced gap junctional communication ^{38,40,42,63-67} - Reduced hemichannel opening ³⁶ increase Cx43 gap junction-channel permeability, slightly reduced unitary conductance ³⁸ and wound healing ⁶⁵ - Cx43 internalization and Cx turnover ^{28,68} | | | | | | | СТ | S369 35,61 | PKA ⁶¹
? CaMKII ¹⁹ | No effect on gap junctional communication ⁶¹ | | | | | | CT | S372 35,69 | PKC ⁶⁹ | Maintained electrical coupling ⁶⁹ | | | | | | СТ | S373
19,35,61,70 | PKA ⁶¹
Akt (PKB) ⁷⁰
? CaMKII ¹⁹ | No effect on gap junctional communication ⁶¹ | | 5
C1 | 396 | 45,47 | 6.9 | СТ | ? | PKA ⁷¹ | Regulation of electrical intercellular conductance via modulation of the open probability of Cx45 gap junction channels 71 | | | | | | СТ | \$381 ⁷² #,
\$382 ⁷² #,
\$384 ⁷² #,
\$385 ⁷² # | | Cx45 internalization and Cx turnove | | 6
1 3 | 435 | 47,41 | 6.15 | CL and/or
CT | Serine
73,74
Threonin
e ^{73,74} ⁷⁵ | PKC-gamma
activation ^{73,74} | Regulation of gap junctions ^{73,74} | | Cx44 = Bovine | | | | СТ | T238 ⁷⁶ | GSK3 ⁷⁶
MAPK ⁷⁶ | ? | |----------------------------|-----|--------|------|-----------|----------------------------------|---|--| | ortho- | | | | CT | S241 ⁷⁶ | GSK3 ⁷⁶ | ? | | logue | | | | СТ | S245 ⁷⁶ | PKA ⁷⁶
PKC ⁷⁶ | ? | | | | | | СТ | T300 ⁷⁶ | GSK3 ⁷⁶
MAPK ⁷⁶ | ? | | | | | | СТ | T303 ⁷⁶ | GSK ⁷⁶
MAPK ⁷⁶
CK1 ⁷⁶ | ? | | | | | | CT | T328 ⁷⁶ | PKC ⁷⁶ | ? | | | | | | | or S(329,
S330) ⁷⁶ | | | | Cx50 | 433 | 48,229 | 5.21 | CL and/or | Serine ⁷⁵ | PKCgamma ⁷⁵ | Regulation of cell-to-cell | | =GJA8 | | | | СТ | Threonin
e ⁷⁵ | | communication by decrease of Cx50 channel density assembled in gap junctions, and increase in of Cx50 hemichannels density in the plasma membrane 75 | | Cx49 =
Bovine
ortho- | | | | CL | S115 ⁷⁶ | CK1 ⁷⁶
ATM ⁷⁶
DNAPK ⁷⁶ | ? | | logue | | | | CL | S118 ⁷⁶ | CK1 ⁷⁶ | ? | | | | | | CL | S134 ⁷⁶ | PKC ⁷⁶ | ? | | | | | | СТ | S258 ⁷⁶ | PKC ⁷⁶ | ? | | | | | | СТ | S261 ⁷⁶ | PKC ⁷⁶ | ? | | | | | | СТ | S265 ⁷⁶ | PKC ⁷⁶ | ? | | | | | | СТ | S266 ⁷⁶ | PKC ⁷⁶ | ? | | | | | | СТ | S297 ⁷⁶ | MAPK ⁷⁶ | ? | | | | | | СТ | S300 ⁷⁶ | PKC ⁷⁶ | ? | | Cx45.6 = chicken | | | | СТ | S395 | PKA ⁷⁷ | Enhanced gap junction and hemichannel function ⁷⁷ | | ortho-
logue | | | | СТ | S363 | CKII ⁷⁸ | - Stimulate Cx50 turnover ^{78,79} - Inhibits the cleavage of Cx50 by caspase-3 ⁷⁸ | | Cx56 | 510 | 55,857 | 8.74 | CL | S118 | PKC ⁸⁰ | Decrease in intercellular communication and acceleration of Cx56 degradation ⁸⁰ | | | | | | СТ | S493 | ? 80 | ? | | Panx2 | 677 | 74,447 | 8.19 | CT | S514 | NDR1 81 | Regulation of large pore channel 81 | |-------|-----|--------|------|----|------|---------|-------------------------------------| [&]quot;#" means suggested phosphorylation site "\$" means not proven