Advanced search
Add to list
Author
Organization
Abstract
We prove distribution estimates for primes in arithmetic progressions to large smooth squarefree moduli, with respect to congruence classes obeying Chinese remainder theorem conditions, obtaining an exponent of distribution 1/2 + 7/300.
Keywords
Bombieri-Vinogradov theorem, prime gaps, Elliott-Halberstam conjecture, ARITHMETIC PROGRESSIONS, EXPONENTIAL-SUMS, DIVISOR FUNCTION, LARGE MODULI, THEOREM, PRIMES, TITCHMARSH, BOUNDS

Citation

Please use this url to cite or link to this publication:

MLA
Castryck, Wouter et al. “New Equidistribution Estimates of Zhang Type.” ALGEBRA & NUMBER THEORY 8.9 (2014): 2067–2199. Print.
APA
Castryck, W., Fouvry, É., Harcos, G., Kowalski, E., Michel, P., Nelson, P., Paldi, E., et al. (2014). New equidistribution estimates of Zhang type. ALGEBRA & NUMBER THEORY, 8(9), 2067–2199.
Chicago author-date
Castryck, Wouter, Étienne Fouvry, Gergely Harcos, Emmanuel Kowalski, Philippe Michel, Paul Nelson, Eytan Paldi, et al. 2014. “New Equidistribution Estimates of Zhang Type.” Algebra & Number Theory 8 (9): 2067–2199.
Chicago author-date (all authors)
Castryck, Wouter, Étienne Fouvry, Gergely Harcos, Emmanuel Kowalski, Philippe Michel, Paul Nelson, Eytan Paldi, János Pintz, Andrew V Sutherland, Terence Tao, and Xiao-Feng Xie. 2014. “New Equidistribution Estimates of Zhang Type.” Algebra & Number Theory 8 (9): 2067–2199.
Vancouver
1.
Castryck W, Fouvry É, Harcos G, Kowalski E, Michel P, Nelson P, et al. New equidistribution estimates of Zhang type. ALGEBRA & NUMBER THEORY. 2014;8(9):2067–199.
IEEE
[1]
W. Castryck et al., “New equidistribution estimates of Zhang type,” ALGEBRA & NUMBER THEORY, vol. 8, no. 9, pp. 2067–2199, 2014.
@article{5825674,
  abstract     = {We prove distribution estimates for primes in arithmetic progressions to large smooth squarefree moduli, with respect to congruence classes obeying Chinese remainder theorem conditions, obtaining an exponent of distribution 1/2 + 7/300.},
  author       = {Castryck, Wouter and Fouvry, Étienne and Harcos, Gergely and Kowalski, Emmanuel and Michel, Philippe and Nelson, Paul and Paldi, Eytan and Pintz, János and Sutherland, Andrew V and Tao, Terence and Xie, Xiao-Feng},
  issn         = {1937-0652},
  journal      = {ALGEBRA & NUMBER THEORY},
  keywords     = {Bombieri-Vinogradov theorem,prime gaps,Elliott-Halberstam conjecture,ARITHMETIC PROGRESSIONS,EXPONENTIAL-SUMS,DIVISOR FUNCTION,LARGE MODULI,THEOREM,PRIMES,TITCHMARSH,BOUNDS},
  language     = {eng},
  number       = {9},
  pages        = {2067--2199},
  title        = {New equidistribution estimates of Zhang type},
  url          = {http://dx.doi.org/10.2140/ant.2014.8.2067},
  volume       = {8},
  year         = {2014},
}

Altmetric
View in Altmetric
Web of Science
Times cited: