- Author
- Wouter Castryck (UGent) , Étienne Fouvry, Gergely Harcos, Emmanuel Kowalski, Philippe Michel, Paul Nelson, Eytan Paldi, János Pintz, Andrew V Sutherland, Terence Tao and Xiao-Feng Xie
- Organization
- Abstract
- We prove distribution estimates for primes in arithmetic progressions to large smooth squarefree moduli, with respect to congruence classes obeying Chinese remainder theorem conditions, obtaining an exponent of distribution 1/2 + 7/300.
- Keywords
- Bombieri-Vinogradov theorem, prime gaps, Elliott-Halberstam conjecture, ARITHMETIC PROGRESSIONS, EXPONENTIAL-SUMS, DIVISOR FUNCTION, LARGE MODULI, THEOREM, PRIMES, TITCHMARSH, BOUNDS
Citation
Please use this url to cite or link to this publication: http://hdl.handle.net/1854/LU-5825674
- MLA
- Castryck, Wouter et al. “New Equidistribution Estimates of Zhang Type.” ALGEBRA & NUMBER THEORY 8.9 (2014): 2067–2199. Print.
- APA
- Castryck, W., Fouvry, É., Harcos, G., Kowalski, E., Michel, P., Nelson, P., Paldi, E., et al. (2014). New equidistribution estimates of Zhang type. ALGEBRA & NUMBER THEORY, 8(9), 2067–2199.
- Chicago author-date
- Castryck, Wouter, Étienne Fouvry, Gergely Harcos, Emmanuel Kowalski, Philippe Michel, Paul Nelson, Eytan Paldi, et al. 2014. “New Equidistribution Estimates of Zhang Type.” Algebra & Number Theory 8 (9): 2067–2199.
- Chicago author-date (all authors)
- Castryck, Wouter, Étienne Fouvry, Gergely Harcos, Emmanuel Kowalski, Philippe Michel, Paul Nelson, Eytan Paldi, János Pintz, Andrew V Sutherland, Terence Tao, and Xiao-Feng Xie. 2014. “New Equidistribution Estimates of Zhang Type.” Algebra & Number Theory 8 (9): 2067–2199.
- Vancouver
- 1.Castryck W, Fouvry É, Harcos G, Kowalski E, Michel P, Nelson P, et al. New equidistribution estimates of Zhang type. ALGEBRA & NUMBER THEORY. 2014;8(9):2067–199.
- IEEE
- [1]W. Castryck et al., “New equidistribution estimates of Zhang type,” ALGEBRA & NUMBER THEORY, vol. 8, no. 9, pp. 2067–2199, 2014.
@article{5825674, abstract = {We prove distribution estimates for primes in arithmetic progressions to large smooth squarefree moduli, with respect to congruence classes obeying Chinese remainder theorem conditions, obtaining an exponent of distribution 1/2 + 7/300.}, author = {Castryck, Wouter and Fouvry, Étienne and Harcos, Gergely and Kowalski, Emmanuel and Michel, Philippe and Nelson, Paul and Paldi, Eytan and Pintz, János and Sutherland, Andrew V and Tao, Terence and Xie, Xiao-Feng}, issn = {1937-0652}, journal = {ALGEBRA & NUMBER THEORY}, keywords = {Bombieri-Vinogradov theorem,prime gaps,Elliott-Halberstam conjecture,ARITHMETIC PROGRESSIONS,EXPONENTIAL-SUMS,DIVISOR FUNCTION,LARGE MODULI,THEOREM,PRIMES,TITCHMARSH,BOUNDS}, language = {eng}, number = {9}, pages = {2067--2199}, title = {New equidistribution estimates of Zhang type}, url = {http://dx.doi.org/10.2140/ant.2014.8.2067}, volume = {8}, year = {2014}, }
- Altmetric
- View in Altmetric
- Web of Science
- Times cited: