Advanced search
1 file | 6.33 MB

Measuring actual integration : an outline of a Bayesian state-space approach

Glenn Rayp (UGent) and Samuel Standaert (UGent)
Author
Organization
Keywords
Regional Integration, State-space, Actual Economic Integration, Index

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 6.33 MB

Citation

Please use this url to cite or link to this publication:

Chicago
Rayp, Glenn, and Samuel Standaert. 2017. “Measuring Actual Integration : an Outline of a Bayesian State-space Approach.” In Indicator-based Monitoring of Regional Economic Integration, ed. Philippe De Lombaerde and Edgar Saucedo, 341–360. Dordrecht-New York: Springer.
APA
Rayp, G., & Standaert, S. (2017). Measuring actual integration : an outline of a Bayesian state-space approach. In Philippe De Lombaerde & E. Saucedo (Eds.), Indicator-based monitoring of regional economic integration (pp. 341–360). Dordrecht-New York: Springer.
Vancouver
1.
Rayp G, Standaert S. Measuring actual integration : an outline of a Bayesian state-space approach. In: De Lombaerde P, Saucedo E, editors. Indicator-based monitoring of regional economic integration. Dordrecht-New York: Springer; 2017. p. 341–60.
MLA
Rayp, Glenn, and Samuel Standaert. “Measuring Actual Integration : an Outline of a Bayesian State-space Approach.” Indicator-based Monitoring of Regional Economic Integration. Ed. Philippe De Lombaerde & Edgar Saucedo. Dordrecht-New York: Springer, 2017. 341–360. Print.
@incollection{5818465,
  author       = {Rayp, Glenn and Standaert, Samuel},
  booktitle    = {Indicator-based monitoring of regional economic integration},
  editor       = {De Lombaerde, Philippe and Saucedo, Edgar},
  isbn         = {978-3-319-50860-3},
  keyword      = {Regional Integration,State-space,Actual Economic Integration,Index},
  language     = {eng},
  pages        = {341--360},
  publisher    = {Springer},
  series       = {UNU series on regionalism},
  title        = {Measuring actual integration : an outline of a Bayesian state-space approach},
  year         = {2017},
}