Short and long term vision on improvements in bus transport

Alex Van den Bossche Ghent University,
EELAB Electrical Energy Laboratory
Sint –Pietersnieuwstraat 41 Gent Belgium

Busworld academy
Kortrijk
17-01-2014
Short and long term vision on improvements in bus transport: possibilities

Short term:
* Any experiment with electric busses results in more knowledge:
 - electric drives,
 - auxiliary equipment,
 - brake energy recovery.
* City centers, touristic areas
* Retrofit with single motor? But 2 or 4 motors is better.

Longer term = rest of presentation:
A) Technical possibilities
 1) City Bus
 2) Long distance bus-coach
 3) High efficiency and low weight electric drives
 4) All transport means should reduce weight.
B) Financial and social
C) Conclusion
A) Technical possibilities

1) City bus, Battery Electric?

* Problems
 - Cost and lifetime of batteries,
 - Battery Management System BMS reliability
 - Human resources in Power electronics

Comment: How many battery packs for 1 million km?

* Solutions to alleviate the battery problem:
 + inductive charging
 + contact charging
 - plug charging is still possible in longer stops (night and at noon?)

* Other solutions?
 Conventional IC engine on rear wheels, but braking energy from inertia in a small flywheel, electric drive on front wheels.
 Possibility of traction control on icy roads
2) Long distance bus-coach

* Pure electric:
 - Pure electric is not realistic for long distance

+ Battery-Electric with range extender? For mixed use: short and long distance

* Improvement on actual (diesel) buses:
 - Other fuels: kerosene, methanol, LPG, H₂, CNG without methane leaks?
 - Fuel additives: flame speed improvers: acetone, butanone, 0.1% cetane number improvers: alkyl nitrates,…

* Thermodynamic bottom cycle:

 Recover electrical/mechanical energy from exhaust

 + Organic Rankine cycle (10-15%)
 - Steam cycle (10-15%)
 - Giant thermoelectric effect (<4%)
2) Long distance bus-coach: auxiliaries

*Generator:
Electricity about 1 euro/kWh but poor efficiency now:
- Lundell alternator at 12V 45-55%, at full load, 50-62% at partial.
- Lundell alternator at 24V: only 8% better
- Towards 48V?

*Light
+ Led lamps for inside, outside, by preference > = 100 lumen/watt is possible.
- Filament lamps: 10 lumen/watt.
- CFL and low efficiency led: 40-70 lumen/watt

*Air-co
+ On exhaust heat?
+ On PV panels at the roof?
Cooling without engine running?
At least ventilation = increase in comfort
3) High efficiency and low weight electric drives

*Electric Motor:

+ *Permanent magnet*
 High peak efficiency, above 95%, lowest weight, factor 1.3 constant power range.
+ *Switched reluctance*
 Motor. max. 93% efficiency but flat, factor 4 constant power range.
- *Induction motor*
 Cheaper today, lower efficiency max 91%, factor 1.5 in constant power at peak load

Efficiencies only for comparison

* Differential needed? -no-

- 4% loss in usual 90° differential.

+ Two electric motors and gear have lower weight
 Compared to 1 motor with differential and gear

* 2 or 4 wheel drive?

Four electric motors:

+ Less current / motor
 Better traction control on ice.
- More complex electronics.
A) Technical possibilities

4) All transport means should reduce weight

*3 Benefits

- Lower energy for acceleration (50% of city bus) constant power range.
- Lower energy in rolling resistance. Rolling resistance some 50% at high speed (coaches)
- Lower power in hill climbing Depending on the trajectory

*Possibilities

- Now about 250kg/person.
- Ultra light vehicles can achieve (Elbev project) <100kg/person,
 Why not buses?

*How?

- Chassis: lattice, alu, stainless steel… Flexible chassis?
- Integration of electric drives in suspension
- Skin: fiber reinforced polymer
- Challenge to reduce seat weight and maintain comfort
- Auxiliaries
B) Financial and social aspects

Investment

All proposed technical solutions need investing in research and production before fuel saving can be achieved.

Where?

Battery buses, first in the cities centers and touristic areas.

Who?

- Cities: Exploitation/authorities: mainly cities for Battery Electric.
- Long distance Exploitation/regulations: General improvements in weight and auxiliaries:
- OEM manufacturers for component development.

Who finances them?
B) Financial and social aspects

Social

People
People may be want more entertainment and features such as WIFI. = rather independent on the kind of drive system.

Fuel savings are needed for investments, so not really cheaper

Society
+ Clean air:
 - Diseases
 - Monuments

Exploitation
+ Cleaner image.
+ Lower gravity point with batteries.
+ More quiet operation at low speed, lower noise in the street
C) Conclusion

✔ A lot of technical improvements are possible

✔ Research and developments and testing needed

✔ Most of improvements need first investments: Who?

Who benefits:
- society with clean air
- fuel/maintenance saving: exploitation
- minimal difference for the user.

It is too early for a clear return on investment without risk
C) Conclusion

Thanks for your attention

Accutram 1899-1904 used in Gent, Belgium, photo Lammerstraat
http://www.sosseteit.com/Over_dialect.html

Gyrobus 1955 used in Gent Belgium;
museum Antwerp
References

References

Own articles (converters, ultralight vehicles, electric solutions, organic rankine)

https://biblio.ugent.be/person/801000552755

Rankine cycle:
J.P. Liu, J.Q. Fu, C.Q. Ren, L.J. Wang, Z.X. Xu, B.L. Deng
Comparison and analysis of engine exhaust gas energy recovery potential through various bottom cycles,
Applied Thermal Engineering 50 (2013) 1219e1234

Lundell alternator:
Ruben Ivankovic, Jérôme Cros, Mehdi Taghizadeh Kakhki,
Carlos A. Martins and Philippe Viarouge, “Power Electronic Solutions to Improve the Performance of Lundell Automotive Alternators”
http://www.intechopen.com/download/get/type/pdfs/id/38166

http://en.wikipedia.org/wiki/Alternator_%28automotive%29