
Dynamische generatie van gepersonaliseerde hybride
aanbevelingssystemen

Dynamic Generation of Personalized Hybrid Recommender Systems

Simon Dooms

Promotor: prof. dr. ir. L. Martens
Proefschrift ingediend tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen: Computerwetenschappen

Vakgroep Informatietechnologie
Voorzitter: prof. dr. ir. D. De Zutter
Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2014 - 2015

ISBN 978-90-8578-755-6
NUR 984, 988
Wettelijk depot: D/2014/10.500/101

Department of Information Technology
WiCa Research Group
Faculty of Engineering and Architecture
Ghent University

WiCa
Universiteit Gent - iMinds
Campus Zuiderpoort, Blok C
Gaston Crommenlaan 8 bus 201
9050 Gent
België

Promotor

prof. dr. ir. Luc Martens

Board of examiners

prof. dr. ir. Patrick De Baets, Ghent University, chairman
prof. dr. ir. Luc Martens, Ghent University
prof. dr. Erik Mannens, Ghent University
prof. dr. Bart Goethals, University of Antwerp
dr. ir. Toon De Pessemier, Ghent University
dr. Pieter Audenaert, Ghent University
dr. Christoph Trattner, Graz University of Technology

This work was funded by a PhD grant of the Agency for Innovation by Science and
Technology (IWT).

The Road Not Taken

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth;

Then took the other, as just as fair,
And having perhaps the better claim,
Because it was grassy and wanted wear;
Though as for that the passing there
Had worn them really about the same,

And both that morning equally lay
In leaves no step had trodden black.
Oh, I kept the �rst for another day!
Yet knowing how way leads on to way,
I doubted if I should ever come back.

I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I-
I took the one less traveled by,
And that has made all the di�erence.

Robert Frost

Acknowledgements

They say that writing the acknowledgements is the hardest part of a
dissertation, and while I don't completely agree with that (I struggled
for days to get the title right), it's certainly one of the more sensitive
parts. Scienti�cally speaking, everyone who I interacted with between
September 2009 and December 2014 in some way in�uenced me, which
either directly or indirectly may have aided the realization of this book.
So let's start with a big thanks to everyone!

While it would be quite funny to stop at this point, common courtesy
dictates that I highlight some of the more in�uential contributors and
supporters of both my academic and personal development of these very
special 5 years of my life. So here goes. Thanks to my advisor prof. dr.
ir. Luc Martens for o�ering the great opportunity to embark on a PhD
quest after I had successfully completed my master thesis at the WiCa
research lab. Also a huge thanks to all of my WiCa colleagues (you
know your names), either for the support, company, or the delightful
take-your-mind-o�-work conversations that often took place at the WiCa
lunch table. Thanks to all my co-authors for the collaboration, proof-
reading and improving suggestions to my published work. Thanks to
the Flemish government (and by extension all tax payers) for �nancially
supporting my research. Thanks to all Ghent University administrative
and supporting sta� for helping out with the bureaucratic burden, es-
pecially Isabelle who often times had to decrypt foreign expense claims
in the most exotic languages. Special mention to the HPCUGent Team
who were always available for technical support and made possible the
high-performance track of this work.

Thanks to all members of the recsys community for making me feel at
home every year at the ACM RecSys conference starting from Barcelona
2010. It was a great pleasure getting to know the faces behind the papers,
thanks for the many many mind-expanding conversations, research ideas

and cultural enrichment both in and outside the conference halls.

Verder had ik ook graag alle externe instellingen en partners bedankt
waar ik gedurende deze 5 jaar mee in aanraking kwam. Bijvoorbeeld het
team van CultuurNet Vlaanderen, hartelijk bedankt voor de hoge bereid-
heid tot samenwerking, het aanbieden van een onderzoeksplatform en de
aanzienlijke inspanningen die jullie leverden voor de ondersteuning van
experimenten en onderzoek naar een betere gebruikerservaring. Super
bedankt!

Een mega merci aan al mijn vrienden in cirkels groot en klein, voor
plezier moest ik steeds bij jullie zijn. Op vrijdag, zaterdag of gewoon
tijdens de week, pintjes en Duvels waren er altijd, zo bleek. Zij het in
Puglia, Keulen, het Veerse Meer, de Ardennen, Maarkedal, De Pinte,
Zwijnaarde, 't Dreupelkot, Hot Club de Gand, 't Einde, of gelijk waar
we samen zijn beland, �jn is het altijd en ge zijt allemaal stuk voor stuk,
stief wel bedankt! En 't is waar, want het rijmt.

Extra merci aan Bert en Bart, mijn doctoraatscompagnions doorheen dit
avontuur op wie ik steeds kon rekenen voor wijze raad, overleg en het
a�aten van PhD-stoom.

Dankjewel ook aan alle familie zowel ver weg als dichtbij voor de vele aan-
gename niet-werk momenten tussen de weken door. Dankjewel Mama,
Papa, Emma, July, Willem, Joost, Eliane, Jolan, Jesse en Sander voor de
bergen liefde, steun en vertrouwen. De allerlaatste dankjewel, tenslotte,
is gereserveerd voor mijn allerbeste maatje, mijn dagelijkse steun en toe-
verlaat, het zout op mijn nootjes en de liefde van mijn leven, mijn Mieke.
Dankjewel!

Simon Dooms, 19 december 2014

Table of Contents

Table of Contents i

List of Figures vii

List of Tables xi

List of Acronyms xiii

English Summary xix

Nederlandstalige samenvatting xxiii

List of Publications xxvii

1 Introduction 1

1.1 About the Recommender Systems Domain 1
1.1.1 The Goal of a Recommender System 2
1.1.2 Rising Trends . 6

1.2 Recommendation Algorithm Overload 9
1.3 The Research Challenge 10
1.4 The Pieces of the Puzzle 10

2 User Feedback Collection 13

2.1 Introduction . 13
2.2 Public Rating Datasets . 14
2.3 A Cultural Events Website: Use Case Study 16
2.4 Movie Ratings from Twitter: The MovieTweetings Dataset 22

2.4.1 Unstructured Preference Information from Online
Sources . 22

2.4.2 Structured IMDb Ratings from Twitter: The
MovieTweetings Dataset 24

ii Table of Contents

2.4.3 MovieTweetings Advantages 27
2.5 Investigating Dataset Biases 28

2.5.1 Twitter Bias . 29
2.5.2 IMDb Bias . 32

2.6 Benchmarking the MovieTweetings Dataset 41
2.6.1 Experimental Setup 41
2.6.2 Experiments . 42

2.7 Cross-Domain Datasets from Twitter 49
2.7.1 Books - Goodreads 50
2.7.2 Music - Pandora 50
2.7.3 Video clips - YouTube 51
2.7.4 Cross-Domain Mining Experiment 52

2.7.4.1 Experimental Setup 52
2.7.4.2 Results 52

2.8 Conclusion . 55

3 Human-Recommender Interaction 57

3.1 Introduction . 57
3.2 Feedback Mechanisms . 58

3.2.1 Related Work . 59
3.2.2 A Cultural Events Website: Use Case Study 60

3.2.2.1 The Experiment 61
3.2.2.2 Experimental Results 63
3.2.2.3 Discussion 66

3.3 Recommendation Visualization 66
3.3.1 Related Work . 67
3.3.2 An In-Home Recommender System: Use Case Study 68

3.3.2.1 User Study: Requirements 69
3.3.2.2 The OMUS System 70
3.3.2.3 The OMUS User Interface 72

3.3.3 Recsys Front End 77
3.3.3.1 Architecture and Installation 78
3.3.3.2 Browsing and Rating 79
3.3.3.3 Calculating Recommendations 79
3.3.3.4 Combining Hybrid Recommendations . . 81
3.3.3.5 Discussion 84

3.4 Conclusion . 85

4 High-Performance Recommending 87

4.1 Introduction . 87

Table of Contents iii

4.2 Related Work . 89
4.2.1 Scalability . 89
4.2.2 Distributed Recommender Systems 89

4.3 A File-Based Approach . 91
4.3.1 The Recommendation Work�ow 92

4.3.1.1 Phase 1: Item Similarity 92
4.3.1.2 Phase 2: User Similarity 96
4.3.1.3 Phase 3: Recommendations 98

4.3.2 Experimental Results 99
4.4 In-Memory, Content-Based Recommendation 100

4.4.1 Dataset Speci�cation 101
4.4.2 Parallel CB Recommender 101
4.4.3 Parallel Strategies 103

4.4.3.1 Splitting in Userjobs 103
4.4.3.2 Splitting in Itemjobs 104
4.4.3.3 Hybrid Userjob, Itemjob Splitting 105

4.4.4 Load Balancing . 105
4.4.4.1 The De�nition of Work 106
4.4.4.2 The De�nition of Work: in Terms of Users107
4.4.4.3 The De�nition of Work: in Terms of Items108

4.4.5 Work Distribution 110
4.4.5.1 The Partition Problem 110
4.4.5.2 Robin Hood Extension 111
4.4.5.3 Dividing in Userjobs and Itemjobs 112

4.4.6 Performance Model 115
4.4.7 The Performance on another Dataset 122

4.5 Caching for In-Memory Neighborhood-Based Models . . . 124
4.5.1 The UBCF Algorithm 125
4.5.2 Similarities Usage Frequency 125
4.5.3 Caching Algorithms 128
4.5.4 Experimental Results 129

4.6 Conclusion . 133

5 O�ine Optimization of Personalized Hybrid Recom-
mender Systems 135

5.1 Introduction . 135
5.2 Related Work . 136
5.3 General Architecture . 139
5.4 O�ine Optimization for Hybrid Recommenders 141

5.4.1 Evaluating Optimization 142

iv Table of Contents

5.5 Hybrid Switching Strategy 142
5.6 Weighted Hybrid Strategy 144
5.7 O�ine Optimization Results 147

5.7.1 Individual Algorithms 147
5.7.2 Hybrid Switching Approach 149
5.7.3 Weighted Hybrid Approach 152

5.8 Discussion . 156
5.9 Conclusion . 156

6 Online Optimization of Personalized Hybrid Recom-
mender Systems 159

6.1 Introduction . 159
6.2 Related Work . 161
6.3 Online Optimization for Hybrid Recommenders 162

6.3.1 Avoiding Over�tting 165
6.4 A Responsive Online Recommender 166
6.5 Server-clients Structure 167

6.5.1 Performance Optimization: Prefetching 170
6.5.2 Limitations . 172
6.5.3 Online User Interface 172
6.5.4 System Experts Versus Normal Users 174

6.6 Online Optimization Results 175
6.6.1 Scalability . 175

6.6.1.1 Strong Scalability 177
6.6.1.2 Weak Scalability 180

6.6.2 Responsiveness . 183
6.6.3 Live Optimization Versus O�ine Retraining 183

6.7 Discussion . 187
6.8 Conclusion . 187

7 Online Evaluation of Personalized Hybrid Recommender
Systems 189

7.1 Introduction . 189
7.2 MovieBrain: a Movie Focus 191
7.3 A 3-tier Architecture . 191
7.4 Computing Back End . 192

7.4.1 Multi-Job Strategy 193
7.4.2 Multi-Brain Strategy 194

7.5 Mediating Middleware . 195
7.6 Visual Front End . 197

Table of Contents v

7.6.1 Login Made Easy 198
7.6.2 Background Detection 198
7.6.3 Getting Recommendations 199
7.6.4 System Transparency and User Control 201

7.7 Online Evaluation Results 202
7.7.1 Brain Recommender Con�guration 204
7.7.2 Click Tracking . 205
7.7.3 User Activity . 206
7.7.4 API and System Stability 208
7.7.5 Settings and Filters Interaction 209
7.7.6 Subjective User Feedback 213

7.7.6.1 The Bieber Problem 214
7.8 About Generalizability . 215
7.9 Conclusion . 216

8 Conclusions 217
8.1 Summary of Chapters . 217
8.2 Final Conclusions . 220
8.3 Summary of Contributions 221
8.4 Glimpses of Future Work 222

Appendices 225

References 233

List of Figures

1.1 Movie recommendation results 5
1.2 The pieces of the puzzle 11

2.1 Explicit and implicit feedback comparison 18
2.2 The number of collected clicks 19
2.3 Event feedback time analysis procedure 20
2.4 Event feedback time analysis 21
2.5 IMDb and Rotten Tomatoes screenshot 23
2.6 Social sharing feature . 25
2.7 Screenshots iOS IMDb app 26
2.8 Correlation IMDb and MovieTweetings ratings 30
2.9 Jaccard similarity top IMDb and MovieTweetings movies . 32
2.10 Genre frequency correlation IMDb and MovieTweetings . 34
2.11 MovieTweetings ratings histogram 36
2.12 Rating histogram comparison datasets 36
2.13 Rating distribution comparison 38
2.14 Comparing rating datasets over time 39
2.15 Correlation MovieTweetings and ML 10M100K* 40
2.16 MAP vs RMSE 5-fold cross-validation 43
2.17 MAP vs RMSE temporal splitting 44
2.18 Density values comparison datasets 46
2.19 Unique users and items MovieTweetings 47
2.20 MAP vs RMSE MovieTweetings min 20 ratings 48
2.21 Daily number of collected ratings 54
2.22 Rating overlap in mined datasets 54

3.1 Event detail page screenshot 61
3.2 Explicit feedback systems 62
3.3 5-star rating values distribution 63
3.4 Rating comparison 5-star vs thumbs up/down 64

viii List of Figures

3.5 Comparing HTML with and without CSS 67
3.6 High-level view of the OMUS system 71
3.7 The basic content overview list 73
3.8 The item-speci�c content view 74
3.9 Popup window for explicit feedback 75
3.10 The `users' tab of the user interface 77
3.11 Screenshot of the Recsys front end home screen 80
3.12 Screenshot of the search form 81
3.13 Screenshot of the calculation related buttons 82
3.14 Screenshot of the recommendation results 83
3.15 Screenshot of the hybrid con�guration page 84
3.16 Screenshot of the hybrid recommendation results 85

4.1 Conceptual layout of the HPC 88
4.2 Abstracted work�ow of the recommendation process . . . 93
4.3 The merging �le buckets strategy 96
4.4 File buckets matching in the recommendation phase . . . 98
4.5 The execution time on the HPC 100
4.6 Number of ratings per user for MovieLens 10M 102
4.7 User-item matrix for recommendation calculation 104
4.8 User-item matrix for userjob splitting 105
4.9 User-item matrix for itemjob splitting 106
4.10 Calculation time correlations 108
4.11 Load imbalance comparison userjobs 109
4.12 Load imbalance comparison itemjobs 110
4.13 The e�ect of the Robin Hood extension 113
4.14 Work distribution mapping on worker nodes 114
4.15 Maximum load imbalance userjobs and itemjobs 115
4.16 Schematic total execution time in parallel 117
4.17 Speedup model validation 119
4.18 Predicted speedup for various (U, I) settings 120
4.19 Predicted speedup and e�ciency 122
4.20 Similarity usage frequency 126
4.21 Similarity prediction usage frequency 127
4.22 Symmetric di�erence is the usage frequency 128
4.23 Speedup results LRU and SMART caching 130
4.24 Saturation point speedup LRU 131
4.25 Speedup results reversed user-item pair handling 132

5.1 High-level architecture of the hybrid system 139
5.2 Subtraining and subtest set splitting 143

List of Figures ix

5.3 Binary searching for improved weights 146
5.4 7 most similar algorithms RMSE values 149
5.5 Hybrid switching RMSE results 151
5.6 Best algorithm selection frequency 152
5.7 Weighted hybrid RMSE results 153
5.8 Algorithm usage distribution 154
5.9 Number of integrated algorithms histogram 155
5.10 Final comparing best RMSE results 157

6.1 Hybrid recommender optimization process 163
6.2 Optimization process for new ratings 167
6.3 Client-server architecture 168
6.4 Execution �ow sequence diagram 169
6.5 Algorithms and their most de�ning feature 174
6.6 Sort by magic popup (Google Reader) 175
6.7 Strong scaling individual phases execution time 178
6.8 Weak scaling individual phases execution time 181
6.9 3 Experimental scenarios 185
6.10 Comparing RMSE over 3 scenarios 186
6.11 Comparing RMSE with other datasets 186

7.1 The 3-tier architecture . 192
7.2 Multi-job and multi-brain strategies 195
7.3 Detailed middleware functionality 196
7.4 MovieBrain login screenshot 199
7.5 MovieBrain badge indication screenshot 199
7.6 MovieBrain front end screenshot 200
7.7 MovieBrain settings screenshot 202
7.8 MovieBrain �lters screenshot 203
7.9 MovieBrain user interaction screenshot 204
7.10 Number of clicks on action links 206
7.11 Daily MovieBrain user activity 207
7.12 Per user MovieBrain activity 208
7.13 MovieBrain user activities comparison 209
7.14 MovieBrain API requests 210
7.15 MovieBrain genre �lters usage 211
7.16 MovieBrain settings usage 212
7.17 Active vs non-active users 213
7.18 A MovieBrain review on the Chrome web store 214

List of Tables

2.1 Explicit and implicit feedback comparison 17
2.2 The number of collected clicks 18
2.3 Top 10 popular movies IMDb and MovieTweetings 33
2.4 Dataset characteristics . 35
2.5 Correlation MovieTweetings and ML 10M100K* 40
2.6 Recommendation algorithms and parameters overview . . 42
2.7 Dataset statistics . 53

3.1 The collected number of ratings 64
3.2 Pageviews comparison . 65

4.1 The item similarities for 5 items 93
4.2 The dividing of the outputs in �le buckets 95
4.3 The user similarities for 4 users 96
4.4 The division of the similarity calculation task 97
4.5 The recommendations for 5 items and 4 users 98
4.6 Execution time for complete recommendation calculation . 117
4.7 Smaller dataset performance results 123

5.1 Individual algorithms RMSE values 148
5.2 Wilcoxon Signed-Rank Test individual algorithms 150
5.3 Wilcoxon Signed-Rank Test weighted con�gurations . . . 152
5.4 Average weight values over all users 156

6.1 Divergent algorithm properties 177
6.2 Strong scaling individual phases execution time 179
6.3 Needed processes versus available processors 179
6.4 Basic properties MovieTweetings snapshots 181
6.5 Weak scaling individual phases execution time 182

List of Acronyms

A

API Application Programming Interface

B

BS Best Switching

C

CAMRA Context-Aware Movie Recommendation
CB Content-Based
CF Collaborative Filtering
CSS Cascading Style Sheets

D

DCF Distributed Collaborative Filtering
DCFLA Distributed Collaborative Filtering

neighbor-Locating Algorithm
DLNA Digital Living Network Alliance
DMR Digital Media Renderer

F

FWLS Feature-Weighted Linear Stacking

xiv List of Acronyms

G

GPFS General Parallel File System
GUI Graphical User Interface

H

HCI Human-Computer Interaction
HDFS Hadoop Distributed File System
HPC High-Performance Computing
HRI Human-Recommender Interaction
HTML HyperText Markup Language
HTTP Hypertext Transfer Protocol

I

ID Identi�er
IMDb Internet Movie Database
IP Internet Protocol
IR Information Retrieval

K

KNN K-Nearest Neighbor

L

LAMP Linux Apache MySQL PHP
LRU Least Recently Used

M

MAE Mean Absolute Error
MAP Mean Absolute Precision
ML MovieLens
MPAA Motion Picture Association of America
MPMD Multiple Program Multiple Data
MT MovieTweetings

List of Acronyms xv

N

NDCG Normalized Discounted Cumulative Gain
NP Nondeterministic polynomial Time

O

OMDb Open Movie Database
OMUS Optimized MUltimedia Service

R

RAID Redundant Array of Inexpensive Disks
RAM Random-Access Memory
RDBMS Relational DataBase Management System
REQ REQuirement
RMSE Root Mean Square Error
RPC Remote Procedure Call

S

SPMD Single Program Multiple Data
STREAM Stacking Recommendation Engines with

Additional Meta-features
SVD Singular Value Decomposition

U

UBCF User-Based Collaborative Filtering
UPnP Universal Plug and Play
UPnP AV Universal Plug and Play Audio Video
URL Uniform Resource Locator
UI User Interface

X

XML Extensible Markup Language

English Summary

Nederlandstalige

samenvatting

English Summary

Partly due to the Internet, we are nowadays virtually surrounded with
more information than we could possibly process in one lifetime. Every
day an increasing number of books, news articles, movies, music and
many more scream for attention, while our attention time itself remains
limited. Since manually browsing for interesting content is no longer vi-
able, the research and development of recommender systems has become
a hot topic in both academia and industry. Recommender systems try to
bridge the gap between users and content by modeling user preferences
and autonomously unearthing interesting items which would otherwise
have remained deeply buried in vast content catalogs.

Since the introduction of the �rst recommender systems in the early
90s, many recommendation strategies and algorithms have become avail-
able. There are algorithms that focus on user ratings, item information,
location, context, social relations and many more. In fact, there are so
many nowadays, that the challenge for researchers has now shifted from
designing new algorithms to selecting the most optimal strategy for a
given scenario, user and context. While, in the past, this task most
often required manual involvement to con�gure one or multiple (i.e., hy-
brid) recommender systems, with this work we strive towards a future
where a recommender system is capable of integrating many individual
recommendation algorithms and dynamically �ne-tunes itself for a given
situation.

Most recommendation strategies start from the idea that users in a
system behave very similarly and thus can be averaged out or clustered
together. Throughout this work however on multiple occasions we found
users to be very di�erent from each other and so wherever possible we
opted for a user-speci�c approach where every user is considered unique
and therefore requires a unique approach.

We started by exploring the components of a recommender system,

xx English Summary

one of which was the collection of user input data. While essential for
the recommendation process, user input data or `feedback' proved hard
to collect and public rating datasets were shown to be outdated. We
ran a number of experiments on a popular Belgian events website, and
noted the di�erence between implicit and explicit user feedback. While
the �rst was easier to collect, its information value proved less than the
latter. We bundled the collected data from the experiments as an event
rating dataset. A time analysis of the data however showed how user
feedback on events had some very speci�c properties which may limit its
usefulness to one-and-only items. To obtain a recent, relevant, and more
generalizable rating dataset we turned to social media. We constructed
a movie rating dataset called MovieTweetings which mined IMDb movie
ratings that were posted on Twitter in a semi-structured format. Our
mining approach was shown to be e�ective in other item domains (e.g.,
books or music) as well, and even showed potential for cross-domain item
recommendation.

Next, we analyzed the importance of user interfaces in the recom-
mendation process and evaluated how a sense of control and system
transparency could be integrated in a hybrid recommendation scenario.
We focused on user-recommender interaction both from the perspective
of feedback mechanisms and recommendation presentation. Above all,
users proved to have very diverging opinions on their ideal interaction
process. While some users want to be in control and heavily interact
with a recommender system, other users want a lean-back experience
and expect the system to just `work'.

Because of the high computational complexity and hardware require-
ments, most experiments were executed on a high-performance com-
puting (HPC) infrastructure, which was available for researchers at our
university. We showed how even complex recommendation calculations
could be mapped onto such an infrastructure. While we experimented
with both functional and data parallelism, we found the latter to be more
interesting because it allowed in-memory computation, improved load
balancing and reduced synchronization overhead between multiple cal-
culation phases. We showed how a recommendation task distributed over
200 worker nodes (each of which had 8 processing cores) still obtained
parallel e�ciency values up to 70%, which surpassed existing state-of-
the-art distributed recommendation algorithms that used a MapReduce
paradigm.

With the availability of a dataset, user interface and computing in-

English Summary xxi

frastructure, we could then focus on our original research goal of de-
veloping self-con�guring hybrid recommender systems. We approached
this challenge in three phases. First, we considered the hybrid con-
�guration of a recommender system as an optimization problem in an
o�ine setting. We showed how individual recommendation algorithms
could be combined automatically, while allowing users to manually in�u-
ence the outcome. Second, we revisited our optimization strategy in an
online context. We introduced a client-server architecture and showed
how it allowed the system to meet four requirements typically found in
an online environment i.e., scalability, responsiveness, user control and
system transparency. Third, we exposed the self-learning hybrid recom-
mender system to actual users in an online evaluation experiment that
was set in a movie recommendation context. We linked a HPC back end
to a Google Chrome extension front end called MovieBrain by means of
a middleware webserver. Hybrid recommender con�gurations were au-
tomatically optimized in real-time, and personalized for every user. We
logged all user interaction and activity patterns of 70 users over a pe-
riod of 107 days. An analysis of both implicitly and explicitly collected
user feedback showed how users enjoyed the improved recommendation
experience over time.

While, ironically, recommender systems are designed to avoid manual
involvement in the content selection process as much as possible, we
believe active user involvement to be the key which will enable next
generation recommender systems to push beyond the current limits and
towards a true and optimal recommendation experience.

This research was performed in the Wireless & Cable (WiCa) research
group. WiCa is a research group in the Information Technology (INTEC)
department of the Faculty of Engineering and Architecture (FEA) of
Ghent University, Belgium. The work presented here resulted in 5 inter-
national journal publications, 8 conference or workshop papers, 1 demo
and 1 newsletter (all �rst author).

Nederlandstalige

samenvatting

Eén van de grootste problemen waar internetgebruikers tegenwoordig
mee geconfronteerd worden, is de overdaad aan informatie die op hen
afkomt. Elke dag opnieuw schreeuwen een steeds maar toenemende hoe-
veelheid boeken, nieuwsartikels, �lms, muziek enz. om aandacht. De
hoeveelheid informatie is zo hoog dat zelf een volledig mensenleven niet
voldoende is om alles te verwerken. Als persoon is het dus onmogelijk
om zelf door het volledige beschikbare aanbod te bladeren en manueel te
selecteren wat interessant is. Om dit steeds actueler wordende probleem
aan te pakken, wordt er met groeiende belangstelling gewerkt aan de
ontwikkeling van aanbevelingssystemen; en dit zowel in de academische
wereld als in de bedrijfswereld. Het primaire doel van aanbevelingssys-
temen is de kloof tussen gebruiker en aanbod te dichten door geautoma-
tiseerd op zoek te gaan naar de meest interessante informatie voor elke
gebruiker.

Sinds de introductie van de eerste aanbevelingssystemen in de vroege
jaren negentig zijn reeds een groot aantal aanbevelingsalgoritmes en stra-
tegieën ontworpen. Sommige algoritmes focussen zich op de score, of
ratings, die gebruikers geven, anderen baseren zich eerder op speci�eke
informatie zoals: item metadata (bijvoorbeeld een �lmgenre), locatie,
context, sociale relaties, enz. Tegenwoordig is het aantal beschikbare
aanbevelingsalgoritmes zo hoog dat de werkelijke uitdaging voor onder-
zoekers zich almaar meer verplaatst van het ontwerpen van nieuwe al-
goritmes, naar het optimaal selecteren van het beste algoritme voor elke
gegeven situatie, context en gebruiker. De beste methode kan één enkel
algoritme zijn, of uit een combinatie van meerdere algoritmes bestaan.
Combinaties van meerdere algoritmes worden vaak gebruikt omdat ze
de individuele voordelen van elk van de geïntegreerde algoritmes kun-

xxiv Nederlandstalige samenvatting

nen combineren. Een aanbevelingssysteem dat meerdere verschillende
aanbevelingsalgoritmes integreert, noemen we dan een hybride systeem.
Dergelijke hybride systemen vereisen tot op vandaag meestal nog manu-
ele con�guratie om de verschillende onderliggende algoritmes op elkaar af
te stellen. Met dit werk richten we ons echter op de toekomst, waar een
aanbevelingssysteem in staat zou moeten zijn om, gegeven een aantal in-
dividuele aanbevelingsalgoritmes, zichzelf automatisch samen te stellen
tot een uniek hybride systeem dat optimaal afgesteld is op een gegeven
situatie.

De basis van de meeste aanbevelingsstrategieën is dat gebruikers in een
systeem zich gelijkaardig gedragen en dus uitgemiddeld of in clusters ge-
groepeerd kunnen worden. Doorheen dit werk echter, kwamen we meer-
dere keren tot de omgekeerde vaststelling dat gebruikers er soms volledig
tegengestelde meningen en gedragspatronen blijken op na te houden. We
probeerden dan ook zoveel mogelijk van een gebruikersspeci�eke aanpak
uit te gaan, waar we elke gebruiker als uniek beschouwden en een unieke
methode van aanbevelen aanboden.

De eerste stap in ons onderzoek bestond uit het bestuderen van de ver-
schillende facetten of componenten van een aanbevelingssysteem. Een
van deze componenten was het verzamelen van gebruikersdata. Hoewel
deze data van essentieel belang is voor de goede werking van een aan-
bevelingssysteem, bleek het verzamelen ervan niet evident te zijn. Er
bestaan publiek beschikbare datasets die vaak voor experimentele doel-
einden worden gebruikt, maar deze zijn ofwel erg verouderd ofwel weinig
algemeen inzetbaar. We voerden een eerste reeks van experimenten en
analyses uit op een populaire Belgische evenementen website (uitinvlaan-
deren.be), en ondervonden zo het verschil tussen impliciete en expliciete
gebruikersdata. Terwijl impliciete gegevens gemakkelijk te verzamelen
zijn, vereist expliciete feedback steeds bewuste interactie van gebruikers.
Hoewel expliciete feedback daardoor meestal minder voorhanden is, ligt
de informatiewaarde ervan wel een stuk hoger. De data die volgde uit
de experimenten werd gebundeld in een dataset die in verder onderzoek
zou kunnen worden gebruikt. Een tijdsanalyse van de data bracht echter
enkele eigenschappen aan het licht die te speci�ek van toepassing waren
op plaats- en tijdsgebonden items zoals evenementen. Om een meer al-
gemenere dataset van gebruikersvoorkeuren te bekomen, richtten we ons
uiteindelijk op sociale media. Een tweede reeks van experimenten leidde
tot de ontwikkeling van een eigen dataset genaamd MovieTweetings, die
bestond uit verzamelde �lmvoorkeuren die via IMDb gepost werden op
Twitter in een semi-gestructureerd formaat. We toonden bovendien aan

Nederlandstalige samenvatting xxv

hoe onze manier van werken eveneens toegepast kon worden op andere
item domeinen (zoals boeken en muziek), en zelfs erg nuttig zou kun-
nen zijn voor aanbevelingssystemen die over meerdere domeinen heen
werken.

In een volgende stap, analyseerden we het belang van gebruikersinterfa-
ces in het aanbevelingsproces en we evalueerden hoe het idee van controle
en systeemtransparantie kon worden geïntegreerd in een hybride aanbe-
velingsscenario. De focus lag hierbij op de interactie tussen gebruiker en
aanbevelingssysteem, zowel vanuit het perspectief van feedback mecha-
nismes als van de visualisatie van de aanbevelingen zelf. Uit meerdere
concrete use cases bleek hoe gebruikers er vaak erg tegengestelde opinies
op na houden. Terwijl sommige gebruikers in controle willen zijn en ac-
tief interageren met het systeem, verkiezen anderen een meer lean-back
ervaring terwijl ze verwachten dat het systeem gewoon `werkt'.

Vanwege de vaak hoge computationele vereisten van aanbevelingsal-
goritmes, drong de noodzaak van een high-end computing infrastructuur
zich op. De meeste experimenten werden dan ook uitgevoerd op de su-
percomputer infrastructuur (High-Performance Computing of HPC) die
beschikbaar werd gesteld door de universiteit. We toonden aan hoe de
meestal erg complexe aanbevelingsberekeningen konden worden aange-
past zodat ze parallel en gedistribueerd op de rekeninfrastructuur konden
worden uitgevoerd. We experimenteerden hierbij zowel met een functi-
onele als met een op data gefocuste aanpak van parallellisatie. Deze
laatste bleek het meest interessant omdat het in-memory berekenin-
gen ondersteunde, load balancing verbeterde en de overhead afkomstig
van synchronisatie tussen meerdere opeenvolgende fases kon vermijden.
We illustreerden hoe een aanbevelingsberekening gedistribueerd over 200
computers (elk met 8 processors) nog steeds een parallelle e�ciëntie-
waarde van 70% wist te bereikten. Dit bleek hoger te zijn (en dus beter)
dan huidige state-of-the-art gedistribueerde aanbevelingsalgoritmes die
werken met een MapReduce aanpak.

Met de beschikbaarheid van een dataset, een gebruikersinterface en
een rekeninfrastructuur konden we onze aandacht vervolgens vestigen op
het ontwerpen van een zichzelf con�gurerend hybride aanbevelingssys-
teem. We benaderden deze uitdaging in drie fasen. In een eerste fase
beschouwden we het con�gureren van een hybride aanbevelingssysteem
als een optimalisatieprobleem in een o�ine context. We onderzochten
hoe de resultaten van individuele aanbevelingsalgoritmes automatisch
gecombineerd konden worden terwijl ook ondersteuning voor manuele

xxvi Nederlandstalige samenvatting

gebruikersinvloed gegarandeerd werd. In een tweede fase werd de opti-
malisatiestrategie herbekeken vanuit een online context. We introduceer-
den een client-server architectuur en toonden aan hoe het systeem kon
voldoen aan vier typische eisen voor online omgevingen zijnde schaal-
baarheid, responsiviteit, gebruikerscontrole en systeemtransparantie. In
een derde en laatste fase werd ons autonoom lerend hybride aanbeve-
lingssysteem blootgesteld aan echte gebruikers in een online experiment
toegepast op �lm aanbevelingen. Een achterliggende supercomputer in-
frastructuur werd verbonden met een zelfgemaakte Google Chrome ex-
tension genaamd MovieBrain via een tussenliggende webserver. Hybride
con�guraties van individuele aanbevelingsalgoritmes werden automatisch
geoptimaliseerd in ware tijd, en dit voor elke unieke gebruiker. Gebrui-
kers waren bovendien in staat om de volgens het systeem optimale con-
�guratie te wijzigen en beter op hun eigen voorkeuren af te stellen. Van
in totaal zeventig gebruikers verzamelden we interactie- en activiteits-
patronen over een periode van 107 dagen. Uit een analyse van zowel
impliciete gegevens als expliciet verzamelde gebruikersvoorkeuren bleek
dat gebruikers de verbeterde aanbevelingservaring erg wisten te appreci-
ëren.

Aanbevelingssystemen werden ontworpen om zo veel mogelijk automa-
tisch en autonoom ondersteuning te bieden bij het selecteren van inte-
ressante items. Niet zonder enige ironie zijn we echter van mening dat
net manuele interactie in het aanbevelingsproces de sleutel vormt tot het
doorbereken van de huidige limieten en uiteindelijk kan leiden tot het
bereiken van een ware en zo optimaal mogelijke aanbevelingservaring.

Dit onderzoek werd uitgevoerd in de Wireless & Cable (WiCa) onder-
zoeksgroep. WiCa is een onderzoeksgroep binnen het departement In-
formatietechnologie (INTEC) in de Faculteit Ingenieurswetenschappen
en Architectuur (FEA) van Universiteit Gent, België. Dit hier gepresen-
teerde werk heeft geleid tot 5 artikels in internationale wetenschappe-
lijke tijdschriften, 8 artikels gepresenteerd op conferenties of workshops,
1 demo en 1 wetenschappelijke nieuwsbrief (allemaal eerste auteur).

List of Publications

Journal Papers

[1] Dooms S, De Pessemier T, Verslype D, Nelis J, De Meulenaere J,
Van den Broeck W, Martens M, Develder C. Omus: an optimized
multimedia service for the home environmentMultimedia Tools and
Applications 2014;72(1):281-311.

[2] Dooms S, Audenaert P, Fostier J, De Pessemier T, Martens L. In-
memory, distributed content-based recommender system Journal
of Intelligent Information Systems 2014;42(3):645-669.

[3] Dooms S, De Pessemier T, Martens L. O�ine optimization for
user-speci�c hybrid recommender systems Multimedia Tools and
Applications 2013; accepted.

[4] Dooms S, De Pessemier T, Martens L. Online optimization for
user-speci�c hybrid recommender systems Multimedia Tools and
Applications 2014; accepted.

[5] Dooms S, Bellogin A, De Pessemier T, Martens L. A Framework
for Dataset Benchmarking and its Application to a New Movie Rat-
ing Dataset ACM Transactions on Intelligent Systems and Tech-
nology (under review).

International Conferences

[1] Dooms S, De Pessemier T, Martens L. An online evaluation of
explicit feedback mechanisms for recommender systems Proc. of
Conf. on Web Information Systems and Technologies (WEBIST)
2011;391-394.

xxviii List of Publications

[2] Dooms S, De Pessemier T, Martens L. Caching strategies for
in-memory neighborhood-based recommender systems Proc. of
Conf. on Web Information Systems and Technologies (WEBIST)
2013;435-440.

[3] Dooms S. Dynamic generation of personalized hybrid recom-
mender systems Proc. of Conf. on Recommender systems (RecSys)
2013;443-446.

[4] Dooms S. Improving IMDb movie recommendations with inter-
active settings and �lters Proc. of Conf. on Recommender systems
(RecSys) 2014.

International Workshops

[1] Dooms S, De Pessemier T, Martens L. A �le-based approach
for recommender systems in high-performance computing envi-
ronments Proc. of Conf. on Database and Expert Systems Ap-
plications (DEXA) - Workshop on Recommender Systems meet
Databases (RSmeetDB) 2011;529-533.

[2] Dooms S, De Pessemier T, Martens L. A user-centric evaluation
of recommender algorithms for an event recommendation system
Proc. of Conf. on Recommender Systems (RecSys) - Workshop
on User-Centric Evaluation of Recommender Systems and Their
Interfaces-2 (UCERSTI) 2011;67-73.

[3] Dooms S, De Pessemier T, Martens L. MovieTweetings: a movie
rating dataset collected from twitter Proc. of Conf. on Recom-
mender systems (RecSys) - Workshop on Crowdsourcing and Hu-
man Computation for Recommender Systems (CrowdRec) 2013.

[4] Dooms S, De Pessemier T, Martens L. Mining cross-domain rating
datasets from structured data on twitter Proc. of Conf. on World
wide web (WWW) - Workshop on Modeling Social Media (MSM)
2014.

List of Publications xxix

Demos

[1] Dooms S, De Pessemier T, Martens L. Demonstrating contextual
group recommendations for media in a home environment Proc. of
Dutch-Belgian Information Retrieval Workshop (DIR) 2012;83-84.

Newsletters

[1] Dooms S, Martens L. Harvesting movie ratings from structured
data in social media SIGWEB Newsletter 2014.

Chapter 1

Introduction

1.1 About the Recommender Systems Domain

It all starts with the information overload problem. Since the Inter-
net became an integrated aspect of daily life, people are overwhelmed
with information. Thousands of news articles, Facebook updates, tweets,
emails and many many more scream for attention every day. While our
attention time remains the same (i.e., limited to the number of awake
hours per day), the amount of information proliferated through our com-
munication networks expands at exponential rates. This situation in-
evitably leads to information overload and thus forces people to decide
what deserves their attention and what not. But how can such decisions
be made thoroughly? Recent statistics e.g., revealed that 100 hours of
YouTube videos are uploaded every minute1, every day 58 million tweets
are posted on Twitter2 and 55 million status updates are made on Face-
book3. With such dazzling numbers in mind, how can people be expected
to make informed decisions about what content to consume and what to
ignore? The short answer is: they can not. At least not manually, there
is simply not enough time.

People can however be assisted in the browsing process, by algorithms
that automatically �lter out interesting content based on learned user
preferences; this is where recommender systems come in. While infor-
mation retrieval (IR) systems typically guide users to the content (e.g.,
web search engines), recommender systems constitute a more modern

1https://www.youtube.com/yt/press/statistics.html
2http://www.statisticbrain.com/twitter-statistics
3http://blog.kissmetrics.com/facebook-statistics

2 Introduction

paradigm of bringing the content to the users, often proactively. Nowa-
days, many of the choices we make are actually governed by recommender
systems that in some way in�uence our decision making process. Some-
times recommendations are provided very openly such as the Twitter
`Who to follow ' feature or the YouTube `Recommended videos' section,
but more often recommendations are integrated in more subtle ways such
as personalized advertisements or the ranking of friend status updates
on Facebook.

The �rst occurrences of recommender systems in scienti�c research lit-
erature are commonly accepted to be the Tapestry system [1] in 1992
and the GroupLens system [2] in 1994. Before that, research on informa-
tion overload typically focused more on information �ltering and often
entailed semi-autonomous (i.e., human involvement) approaches to �l-
ter content. Both the Tapestry system (mail recommendation) and the
GroupLens system (news recommendation) introduced the concept of
collaborative �ltering in the recommender systems domain. In its literal
sense, the term refers to the collaborative e�ort of people helping each
other to perform �ltering of content e.g., moderated newsgroups where
moderators manually �lter content for other users. The term is now
mainly used to indicate recommendation approaches where feedback in-
formation of multiple users is used to guide the recommendation process.
Such approaches are based on the idea that users who had similar tastes
in the past (e.g., their ratings were similar) are likely to have similar
tastes in the future. Therefore, to �nd interesting items we can �nd
similar users and recommend what they have liked.

The concept of collaborative �ltering became popular and was soon fol-
lowed by many other recommendation strategies such as content-based
�ltering [3], knowledge-based �ltering [4], hybrid techniques and many
variants of all of these. As the added value of recommender systems
became more and more apparent, they were introduced in a wide num-
ber of divergent domains including restaurants [5], food [4], recipes [6],
books [7], comic books [8], music [9], travel [10], tourism [11], per-
fume [12], movies [13], cultural events [14], conferences [15], research
papers [16], crime suspects [17], jobs [18], video clips [19], tv shows [20],
network data [21], news [22] and e-commerce [23].

1.1.1 The Goal of a Recommender System

Recommender systems link items and users in vast content collections.
But what is their actual goal? While the �rst goal that comes to mind

1.1 About the Recommender Systems Domain 3

is often `to make users happy', there are many other goals that a recom-
mender system may try to achieve. Alan et al. [24] suggested to evaluate
recommender systems in 3 dimensions with each dimension having dif-
ferent goals. They proposed a user perspective, a business perspective
and a perspective focusing on technical constraints.

From the perspective of the user, recommender systems should
strive for overall user satisfaction, which comes from reducing their in-
formation overload problem by �nding interesting items and facilitating
their catalog browsing experience. For a business however, the over-
all main goal is to make money. Businesses that deploy a recommender
system expect to increase sales in some way or another. A good rec-
ommender system may point users to more interesting items to buy or
stimulate customer retention in the long run, both of which result in
increased sales and thus revenue. Less ethical approaches � sometimes
referred to as evil recommender systems � might design the recommender
system in such a way that mostly expensive items are recommended, or
e.g., only items with high pro�t margins. In the extreme case recom-
mender systems could even be applied to arti�cially increase prices for
products that the system is almost certain a user will buy e.g., bat-
teries for electronics, power cables, etc. The technical constraints
linked with recommender systems are not really goals per se, but should
be more regarded as minimum requirements for recommender systems
to be successful. Examples of such technical constraints are scalability,
robustness, reactivity and so on.

While recommender systems can be used for good or evil, in this work,
we adopt the formal Google corporate motto of �Don't be evil� and pri-
marily focus on the user perspective of recommender systems, with the
main goal of maximizing user satisfaction in the long run. This goal
leads us to some new questions. What is best for a user? And, what are
good recommendations?

In the past, recommendation quality was almost uniquely de�ned in
terms of recommendation accuracy i.e., how accurate the system is able
to predict interesting items. Typically two recommendation scenarios
can be de�ned, rating prediction and item prediction. In the case of
rating prediction, a recommender system is tasked with predicting how
interesting a given item is for a given user, while the item prediction
task entails generating a list of interesting items. The accuracy of rat-
ing prediction based systems is usually expressed in terms of metrics as
Root Mean Square Error (RMSE) or Mean Absolute Error (MAE). Such

4 Introduction

metrics express the error between the predicted rating and actual user
rating usually averaged over all items and users. The item prediction use
case resembles that of typical IR tasks, where for a given search query a
list of most interesting search results must be presented. The accuracy
of such recommendation scenarios is therefore often expressed in terms
of precision and recall [25], which are evaluation metrics borrowed from
the IR domain.

The problem for recommender systems that blindly optimize for recom-
mendation accuracy is the limit of noticeable di�erence. Recommender
systems research has focused a lot on developing new recommendation al-
gorithms that improve overall recommendation accuracy. Very often the
reported improvement over existing state-of-the-art algorithms is only a
few percent (or even less). Having statistically signi�cant results how-
ever, does not imply that users are actually capable of noticing the dif-
ference. Above a certain threshold, users might be insensitive to changes
in the recommendation accuracy. Users don't think in terms of RMSE or
percentages, they rather intuitively evaluate the quality of results, which
sometimes makes comparing multiple results di�cult. We illustrate this
in Fig. 1.1, where we present movie recommendation results from three
di�erent recommendation strategies. Each row represents the top-5 rec-
ommended movies. In mathematical terms, the di�erence of these results
is easily calculated, but actual people will have a harder time comparing
the accuracy of these movie recommendation lists. While the objectively
calculated accuracy values may be signi�cantly di�erent, for actual peo-
ple these lists may be appreciated equally, or vice versa di�erently per-
ceived lists may actually result in the same calculated accuracy value.
Thus the usefulness of optimizing recommendation accuracy is inherently
limited by the user perception of changes in the recommendation list.

Another problem linked with optimizing recommendation accuracy is
that the approach focuses primarily on user ratings. In the movie domain
e.g., recommender systems try to predict which movies would obtain the
highest user ratings for a given user and then these movies are recom-
mended. When typical user behavior (in the movie domain) however is
analyzed, data often shows that users actually tend to watch more 3-star
rated movies than 5-star rated movies4. So again, taking only recom-
mendation accuracy � in terms of being able to predict high rated items
� into account may limit the improvement potential of recommendation

4As noted by Guy Shani in his tutorial presentation at the ACM RecSys conference
in Barcelona 2010 [26]

1.1 About the Recommender Systems Domain 5

(1)

(2)

(3)

Figure 1.1: Movie recommendation results from three di�erent recommen-
dation strategies. Each row presents the top-5 recommended movies. While
it is easy to calculate the accuracy of these results, people may actually be
insensitive to the (small) di�erence.

quality.

In [27], Shani et al. therefore suggests many additional evaluation
metrics that may be taken into account or be important to users of rec-
ommender systems. These metrics include novelty (i.e., how new are the
recommended items to the user?), serendipity (i.e., how surprising?), di-
versity (i.e., how similar?) and many others. While research has shown
that recommendation accuracy is positively correlated with user satis-
faction, recent research has also shown other factors such as e.g., trans-
parency and trust to be involved and therefore important in regulating
user satisfaction. Di�erent users may furthermore have di�erent expec-
tations e.g., some users may �nd obvious recommendations5 annoying,
while for others it may inspire trust of the recommender system.

In conclusion we note that there is no silver bullet in the recommender

5An example of an obvious recommendation in the movie domain is the movie
Avatar (2009), which almost everyone likes but is unlikely to be an original suggestion.

6 Introduction

systems domain. No single approach will be best for every user in every
situation. The `best choice' recommendation algorithm for a given situ-
ation will depend on the user, application domain, de�nition of best and
most of all on the goal of the recommender system.

1.1.2 Rising Trends

From O�ine Evaluation to Online, User-centric Experiments

As previously mentioned, in the early days of the recommender systems
domain, evaluating recommendation quality focused mostly on express-
ing recommendation accuracy in terms of o�ine calculable metrics. Re-
searchers devised new recommendation algorithms and reported their
accuracy improvement towards baseline approaches. Oddly enough, ac-
tual users were rarely involved in the process. Public rating datasets
(containing historical user feedback data) were split in training and test
datasets, and then used to determine how accurate the algorithms were
able to predict the ratings in the test dataset if given the training dataset
as input.

In the last decade, more researchers from divergent �elds of study e.g.,
psychology and Human-Computer Interaction (HCI) have joined the rec-
ommender systems domain. Increasing multi-disciplinary involvement
caused the domain to shift its heavy algorithm-oriented focus to a more
user-central focus. The importance of user studies gained traction and
user involvement has now become an indispensable component of the rec-
ommendation quality evaluation process. As Shani et al. [27] suggests,
o�ine evaluation (based on training and test datasets) is easy, cheap
and fast and thus may be used early on in the algorithm design process
for testing purposes or e.g., rapidly benchmarking multiple strategies. It
is however through online and user-centric experiments that true user
satisfaction can be evaluated by measuring user interaction behavior or
explicitly asking users their opinion (i.e., questionnaires) [28]. When
real users are involved (instead of only their historically captured feed-
back data), the actual in�uence of the recommendation process on user
behavior can be measured. The most interesting recommendations are
those that a user would not have found without the help of the recom-
mender system. It is this aspect of user in�uence that di�erentiates the
recommender systems domain from the machine learning domain. The
latter tries to as close as possible predict future data based on historic
data, while the former uses historic data to in�uence future behavioral

1.1 About the Recommender Systems Domain 7

data in a more subjective way.

Evolution of Input Data

Another evolving aspect of the recommender systems domain is the input
data that is used to feed recommendation algorithms. Originally, user
ratings were the sole source of input for recommendation processes. User
preferences expressed as numbers in a con�ned interval (e.g., 1-5) went
in, recommendations came out. Ratings however, are hard to collect
since they require explicit user interaction and may even introduce noise
because of user inconsistency [29, 30]. Collecting implicit feedback in
the form of user interaction and behavioral data is easier and requires no
additional user interaction, and thus a considerable amount of research
has focused on how implicit feedback (additionally) can be processed
into valuable input data for recommender systems (e.g. [31�33]).

In general, recommender systems will always keep adapting to chang-
ing availability of input data. If new technology and trends in society
cause novel interesting data to become available, recommendation algo-
rithms will be created that exploit the data. Two examples of such data-
induced recommendation trends are social and context-aware recommen-
dation algorithms. With the advent of social networks and in particular
Facebook's Open Graph initiative, an abundance of social network data
became publicly available. Social network data provides a rich source
of user preference information (e.g., user pro�les, likes, etc.) along with
inter-user relationships (e.g., friends). Such data has been integrated
in many so-called social recommendation algorithms that e.g., infer and
integrate trust relationships in the recommendation process.

Context-aware recommendation algorithms involve contextual data in
their recommendation process. Context data such as the time of day,
current weather, user location, user mood, etc. can be very useful fea-
tures since users might have di�erent preferences depending on their
context. People may e.g., listen to di�erent music or watch di�erent
movies depending on whether they are alone or in group. While such in-
formation used to be hard to collect, nowadays almost everyone carries
around devices such as smartphones and smartwatches that are capa-
ble of advanced contextual data logging. Even modern web browsers are
now collecting contextual data such as location information if users allow
it. Smartphones furthermore sprouted the trend of mobile recommender
systems, which usually involve light-weight algorithms adapted to the
limited computational power of mobile devices.

8 Introduction

A Darker Image of Recommender Systems

Lastly, a trend we would like to note is the evolving image people have
about recommender systems. While people happily install restaurant
recommendation apps on their smartphones or receive travel suggestions
in their mail, usually they are less amused when they learn that their
browsing behavior is used for targeted advertising. Privacy issues have
always surrounded recommender systems, but lately people are becom-
ing more aware of their online activities and resulting digital footprint.
Initiatives as private browsing and e.g., the `Do not track' initiative6 are
gaining momentum. Usually privacy issues can be limited if users know
exactly what is being logged and have the feeling that they get something
in return e.g., promotions, recommendations, improved customer expe-
rience. Additionally they could be given the option to opt-out or even
better, to explicitly opt-in to bene�t from recommendation services.

Another blame on the image of recommender systems is the idea of
�lter bubbles. In 2011, Eli Pariser caused a stir in the recommender
systems domain when he introduced the concept of the Filter Bubble7.
He claimed that, because of personalization, more and more users of
online platforms will be trapped in their own separate, �ltered bubbles of
information. Such a bubble would virtually surround users with content
tailored to their interests and therefore at the same time also keep them
from thinking outside the `bubble'. They are no longer able to learn new
things, evolve and change interests. A panel in the ACM RecSys 2011
conference8 discussed the topic, and the take-away message was that
personalization is �ne as long as users can be given a certain amount of
control (e.g., choose to disable personalized results) and recommender
systems can be made as transparent as possible (e.g., explain the origin
of a recommendation).

To summarize, we note that although the domain of recommender
systems is reasonably young, it has matured and evolved considerably
over the last few years (and continues to do so) to better align with the
ever changing trends and needs of our modern society.

6http://en.wikipedia.org/wiki/Do_Not_Track
7http://www.thefilterbubble.com/ted-talk
8http://recsys.acm.org/recsys11/recsys-2011-panel

1.2 Recommendation Algorithm Overload 9

1.2 Recommendation Algorithm Overload

As previously discussed, for almost any type of content a recommenda-
tion algorithm has been developed. Some algorithms focus on collabora-
tive data, some on content data, some on social or contextual data. In
the last few years there has even been a rise in software libraries such
as MyMediaLite [34], LensKit [35], Mahout9, LibRec10, Python-recsys11,
Duine12 and Lucene13, that o�er out-of-the-box implementations of rec-
ommendation algorithms all designed to tackle the information overload
problem. For an overview of even more recommendation frameworks
used in research and production systems we refer to [36]. This overabun-
dance of recommendation algorithms introduces a new problem which
we refer to as the `recommendation algorithm overload problem'.
Given an information system, context and goal, how can we decide what
recommendation algorithm would be best?

While recommendation algorithms used to be competing against each
other, nowadays it has been generally accepted that every algorithm has
its own focus, optimal use cases, advantages and disadvantages. It seems
logical to combine multiple algorithms together in so-called hybrid rec-
ommenders, to overcome their individual drawbacks [37�39]. Although
hybrid recommenders are well-accepted and have shown their merits,
the procedure of actually building and tweaking a hybrid recommender
system is still a tedious and time-consuming process. Therefore most
hybrid recommender systems are integrating only a few algorithms and
are often con�gured in a static way.

What if we could have a hybrid recommender system that integrated
all existing recommendation algorithms and dynamically decided which
(combination of) recommendation algorithms to apply for a given con-
text or scenario? Both users and industry would bene�t from the im-
proved user experience that may result from such a self-learning hybrid
recommendation platform.

9https://mahout.apache.org
10https://github.com/guoguibing/librec
11https://github.com/ocelma/python-recsys
12http://www.duineframework.org
13http://lucene.apache.org

10 Introduction

1.3 The Research Challenge

In this work we aim to investigate approaches and strategies that enable
a future-proof hybrid recommendation platform that can seamlessly in-
tegrate existing recommendation algorithms and dynamically combine
them into a best-�t hybrid recommender. While most mainstream rec-
ommendation algorithms start from the notion that users in a system
behave similarly [40], recent research is turning more towards the idea
that every user is unique and (combinations of) di�erent algorithms may
be best for di�erent users [39, 41, 42]. Therefore we want a recommen-
dation strategy to be personalized in the sense that it may dynamically
adapt its hybrid approach for di�erent users. In other words, we want to
investigate how to dynamically generate personalized hybrid rec-

ommender systems, as re�ected by the title of this work.

We now list a few general research questions that we aim to answer in
this work; more speci�c research questions are de�ned at the beginning
of each chapter.

• Do (all) users bene�t from a personalized hybrid recommender sys-
tem?

• How can a hybrid recommender system be con�gured automati-
cally?

• How can such a system be evaluated?

• Can a complex hybrid recommender system be used in real-time
environments?

1.4 The Pieces of the Puzzle

Designing self-learning hybrid recommender systems is a complex task
which we can divide into smaller and more manageable subproblems.
The chapters in this work each tackle such an individual subproblem
and are structured as follows.

In Chapter 2, we illustrate how all recommender systems research
starts with input data. We elaborate on di�erent types of user feed-
back and discuss the shortcomings of currently available public rating
datasets. We experiment with several use cases and ultimately create
our own rating dataset which we also make available to the general pub-
lic.

1.4 The Pieces of the Puzzle 11

Chapter 4

Distributed Computing

Chapter 3

User Interaction

Chapter 5 & 6

Offline Optimization
Online Optimization

Chapter 2

Dataset

Chapter 7

Online Evaluation

Figure 1.2: Illustration of how results of all chapters are used in our �nal
chapter focusing on online evaluation.

Chapter 3 underlines the importance of user interfaces and their re-
sulting human-recommender interaction processes. The chapter focuses
both on feedback mechanisms and how recommendations can be pre-
sented to users while avoiding �lter bubbles and introducing a sense of
control and system transparency in a hybrid recommendation context.

Since hybrid recommendation calculations can be computationally
very intense, we dedicate Chapter 4 to a high-performance viewpoint
of the recommendation process. We investigate how recommendation
algorithms can be mapped on to a high-performance computing infras-
tructure and bene�t from distributed and parallel deployment.

These �rst 4 chapters provide the basic research on which the rest of
this work is then founded. In addition to the recommendation algorithms
themselves, a recommender system needs input data, a user interface
and a decent computation infrastructure to support its recommendation
strategies and properly expose its features to users. The following two
chapters focus on the self-learning aspect of our research goal.

In Chapter 5, we consider self-optimizing hybrid recommender systems
from an o�ine perspective. Using �xed datasets, we experiment with
strategies that allow user-speci�c optimization of hybrid parameters in
the recommendation process. In particular, we present results for hybrid
switching and weighted hybridization scenarios.

12 Introduction

Chapter 6 then continues with the obtained o�ine optimization ap-
proach and tries to get the recommender system out of the lab by assess-
ing and improving its ability towards meeting real-world requirements
in an online recommendation scenario. We evaluate our self-learning
hybrid strategy in multiple dimensions both from a system perspective
(e.g., scalability features) and a user perspective (e.g., transparency and
control options).

In Chapter 7, we ultimately combine all the research from previous
chapters and expose our self-learning hybrid recommender system to
actual users in an online evaluation experiment. Instead of a typical
lab-based experiment where test users are asked to use the system in
a controlled environment, we opt for a true out-of-lab experience by
making the system publicly available and attracting real users. We take
our o�ine self-learning optimization system (Chapter 5), adapt it to
run in an online environment (Chapter 6), deploy it on a distributed and
parallel hardware infrastructure (Chapter 4), feed it our collected dataset
(Chapter 2) and apply our user interaction experience (Chapter 3) in an
easy-to-use and intuitive user interface. Fig. 1.2 illustrates how all the
pieces (i.e., chapters) of the puzzle �t together in Chapter 7 and support
both the validation and foundation of the research performed in this
work.

Chapter 2

User Feedback Collection

2.1 Introduction

Recommender systems need input data to drive their decision making
process and generate recommendations for users. The (perceived) qual-
ity of the recommendations does not solely rely on the recommendation
algorithms, but also greatly depends on the provided input data. With-
out input, a recommender is just an engine without fuel and so the col-
lection of input data is of paramount importance to any recommender
system.

User input, often referred to as feedback, can be collected in various
ways. Yu et al. [20] de�nes three categories: explicit input, explicit feed-
back and implicit feedback. The strategy of explicit input is to present
the user with a list of questions (e.g., at registration). The answers can
then be used to build a preliminary pro�le of the user containing general
preference information. Collecting explicit input whenever a new user
registers to the system, can help to alleviate the cold-start problem [37]
(due to which users or items with too few feedback can not be recom-
mended). Explicit feedback mostly translates to asking users to rate an
item they have just consumed (or downloaded, viewed, purchased, etc.).
Both explicit input as explicit feedback require the user to actively par-
ticipate in the feedback process. Implicit feedback on the other hand
collects its information in the background by means of logging data or
monitoring user behavior. In the case of a video aggregation site, im-
plicit feedback could for example monitor the duration a user watched a
video.

Often recommender systems will combine forms of implicit feedback

14 User Feedback Collection

with explicit feedback by quantifying the implicit feedback to numeric
values in the same range as the explicit feedback (i.e., ratings). Combin-
ing di�erent forms of feedback has been shown to improve recommenda-
tion quality [33, 43] but the speci�c transformation method will depend
on the item domain and involved use case.

In this chapter we discuss the current state of public rating datasets
and their shortcomings towards supporting our research. We then out-
line an approach for user feedback collection for a speci�c use case (a
cultural events website) and �nally introduce a new rating dataset and
paradigm for collecting both implicit and explicit user feedback from
recent online rating sources.

Research Questions

• How useful are public datasets for (our) research?

• What types of feedback data can be collected?

• How can we collect relevant input data?

2.2 Public Rating Datasets

Ratings are usually considered private user data and therefore most
online platforms do not make them publicly available. While academic
researchers work on innovative recommendation algorithms and often
lack user data for testing, industry has data and users, but needs the
algorithms to improve their services. Because input data is di�cult to
collect without having access to an online platform with an active user
base, most research on recommender systems relies on publicly avail-
able datasets i.e., rating datasets made public by companies or online
platforms for the bene�t of research.

Two of the most popular datasets are the MovieLens [44�46] and the
Net�ix [47�49] datasets, both focusing on the movie domain. The �rst
MovieLens dataset (ML 100K) was released at the end of the 90s and
integrated 100,000 ratings originating from users of the MovieLens sys-
tem covering a seven-month period (September 19th, 1997 through April
22nd, 1998). The dataset quickly became very popular because of its
simplicity (i.e., only explicit ratings and very basic item and user data
were available) and the lack of other datasets at that time. Later in
2006, the Net�ix dataset originated from the well-known Net�ix prize1,

1http://www.netflixprize.com

2.2 Public Rating Datasets 15

where 1 million dollar was promised to the �rst team able to improve the
in-house Net�ix recommendation algorithm by more than 10%. In the
last few years, dozens of other datasets have become available focusing
sometimes on very divergent item domains (e.g., jokes, like the Jester
dataset2) or speci�c metadata availability (e.g., contextual information,
like the datasets produced in the di�erent editions of the context-aware
movie recommendation � or CAMRA � challenge3).

In recommender systems literature, public datasets are used for a wide
variety of reasons. Often they are used in comparative experiments where
a new algorithm is compared and benchmarked against previously pub-
lished results (e.g. [50]). In these situations the speci�c properties of the
dataset do not really matter as long as the results on the dataset are
generalizable. In other situations, however, datasets are used to feed a
recommender system that is then deployed in user-centric experiments.
The datasets in these situations boost the recommendation results by
complementing the (sometimes very limited) rating data of the users
engaged in the experiment. While the results of the comparative ex-
periments are processed in a numerical way (e.g., ranking, similarity,
accuracy, precision calculations), in user-centric experiments real users
are actually looking at the recommendation results while providing their
feedback. The e�ect of this is that experimental results can easily be
in�uenced by properties of the integrated dataset. If current-day users
were to be shown a recommender system that has been trained on e.g.,
the MovieLens 100K dataset, the resulting recommendations would nec-
essarily be old movies � released between 1922 and 1998 � which may
negatively a�ect the general user experience.

Currently, much scienti�c literature uses old datasets (like Movie-
Lens) even for user-centric evaluation experiments. The MovieLens 100K
dataset is often used to bootstrap a recommender system and bypass
cold-start issues. In [51] an application called `MovieQuiz' was developed
using the MovieLens 100K dataset as seed data for the evaluation of a
conversational collaborative �ltering approach. Real users were asked to
interact with the system, and evaluate the resulting recommendations.
Another very recent example is the work of Said et al. [52] where a user
study was performed to evaluate their K-furthest neighbor collaborative
�ltering recommender algorithm. In their study, they relied on movie
data from the MovieLens 10M dataset, which is more recent than ML

2http://shadow.ieor.berkeley.edu/humor
3http://2012.recsyschallenge.com/tracks/camra/

16 User Feedback Collection

100K (i.e., most recent movie is from 2008), but still lacks current-day
popular and relevant movies.

Aside from being old and static, current-day public rating datasets
are also often �ltered to only contain users with a minimum number
of ratings (e.g., 20 ratings for MovieLens). Because of this �ltering, a
systematic bias is introduced which may prevent experimental results to
be generalizable to real-life scenarios [27]. So while public datasets like
MovieLens and Net�ix may still be useful for o�ine evaluation, online
experiments with actual users may fail because of the lack of recent
movies in the dataset and experimental generalizability.

2.3 A Cultural Events Website: Use Case Study

To learn more about collecting user input in a realistic context, we collab-
orated with a popular (>10,000 visitors per day) cultural events website4.
This website contains details of cultural events taking place in Belgium.
With a large user base of over 13,000 registered users and a collection of
more than 20,000 events, it serves as a more than appropriate platform
for our user feedback experiments.

For every event on the website there exists a detailed information page.
This page o�ers basic event information as well as some action links to
e.g., mail to a friend, print information, show more information, etc.
There is also an option to rate events (i.e., indicate that a user likes an
event) which can be categorized as explicit feedback. Monitoring how
a user interacts with interesting action links, could on the other hand
be considered a form of implicit feedback. Even the action itself that a
user browsed to a certain event page could be used as implicit feedback
towards the event.

To investigate how explicit and implicit feedback relate to one another,
a user feedback experiment was set up on the cultural website. For a
continuous period of 7 months, every user interaction with the website
in the form of ratings, browsing to an event or clicking on preference
indicating action links was registered and logged. The following list
discusses the action links (on an event detail page) we considered to be
indications of the user interest in the event.

• More details: Shows detailed information about the event (in-
stead of just a short description).

4http://www.uitinvlaanderen.be managed by CultuurNet Vlaanderen

2.3 A Cultural Events Website: Use Case Study 17

• More dates: Shows more dates on which the event takes place.

• Mail: Allows to mail a link of the event to a friend.

• Print: Prints the event information.

• Show map: Shows a map detailing the location of the event.

• Train directions: Provides train direction to get to the location
of the event.

• Bus directions: Provides bus directions to get to the location of
the event.

The website technology was based on the popular open-source con-
tent management framework Drupal5 and so a Drupal module was im-
plemented that registered the relevant feedback information. Table 2.1
shows the unique users, items and total number of actions that were
logged over a 7 month period.

Feedback type #users #items #entries

Explicit: ratings 6,532 5,053 7,721
Implicit: clicks 160,915 49,458 321,077
Implicit: views 572,390 78,538 1,392,402

Table 2.1: A comparison of the number of feedback actions collected for
explicit and implicit feedback on a cultural events website over a 7 months
period.

The table illustrates an important distinction between explicit feed-
back and implicit feedback: implicit feedback is more abundant than
explicit feedback. Because implicit feedback requires no additional ef-
fort from the user, it is much easier to collect in large numbers. When
we represent the total number of entries as a pie chart (Fig. 2.1), this
di�erence becomes even more apparent.

The most abundantly available are the views, which is to be expected
since in order to rate events or click on action links, a user �rst has to
browse (i.e., view action) to the event information page. The number of
collected clicks is 5 times less abundant, so on average for every 5 times an
event was browsed to, only one user interaction in the form of a click on
an action link was detected. Finally, most surprising is the low number
of explicit feedback that was collected in comparison with the implicit

5https://drupal.org

18 User Feedback Collection

Explicit feedback (ratings) −0.4%

Implicit feedback (clicks) − 18.7%

Implicit feedback (views) − 80.9%

Comparing explicit and implicit feedback

Figure 2.1: A comparison of the total number of feedback actions collected
for explicit and implicit feedback on a cultural events website over a 7 months
period.

feedback. For every 200 times that an event information page was visited
only once the event was rated. These measurements con�rm what has
been observed before in recommender systems literature [33]: although
explicit ratings contain more inherent information about the preference
of the user towards the rated item, implicit feedback is easier to come by.
To combine and use both would be the most interesting, but requires the
implicit feedback to be transformed into a format comparable with the
explicit feedback (i.e., ratings). We illustrate such an approach in [53].

In Table 2.2 and Fig. 2.2 we report the collected number of clicks on
the action links speci�cally.

Action Link #clicks

More details 274,267
More dates 32,741
Show map 6,198
Print 2,522
Mail 2,169
Bus directions 1,616
Train directions 1,564

Table 2.2: The number of clicks collected during the experiment for each
monitored action link.

The `more details' clicks account for more than 85% of the total col-

2.3 A Cultural Events Website: Use Case Study 19

print − 0.8%

more details − 85.4%

more dates − 10.2%

mail
bus directions − 0.5%
show map − 1.9%
train directions − 0.5%

Comparing types of implicit clicks

Figure 2.2: A comparison of the individual clicks on monitored action links
on a cultural events website over a 7 months period.

lected number of clicks. The data shows a similar trend as for the implicit
versus explicit feedback situation: the number of feedback di�ers greatly
among the collected feedback types. While we collected many `more de-
tails' clicks, the far less popular print click may be more interesting to
extract user preference information from. We could hypothesize that a
user printing the event information is more likely to �nd the event in-
teresting than a user merely clicking for more information. The same
is true for the other action links e.g., the bus and train direction links.
Users clicking those links, express a clear intend of attending the event
which re�ects positive interest more than just clicking the `more details'
link. So also among the implicitly gathered feedback data we �nd the
trend that more useful feedback types are less prominently available.

While the logging of feedback data on the cultural events website re-
sulted in a user preferences dataset, the dataset may in fact not be very
useful for general application domains. Items are events in this scenario
and events have some very speci�c properties. While items in online
e-commerce platforms are always available, events are transient. They
take place at a certain time and place and after that, they are no longer
relevant. This also impacts the collection of feedback since a user can
only know for sure to like or dislike an event after having attended. We

20 User Feedback Collection

hypothesize therefore that feedback concerning events will be for the
most part collected after the event has passed and can no longer be
recommended to other users.

To verify the hypothesis that user feedback on events is time bound,
we performed a time analysis on the collected data from our previous
feedback experiment. For every event we analyzed its user feedback
relative to the day of the occurrence of the event (e.g., the day of the
festival). The number of feedback actions per event was expressed as
percentage of the total number of feedback collected for the event to
increase comparability over all events. The percentages per day could
then be averaged over all events. Fig. 2.3 illustrates this time analysis
procedure on two �ctional events on a 7 day period.

-3 -2 -1 0 1 2 3

30

20

10

-3 -2 -1 0 1 2 3

70

60

50

Event 2
Time (days) Time (days)

Fe

ed
b

ac
k

Fe

ed
b

ac
k

Day -3 -2 -1 0 1 2 3

Feedback 10 10 10 30 20 20 10

Day -3 -2 -1 0 1 2 3

Feedback 50 60 60 70 60 70 60

Day -3 -2 -1 0 1 2 3

% 9 9 9 27 18 18 9

Day -3 -2 -1 0 1 2 3

% 12 14 14 16 14 16 14

Day -3 -2 -1 0 1 2 3

% 11 12 12 22 16 17 12

Event 1

Figure 2.3: The procedure for the time analysis of the collected feedback data
relative to the day of the event illustrated for two events on a 7 day period.
Results are rounded for simpli�cation.

The time analysis results in a feedback pattern in function of the time
relative to the day of the event and this for an average event in the
dataset. Fig. 2.4 shows the result of the time analysis calculated for the
individual feedback types: explicit ratings, implicit clicks and implicit
views. A cumulative total was added to the plot to indicate the cumula-
tive percentage of collected feedback for all types of feedback combined.
The data in the plot has been limited to a time period of one year before
and after the event, so the X-axis ranges from −365 to 365. The cumu-

2.3 A Cultural Events Website: Use Case Study 21

lative total in the plot stops at 94% (and not 100%) because 6% of the
collected feedback data occurred outside that range.

Collected feedback over time

Days relative to the event

F
ee

db
ac

k
fr

eq
ue

nc
y

(%
)

Cumulative total
Clicks
Views
Ratings

0
20

45
60

80
10

0

−365 −200 −100 0 100 200 300 365

Figure 2.4: The result of a time analysis of collected feedback relative to the
day of the event averaged over all events in the dataset. The pattern clearly
shows how feedback is focused around the day of the event.

The time analysis �gure con�rms our hypothesis that the collected
user feedback for events shows some time speci�c qualities that may pre-
vent research conclusions from generalizing to other item domains. The
time period in which events receive user feedback, is focused particularly
around the date of the event (i.e., when an event is most popular). Mov-
ing farther away (in time) from the event causes the feedback rate to
drop signi�cantly until e.g., after a year close to no feedback is collected.

Item domains with non-transient items e.g., movie or music domains,
might have higher feedback rates when an item is �rst introduced (e.g.,
new movie is available in Net�ix) but in general, an item remains avail-
able to the user and will collect feedback over periods longer than a year
before and after the release date.

In conclusion, we note that although the logging of the user feedback

22 User Feedback Collection

on the cultural events website did o�er valuable insights regarding the
availability of implicit versus explicit feedback, the collected feedback is
very time focused which limits its usability to transient item domains.
In the following sections we construct more general datasets, usable for
recommender system experiments in non-transient item domains.

2.4 Movie Ratings from Twitter: The Movie-

Tweetings Dataset

The typical MovieLens and Net�ix movie rating datasets are inherently
old (i.e., include old ratings from old movies) and static. A relevant
movie rating dataset however should include relevant, current-day pop-
ular movies and be updated regularly to ensure the continued freshness
of the ratings and recentness of the movies. For this purpose, the In-
ternet serves as an interesting source of ratings ready to be extracted
and collected. In the next sections we explain how rating information is
abundantly available in various online sources and we show how it can
be unambiguously extracted from IMDb users through the social media
platform Twitter.

2.4.1 Unstructured Preference Information from Online

Sources

Movie information is abundantly available on the Internet through a vast
number of online services. Amongst the most popular ones are IMDb6

and Rotten Tomatoes7. These websites aggregate and display extensive
movie information such as director, cast, genre, etc. Fig. 2.5 shows the
movie information pages of both services for the movie `Man of Steel'.
Aside from movie information, the �gure also shows how both services
are focused towards preference indicators. In both screenshots, clear
cues of user opinions are visible in the form of aggregated star ratings,
metascores, Oscar nominations and user reviews. While these indicators
seem suitable user feedback for recommender systems, they lack general
structure, which makes automated extraction di�cult, apart from being
aggregated metrics rather than user individual feedback, and so they are
not useful to be exploited for personalization purposes.

6http://www.imdb.com
7http://www.rottentomatoes.com

2.4 Movie Ratings from Twitter: The MovieTweetings Dataset 23

Figure 2.5: Screenshots of the detailed information pages that both IMDb
(left) and Rotten Tomatoes (right) o�er for any available movie (here: Man of
Steel). Aside from movie information there are many indicators of user opinions
as well.

Another source of movie (preference) information may be found on
online social networks like Facebook8 and Twitter9 since such social net-
works are very often used to promote ideas and user opinions.

If we perform a Facebook search for our example movie `Man of Steel',
we arrive at an information page (much like the IMDb and Rotten Toma-
toes websites) detailing some movie data but this time focused on the
social aspect. Users can, among many other things, comment on the
movie, invite friends to watch it, and click `Like' if they liked it. Infor-
mation about the number of people who like the movie can be retrieved,
but again, only in terms of aggregated metrics instead of at an individ-
ual, user basis. Although Facebook is currently experimenting with star
rating feedback systems10, most of the pages only allow feedback in the
form of a single positive `Like'.

Twitter also entails some challenges for automatically mining user feed-
back. Speci�cally, the results for a search query on Twitter include all
(most recent and popular) tweets that contain the search query i.e., in
this context, the title of the movie. Because of this, the returned tweets
are very ambiguous, since they can represent opinions about the movie,
links to interesting posts, images, jokes, and very often not even involve
the movie at all. Especially for movies with non-speci�c titles the latter
is very common. Movie titles like `Gravity' or `Up' undoubtedly make it

8https://www.facebook.com
9https://twitter.com

10http://techcrunch.com/2013/11/07/facebook-pages-star-ratings

24 User Feedback Collection

very di�cult to �lter and extract only the relevant preference information
(i.e., user opinions).

So while the Internet o�ers a wide range of services that provide movie
information and user opinions, the data is often too unstructured which
makes it very hard to extract it automatically, or the data is only avail-
able in the form of aggregated numbers. Interestingly, however, while
online services have their challenges in isolation, it is in combining them
that we have found the key to mining structured and explicit movie
ratings, as we show in the next section.

2.4.2 Structured IMDb Ratings from Twitter: The

MovieTweetings Dataset

Rating datasets like MovieLens and Net�ix are very popular, and the
main reason for this is, among other things, their simplicity. They o�er
explicit 5-star rating values that a number of users provided on a number
of movies. Such explicit movie rating data can directly be o�ered as input
to a recommender system while implicit feedback data (e.g., comments,
posts, views, etc.) �rst has to be processed and quanti�ed [31, 32, 53].
Therefore, most of the time simple explicit rating datasets will be pre-
ferred over the unstructured preference information that can easily be
found on available online services.

While searching for structured movie preference information, to our
own surprise, we discovered a vast number of explicit movie ratings from
IMDb being posted on Twitter by means of a social sharing feature.
This notion of social sharing is increasingly becoming more popular on
the Internet. Websites o�er promote buttons that aid users in posting
interesting content (i.e., often the page the user is currently browsing)
directly to their social network. When such a button is clicked, a user
may add some additional comments before �nally submitting. The con-
tent provider usually already provides a suggestion (template) for what
a user might post, for instance, the title of the page together with the
URL and some reference to the social network account of the website
itself (illustrated in Fig. 2.6).

We have found that one of the mobile apps from the IMDb platform11,
after rating a movie, o�ers a well-structured template to post on Twitter
(Fig. 2.7). When a user rates a movie on the iOS mobile app, an option
is available to `Share my rating'. When enabled, the user is taken to a

11http://www.imdb.com/apps

2.4 Movie Ratings from Twitter: The MovieTweetings Dataset 25

Figure 2.6: Illustration of the social sharing feature that is included in many
websites (here: washingtonpost.com). By clicking a share button, the content
provider provides a suggestion as to what the user might post to its social
network (here: twitter.com).

screen that proposes to post the following text (for the movie `Man of
Steel'):

I rated Man of Steel 10/10 #IMDb

This pre-formatted tweet is well-structured and therefore apt for au-
tomated extraction. In the tweet we �nd the title of the movie, the
rating and a website-speci�c hashtag. The hashtag allows for easy �lter-
ing tweets originating from IMDb. When the tweet is �nally posted, a
link to the IMDb page of the involved movie is inserted as follows:

I rated Man of Steel http://www.imdb.com/title/tt0770828

10/10 #IMDb

From this link, the IMDb id of the movie can be extracted which allows
us to unambiguously identify the movie that is rated in the tweet (which
is not always possible using only the movie title). While searching Twit-
ter can lead to many ambiguous results, we can use the proposed �xed
format of the tweet to our advantage. Instead of searching for the movie
title, we use the query `I rated #IMDb' and then apply string match-
ing techniques to extract the relevant �elds from the returned tweets.
Speci�cally, we extract the following �elds from the tweets:

• Twitter user id

26 User Feedback Collection

Figure 2.7: Screenshots from the iPhone mobile IMDb app illustrating the
process of rating a movie and sharing it on Twitter.

• IMDb movie id

• Rating

• Timestamp

Furthermore, we also extract additional genre data from the IMDb
page of the movie rated in the tweet. Such additional genre data can
be exploited by content-based recommenders who would use movie at-
tributes in the recommendation process [3]. Even more content at-
tributes can be downloaded by extracting them directly from the corre-
sponding IMDb page (whose URL can be reconstructed directly from the
IMDb movie id by adding `http://www.imdb.com/title/tt'). Some-
times users tend to extend the default tweet (up to the limit of 140
characters imposed by Twitter), with their own opinions or additional
comments, such as:

I rated Man of Steel http://www.imdb.com/title/tt0770828

10/10 #IMDb Great movie!

For our dataset, however, we do not integrate these additional com-
ments which would require Natural Language Processing [54] and might
introduce more noise than information. Instead, we focus on the avail-
able explicit feedback, i.e., the numerical rating. Starting March 7, 2013
we queried the Twitter search API on a daily basis and extracted rat-
ings from relevant tweets into a new movie rating dataset called Movie-

2.4 Movie Ratings from Twitter: The MovieTweetings Dataset 27

Tweetings. The dataset itself consists of three �les: ratings.dat, users.dat
and movies.dat, which are formatted similarly as the popular MovieLens
dataset to facilitate integration in existing implementations.

• ratings.dat contains the ratings as tuples, together with the user,
movie and corresponding timestamp. The user id is an internal
numerical identi�er, while the movie id is the IMDb id. Ratings
range from 1 to 1012.

• users.dat provides a link between the internal user ids and the true
Twitter id of the user, allowing for additional data enrichment.

• movies.dat lists the movies that were rated at least once, together
with the movie year and genre data, from IMDb.

The dataset o�ers two repositories13: latest data and snapshots. Latest
data always contains all the data in the dataset, including the most
recently added data. This repository will therefore be subject to frequent
updates. The snapshots, on the other hand, o�er �xed portions of the
dataset in various sizes (e.g., 10K, 100K, 150K) to stimulate and facilitate
experimental reproducibility.

2.4.3 MovieTweetings Advantages

In summary, we list the advantages of the MovieTweetings dataset with
respect to other existing public datasets.

• Realistic user behavior (un�ltered, raw data)

• Metadata easily expandable (linked to a well-known movie
database)

• Real users (live online evaluation possible)

• Frequently updated (several snapshots available)

The MovieTweetings dataset is un�ltered and therefore a natural
dataset. No users or items are excluded from the dataset for not having a
su�cient amount of ratings. This enables the simulation of realistic user

12The dataset does include a few 0/10 ratings, but they are originating from users
that manually changed the rating value to 0 in the template tweet.

13Available at https://github.com/sidooms/MovieTweetings.

28 User Feedback Collection

behavior. A real-life recommender system will have to deal with non-
active users and poorly rated items, and so the MovieTweetings dataset
can o�er a means to experiment with and simulate these scenarios.

The metadata contained in the dataset consists of movie genres (as
available in the MovieLens dataset), but can be very easily supplemented
with other movie information. Because the dataset links every movie
to the unique IMDb identi�er, additional metadata can be collected by
using tools as the OMDb API14 or by scraping the original IMDb website
itself.

Because rating data is collected from publicly available information,
the users contained in the MovieTweetings dataset did not need to be
anonymized. So the user identi�ers used in the dataset can be linked to
the real Twitter users. Additional user data can easily be collected using
the Twitter API and by analyzing online user behavior. Furthermore, the
integration of real approachable users in the dataset o�ers an interesting
user-base for researchers that may spark a new generation of low-e�ort
online/live user-centric evaluation experiments.

The most important advantage and di�erence towards other datasets is
the fact that the dataset is constantly updated. Instead of o�ering data
from a �xed period in time, new ratings extracted from Twitter are added
frequently. The MovieTweetings dataset will therefore always contain
the most recent and popular movies, which makes it an interesting seed
dataset for user-centric experiments.

2.5 Investigating Dataset Biases

The MovieTweetings dataset may be subject to biases introduced by
the manner in which it is collected and in the sampling inherent to the
Twitter API [55]. To understand the consequence of working with the
MovieTweetings dataset, it is important to �rst understand these biases
and study the extent of their impact. The ratings in the dataset come
from users of the IMDb platform that rate movies using the mobile IMDb
app for iOS and post the ratings (publicly) on Twitter. One obvious bias
to consider here is the e�ect of the ratings being collected through Twit-
ter and not directly from IMDb itself. Only data from Twitter users with
a public pro�le that chose to share their IMDb rating is included. Maybe
these users are sharing their high and low ratings, but consider the mid-

14http://www.omdbapi.com

2.5 Investigating Dataset Biases 29

range ratings � such as 6/10 � not interesting enough to be posted on
their social network. Another more structural bias comes from the fact
that the dataset focuses on the IMDb platform. This platform o�ers
a broad selection of movie information, but not the movies themselves.
Apart from the ability to watch the trailer of a movie, users can not
watch movies on the IMDb site before rating them, something that is
possible in a system like Net�ix. Also the rating scale may a�ect the
users [56], since the IMDb platform allows to rate movies using a 10-star
feedback system, instead of the more common 5-star feedback system
(like MovieLens). In this section, we address these issues by compar-
ing the MovieTweetings dataset characteristics with other datasets and
analyzing the biases introduced by Twitter and the IMDb platform.

2.5.1 Twitter Bias

To study the possible rating biases introduced by including only Twit-
ter ratings, we would need to compare the ratings of the entire IMDb
platform with the subset of the ratings extracted through Twitter. For
this purpose a correlation study seems appropriate. The complete set of
IMDb ratings (per user) is not available but the platform does provide
the aggregated average movie scores. Unfortunately for us, IMDb does
not disclose its exact averaging formula. On their website15 they claim to
apply various �lters to eliminate the e�ect of fake ratings by individuals
who are trying to distort the aggregated rating of a movie. Therefore in
our correlation analysis we have to take at least a small amount of noise
into account (i.e., perfect correlation will not be possible).

For every movie that was included in the MovieTweetings (100K snap-
shot) dataset, we used the OMDb API to obtain the aggregated average
IMDb rating. We then compared this average value with the average
of the MovieTweetings ratings for that movie in a correlation analysis.
Fig. 2.8 (left) shows the resulting scatter plot, visualizing every movie
with its aggregated IMDb rating (on the Y-axis) and the corresponding
average MovieTweetings rating (on the X-axis). The resulting Pearson
correlation value is 0.542, which indicates a positive correlation. When
we inspect the scatter plot, we �nd this con�rmed, in particular for the
higher rating values (higher than 6). The �gure however also shows a
signi�cant amount of noise, which we hypothesize originates from movies
with a low number of ratings.

15http://www.imdb.com/help/show_leaf?ratingsexplanation

30 User Feedback Collection

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●● ●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●
●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Correlation IMDb vs MovieTweetings

MovieTweetings average movie rating

IM
D

b
av

er
ag

e
m

ov
ie

 r
at

in
g

Spearman correlation = 0.536
Pearson correlation = 0.542

0 1 2 3 4 5 6 7 8 9 10

0
1

2
3

4
5

6
7

8
9

10

Pearson correlation

Minimum number of ratings

P
ea

rs
on

 c
or

re
la

tio
n

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
● ● ● ● ●

1 3 5 7 9 11 13 15 17 19

0.
5

0.
6

0.
7

0.
8

0.
9

1

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Correlation >= 20 ratings

MovieTweetings average movie rating

IM
D

b
av

er
ag

e
m

ov
ie

 r
at

in
g

Spearman correlation = 0.930
Pearson correlation = 0.924

0 1 2 3 4 5 6 7 8 9 10

0
1

2
3

4
5

6
7

8
9

10

Figure 2.8: Plots illustrating the correlation of the aggregated IMDb rating
and the averaged MovieTweetings rating per movie. The �gure on the left
shows the correlation for all movies in the MovieTweetings dataset. In the
middle, the Pearson correlation values are shown for movie subsets having a
minimum of 1-20 ratings. The scatter plot on the right illustrates the absence
of noise for movies with a minimum of 20 ratings.

To experiment with the e�ect of the rating frequency of the movies,
we repeated the correlation analysis for di�erent subsets of the Movie-
Tweetings movies: we illustrate in the middle plot of Fig. 2.8 the increas-
ing Pearson correlation for the movie subsets having a minimum of 2, 3,
..., 20 ratings. As expected, the harder the constraint, the more the noise
is reduced, which leads to a stronger linear correlation. Fig. 2.8 (right)
plots the correlation values including only movies with a minimum of 20
ratings. Note that the correlation seems to converge to a value below
the perfect correlation (i.e., of 1.0), this may be the result of not using
the exact averaging formula of IMDb.

Complementary to this correlation analysis, we further compare the
MovieTweetings dataset with the IMDb ratings by performing a popu-
larity analysis for both datasets. A well-known IMDb popularity list is
the top 250 movie list16. This list shows the best rated movies according
to a Bayesian estimate de�ned in Equation 2.1:

weighted rating (WR) =
v

v +m
∗R+

m

v +m
∗ C (2.1)

where:

• R: mean rating for the movie

16Accessible at http://www.imdb.com/chart/top?ref_=nv_ch_250_4.

2.5 Investigating Dataset Biases 31

• v: number of ratings for the movie

• m: minimum ratings required to be listed in the Top 250 (currently
25,000)

• C: the mean rating across the whole report (currently 7.0)

So the overall popularity score takes into account the rating values, as
well as the number of ratings itself to rank the movies. We adopted this
as the de�nition of popularity and implemented the formula to rank the
movies in the MovieTweetings dataset (m was set to 20). For the same
set of movies we also calculated the IMDb popularity value using the
IMDb average rating values. Having calculated both the IMDb popular-
ity and the MovieTweetings popularity value, the two lists can be ranked
according to each value and compared. For the comparison, we employ
the Jaccard similarity index. A similar approach was used by Bellogín et
al. in [57] to compare lists of popular artists for di�erent cuto� values.
Fig. 2.9 shows the Jaccard index for all movies with a minimum of 20
ratings. While the top 10 popular movies are almost identical, the two
datasets tend to diverge when less popular movies are considered (with
another small spike at around top 50) and slowly converge to a Jaccard
value of 1 at the end.

Table 2.3 shows the list of top 10 movies for both MovieTweetings and
IMDb and their resulting Jaccard index values. The lists are very similar
except for some small changes in the ordering. Apart from the similarity
amongst these top popular movies, data shows that more recent movies
tend to obtain a higher overall popularity score in the MovieTweetings
dataset. This is to be expected, considering how MovieTweetings data
is collected from Twitter. Therefore the dataset contains more recent
and currently popular movies. We expect however that with more data
being collected regularly, the e�ect of the recentness of the movies will
gradually decrease.

While the MovieTweetings dataset may favor recent movies, we hy-
pothesize that, in general, similar trends can be noticed for IMDb. One
of such trends is the type of movies that are popular i.e., the genre. A
set of genres is available for each movie allowing for a new correlation
analysis, this time comparing the similarity amongst genres of popular
movies for both MovieTweetings and IMDb. For this experiment we fo-
cus on the top 250 popularity list. For the 250 most popular movies we
summed up the number of times each genre occurred (that is, we com-
pute the term frequency of each genre [58]), doing this for both datasets.

32 User Feedback Collection

Jaccard index for popular movies (IMDb VS MovieTweetings)
Popularity = IMDb bayesian estimate

Number of considered popular movies (cutoff value)

Ja
cc

ar
d

si
m

ila
rit

y
in

de
x

0 100 250 400 600 800

0
0.

2
0.

4
0.

6
0.

8
1

0.72

Figure 2.9: The Jaccard similarity index, indicating the similarity between
the top popular IMDb and MovieTweetings movies, for di�erent cuto� lengths.
Only movies with a minimum of 20 ratings are taken into account.

Fig. 2.10 shows the correlation between the genre counts of the most
popular MovieTweetings movies versus the ones of IMDb.

While the Jaccard index for the top 250 popular movies was 0.72 (see
Fig. 2.9), Fig. 2.10 clearly shows how highly correlated the movie genres
are for both lists (Spearman correlation is 0.99). This close-to-perfect
correlation indicates that although the movie lists may not be strictly
identical, movies are being replaced by similar (probably more recent)
movies with similar genres. For instance, in both datasets Drama seems
to be the most popular genre, followed by Thriller and Crime.

2.5.2 IMDb Bias

Another interesting approach towards investigating the biases in the
MovieTweetings dataset is to compare with other popular datasets in
the domain. This allows us to verify how inherently di�erent the rat-
ings originating from the IMDb platform are from other movie platforms
like Net�ix and MovieLens. For this experiment speci�cally, we compare

2.5 Investigating Dataset Biases 33

Rank IMDb MovieTweetings Jaccard

1
The Shawshank
Redemption

The Shawshank
Redemption

1.00

2 The Godfather The Dark Knight 0.33
3 The Dark Knight The Godfather 1.00
4 Pulp Fiction Pulp Fiction 1.00

5
The Godfather:
Part II

LOTR: The Return of
the King

0.67

6
The Good, the
Bad and the Ugly

Terminator 2:
Judgment Day

0.50

7
LOTR: The
Return of the
King

Schindler's List 0.56

8 Schindler's List Forrest Gump 0.60
9 12 Angry Men Saving Private Ryan 0.50
10 Inception Inception 0.54

Table 2.3: List of top 10 popular movies from IMDb vs MovieTweetings

MovieTweetings with MovieLens because it is the most popular dataset
in the recommender systems domain and is still publicly available17 (the
Net�ix dataset is not anymore due to privacy issues).

Both MovieTweetings and MovieLens have a dataset snapshot contain-
ing 100K ratings, so these are obvious candidates for our comparative
study. MovieTweetings is however a natural, un�ltered dataset, while
in the MovieLens 100K dataset only users with at least 20 ratings are
included. To increase the comparability of the datasets, we generated a
new MovieLens dataset based on the data of MovieLens 10M. We sliced
the �rst 100K ratings of this bigger dataset, taking into account the rat-
ing timestamps. While in MovieLens 10M all users have rated at least
20 movies, for its 100K subset, this will no longer be true, making the
comparison with MovieTweetings more fair. We will refer to this dataset
as the ML 10M100K* dataset. Table 2.4 lists some of the basic char-
acteristics for the rating datasets (i.e., number of users, items, ratings
and density). The density metric is calculated according to the following
equation:

17At http://grouplens.org/datasets/movielens.

34 User Feedback Collection

0 20 40 60 80 100 120

0
20

40
60

80
10

0
12

0

Correlation genres top 250 movies IMDb Vs MovieTweetings

Genre frequency MovieTweetings top 250 popular movies

G
en

re
 fr

eq
ue

nc
y

IM
D

b
to

p
25

0
po

pu
la

r
m

ov
ie

s

Sci−Fi

Crime

Romance

Animation
Music

Comedy

War

Horror

Film−Noir

Western

Thriller

Adventure

Mystery

Drama

Action

Documentary

Musical

History
Family

FantasySport

Biography

Spearman correlation = 0.9935
Pearson correlation = 0.9964

Figure 2.10: The correlation of how many times each genre occurred in the
top 250 movie list for MovieTweetings and IMDb.

rating density = 100× # available ratings

all possible ratings

= 100× # available ratings

(# users)× (# items)

(2.2)

These numbers clearly indicate one of the major aspects that di�er-
entiates the MovieTweetings dataset: its low density. The number of
items and users is much higher (almost by a factor of 10) for Movie-
Tweetings compared to the other datasets. While most rating datasets
are restricted to users of the particular closed system (e.g., the Net�ix

2.5 Investigating Dataset Biases 35

or MovieLens system), the MovieTweetings dataset integrates data from
users of the IMDb platform, which is very popular and open to anyone
on the Internet. Also in terms of number of items the IMDb catalog is
not restricted to movies that can be rented but rather includes almost all
existing movies. Integrating the IMDb platform as rating source, there-
fore leads to very high numbers of distinct users and items, leading to a
density value closer to 0 than for the other datasets.

MovieTweetings ML 100K ML 10M100K*

#users 16,554 943 2,109
#items 10,506 1,682 655
#ratings 100,000 100,000 100,000
density 0.06% 6.3% 7.24%

Table 2.4: Basic characteristics of the datasets.

In terms of number of ratings, the three datasets are equal (i.e., 100K
ratings), nonetheless it is worth comparing the distribution of their rating
values to uncover di�erent rating behavior. In Fig. 2.11 we plotted the
histogram of the rating values for MovieTweetings. These values are
based on the IMDb 10-star rating scale, whereas MovieLens users rated
on a 5-star rating scale. The di�erence in rating scales makes it harder to
compare the rating frequencies. Therefore, to ease the comparison with
the MovieLens datasets, we paired the rating values for MovieTweetings
in Fig. 2.12.

The histograms display the rating values on the X-axis and the num-
ber of times each rating value occurred in the dataset (i.e., frequency) on
the Y-axis. A general trend is that the more positive rating values are
more frequent in any of the three datasets. This is a well-known obser-
vation in the recommender systems research domain referred to as not
random missing data [59]. Users mostly watch movies they assume to be
interesting (based on, for instance, genre, trailer, or other movie infor-
mation), and therefore most movies they rate (apart from the ones they
wrongfully assumed interesting) will be rated positively, which explains
why generally negative or low ratings are not present in these datasets.

Although all three datasets distributions are showing a skew towards
more positive rating values, the trend is signi�cantly stronger for Movie-
Tweetings. Only 2% of its rating values are smaller than 5 (neutral rat-
ing), compared to the MovieLens datasets where 17% for ML 100K and
11% for ML 10M100K* are lower than 3 (the counterpart neutral value

36 User Feedback Collection

MovieTweetings

Rating values

F
re

qu
en

cy

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

1 2 3 4 5 6 7 8 9 10

Figure 2.11: Rating value histogram for the MovieTweetings dataset. The
rating values are based on the IMDb 10-star rating scale.

MovieTweetings

Rating values

F
re

qu
en

cy
0

10
00

0
20

00
0

30
00

0
40

00
0

[1−2] [3−4] [5−6] [7−8] [9−10]

ML 100K

Rating values

0
10

00
0

20
00

0
30

00
0

40
00

0

1 2 3 4 5

ML 10M100K*

Rating values

0
10

00
0

20
00

0
30

00
0

40
00

0

1 2 3 4 5

Figure 2.12: Rating value histograms for the datasets MovieTweetings,
ML 100K and ML 10M100K* illustrating a similar (yet stronger for Movie-
Tweetings) shift towards positive rating values across the datasets.

2.5 Investigating Dataset Biases 37

in these datasets). A possible explanation for this may be the fact that
users are not explicitly asked to rate movies on the IMDb platform as is
the case for the MovieLens system. IMDb only recently included (basic)
recommendations on its website, hence there used to be no direct in-
centive to rate movies other than to contribute to the aggregated IMDb
rating value for a speci�c movie. We hypothesize that therefore users
are even more skewed towards only rating exceptionally good movies,
resulting in higher rating values.

Aside from the rating value distribution, it is also important to com-
pare the general rating distribution among the datasets. In Fig. 2.13 the
distribution of the ratings across the items is shown (similar to [60] where
Net�ix and MovieLens were compared). Items are ordered by popularity
(in terms of number of ratings) and expressed as a percentage of the
total number of items. From the �gure we can see that in the case of
MovieTweetings, 40% of the total amount of ratings is provided on only
1% of all the items (i.e., the 1% most popular), compared to MovieLens
where this is 10%. Thus, in general the MovieTweetings dataset is less
dense, but 40% of the ratings are mostly concentrating on a very small
number of items which greatly increases the density for these items in
particular (the top 105 most popular movies are each rated on average
380 times). The ML 10M100K* rating distribution is somewhat more
similar to MovieTweetings than ML 100K is, but both are in fact still sig-
ni�cantly di�erent from the MovieTweetings rating distribution. Hence,
MovieTweetings is more biased towards popular movies.

An important aspect about the MovieTweetings dataset is its recent-
ness. Since ratings are mined from Twitter, there is no limitation as to
how old or recent a rated movie should be. Data shows however that
recent movies are rated more, obviously because users tend to rate the
movies they have just seen, and recent movies are more easily available
(in cinemas) while being � probably � more interesting topics to share on
a social network. Speci�cally, in Fig. 2.14 we plotted the year of every
rated movie and its frequency for the three datasets. In general, similar
patterns can be observed: a long tail with a peak at the end. The loca-
tion of the peak indicates the most recent movies in the dataset, which is
2013 for the MovieTweetings (100K) dataset and towards the end of the
90s for the MovieLens-based datasets. The histograms here indicate how
old the MovieLens datasets truly are. The ML 100K dataset includes
more ratings from older movies, which may still be relevant data for some
use cases (e.g., recommending classic movie titles to older users) but in
most cases, however, users will prefer recommendations for modern and

38 User Feedback Collection

Rating distribution comparison

% of ratings

%
 o

f i
te

m
s

MovieTweetings
ML 100K
ML 10M100K*

0.
01

%
0.

1%
1%

10
%

10
0%

0 20% 40% 60% 80% 100%

Figure 2.13: Rating distribution comparison, linking the number of ratings
with the number of rated items. Items are sorted according to popularity i.e.,
most rated, with the most popular items at the bottom. Note that the Y-axis
is a log scale.

2.5 Investigating Dataset Biases 39

recent movies and for those situations the MovieTweetings dataset may
o�er an ideal way of bootstrapping a recommender system and avoid
cold-start issues for new users or unrated items.

MovieTweetings

Movie year of rating

F
re

qu
en

cy

1950 1960 1970 1980 1990 2000 2010

0
50

00
15

00
0

25
00

0

ML 100K

Movie year of rating
1950 1960 1970 1980 1990 2000 2010

0
50

00
10

00
0

15
00

0

ML 10M100K*

Movie year of rating
1950 1960 1970 1980 1990 2000 2010

0
10

00
0

20
00

0
30

00
0

40
00

0
Figure 2.14: Histograms illustrating how frequent movies of a given year
(on the X-axis) were rated for MovieTweetings, ML 100K, and ML 10M100K*.
While MovieTweetings is updated frequently, and therefore contains very recent
movies, the most recent movies in the MovieLens dataset are from the late 90s.

Similarly as we presented in the previous section, where we com-
pared the IMDb ratings with MovieTweetings, we now compare Movie-
Tweetings with MovieLens by means of a rating correlation analysis.
To be able to easily compare the rating values we rescaled the Movie-
Tweetings ratings to a 5-star scale. For movies in MovieLens also present
in the MovieTweetings dataset, we calculated the average movie rating
and correlated the results. We present the results for the ML 10M100K*
dataset.

Fig. 2.15 shows the results for movies which have been rated at least
1, 2, 3, 4, 5 and 20 times. The exact Spearman and Pearson correlation
values are listed in Table 2.5. These �gures show trends similar to the
comparison of MovieTweetings and IMDb data (see Section 2.5.1). For
all movies (i.e., �gure for movies with >= 1 ratings) a general trend
of positive correlation can be noted, while some movies show diverging
rating values (i.e., dots arranged vertically on the �gure). This e�ect
decreases when we restrict the item set to movies with a minimum of
2, 3, etc. ratings, which again con�rms the diverging rating values to
originate from movies which have been rated only a few times. Corre-
lation values get stronger when increasing the minimal rating threshold
per movie, except in the last case (the subset of movies with at least 20
ratings), where there are too few movies (i.e., less than 30) with at least
20 ratings that occur at the same time in the MovieTweetings and the

40 User Feedback Collection

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

● ●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 1 2 3 4 5

0
1

2
3

4
5

movies >= 1 ratings

MovieTweetings

M
L

10
M

10
0K

*

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●

●

●●

● ●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

0 1 2 3 4 5
0

1
2

3
4

5

movies >= 2 ratings

MovieTweetings
M

L
10

M
10

0K
*

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

0 1 2 3 4 5

0
1

2
3

4
5

movies >= 3 ratings

MovieTweetings

M
L

10
M

10
0K

*

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

● ●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

0 1 2 3 4 5

0
1

2
3

4
5

movies >= 4 ratings

MovieTweetings

M
L

10
M

10
0K

*

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

0 1 2 3 4 5

0
1

2
3

4
5

movies >= 5 ratings

MovieTweetings

M
L

10
M

10
0K

* ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

0 1 2 3 4 5

0
1

2
3

4
5

movies >= 20 ratings

MovieTweetings
M

L
10

M
10

0K
*

Figure 2.15: Scatter plot illustrating the correlation of the average Movie-
Tweetings rating per movie and the ML 10M100K* dataset for di�erent subsets
of movies which have been rated at least 1, 2, 3, 4, 5, 20 times. The Movie-
Tweetings results have been rescaled to a 5-star rating scale to make the ratings
more easily comparable.

ML 10M100K* dataset to make a proper analysis.

Included movies Spearman Pearson

movies >= 1 ratings 0.367 0.335
movies >= 2 ratings 0.438 0.401
movies >= 3 ratings 0.543 0.593
movies >= 4 ratings 0.555 0.490
movies >= 5 ratings 0.539 0.481
movies >= 20 ratings 0.230 0.233

Table 2.5: Correlation values for average movie ratings of MovieTweetings
and ML 10M100K*.

Similar results were obtained for the ML 100K dataset; more speci�-
cally, ML 100K presented a slightly larger overlap with MovieTweetings
in terms of movies (i.e., 80 movies with at least 20 ratings), but the over-
lap between these datasets was still too limited to perform a thorough
popularity comparison.

2.6 Benchmarking the MovieTweetings Dataset 41

In summary, in this section we studied the biases that in�uence the
MovieTweetings rating data. With a su�cient number of minimum rat-
ings per movie the dataset correlates strongly with ratings found on the
IMDb website, as con�rmed by the popularity analysis. We therefore
consider the bias introduced by using only ratings posted on Twitter
(instead of all IMDb ratings) to be not signi�cant or even non-existing.
The dataset does however show a bias towards very recent and popular
movies, but a similar trend could be noted for the MovieLens dataset
(focused heavily on movies from the late 90s).

2.6 Benchmarking the MovieTweetings Dataset

In this section, we analyze the MovieTweetings dataset under several
conditions (data splitting, performance of recommendation methods, and
evaluation metrics) and compare these results with those obtained using
other datasets.

2.6.1 Experimental Setup

As in Section 2.5, we use two versions of the MovieLens data (i.e.,
ML 100K and ML 10M100K*) against which we compare the Movie-
Tweetings (MT) 100K snapshot. We follow the evaluation methodology
presented in [61], where for each user a set of non relevant items (unrated
by this user in the training and test splits) is randomly selected (100 in
our case), and then, for each highly relevant item in the test split (i.e.,
those rated as 5 in MovieLens or as 10 in MovieTweetings), a ranking
is generated by predicting a score for this item and the other (not rel-
evant) items. Then, the performance of this ranking is measured using
the trec_eval program18. In this way, standard retrieval metrics such
as precision, normalized Discounted Cumulative Gain (nDCG) or Mean
Average Precision (MAP) could be used [58]. Additionally, and for the
sake of comparison with other research, we also measured error-based
metrics such as Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE), pervasive in recommender systems literature [27].

We have tested �ve recommendation algorithms as implemented in the
MyMediaLite Recommender System library (version 3.10)19. All of them
only use ratings as the basis of the predictions, two are non-personalized

18Available at http://trec.nist.gov/trec_eval.
19Available for download at http://mymedialite.net.

42 User Feedback Collection

(user and item average) methods, and the rest do use information about
the target user, either as memory-based collaborative �ltering algorithms
(user and item nearest neighbor) or as a model-based (MatrixFactoriza-
tion) recommender. Table 2.6 shows a description of these approaches,
along with the default parameters for MyMediaLite version 3.10 used in
our experiments. Note that some of these speci�cations are not standard
(e.g., the cosine function as similarity, or using a baseline predictor in the
nearest neighbor methods), but since they are applied to all the datasets
impartially, the overall conclusions should be fair and not sensitive to
this aspect. In any case, we did a preliminary test with Pearson's cor-
relation as similarity function and the general trend remained the same;
the only change was that the performance of UserKNN and ItemKNN
improved slightly (but uniformly in the three datasets).

Name Description Parameters

ItemAverage
Target item's
average rating

�

UserAverage
Target user's
average rating

�

ItemKNN
Item-based
nearest neighbor

k=80,
correlation=BinaryCosine,
reg_u=15, reg_i=10,
num_iter=10

UserKNN
User-based
nearest neighbor

k=80,
correlation=BinaryCosine,
reg_u=15, reg_i=10,
num_iter=10

MatrixFactoriza-
tion

Factorization of
rating matrix
using stochastic
gradient descent

num_factors=10,
regularization=0.015,
learn_rate=0.01,
learn_rate_decay=1,
num_iter=30

Table 2.6: Description of the evaluated recommendation algorithms and the
values of the used parameters.

2.6.2 Experiments

We present the results obtained when comparing the algorithms listed
in Table 2.6 for the three datasets introduced before (whose statistics

2.6 Benchmarking the MovieTweetings Dataset 43
0.

0
0.

1
0.

2
0.

3
0.

4

MAP (MovieLens 100K)

Dataset slices (10K−100K)

M
A

P

●

●
● ●

●

●

●
●

●
●

10 20 30 40 50 60 70 80 90 100

●

ItemAverage
ItemKNN
MatrixFactorization
UserAverage
UserKNN

0.
8

0.
9

1.
0

1.
1

1.
2

RMSE (MovieLens 100K)

Dataset slices (10K−100K)
R

M
S

E

●

●
●

● ● ●
●

● ● ●

10 20 30 40 50 60 70 80 90 100

0.
0

0.
1

0.
2

0.
3

0.
4

MAP (MovieLens ML10M100K)

Dataset slices (10K−100K)

M
A

P

● ●
●

●
●

●

● ● ● ●

10 20 30 40 50 60 70 80 90 100

0.
8

0.
9

1.
0

1.
1

1.
2

RMSE (MovieLens ML10M100K*)

Dataset slices (10K−100K)

R
M

S
E

●

●
●

●
●

●
●

●
● ●

10 20 30 40 50 60 70 80 90 100

0.
0

0.
1

0.
2

0.
3

0.
4

MAP (MovieTweetings)

Dataset slices (10K−100K)

M
A

P

●
●

●
●

●

●
● ●

● ●

10 20 30 40 50 60 70 80 90 100

1.
4

1.
6

1.
8

2.
0

2.
2

RMSE (MovieTweetings)

Dataset slices (10K−100K)

R
M

S
E

●
●

●

●

●
●

●
● ● ●

10 20 30 40 50 60 70 80 90 100

Figure 2.16: Mean Average Precision (MAP, the higher the better) and Root
Mean Squared Error (RMSE, the lower the better) metrics computed using a
cross-validation 5-fold splitting strategy.

44 User Feedback Collection
0.

0
0.

1
0.

2
0.

3
0.

4

MAP (MovieLens 100K)

Dataset slices

M
A

P

●

●

50K+10K 90K+10K

●

ItemAverage
ItemKNN
MatrixFactorization
UserAverage
UserKNN

0.
8

0.
9

1.
0

1.
1

1.
2

RMSE (MovieLens 100K)

Dataset slices

R
M

S
E

●
●

50K+10K 90K+10K

0.
0

0.
1

0.
2

0.
3

0.
4

MAP (MovieLens ML10M100K*)

Dataset slices

M
A

P

● ●

50K+10K 90K+10K

0.
8

0.
9

1.
0

1.
1

1.
2

RMSE (MovieLens ML10M100K*)

Dataset slices

R
M

S
E

●

●

50K+10K 90K+10K

0.
0

0.
1

0.
2

0.
3

0.
4

MAP (MovieTweetings)

Dataset slices

M
A

P

● ●

50K+10K 90K+10K

1.
4

1.
6

1.
8

2.
0

2.
2

RMSE (MovieTweetings)

Dataset slices

R
M

S
E

● ●

50K+10K 90K+10K

Figure 2.17: MAP and RMSE metrics computed using a temporal splitting
strategy.

2.6 Benchmarking the MovieTweetings Dataset 45

are summarized in Table 2.4). We analyze these results (presented
in Fig. 2.16 and Fig. 2.17) according to three dimensions: evaluation
metrics, data splitting, and recommendation performance. We focus
on Mean Average Precision (MAP) [58] and Root Mean Squared Er-
ror (RMSE) [27] as evaluation metrics. Other ranking-based metrics
like nDCG, precision, and recall produced similar results as those ob-
tained for MAP, likewise for MAE with RMSE. For data splitting we
experiment �rst with a standard way for randomly generating training
and test splits: a cross-validation splitting strategy that generates non-
overlapping subsets (to be used as training and test splits) where every
(user, item, rating) tuple is evaluated once i.e., it only appears in one
test split, and it is guaranteed that there is one split containing such tu-
ple. The results have been averaged over 5 folds, but similar results were
found with 10 folds. The second evaluated splitting strategy is based
on temporal splitting [62], where the test split occurs after the training
split. We use 10, 000 ratings for testing, and experiment with a window
of the previous 50, 000 or 90, 000 ratings as training split.

From Fig. 2.16 and Fig. 2.17 we observe that the performance of the
recommender algorithms is heavily in�uenced by the evaluation metric
(RMSE20 or MAP) used to decide which recommenders perform better.
Speci�cally, whereas the ranking-based metric (MAP) is very stable �
in terms of dataset snapshots and splitting strategies �, preserving the
trend in best/worst recommenders, the error-based metric (RMSE) has
more �uctuations. Furthermore, the results of the RMSE metric are not
useful to discriminate which recommender is performing best because
the values are very close to each other, and, in general, it is not consis-
tent that the best method with RMSE (lowest value) achieves the best
value with MAP (highest value) or vice versa21; in particular, the worst
method according to RMSE for MovieTweetings is the MatrixFactoriza-
tion algorithm, which has a medium-to-high performance in terms of
MAP. We argue some of these di�erences between MAP and RMSE may
be due to the di�erent levels of density (as de�ned in Equation 2.2) pre-
sented in each of these datasets, since in such scenario it is more likely
that more users or items may have no training information (or very lit-
tle) after splitting the dataset, which seems to have a stronger e�ect
on error-based metrics and leads to very similar performance values for

20Note that for RMSE, the range of ratings in MT is di�erent (from 1 to 10) than
the one from ML (from 1 to 5).

21This conclusion con�rms works such as [60, 63, 64] where error-based metrics
show di�erent behaviors, usually not linked with the �nal experience of the user.

46 User Feedback Collection

0
5

10
15

Density analysis

Dataset slices (10K−100K)

D
en

si
ty

 (
%

)

●

●

●
● ● ● ● ● ● ●

10 20 30 40 50 60 70 80 90 100

●

MovieTweetings
MovieTweetings (min 20 ratings)
MovieLens 100K
MovieLens 10M100K*

Figure 2.18: Comparison of density values for each snapshot of the datasets
analyzed in the paper.

very di�erent recommendation methods. Fig. 2.18 compares the density
in these datasets as a function of the number of ratings increasing in
steps of 10K; it is clear that the sparsity in the original MovieTweetings
dataset is higher (i.e., density is lower), mainly because it contains a
much larger number of users and items than the other datasets, but
keeps the same number of ratings. This aspect of the dataset may also
a�ect the fact that MAP is lower in MT than in ML datasets, because
it is a more di�cult (i.e., less dense) dataset.

To further analyze the di�erences in behavior when other assumptions
in the dataset are considered, we generated a subset of MovieTweetings
where only users with at least 20 ratings are kept. As we see in Fig. 2.18,
this arti�cially generated dataset is less sparse than the original MT
dataset, although it gets closer to the original dataset when more ratings
are considered; this can be explained by looking at the dynamics of the
number of users and items available at each snapshot point (Fig. 2.19).

2.6 Benchmarking the MovieTweetings Dataset 47

0
50

00
10

00
0

15
00

0
20

00
0

Unique users and items

Dataset slices (10K−100K)

N
um

be
r

of
 u

ni
qu

es

●

●

●

●

●

●

●

●
●

●

10 20 30 40 50 60 70 80 90 100

●

Users (MovieTweetings)
Items (MovieTweetings)
Users (MovieTweetings min 20 ratings)
Items (MovieTweetings min 20 ratings)

Figure 2.19: Unique users and items at each MovieTweetings snapshot.

Furthermore, the recommendation performance (illustrated in Fig. 2.20)
has now changed and the relative performance between the recommen-
dation methods changes more often than in the previous case; also the
range between RMSE values is larger for some of these algorithms and,
especially for MAP, there are di�erent best methods at each point, like
the MatrixFactorization method, that outperforms the other algorithms
after the 40K slice.

Regarding the performance of recommendation algorithms, each
dataset has a di�erent optimal method, but in general the MatrixFac-
torization recommender is among the top performing recommenders,
in agreement with previous research on rating-based recommenda-
tion [65, 66], and at the same time, the non-personalized recommenders
(user and item average) have a very low performance. It should be noted
that the user-based nearest neighbor and the item average recommenders
are equivalent in the MovieLens datasets in terms of MAP (meaning
that their rankings are e�ectively the same), whereas in MovieTweetings

48 User Feedback Collection
0.

0
0.

1
0.

2
0.

3
0.

4

MAP (MovieTweetings, min 20 ratings/user)

Dataset slices (10K−100K)

M
A

P

● ●
●

●

● ●
● ● ● ●

10 20 30 40 50 60 70 80 90 100

●

ItemAverage
ItemKNN
MatrixFactorization
UserAverage
UserKNN

1.
4

1.
6

1.
8

2.
0

2.
2

RMSE (MovieTweetings, min 20 ratings/user)

Dataset slices (10K−100K)
R

M
S

E

●

●

●

●

●

● ●
●

● ●

10 20 30 40 50 60 70 80 90 100

Figure 2.20: MAP and RMSE metrics computed using a cross-validation 5-
fold splitting strategy for the users in the MovieTweetings dataset with at least
20 ratings.

they perform di�erently. Besides, the two neighbor-based recommenders
(UserKNN and ItemKNN) outperform the other algorithms in Movie-
Tweetings, both in terms of MAP and RMSE.

The relative ranking-based performance, in most of the cases, does not
change too much from the �rst snapshot (10K ratings) to the last one
(100K ratings). One exception to this is the MatrixFactorization algo-
rithm in the MT dataset. As observed before in literature [67, 68], recom-
mendation performance increases in the MovieLens datasets when more
ratings are available, but this is not the case with the MovieTweetings
dataset, where all the recommenders, except for the MatrixFactorization
method, decrease or maintain their performance. A similar result was
observed in [69], where a dataset with several new items was used, which
lowered the recommendation precision. These results are completely re-
versed when the subset of users with more than 20 ratings (Fig. 2.20) is
analyzed, since here the performance increases with more data (except
for the UserAverage method). Note also that the best recommender in
terms of MAP (the MatrixFactorization method) is the worst accord-
ing to RMSE. A possible explanation to these e�ects is the amount of
users and items presented in this constrained dataset (Fig. 2.19), where
a smaller number of items and, especially, of users is available in the
dataset, which makes it easier for the recommenders to obtain a higher
performance.

Error-based metrics, as discussed before, are not very useful to decide

2.7 Cross-Domain Datasets from Twitter 49

which is the best recommender. In the same way, it is very di�cult to
decide in which of the snapshots the algorithms perform better. These
facts make the error-based metrics not so interesting to predict which
recommenders will perform better in the future, given a particular snap-
shot. These predictions, however, could be easily drawn from the results
with the ranking-based metrics.

Finally, it is interesting to note that the results obtained in each of
the data splitting techniques evaluated are very consistent for the MT
dataset, whereas this is not the case for the ML datasets. Speci�cally,
the best and worst recommenders remain the same for ML 100K, but
the ones in the middle vary drastically their relative performance; even
worse, for ML 10M100K* the best recommender using cross-validation
(MatrixFactorization) is the worst using a temporal split. This con-
sistency in the evaluation for the MovieTweetings dataset is a positive
characteristic, since it shows a direct correspondence between the stan-
dard o�ine evaluation using repeatable tests (cross-validation) and the
more realistic evaluation scenarios (temporal split).

In summary, in this section we have evaluated di�erent aspects of the
MovieTweetings dataset from a practical perspective. We have found
that it is not very di�erent from the two versions of the MovieLens
dataset we have experimented with when using a speci�c splitting strat-
egy, but it is more consistent across data splitting strategies. Nonethe-
less, we have observed that its very high sparsity may produce lower
performance scores in general, and that the RMSE scores are not very
useful to discriminate the recommendation methods, although this was
also true � to some extent � for the other datasets.

2.7 Cross-Domain Datasets from Twitter

In the previous sections we illustrated how movie ratings originating from
IMDb can be structurally mined from Twitter. In this section, we gen-
eralize our method to other (non-transient) item domains, and provide
the tools to allow researchers to collect and build cross-domain rating
datasets for themselves. Our mining method can be applied to any web-
site that o�ers a social sharing functionality posting pre-formatted tweets
� containing user feedback � on Twitter. We illustrate this on three major
online platforms in very divergent item domains: Goodreads22 (books),

22http://www.goodreads.com

50 User Feedback Collection

Pandora23 (music) and YouTube24 (video clips).

2.7.1 Books - Goodreads

Goodreads is one of the largest websites for books discussion and dis-
covery. Readers can review books and receive recommendations based
on their personal taste. This website also o�ers to tweet about the re-
view or rating a reader has provided. On Goodreads the following tweet
template structure is used.

<Rating> of 5 stars to <Title> by

<Author> <Link to review on Goodreads>

To obtain the tweets originating from the Goodreads website, we query
the Twitter API for `of 5 stars to'. From the tweet the following infor-
mation can be extracted:

• User (Twitter user id)

• Rating (5-star scale)

• Book title

• Book author

• Goodreads URL of the review

Since the URL refers to the review on the Goodreads website posted by
the same user the tweet originates from, additional metadata �elds (e.g.
Goodreads user id, book id) can easily be extracted. Ratings provided
by users on Goodreads are publicly available, so if the Goodreads user id
is known, all of that user's ratings could additionally be extracted from
the website to expand the rating dataset even further.

2.7.2 Music - Pandora

There are many online services for music, one of which is the online
radio service Pandora. Using Pandora, users can easily stream music and
receive song recommendations. The website o�ers a similar social share
feature as we found for IMDb and Goodreads. Users can tweet about
the song they are currently listening to, using the following prede�ned
tweet format.

23http://www.pandora.com
24http://www.youtube.com

2.7 Cross-Domain Datasets from Twitter 51

I'm listening to "<Title>" by <Artist> on

Pandora <Link to song on Pandora> #pandora

Very similar to the data available from tweets originating from the
Goodreads website, the data �elds available in this tweet format are:

• User (Twitter user id)

• Song title

• Song artist

• Pandora URL of the song

The di�erence here, is the lack of an explicit rating value. Pandora
users do not rate the music, they either listen to it, or they do not.
The tweets originating from the Pandora platform should therefore be
considered implicit feedback. The query we use to get the Pandora tweets
from the Twitter API is `I am listening on #pandora'. The Pandora
URL is available, so again additional metadata (e.g., music genre) can
be extracted.

2.7.3 Video clips - YouTube

YouTube is currently the biggest provider of short video clips on the In-
ternet and is widely famous and well-known worldwide. While YouTube
used to have a 5-star rating scale, in 2009 it was replaced with a thumbs
up/down system because it more closely aligned with typically observed
rating behavior25. When users watch videos on YouTube they can rate
them by clicking a like or dislike button and tweet about it. The pre-
formatted tweet in this situation shows the following structure.

I liked a @YouTube video [from @uploader]

<Link to YouTube video> <Title>

To restrict the Twitter API to results originating from these YouTube
related tweets, we employ the query `I liked a @YouTube video'. The
data �elds that can be extracted from the resulting tweets are:

• User (Twitter user id)

25http://youtube-global.blogspot.be/2009/09/five-stars-dominate-ratings.

html

52 User Feedback Collection

• The @handle of the video owner (optional)

• YouTube URL of the video

While there is no star-rating involved in this scenario, the feedback
gathered is explicit feedback (i.e., the user explicitly expressed that she
liked the video). The URL contains the unique YouTube identi�er for
the video which can be used to request additional content data (e.g.,
tags) from the YouTube API.

2.7.4 Cross-Domain Mining Experiment

To validate our generalized method of mining rating datasets from Twit-
ter, we set up an experiment to automatically build 4 rating datasets,
one for each of the previously discussed online platforms.

2.7.4.1 Experimental Setup

For each of the online platforms (i.e., IMDb, Goodreads, Pandora and
YouTube) we queried the Twitter API at �xed time intervals (between
5 and 30 minutes) to download all tweets containing the aforementioned
preference indicators. The frequency of querying the Twitter API de-
pended on the typical number of tweets associated with the speci�c web-
site. YouTube tweets were much more numerous than tweets from IMDb,
so we had to query the Twitter API more frequently (every 5 minutes)
to capture all the relevant tweets, while respecting the Twitter API lim-
itations.

The data �elds as discussed in the previous section were extracted by
means of a series of speci�c regular expressions and stored line by line in
dataset �les. Ratings were mined over a period of 2 weeks (from Decem-
ber 19, 2013 to January 2, 2014) and processed in 4 resulting datasets.
The (Python) scripts used for the downloading and processing of the
�les, and the resulting datasets are available on the Github platform26.

2.7.4.2 Results

Table 2.7 lists the basic characteristics for each of the 4 collected datasets.
While each dataset was mined on Twitter for the exact same period
of time, the number of extracted ratings is signi�cantly di�erent. The

26https://github.com/sidooms/Twitter-ratings

2.7 Cross-Domain Datasets from Twitter 53

IMDb Goodreads Pandora YouTube

#ratings 9,297 43,960 1,468 2,867,182
#users 3,412 19,680 1,039 420,373
#items 2,689 27,403 425 1,112,292
avg rat./day 664 3,140 105 204,799
sparsity 0.99899 0.99992 0.99668 0.99999
density 0.101% 0.008% 0.332% 0.001%

Table 2.7: Dataset statistics for a 2 week mining period.

most ratings were collected from the YouTube platform, the fewest from
Pandora (about 2000 times less). For all of the datasets the density (see
Equation 2.2) turned out to be very low. This is to be expected since
the collected datasets are un�ltered i.e., contain not only users with >20
ratings. The low density values indicate high numbers of users and items
with only little rating information to link them, which can be a major
problem for collaborative �ltering recommender systems known as the
sparsity problem27 [70, 71]. A typical long-tailed distribution was found
when we inspected the number of ratings per user i.e., many users had
a low number of ratings (<5).

Fig. 2.21 illustrates the extreme di�erence in numbers of ratings col-
lected from each platform during our mining period. The �gure shows
the daily number of ratings which varies day by day mostly depending
on the day of the week (more activity in weekends).

An emerging research topic in the recommender systems area is cross-
domain recommendation [72]. In such scenarios the sparsity problem is
usually alleviated by integrating data from another domain e.g., recom-
mending books based on previous movie ratings. One of the main chal-
lenges the domain faces is the lack of cross-domain rating datasets, which
forces researchers to work with arti�cially generated datasets. With our
approach we �nd ourselves in the unique position of linking rating data
originating from the same (Twitter) user across multiple item domains
(books, movies, music, etc.). For this purpose we analyzed the inter-
sections of the 4 collected datasets, more speci�cally the intersection of
users (i.e., Twitter user ids that have ratings in more than one dataset).

Fig. 2.22 shows the result of the intersection analysis for YouTube,

27Sparsity is the inverse of density, both terms are used in recommender systems
literature.

54 User Feedback Collection
0

10
00

20
00

30
00

40
00

Day (2 week period)

N
um

be
r

of
 c

ol
le

ct
ed

 r
at

in
gs

●

●

●

●

●

●

●

●

●

●

●

●
●

●

1 2 3 4 5 6 7 8 9 10 12 14

● Goodreads
IMDb
Pandora

● ● ● ● ● ● ● ● ● ● ● ● ● ●

0
50

00
0

10
00

00
15

00
00

20
00

00
25

00
00

Day (2 week period)
1 2 3 4 5 6 7 8 9 10 11 12 13 14

YouTube

Figure 2.21: The daily number of collected ratings from Goodreads, IMDb,
Pandora and YouTube. YouTube is displayed separately because of the large
di�erence in Y-axis scale.

3237

26

19003

142

7

644

419580

IMDb Goodreads

YouTube

Figure 2.22: Venn diagrams indicating the numbers of unique users for the
IMDb, Goodreads and YouTube datasets and their intersections.

2.8 Conclusion 55

Goodreads and IMDb (Pandora was omitted because of the low number
of collected ratings). Some users turned out to actually rate across more
than one domain. In total, 7 users were even found to rate across all
three of the datasets. Considering the short period of data collection (2
weeks), these results look very promising for the creation of cross-domain
rating datasets.

2.8 Conclusion

This chapter re�ected on user feedback, which could be considered the
fuel that drives recommender engines. Although user feedback is one of
the main ingredients for the recommendation process, only a few public
rating datasets are available for research purposes. We discussed how
these datasets are often old and arti�cial, which limits their usability to
o�ine comparative experiments.

We studied the collection of di�erent types of user feedback in a real-
istic scenario using a cultural events website as experimental platform.
Results of 7 months of data illustrated how implicit feedback was much
easier to collect in large numbers compared to explicit feedback (i.e.,
ratings). The latter however provides more intrinsic information value
regarding the true preferences of the user. Although an interesting feed-
back dataset was collected, a time analysis showed how the feedback was
very time-bound (because of the event domain) and research performed
using this dataset may not generalize very well to other item domains
(e.g., non-transient domains as music, books, movies, etc.).

To assemble a more generalizable dataset useful for various research
purposes, we turned to the online world and discovered an interesting
connection between IMDb and Twitter. While rating movies, users of the
mobile IMDb iOS app are o�ered to tweet their ratings in a structured
format. Using the Twitter API, such tweets can be downloaded and the
integrated ratings extracted. We published a new rating dataset called
MovieTweetings based on this idea, integrating newly tweeted ratings on
a daily basis.

We investigated how much the MovieTweetings ratings were biased
in comparison with general ratings from IMDb (not published through
Twitter) and ratings found in public rating datasets as MovieLens. The
ratings seemed to correlate strongly with IMDb ratings, when a large
enough number of ratings per movie was considered (>20). The dataset
also showed similarities to the MovieLens dataset, but proved to incorpo-

56 User Feedback Collection

rate much more recent and popular movies. The main di�erences are the
fact that MovieTweetings is a natural dataset (no users are excluded),
and many more unique items and users are included, which causes the
density to be low (or sparsity to be high). The MovieTweetings dataset
was benchmarked using multiple recommendation algorithms, evaluation
metrics, dataset sizes and data splitting strategies. Again, similarities to
the MovieLens dataset were noted, although evaluation results seemed
more stable and consistent for the MovieTweetings data.

Finally, we generalized our approach of mining ratings from Twitter
to other platforms implementing similar social sharing features. We
illustrated how ratings from various domains could be collected includ-
ing books (i.e., Goodreads), music (i.e., Pandora) and video clips (i.e.,
YouTube) by mining 3 additional datasets over a short period of 2 weeks.
Since users were always originating from Twitter, the same user ids could
be found in multiple datasets which opened the doors to true cross-
domain rating datasets. Our experiments, above all, have shown the
wealth of both explicit and implicit user feedback that can be easily ex-
tracted from public online sources these days. The datasets resulting
from experiments in this chapter can be used to alleviate the shortcom-
ings of the already available public rating datasets.

Chapter 3

Human-Recommender

Interaction

3.1 Introduction

Human-recommender interaction (HRI) is a component of the recom-
mendation process that is often overlooked, even though it contributes a
great deal to the overall user experience and satisfaction of people using
a recommender system. A car engine � as powerful as it may be � with-
out a car structure, body and driver controls such as the steering wheel,
pedals, etc. is just a piece of useless metal. The same applies to rec-
ommender systems. A mathematical model predicting user preferences,
only becomes useful and interesting when it interacts with actual users
and thus exposes its features.

Information systems expose their functionality by means of a user in-
terface, which is most often graphically implemented (i.e., graphical user
interface or GUI). However, with the advent of more complex technology
as smartphones and tablets, also other types of interaction methods as
gesture control and voice control are rapidly becoming integrated in our
daily lives.

While the phrase �Design is not important, just make sure it works�,
is often heard in computer science courses, the impact of visual design
and layout for user interfaces should not be minimized. Speci�cally for
recommender systems it has been hypothesized1 that the user interface
may be responsible for 50% of the total user experience when recommen-

1http://recsys.acm.org/2009/invited_talk_strands_martin.pdf

58 Human-Recommender Interaction

dation results are shown to users.

In this chapter we acknowledge the importance of user interfaces and
discuss their applications with respect to HRI. Speci�cally, we focus
on two interaction processes relevant for typical recommender systems:
providing input feedback and visualizing recommendation results. For
both scenarios we discuss the current state of the art and detail our own
contributions applied to actual use cases.

Research Questions

• What is the e�ect of visualization on the recommendation process?

• How can hybrid recommendations be visualized?

• How can the `Filter Bubble' be pierced?

3.2 Feedback Mechanisms

Feedback mechanisms are user interaction controls designed to collect
user feedback, in our case for recommender systems. While in the previ-
ous chapter we focused on the importance of the collected user feedback
and its processing, here we elaborate on the design and the consequences
of the interaction controls themselves.

Feedback mechanisms come in all shapes and sizes. The most common
example is the 5-star rating system which allows users to express their
preference for certain items on a 5-star rating scale. The 5-star rating
system is incorporated in many well-known recommender platforms as
MovieLens and Net�ix. Another popular system is the thumbs up/down
feedback system as used by YouTube. Closely related to the thumbs
up/down system is Facebook's unary `Like' rating system. IMDb im-
plements a 10-star rating system, the Jester joke-rating system [73] a
continuous rating bar which ranged between [-10,+10], the MPAA �lm-
rating system (used to rate a movie's suitability for US audiences) rates
movies in categories ranging from G (general audiences) to NC-17 (ex-
clusively adult).

But what makes a good feedback mechanism? How does it a�ect users?
What attracts most feedback and what results in the most interesting
information from the viewpoint of the recommender system? In the
following sections we elaborate on these questions.

3.2 Feedback Mechanisms 59

3.2.1 Related Work

Cosley et al. [74] is one of the earliest but still relevant works that ac-
knowledged and researched the importance of rating interfaces in rec-
ommender systems. They conducted three experiments with 536 users
of the MovieLens website focusing on the topics of re-rating, di�erent
rating scales and rating manipulation. Some of their research questions
where:

• How consistent are users when re-rating items?

• How do di�erent rating scales a�ect users' ratings?

• Can the system make a user rate a `bad' movie `good'?

One of the experiments involved three di�erent rating scales: binary
(thumbs up / down), no-zero (a scale from -3 to +3, but no zero value),
half-star (scale ranging from 0.5 to 5 in half star increments). For a full
discussion we refer to their work, but some of the remarkable results they
found where:

• Users' rating behavior seemed to be consistent. When re-rating
previously rated movies a correlation of 0.7 was found, more or
less in agreement with results from previous literature [75] (their
correlation was 0.83).

• By showing false predictions of non-rated items, users can be ma-
nipulated to rate positively instead of negatively.

• Users preferred �ner-grained scales.

• Finer-grained scales did not have an adverse e�ect on recommen-
dation accuracy.

Cosley et al. showed how �ne-grained rating mechanisms do not lead
to a decreased accuracy of the recommender system. On the contrary,
users may even be able to more accurately express their preferences which
should lead to an increase in recommendation quality. But what is good
for users and what users like, may not be the same thing. In more
recent work, Preston and Colman [76] studied user responses on scales
ranging from 2 to 101 points. Their users seemed to be happiest (and
more consistent) with a 5-10 point scale while they indicated that the
101-point scale was actually better at capturing their feelings.

There may also be a trade-o� to consider between user bene�t and
user e�ort. In [77], ratings are considered from an economic viewpoint.

60 Human-Recommender Interaction

They pose that users are only willing to provide an e�ort in proportion
with the actual received bene�t. Such bene�ts may be improved recom-
mendations, unlocked features on a website, and so on. So even though a
1000-point scale may actually be best at capturing the di�erent levels of
preferences for all users, it may too negatively skew the user e�ort-bene�t
ratio. Users may �nd it more di�cult to rate on too �ne-grained scales,
leading to inconsistency, user frustration and possibly overall reduced
user interaction.

Some recent research has speci�cally compared the observed user e�ort
for di�erent rating systems. Sparling et al. [78] set up a user survey where
348 users where asked to rate items from two item domains: movies and
Amazon reviews. Four popular online rating systems were included in
the survey: the unary `like it' scale, the binary thumbs up/down scale,
the 5-star scale, and a 100-point slider scale. Various experiments mea-
sured the costs and bene�ts associated with the di�erent rating scales.
As expected, the more �ne-grained rating mechanisms where found to re-
quire more cognitive e�ort from users. They also attracted fewer ratings
compared to the `easier' rating systems. Since the experiments spanned
two item domains, results could be compared and some were actually
found to be in�uenced by the respective domain: a higher satisfaction
for the 5-star scale was noted for the movie domain while the thumbs
scale noted a slightly lower satisfaction. The authors cautiously hypoth-
esize that users may prefer �ner-grained scales more for subjective item
domains. Overall the 5-star scale was found most preferred by users (the
survey asked users to rate the rating systems). The authors propose the
interesting idea of dynamically adapting the rating mechanism to the
user context. A recommender system may show a coarse-grained rating
scale for new users at �rst, while after a while users may be willing to ex-
press their preferences on a more �ner scale depending on their growing
experience with the system and its item domain.

In the next section we present the results of our own rating mechanism
experiment where we investigate the popularity of di�erent rating sys-
tems and their ability to attract user feedback as observed on an actual
(non lab-controlled) website.

3.2.2 A Cultural Events Website: Use Case Study

In this section we study user behavior towards 4 di�erent explicit feed-
back mechanisms that are most commonly used in online systems. We
monitored and analyzed the behavior of users towards these systems in

3.2 Feedback Mechanisms 61

a real online environment. Related work has already stated that rec-
ommender interfaces can in�uence users' opinions and therefore their
ratings. There is however little knowledge on the in�uence that design
of feedback mechanisms has on the willingness for users to give feed-
back. We wanted to capture the popularity of each system and track the
speci�c interaction of users.

3.2.2.1 The Experiment

We collaborated with a popular Belgian cultural events website2 and in-
tegrated some custom feedback mechanisms on the events information
pages. We expanded these event detail pages with a custom built (Dru-
pal) module that allowed users to rate the events. Graphical design was
carefully attended to, to ensure optimal integration in the general look
and feel of the website (Fig. 3.1).

Integrated feedback system

Figure 3.1: Screenshot of an event detail page which shows the integrated
feedback system at the bottom.

We implemented four separate feedback systems: A 5-star rating sys-
tem, a thumbs up/down rating system, and for each of them both a static
and dynamic version (Fig. 3.2). The static rating systems were HTML
form based. The user had to select a radio button associated with the
desired rating and click a submit button to con�rm. Doing so submitted
the rating and caused a full page refresh. The dynamic systems used

2The website was the same cultural events website as discussed in the previous
chapter Section 2.3.

62 Human-Recommender Interaction

JavaScript to capture onclick events and displayed a small color chang-
ing animation when hovered over the desired rating value. Clicking a
value submitted the rating in the background without any portion of the
page refreshing.

Dynamic: JavaScript enabled,

hover effects, no page refresh

Static: HTML submit form,

page refresh on post

Figure 3.2: Four explicit feedback systems (5-star scales and thumbs
up/down) as commonly found online. User interface text in Dutch because
they were integrated in a Belgian website.

For an accurate comparison of the di�erent feedback systems, every
system needed to be displayed in the exact same circumstances. We
wanted to avoid any temporal e�ects and community in�uences that
could render the data unreliable. Temporal e�ects are the e�ects that
a di�erent time frame could have on the experiment. Displaying every
feedback system for one week at a time could favor a system that was
displayed during a busier period like a holiday, rainy day, etc. The
community in�uences we tried to avoid, include an increased user base
and changed availability of content. If the feedback systems would be
deployed sequentially then the last one would pro�t from the advantage
of the largest user base, as we observed that the number of users grows
on a daily bases. Since we are dealing with events as content, old events
are removed from the site while new ones are added. This di�erence in
number of events that are o�ered could also favor some feedback systems
over others.

The standard way of dealing with these issues would be to employ an

3.2 Feedback Mechanisms 63

A/B test where visitors are randomly divided in four groups each with
their own feedback system. We wanted however to track individual user
preferences towards all the systems and so every user had to be able to
use every system. In our experiment every pageview showed a random
feedback system. That way every system received an equal number of
views, they all share the same settings of the experiment and users are
not limited to the same feedback system.

3.2.2.2 Experimental Results

For a period of 183 days between March 2010 and September 2010 we
logged all relevant data and analyzed the ratings received by the Drupal
feedback module. In total 8101 explicit ratings were collected on 5446
unique events.

Fig. 3.3 shows the distribution of the rating values for the 5-star rating
mechanism. The distribution shifts towards the more positive values
for both the dynamic and the static versions. We monitored the same
outcome for the thumbs rating system where 88% (= 3349

3795) of the ratings
were thumbs up values.

0

500

1000

1500

2000

2500

3000

1 2 3 4 5

N
u

m
b

e
r

o
f

R
a

ti
n

g
s

Rating Value

Static + Dynamic

Static

Dynamic

Figure 3.3: The distribution of the rating values for the 5-star rating system.

Table 3.1 depicts which explicit feedback mechanism collected the most
feedback. We observe that the static 5-star rating mechanism is the most

64 Human-Recommender Interaction

popular one, followed by the dynamic thumbs mechanism. The dynamic
5-star rating mechanism showed to be the least attractive one with less
than half the ratings of its static version. The average number of ratings
each system collected per day are for the dynamic 5-star, static thumbs,
dynamic thumbs and static 5-star systems respectively 7, 9, 11 and 16.
The di�erences between each of these systems are signi�cant according
to a one-tailed t-test, p < 0.01.

5-Star Thumbs Thumbs 5-Star
(dynamic) (static) (dynamic) (static)

1330 1694 2101 2976
16% 21% 26% 37%

Table 3.1: The amount of ratings that each feedback system collected during
the evaluation period of 183 days.

Fig. 3.4 visualizes the di�erence of the number of ratings collected
from the static and dynamic feedback systems. We again observe that
the static 5-star system processes the most ratings, whereas the static
and dynamic versions of the thumbs rating system show a much smaller
di�erence.

Static
2976 (69%)

Dynamic
1330 (31%)

Dynamic vs Static
(5-star rating)

Static
1694 (45%)

Dynamic
2101 (55%)

Dynamic vs Static
(Thumbs rating)

Figure 3.4: The amount of ratings that were given with either a dynamic or
a static feedback system for the 5-star (left) and the thumbs up/down system
(right).

In total 8101 ratings were collected and in total we logged 1, 416, 510
(event detail) pageviews during the evaluation period. We can de�ne a

3.2 Feedback Mechanisms 65

metric feedback rate as:

feedback rate =
#ratings

#pageviews
=

8, 101

1, 416, 510
= 0.6%

The feedback rate is an indicator of how actively a feedback system is
used. While the general feedback rate of the experiment was 0.6% (i.e.
6 ratings for every thousand pageviews), the individual feedback rates
for the 4 systems as shown from left to right in Table 3.1 are 0.37, 0.48,
0.59 and 0.84.

Since we allowed both anonymous users and registered users of the
website to give feedback, we were also able to compare their rating be-
havior. In Table 3.2, a comparison is made between the feedback rates
of anonymous users and logged-in users.

Anonymous Logged-in

Pageviews 1,395,289 (98.5%) 21,221 (1.5%)
Ratings 7,730 (95%) 371 (5%)

Feedback rate 0.55% 1.75%

Table 3.2: A comparison of the pageviews, ratings and feedback rate of anony-
mous users and users who were logged-in.

While we see that in absolute numbers most of the pageviews are
originating from anonymous users (98.5%), we point out that in the
end 5% of the ratings were still given by logged-in users. The resulting
feedback rates are 1.75% for logged-in users and 0.55% for anonymous
users.

To conclude we looked into a sparsity aspect of the given ratings. Be-
tween March 2010 and September 2010 there were on average approxi-
mately 30,000 events available on the website. Only 18% (=5446) of them
were rated at least once. Of the 5446 di�erent events that were rated,
23% (=1238) were rated more than once, the remaining 77% (=4208) in
the tail was rated exactly once. Similar long-tailed e�ects were noted for
the number of ratings per user: in total 7343 unique users were identi�ed
(using IP addresses), of which 94% (=6930) rated only once, 5% (=381)
rated between 1 and 5 times, and only 0.4% (=32) users were found to
be providing more than (or equal to) 5 ratings.

66 Human-Recommender Interaction

3.2.2.3 Discussion

Results showed that the static 5-star rating mechanism collected the
most feedback, closely followed by the dynamic thumbs up/down sys-
tem. This is somewhat unexpected because it was the oldest system
and supposed to be the least attractive one. We assume this has in fact
favored this system as it was easier recognizable as a feedback system
(users are more familiar with this rating system).

The 5-star systems failed however to produce more accurate feedback
than the thumbs systems. Despite the fact that the items in our platform
are events rather than movie content, we have seen that users interacted
with the 5-star rating system in a similar manner as they did on the
youtube.com site (before 2009) which is to rate using either very high or
very low values. It is likely that users tend to give more positive feedback
(e.g. higher rating values) because they only look at items that seemed
appealing in the �rst place. Counterintuitive was that users do not seem
to prefer the dynamic systems over the static ones.

The feedback rate of users who were logged-in was more than 3 times
higher as the rate for anonymous users. Logged-in users seemed to be
more actively involved and were more keen to provide explicit feedback.
Still we think recommender systems should carefully consider what to
do with anonymous users, as we saw that they generated 98.5% of all
tra�c in our experiment.

3.3 Recommendation Visualization

Visualization is everything. While often underestimated, the aspect of
visually presenting results to users may even be the most important part
of the recommendation process. It is the �rst thing users see and interact
with and therefore it can be a de�ning factor for the user experience in
total. Take for example any website and remove the layout. While the
contents of the website will still be available, the lack of proper layout
and design will render it useless. We illustrate this in Fig. 3.5; on the
left, we show the HTML front end of what may be an online movie
recommender system, on the right the same page without layout or design
(i.e., without CSS �les). All the same links and textual information are
still available on the version without the layout, but it is clearly unusable
in any practical sense.

While in the previous section we focused on the e�ects of the (layout

3.3 Recommendation Visualization 67

Figure 3.5: Comparing a HTML front end of an online movie recommender
system with (left) and without layout (right). While focus is often on content,
the importance of layout and design should clearly not be underestimated.

of) feedback mechanisms, here we consider the user interaction process
of presenting the actual results (i.e., recommendations) to users. We �rst
consider some related work focusing on recommendation user interfaces
and then present our own contributions regarding an in-home user in-
terface for media content and �nally our open-sourced recommendation
front end framework.

3.3.1 Related Work

Most closely related to our work, is the TasteWeights system introduced
by Bostandjiev et al. [79]. TasteWeights is a hybrid music recommender
system with a very interactive and visual user interface. The authors
performed a user study (32 participants) that compared di�erent inter-
active and non-interactive hybrid strategies. The user interface of the
TasteWeights system is composed out of three layers: a pro�le layer,
context layer and recommendation layer. On each layer, users can ad-
just their tastes by interacting with slider weights. Using the sliders, the
user preferences can be �ne-tuned while the system provides dynamic
recommendation feedback in real-time (i.e., the recommendations are
updated). The results of the user study indicate that explanation and
interaction with a visual representation of the hybrid system increases
the user satisfaction (i.e., users like the system more) and relevance of
the predicted content (i.e., the recommendations are better). A similar
result was found by Gretarsson et al. [80] in a study of the SmallWorlds

68 Human-Recommender Interaction

interactive graph-based interface.

It is well known that explanations increase user trust and can even
increase user acceptance of a recommendation. Herlocker et al. [81] was
among the �rst to experiment with showing users inside information
about the recommendation process. They experimented (on MovieLens)
with 21 di�erent explanation types ranging from simply showing the
average rating for a movie, to showing complex histograms of the cal-
culated neighbors ratings. Their results indeed showed that explanation
interfaces lead to an improved acceptance of the predicted rating. In [82]
the authors elaborate on the possible goals of explanations. The system
may try to convince users that a recommendation is a good recommenda-
tion (i.e., goal is promotion), or may assist them in assessing the actual
quality of the recommendation (i.e., goal is satisfaction). The former
can easily be implemented as a text label stating that `Customers who
bought this also bought...' while the latter requires more inside infor-
mation about the recommendation process (e.g., `Recommended item x
because it contains the keywords k1, k2, k3 '). Later, Tintarev [83] for-
malized even more aims for explanations including system transparency,
scrutability, e�ciency, etc. Each may require a di�erent approach and
implementation. She also proposes the idea that explanations may even
be personalized themselves in the sense that di�erent users may bene�t
from di�erent manners of explaining the recommender system.

So user interfaces for recommendation results should preferably be in-
teractive and provide explanations of some sort. Regarding the actual
representation of the recommended items themselves, literature is mostly
focusing on typical top-n list design. Some alternative recommendation
user interfaces do exist such as the circle-based CoFeel [84] or Topic-
Lens [85] systems, graph-based systems [80, 86, 87], or critiquing-based
systems [88]. Very often however, they are speci�cally designed towards
a speci�c item domain or recommendation scenario and because of their
added complexity (in contrast to a simple list approach) their suitability
is restricted to advanced users.

3.3.2 An In-Home Recommender System: Use Case

Study

In this section we discuss the use case of the OMUS system developed
in the context of the OMUS iMinds3 research project. The Optimized

3http://www.iminds.be/en/projects/2014/03/06/omus

3.3 Recommendation Visualization 69

MUltimedia Service (or OMUS) system aimed to o�er an overall and
integrated information system to overcome typical information handling
problems in home environments.

Media content in home environments is often scattered across multi-
ple devices in the home network. Aside from su�ering from information
overload, home users are therefore often experiencing technical di�cul-
ties to connect their content with a device of their choice e.g., streaming
a movie that is actually stored on a laptop to the television. To ad-
dress these home-speci�c issues, the OMUS system was proposed which
included an optimized content aggregation framework, a hybrid group-
based contextual recommender system, and an overall web-based user
interface making both content and recommendations available for all de-
vices across the home network. The system was evaluated by means of
focus group interviews. Di�erent target groups were integrated in the
study, including students, heavy downloaders, regular interactive digital
television viewers and people with an extensive media set-up at home.

Here, we will focus on the user interface that was developed for the
OMUS system and its requirements as suggested by the user study. We
�rst overview these requirements, then present a high-level view of the
recommender system and �nally detail the user interface and its features.
For more detailed information about the OMUS project and its other
components we refer to our paper [89].

3.3.2.1 User Study: Requirements

The user study was performed in two stages, once before designing the
system and once after. By means of 7 focus group interviews totaling 47
respondents, the user requirements and typical user behavior in a home
environment could be analyzed. When users were asked how they �nd
interesting (media) content, it turned out they focus mostly on content
attributes. For movies e.g., the `movie director' or `genres' would be an
indicator of their potential interest. Interestingly however, no consensus
could be found as to what attributes were the most important. For some
users the director was the most important movie attribute, while for oth-
ers the IMDb rating was more valued. User preferences also seemed to be
heavily context sensitive i.e., depending on the day, mood and whether
they were consuming media in group or by themselves. For group situ-
ations, users indicated they often found it hard to �nd suitable content
items for everyone involved i.e., reaching a group-based consensus.

70 Human-Recommender Interaction

Users were asked about their willingness to engage in searching and
selecting content. Again very divergent results were noted. While some
users appeared very willing to actively engage with an information sys-
tem in search of interesting content, others just wanted to `sit back and
relax'. So a home recommender system would need to accommodate for
both types of users (i.e., active and passive users).

The two major challenges revealed by the user study were the dual-
ity between active and passive users, and the context dependency. A
home recommender system (and its user interface) should �nd an ac-
ceptable balance between accommodating both active and passive users
in multiple contexts. In the following list we summarize some of the user
requirements for both the in-home content recommender system and its
user interface.

OMUS recommender system requirements

• Support for group recommendation.

• Contextual user preferences.

• Support for di�erent types of user engagement: active and passive
users.

OMUS user interface requirements

• Allow (optional) explicit user feedback.

• Show only basic item information, show more if requested.

• Allow to �lter lists on genre.

• Allow users to control their user pro�les.

3.3.2.2 The OMUS System

Here we detail the OMUS system that was built to meet the require-
ments as de�ned in the previous section. An external (out-of-home)
recommendation service was developed allowing group recommendation
which synchronized with a light-weight, in-home OMUS client instance.
The system used the DLNA4 standard to support cross-device media
rendering support and the OMUS user interface (UI) was designed to be
(HTML) web-based to be supported across the wide range of devices that
may be available inside a typical home network (e.g., laptops, tablets,
smartphones, smart televisions, etc.).

4http://www.dlna.org

3.3 Recommendation Visualization 71

Home Network

Content

Aggregation

Data

Sync

Logic

U
s
e

r In
te

rfa
c
e

OMUS
Laptop PC

Tablet

SmartphoneTelevision

Hard Drive

DMS

Recommendation

Service

Figure 3.6: The high-level view of the OMUS system integrated in a home
environment with multiple users and distinct devices.

The home network (Fig. 3.6) houses several users that each interact
with a number of distinct interlinked devices. The OMUS information
system, is situated at the border of the home network. The system
includes components as content aggregation, a recommender system, a
user interface and a central data component. The possibility of mul-
tiple houses each implemented with the OMUS system (and therefore
using the same recommendation service) is graphically illustrated in the
architecture by the dotted house outlines extending the central home
network.

The content aggregation component centrally gathers all the informa-
tion about the media content that is available to home users (in-home
media), complemented with data about other consumable media (e.g.,
content in a friend's home, online sources). The metadata stored about
an item can be used for content-based recommendation approaches.

The sync logic component is responsible for synchronization services
between the home network and an external recommendation service.
The external service provides the necessary recommendation function-
ality without imposing new (computing) hardware requirements inside
the home network.

The UI actively interfaces between users, devices and the OMUS infor-
mation system. All aggregated content in the home network is integrated
into a single content overview list and made available through the UI.

72 Human-Recommender Interaction

Extra information about items (e.g., plot, genre, etc. for movies) is eas-
ily accessible, playback functionality is provided and user preferences
can be speci�ed. A recommendation list tailored speci�cally towards
any provided context additionally assists users in their content selection
process.

3.3.2.3 The OMUS User Interface

From the user studies, we learned that users may have very diverse re-
quirements towards how they wish to interact with a home information
system. In particular, the way in which they were willing to provide
feedback (e.g., provide ratings for media) was very user dependent. The
user interface was designed to handle these situations while providing
the functionality to browse content, control media (i.e., play, pause, and
stop media) and to tailor recommendation lists to any given context.
Because the user interface must be easy to use and intuitively to work
with, many of the design concepts resemble in style and behavior to that
of common web applications to which users may already have an a�lia-
tion with (e.g., IMDb, YouTube, etc.). The user interface was designed
to be web-based (mainly HTML and JavaScript) to make it accessible
through any web-enabled device present in the home network.

Browsing and Interacting

All content available in the home network is aggregated into one
overview list. For this list to become available, a set of active users
must be speci�ed to the system. Active users are users that want to
participate in the same session of media consumption. Showing content
only after the user selection allows for possible security policies to be
enforced towards the accessibility of content (e.g., some content may not
be suited for children). Content may be restricted to the minimal set of
items that every user in the active user set is allowed to access.

The content overview list should contain all relevant information but
at the same time also remain simple to use and easy to access. To meet
these requirements we propose a two-leveled hierarchical overview. At
the �rst level, only basic information (e.g., title, director, cast, genre and
runtime) about content items is shown (Fig. 3.7). The basic information
level o�ers a quick overview of the available content. When a speci�c
content item is selected from the list, more detailed information is shown
(Fig. 3.8), e.g., the plot in the case of a movie item type or web links to

3.3 Recommendation Visualization 73

external sources (e.g., IMDb) with extra information such as reviews or
trailers.

Active user selection

Basic content information

Figure 3.7: The basic content overview list. All media content discovered in
the network will be listed here. At the top, active users can be speci�ed and
genre �lters can be selected. Basic item information is available together with
a thumbs up/down feedback system per item.

Aside from showing extra item information, the item-speci�c view can
also be used to provide controls and tools to interact with the content.
For every available item, similar items can be displayed (Fig. 3.8). These
similar items are calculated by the recommender system and originate
from the same content pool as shown in the content overview list. Con-
sequently, every item displayed in the similar items list can in turn be
interacted with.

The most interesting way of interacting with media content is by ac-
tually consuming it (i.e., listening to music or watching video). This is
supported by the user interface by means of the media control buttons
on the bottom of the item-speci�c information view (Fig. 3.8). Click-
ing the Play this button will trigger UPnP AV SetAVTransportURI and
Play messages to be sent to the currently selected device in the device
selection box. These messages cause the DLNA Digital Media Renderer

74 Human-Recommender Interaction

Figure 3.8: The item-speci�c content view. Additional information about the
media item is provided (e.g., movie plot) together with similar items and some
media interaction buttons.

(DMR) on the selected device to start bu�ering and playing the concern-
ing multimedia content item. The device selection box is automatically
populated with devices discovered in the home network that announced
themselves as being a DLNA DMR. The user interface displays every
available content item in the network in one interactive list in which
content information can be shown, as well as interaction functionality
is provided to allow the playback of every media item on every capable
device in the home network.

Providing Feedback

To overcome the media overload problem, a recommender system was
integrated in the user interface. To enable such recommendations, �rst
user feedback must be collected. Through the user interface three distinct
types of feedback are collected: ratings, explicit item attribute feedback
and implicit media consumption behavior.

The �rst, is the gathering of explicit user ratings by means of the
thumbs up/down widget available on the basic information display of
every item (Fig. 3.7). With this widget, users can straightforwardly ex-
press their either positive or negative preference towards any speci�c
content item in the system. The thumbs feedback system is a very intu-
itive and easy to use feedback system which is usable across a number
of di�erent input devices including touch devices (e.g., smartphones and
tablets). The thumbs feedback system was therefore chosen over the
more commonly used 5-star rating system.

3.3 Recommendation Visualization 75

The thumbs up/down feedback system allows users to express prefer-
ences on a binary scale. The user study revealed that some users are
willing to put more e�ort into providing feedback than others and would
like an increased level of control over their user pro�les. To meet these
requirements, an additional level of explicit feedback was introduced.
Aside from liking or disliking an item in the overview list, users are also
able to express their preference on a �ner scale more speci�cally towards
an item attribute. When an item attribute in the content overview list
is selected, a popup window (Fig. 3.9) will allow (thumbs up/down) user
feedback towards the relevant attribute. For an item of the movie type,
speci�c user feedback can be provided towards directors, cast and genre
by selecting the relevant attributes in the content overview list.

Figure 3.9: An example of the popup window that is shown when an item
attribute in the content overview list is clicked. Binary explicit feedback can
be provided.

Users are thus able to explicitly express their preferences on either
items or speci�c item attributes. As the user study revealed, some users
are actually unwilling to provide any form of explicit feedback. They
expect the system to learn without manually specifying likes and dislikes.
Therefore implicit feedback is collected from user interactions via the user
interface: the consumption of a media item itself is regarded as a positive
preference towards that item. If a user listens to a song, or watches a
movie, the system will infer a positive relationship between that user
and the item. Since the user interface serves as the aggregated entry
point for media control in the home network, the consumption of media
and all its available properties (e.g., duration of consumption, time of
consumption, etc.) are easily logged for every user of the system.

To allow users control over their system-constructed pro�les, the user
interface also o�ers a user-speci�c history view. The history view lists

76 Human-Recommender Interaction

all relevant feedback that the system has collected about the user and
may be used as input for the recommendation algorithms. In the history
view, users can view what information is gathered and unwanted entries
can easily be deleted.

In conclusion, there are three ways in which the system tries to collect
information about the user. Two types of explicitly providing likes and
dislikes in combination with implicitly inferring information from media
consumptions provide an adequate feedback framework to support both
active and passive users of the system.

Contextual Recommendation List

When all user feedback is processed and recommendations are calcu-
lated, a list with suggested items is available in the user interface. Rec-
ommended content items share the same visualization as normal content,
providing the same information, similar items list, rating functionality
and media control buttons. Since the user should not be overloaded with
recommended items (as may be the case for the content items), the sys-
tem selects the top-N (between 7 and 10) most interesting items for the
set of currently active users.

When the active users change, the recommendation list instantly up-
dates its items accordingly in real-time. That way, the system is capable
of providing recommendations for single users (i.e., when only one user
is indicated as active) as well as for groups of users (i.e., multiple active
users). The recommended items list for groups of users aims to be a best
estimation of the top-N items that will be liked by (and preferably not
already consumed by) all the active users.

The user study indicated that, when people are deciding what movie
to watch in group, not every member contributes equally to the �nal de-
cision. Some users might be indi�erent and do not really care what will
be watched while others may have a really strong opinion, or are more
knowledgeable about the media at hand. To be able to realistically model
these situations, user weights were introduced in the system. When a
new user account is created, an appropriate weight value (indicated as
importance) can be set. Three importance weights are available in the
user interface (Fig. 3.10): low, medium and high (indicated respectively
by the symbols -, ? and +). These weights represent for each user how
much its user pro�le should be taken into account when generating rec-
ommendations for groups of users. The availability of these user impor-
tance weights allows the system to adapt its recommended items list to

3.3 Recommendation Visualization 77

very speci�c user situations (e.g., two parents and a child, or four friends
of which one has an expert opinion on movies). By manually changing
the active users and their importance weights, the recommended items
list can be in�uenced in real-time to make good suggestions for every
possible user context.

Figure 3.10: The Users tab of the user interface. Every user in the OMUS
system is associated with an importance factor that can be changed according
to the desired context.

The user study revealed that users often already have a speci�c genre
or category in mind when searching for some media to consume. To
enable this parameter in the system, genre �lters were introduced. The
genre �lter allows to restrict the recommendation list to items of the
indicated genre. Together with the ability to change the active users
and set their importance weights, users are able to provide a �ne grained
context situation to which the recommender system can speci�cally tailor
its suggestions. By instantly updating the list when a context parameter
is changed, a feeling of real-time interactivity is achieved between the
user and the system, which may boost user engagement and in the end
can lead to higher-quality recommendations.

3.3.3 Recsys Front End

The recommender systems domain has matured greatly over the past 20
years. Particularly in the last 5 years a lot of work has been focusing
on software libraries implementing standardized recommendation algo-

78 Human-Recommender Interaction

rithms (e.g., MyMediaLite [34], LensKit [35], Apache Mahout5, etc.) and
evaluation metrics (e.g., RiVal6) to reduce implementation e�ort for re-
searchers and increase repeatability of experiments and obtained research
results in general. What the domain is currently still lacking however is
open-source support for user interfaces for recommender systems. Re-
searchers wanting to visually inspect calculated recommendation results
still need to build their own user interfaces. Therefore often researchers
resort to o�ine calculated metrics only to represent their recommenda-
tion quality rather than actually visualizing and illustrating the results
(to users).

In this section we present our own `Recsys front end', which is a gen-
eralized HTML-based front end for movie recommender systems. The
framework allows to easily visualize (movie) recommendation results and
integrates a wide range of well-known recommendation algorithms of
which the results can also be combined into a hybrid recommendation
list. The framework builds on the MyMediaLite software library and in-
tegrates our own (see previous chapter) MovieTweetings dataset for the
simulation of user feedback. We have open-sourced this framework on
the Github platform7.

3.3.3.1 Architecture and Installation

The Recsys front end is designed to run on a LAMP installation (i.e,
Linux, Apache, MySQL, PHP) which is a very common and easy to set
up webserver con�guration. After installing the necessary �les from the
Github project, default scripts are available to set up the database and
basic con�guration.

The project is composed of a web-based user interface that interfaces
with a MySQL database running on the webserver. A Python interface
interacts with the MyMediaLite software library to provide recommen-
dation support. At installation time the latest version of the Movie-
Tweetings dataset is imported to bootstrap the system with both an
item catalog (i.e., all rated movies in the dataset) and user feedback of
thousands of users.

5https://mahout.apache.org
6https://github.com/recommenders/rival
7https://github.com/sidooms/Recsys-frontend

3.3 Recommendation Visualization 79

3.3.3.2 Browsing and Rating

Fig. 3.11 represents the front end home screen. When the front end is
loaded, the complete item catalog is shown. Similar to other informa-
tion systems, users are allowed to browse content and inspect content
attributes. To reduce the webserver load, the movie content attributes
as Director, Cast, Genre, etc. are not stored in the database. Only the
corresponding IMDb id and title are actually stored, other attributes
are loaded dynamically by client-side JavaScript code which accesses the
public OMDb API.

Content items are shown in a typical list-view and for each movie
a Like and Dislike button is available to allow users to indicate their
preferences to the (recommender) system. Items are by default ordered
randomly to prevent typical popularity biases, but can also be sorted by
their release date. A simple search form allows to search for particular
movies using parts of the title (which is stored in the database) as search
query (as illustrated in Fig. 3.12).

3.3.3.3 Calculating Recommendations

When ratings on items are provided, recommendations can be calculated.
The calculation process can be triggered by clicking on the `Calculate rec-
ommendations' link (Fig. 3.13). Doing so will trigger the webserver to
start some background processes that provide the collected user feedback
and item catalog to the installed MyMediaLite library and retrieve rec-
ommendation results which are then stored in the webserver database.
The speci�c recommendation algorithm that should be executed can be
set in a con�guration �le. If multiple algorithms are set, multiple recom-
mendation processes will be run and their results saved in the database.

When the calculation process is �nished, the user is noti�ed and recom-
mendation results can be inspected in the user interface. As illustrated
in Fig. 3.14, the `Recommendation Algos' tab at the top of the page
allows to dynamically switch between the recommendation results of the
di�erent calculated recommendation algorithms. Such a feature is very
useful for research purposes as it allows to quickly (visually) compare
the results for di�erent algorithms and approaches.

Recommended movies are visualized in the same way as other movies
from the item catalog. Content attribute information is shown and users
can again rate the movies which allows the system to further re�ne the
results. The visualization of a recommended movie does integrate how-

80 Human-Recommender Interaction

Sorting options

Figure 3.11: Screenshot of the home screen of the recsys front end framework.
The item catalog can be browsed as a list sorted either randomly or by year.
For each item (i.e., movie) thumbs up/down based feedback buttons allow users
the indicate their preferences.

ever one additional feature: the predicted recommendation value. Since
the integrated recommendation algorithms in the Recsys front end sys-
tem are rating-based (i.e., they try to predict the rating for items based
on previous ratings) every recommended movie is associated with a pre-
dicted rating. This prediction is shown together with the content at-
tributes (Fig. 3.14) and may support debugging or serve as an explana-
tion for the recommendation.

3.3 Recommendation Visualization 81

Searching

Figure 3.12: Screenshot of the search form of the recsys front end framework.
Movies can be searched on (parts of) their title.

3.3.3.4 Combining Hybrid Recommendations

The `Recsys front end' was originally designed to aide in the evaluation
of hybrid recommender system experiments. Therefore the system also
includes a hybrid recommendation feature. After the individual algo-
rithms are calculated, a hybrid recommendation list can be composed
by the system. For the purpose of the framework a simple weighted hy-
brid strategy [37] was implemented, but more advanced and interesting
hybridization strategies could easily be integrated in the framework.

82 Human-Recommender Interaction

Action triggers

Figure 3.13: Screenshot of the calculation related buttons of the recsys front
end framework. The processes of calculating recommendations or combining
existing results in a hybrid list can easily be triggered at the front end.

De `Stats' tab in the user interface (Fig. 3.15) allows easy and vi-
sual interaction with the hybrid con�guration settings. For every active
recommendation algorithm in the system a slider is available. The slid-
ers represent the individual contribution of the algorithms to the �nal
hybrid recommendation result for a weighted average scenario. By in-
creasing the slider value for a certain algorithm, the prediction score of
that algorithm will be taken more into account for the �nal hybrid rec-
ommendation value. A pie chart representing the total contribution of
each of the algorithms to the hybrid recommendation value dynamically
updates when slider values are changed.

When the individual weights of the algorithms are con�gured, the hy-
brid calculation process can be triggered by clicking the `Combine hybrid
recommendations' link (Fig. 3.13). Python-based background processes
will be started that combine the individual recommendation results (al-
ready available in the database) in a hybrid list using the weights as
con�gured. The end result, a hybrid recommendation list, is saved in
the database when the process is completed.

The hybrid recommendation results can be visually inspected in the
`Hybrid' tab at the top of the front end (Fig. 3.16). The hybrid rec-
ommendation results are again visualized as a browsable top-N movie

3.3 Recommendation Visualization 83

Switch between results of

multiple recommendation

algorithms

Predicted ratings

Figure 3.14: Screenshot of the recommendation results of the recsys front
end framework. Switching between the results of di�erent recommendation
algorithms allows easy visual comparison of the results.

list. The �nal hybrid recommendation score (as calculated using the
user-set weights at the `Stats' tab) is available and more interestingly
inspectable. For every recommended movie, next to the predicted rating
value a `Show explanation' link is available. Clicking on the link will ex-
pand a hidden information panel which reveals detailed statistics about
how the hybrid score was actually calculated. This feature may again be
of great value for researchers or recommender systems' administrators to
debug and understand the hybrid recommendation process.

84 Human-Recommender Interaction

Figure 3.15: Screenshot of the hybrid con�guration page of the recsys front
end framework. For every individual recommendation algorithm, interactive
sliders are available representing the weighted contribution to the �nal hybrid
recommendation.

3.3.3.5 Discussion

The recsys front end was originally designed out of a personal need for
visual inspection of recommendation results of the many experiments de-
scribed in this work. We hope however that by open-sourcing it, it may
serve other researchers as a quick and easy to set up visual portal for
recommendation results. Note that this framework is intended for aca-
demic and research-based usage, scalability and security aspects are not
considered. The framework is also not suited (at least not without some

3.4 Conclusion 85

Detailed information about the

hybrid calculation process

Figure 3.16: Screenshot of the hybrid recommendation results of the recsys
front end framework. For every hybrid recommend movie a hidden information
panel can be made visible to detail the actual hybrid calculation process.

modi�cations) to serve as the front end of a �nal recommender system
exposed to real users. While allowing users to dynamically browse mul-
tiple recommendation lists may be an interesting feature, the interface in
its current form is too technical and should be made more user friendly
to better align with the reduced technical skills of an average user.

3.4 Conclusion

In this chapter we approached the typical human-recommender interac-
tion (HRI) processes of user feedback and recommendation visualization
from a user interface perspective. We have discussed state-of-the-art
research and elaborated on our own contributions to the domain.

86 Human-Recommender Interaction

While the 5-star rating system prevailed as the overall best user feed-
back mechanism in multiple independent studies, every system and sce-
nario will still need its own approach. For collecting user feedback, user
e�ort, user bene�t and rating accuracy should be taken into account.
While the rating system should allow users to specify their preferences
on a su�ciently distinct scale, research showed that the associated cog-
nitive e�ort to engage �ner-grained rating scales is signi�cantly higher.
Distinct users also showed very di�erent mindsets regarding their will-
ingness to engage with information systems. While some may be willing
to invest a lot of e�ort in providing advanced explicit feedback, others
expect recommender systems to simply `work'. For those users implicit
feedback mechanisms (i.e., extracting information from their behavioral
patterns) should be considered.

For showing recommendation results, similar conclusions could be
made. User interfaces should satisfy the needs of both users who prefer
a clean and simple interface and users who seek more advanced infor-
mation, while at the same time expose all of the recommender system's
features (i.e., context options, �lters, group recommendation, etc.). Ex-
planations and interactivity turned out to greatly increase user satisfac-
tion (and trust) for a recommender system.

The overall conclusion of this chapter is that there does not seem to be
a silver bullet. No single rating system is the best for all situations and
no single user interface serves for all users. On the contrary, di�erent
user interface aspects may be appropriate for distinct situations and
users, leading towards an increased need for personalization within the
HRI processes. Above all a user interface, should look good, feel natural
and optimally support the very important interaction paradigm between
users and recommender systems.

Chapter 4

High-Performance

Recommending

4.1 Introduction

When recommenders were �rst introduced, they were often applied to
very small datasets (e.g., the MusicFX system [90] with 25 users and
91 items) but since then datasets have massively expanded in size and
nowadays a system needs to be able to process datasets like the Movie-
Lens 10M dataset (10M ratings, 10K items and 72K users), the Net�ix
dataset (100M ratings, 17K items and 480K users) or the Yahoo! Music
dataset1 (300M ratings, 600K items and 1M users) and they need to do
it fast because users expect responsiveness and real-time behavior.

Since sequential computers (or uniprocessors) are reaching the limits
of maximum clock frequency, parallelism is often considered the solution
to cope with increasing dataset sizes and limited time constraints [91].
In this chapter we consider the recommendation process from a high-
performance viewpoint i.e., we study how typical recommendation al-
gorithms and approaches may bene�t from distributed deployment on
parallel hardware.

All experiments described here (and in most other chapters as well)
were run on the Ghent University high-performance computing (HPC)
cluster that is freely available for university researchers. The infrastruc-
ture o�ers multiple clusters, each hardware-tailored for speci�c use cases
e.g., focus on multi-core processors, high-speed networking capabilities,

1http://kddcup.yahoo.com/datasets.php

88 High-Performance Recommending

large-scale RAM memory nodes, etc. Fig. 4.1 shows the conceptual lay-
out of such a cluster. Multiple computing nodes, each containing multi-
ple processing cores and local storage capacity, are interconnected with
an In�niband high-speed network interface. Every node also has access
to shared storage in a RAID5 con�guration. For more details on the
Ghent University HPC infrastructure we refer to its online documenta-
tion2.

Figure 4.1: The conceptual layout of the high-performance computing infras-
tructure at our disposal. Every computing node disposes of a local hard disk
and has access to a shared storage device in the network.

In the next sections we focus on the intersection of recommender sys-
tems and distributed computing. We �rst discuss relevant related work
and then detail our own work focusing on �le-based versus in-memory
approaches and caching.

Research Questions

• How can we recommend at large scale?

• How to e�ciently distribute and parallelize the recommendation
calculation process?

• How can we speed up the recommendation calculation process?

2https://www.ugent.be/hpc/en/infrastructure

4.2 Related Work 89

4.2 Related Work

4.2.1 Scalability

Related work that deals with the problem of scalable recommender sys-
tems, usually focuses on internal scalability of algorithms. Algorithms
are tuned to focus on only the most relevant data and try to speed
up the overall process by taking computational shortcuts (e.g., [92�94]).
Especially for neighborhood-based methods a lot of scalability improve-
ments exist. One of the most obvious is restricting the size of the neigh-
borhood [44, 95]. By processing only k (instead of all) neighbors, the
recommendation process can �nish faster. The value of k can however
greatly in�uence the accuracy of the recommendations: k set too high
may bring additional noise, while k set too low may reduce recommen-
dation quality [40]. Herlocker et al. [96] suggest that for most real-world
situations k set to something between 20 and 50 seems reasonable for
the MovieLens dataset.

In this chapter however, we mostly focus on external scalability, which
does not change any internal logic of the algorithms, and thus does not
a�ect the recommendation accuracy. External scalability considers par-
allelism and extra hardware as the solution to our big data problem.
Instead of changing the recommendation algorithm, the calculation of
the algorithm is merely restructured and distributed over multiple com-
puting instances. The �nal results calculated on a single node will be
identical to the results calculated in parallel on a multi-node computing
architecture. In general two types of parallelism can be de�ned: data
parallelism and functional parallelism. In the case of data parallelism,
multiple processors work on di�erent parts of the data. Usually the same
code is executed on all processors and therefore this scheme is sometimes
referred to as SPMD (Single Program Multiple Data) [97]. Functional
parallelism involves splitting computations into subtasks that can then
be executed in parallel by di�erent processors. In this case, the proces-
sors run di�erent code on di�erent data which is called MPMD (Multiple
Program Multiple Data) [97].

4.2.2 Distributed Recommender Systems

In [98] and [99], a distributed collaborative �ltering (DCF) algorithm
called DCFLA is introduced. The scalability of the system is guaranteed
by distributing a user-pro�le management scheme using distributed hash

90 High-Performance Recommending

table-based routing algorithms. The authors compared the performance
of 4 CF approaches and showed how the scalability of their DCFLA
approach surpasses that of the traditional CF algorithm. Performance
results in terms of speedup or e�ciency values however remained undis-
cussed.

When recommender systems are deployed in a distributed environ-
ment, research and industry often turn to MapReduce as underlying
paradigm [100]. The MapReduce approach requires an algorithm to re-
formulate its logic in essentially two functions: Map() and Reduce(). An
underlying framework (i.e., such as Hadoop) then takes care of the dis-
tribution of work across multiple computing nodes. Although work dis-
tribution is e�ortless, reformulating a given algorithm in the MapReduce
mindset can be a tedious task and typically involves chaining multiple
MapReduce phases together. Since every single phase starts and ends
with data access to and from disk, chained phases introduce disk access
overhead which limits overall e�ciency. Additional overhead is intro-
duced by the setup of the distributed �le system e.g. the Hadoop Dis-
tributed File System (HDFS) [101], where MapReduce programs depend
upon. A well-known library that implements many scalable algorithms
including some recommendation algorithms on the Hadoop framework is
Mahout3.

In [102], a user-based collaborative �ltering (UBCF) algorithm is im-
plemented on Hadoop. The authors illustrated the complexity of apply-
ing the MapReduce model to UBCF and show how it can be done by
splitting up the logic in 3 phases. The results showed a linearly increasing
speedup, for hardware con�gurations up to 8 computing nodes. Schelter
et al. [103] developed a MapReduce algorithm for the pairwise item com-
parison and top-N (i.e., recommend the best N items) recommendation
problem. For the R2 - Yahoo! Music dataset they achieved a speedup
value of about 4 using 20 computing machines (i.e., parallel e�ciency of
20%). Jiang et al. [104] implemented an item-based collaborative �lter-
ing recommendation algorithm on the Hadoop platform. They chained
4 MapReduce phases and their parallel e�ciency was about 90% using
8 computing nodes (using the MovieLens 10M dataset).

3http://mahout.apache.org

4.3 A File-Based Approach 91

4.3 A File-Based Approach

Recommender systems working with millions of users and items, will not
be able to simply read all data into RAM memory and start calculat-
ing. E�cient data storage will be required to provide fast data access
with minimal delay. Classical relational database management systems
(RDBMSes) are often put to the task [105, 106] although they may not
always be the best option. The required data throughput needed by
recommendation algorithms is very high. Massive amounts of small in-
termediate values (e.g., ratings, similarity values, etc.) must be stored
and retrieved during execution time. If for every required value, a data
connection with the database needs to be set up and closed down, the
accumulated resulting data delays would make out most of the total
execution time altogether. More optimized approaches may be to fetch
large chunks of data at once to minimize database interaction. The most
optimal being probably to prefetch as much data as can possibly �t in
RAM memory. This leads to an interesting idea. If it is so important
to keep interaction with the database low, then why not try to leave out
the database entirely? It would free developers of the sometimes cum-
bersome tasks of designing e�cient database structures, creating indexes
and maintaining the database management software.

Many alternatives to the classical database, often referred to as NoSQL
systems, have been developed and some have found their way into the
recommender systems domain [107]. We want however an alternative
data approach that easily maps on our HPC infrastructure (or any in-
terconnected network of computing nodes with both local and shared
storage capacity).

We believe scalability and the concept of keeping the data close to
the work are the main goals to optimizing data storage for recommender
systems. File systems like HDFS look promising but they often require a
complete reorganization of the recommendation algorithm. Furthermore,
we did not want to be bound by what technologies the infrastructure
supports and so we looked into the most obvious storage approach of
all: �le-based data. The most straightforward way to store data on a
system is by means of �les. We found the �le-based approach satisfying
our needs for easy �le system migrations, scalability and performance by
carefully structuring input and output �les as described in the following
sections.

92 High-Performance Recommending

4.3.1 The Recommendation Work�ow

In contrast to much literature about recommender systems we do not
focus on the internals of the recommendation algorithm. Instead we fo-
cus on how we can provide the algorithm with the required data and
structure �les such that read (and write) delays are minimized, which
increases overall scalability. To show our approach works with any type
of recommendation algorithm we employ a hybrid recommendation al-
gorithm integrating content-based (CB) and collaborative �ltering (CF)
much like described by Cornelis et al. [108]. Since this hybrid algorithm
internally mixes CB and CF, the processing of the required input for both
types of recommendation algorithms can be demonstrated. As stated,
we will however make an abstraction of the algorithm itself and provide
no further in-depth information.

We abstract the recommendation process to a three-phase work�ow
that requires the inputs and outputs as shown in Fig. 4.2. The process
starts o� with the availability of item metadata and consumptions of
users. User consumptions can be anything from explicit feedback by
means of star-ratings to implicit feedback like behavioral log �les.

In a �rst phase, item similarity is calculated. The item similarity
can rely on item metadata, user consumptions or both. The resulting
item similarities then serve as the input of the user similarity calculation
together with the user consumptions. In the �nal phase all three user
consumptions, item similarities and user similarities are used to generate
the recommendations. For a non-hybrid recommendation algorithm this
three-phase work�ow can be reduced to two phases by leaving out the
�rst (if CF) or second phase (if CB) according to the input requirements
for the speci�c algorithm.

Next, we show how the input and output of each phase can be struc-
tured to allow a �le-based and scalable data handling approach.

4.3.1.1 Phase 1: Item Similarity

For many years item similarity has been a hot topic in the information
retrieval domain. The problem to be solved is how similar two given items
in a dataset are. There are numerous ways to go about this, the most
popular ones being Cosine Similarity and Pearson Correlation [109] but
many more have been investigated. Again we will make an abstraction
of the problem, and assume we have an algorithm that given two items
i1 and i2, calculates their similarity (i1, i2). We focus on the problem of

4.3 A File-Based Approach 93

 Consumptions Item Metadata

Item Similarity

Calculation

 User

Similarities

User Similarity

Calculation

Recommendation

Calculation

 Consumptions Item

Similarities

 Consumptions Item

Similarities

Phase 1:

Item Similarity

Phase 2:

User Similarity

Phase 3:

Recommendation

Figure 4.2: The abstracted work�ow of the recommendation process focused
on the ins and outs of every phase.

matching every item in the dataset and providing the necessary input to
the algorithm.

Table 4.1 shows the item similarities for 5 items i1, i2, ..., i5. Every
item must be compared with every other item, but item similarity is
symmetric so only the half size triangular matrix needs to be calculated.
Since an item is equal to itself, the total number of comparisons that
need to be done will be ni(ni−1)

2 with ni the number of items.

i1 i2 i3 i4 i5

i1 x 0? 1? 2? 3?
i2 x x 4? 5? 6?
i3 x x x 7? 8?
i4 x x x x 9?
i5 x x x x x

Table 4.1: The item similarities for 5 items.

94 High-Performance Recommending

A non-scalable data approach would be to read all the metadata from
one big �le into memory and start comparing items. More scalable is
to divide the similarity comparisons amongst the available computing
nodes (and their parallel processing cores). To do this, we project the
calculation jobs in a one-dimensional space.

0? 1? 2? 3? 4? 5? 6? 7? 8? 9?

Parallelizing the item similarity calculation is now a matter of split-
ting the one-dimensional job list in m equally large chunks (with m the
number of nodes available). For every node, jobs can be split up even
further between the available cores per node. Below an example of the
parallelizing of item similarity with 5 items over 5 nodes with each 2
cores.

0? 1? 2? 3? 4? 5? 6? 7? 8? 9?

Splitting up the calculations this way, turns the problem of item simi-
larity into an embarrassingly parallel problem with very few dependencies
between the jobs. The only thing that the jobs share is the input data.
Job 0? will need the metadata of items i1 and i2, job 1? from items i1 and
i3 and so on. If su�cient RAM is available in a node, all the metadata
can be loaded. Otherwise a slicing of the metadata will be required to
make sure every node is capable of loading its data.

The (�le-based) output of the item similarity phase should be carefully
structured so that easy and e�cient accessibility is possible in the next
phase. Since the output growth of item similarity is quadratic O(n2) in
nature, disk usage will rapidly increase. For e.g., the similarity of 50,000
items over a billion comparisons must be calculated and stored. Two
extreme approaches would be dumping all calculated similarities in one
big �le versus writing to a new �le for every item, none of which are
scalable. It is clear that a meet-in-the-middle approach will have to be
devised.

We use the concept of �le buckets to balance the similarities output.
We de�ne a �le bucket as a container of individual �les. A �le bucket
itself is in fact again a �le. Instead of creating an individual similarity
�le for every item, we spread out the similarities over the number of �le
buckets available. So a �le bucket contains the similarities of 1 or more
items depending on the number of �le buckets used.

To decide which �le bucket a similarity e.g. (i1, i2) should be written

4.3 A File-Based Approach 95

to, we assign an internal numerical id to every available item in the
system, ids ranging from 1 to ni (the total number of items). Item
similarities are then spread out over the �le buckets using a modulo
function. Table 4.2 shows how the similarities of our earlier example
would be divided amongst 3 �le buckets (ranging from 0 to 2).

item simil (x, y) �le bucket

0? (i1, i2) 1 (1 mod 3)
1? (i1, i3) 1
2? (i1, i4) 1
3? (i1, i5) 1
4? (i2, i3) 2 (2 mod 3)
5? (i2, i4) 2
6? (i2, i5) 2
7? (i3, i4) 0 (3 mod 3)
...

Table 4.2: The dividing of the outputs in �le buckets.

We found that it was more e�cient for the processing in the following
phases to actually write every similarity to the �le buckets instead of just
the half triangle matrix. So for every calculation two values are written
e.g. for 0? we write both (i1, i2) to bucket 1 and (i2, i1) to bucket 2. Note
that similarities will be evenly spread out over the available buckets but
similarities of the same item e.g. (i1, i2), (i1, i3), (i1, i4) and (i1, i5) will
always be in the same bucket. This allows for e�cient loading of the
similarities of an item (i.e., only one �le bucket needs to be read), which
will be required in the next phase.

Writing with a lot of di�erent computing nodes (and cores) to the same
�le (bucket) can slow down the �le system substantially. Therefore every
core in every node should write to its own dedicated �le buckets on its
local disc. For every node the �le buckets can then be merged locally
�rst for the cores in that node, next over all nodes. Finally, the merged
�le buckets from all nodes and cores can then be stored on the shared
storage. Fig. 4.3 visualizes this output process for 2 nodes with each 3
cores mapped on the HPC infrastructure.

96 High-Performance Recommending

C C C C C C

Local Storage

Shared Storage

Figure 4.3: The merging �le buckets strategy for two nodes with 3 cores. Ev-
ery core writes to dedicated �le buckets for optimal �le system write e�ciency.
The �le buckets are then merged per node and �nally over all the nodes to the
shared storage.

4.3.1.2 Phase 2: User Similarity

User similarity de�nes some degree of matching between two users. The
term similarity here is somewhat misleading as we are interpreting the
similarity of u1 towards u2 as the degree to which u1 may provide in-
teresting items for u2 (as proposed by [108]). In contrast to the item
similarity, this user similarity is not symmetric. The calculation of all
the user similarities will therefore result in nu(nu− 1) comparisons with
nu the number of users. Table 4.3 shows the user similarities for nu = 4.

u1 u2 u3 u4

u1 x 0? 1? 2?
u2 3? x 4? 5?
u3 6? 7? x 8?
u4 9? 10? 11? x

Table 4.3: The user similarities for 4 users.

In our abstract recommendation work�ow, the calculation of the user

4.3 A File-Based Approach 97

similarity (u1, u2) requires as input both the consumptions (i.e., ratings)
of user u1 and user u2, and the item similarities of the items rated by u1.
If u1 has rated for example two items ix and iy then the item similarities
of ix and iy with every other item in the system must be loaded.

To load all the item similarities of a given item, we must simply load
the corresponding �le bucket determined by the internal id of the item
and the modulo function. Because of this �le buckets structure there
is no need to load all the item similarities except for in the worst case
scenario where the needed items are spread out over all �le buckets. This
can however be easily prevented by con�guring an appropriate number
of �le buckets.

The loading of the consumptions should not pose any problems since
even for big datasets like the MovieLens dataset with 10M ratings, the
consumption �le is only 262MB and can easily be loaded in memory.

For optimization reasons, we parallelize the user similarity calculation
tasks on a di�erent granular level than we did for the item similarity.
The calculation of the user similarities (u1, uj) with j = 2, 3, 4 requires
the item similarities of the items rated by u1. It therefore makes sense
to load these item similarities once and then process (u1, u2), (u1, u3)
and (u1, u4). In the situation of 4 nodes with each 3 cores available, we
would divide the calculation tasks as illustrated in Table 4.4.

node1 0? 1? 2?

node2 3? 4? 5?

node3 6? 7? 8?

node4 9? 10? 11?

Table 4.4: The division of the calculation task of the similarity values of 4
users over 4 computing nodes with each 3 cores available.

So all the similarity calculation tasks of the same user are handled
by the same node; within the node the tasks can further be delegated
towards the available cores.

The same output strategy as we proposed for the item similarities
(Fig. 4.3) can be applied here. For e�ciency reasons every core must
again write to dedicated �le buckets to be merged �rst locally on the
node and then globally to the shared storage.

98 High-Performance Recommending

4.3.1.3 Phase 3: Recommendations

A recommendation is a match between an item and a user. To calculate
the complete set of recommendations, such a matching between every
item and user must be made as shown in Table 4.5.

u1 u2 u3 u4

i1
i2
i3
i4
i5

Table 4.5: The recommendations for 5 items and 4 users.

Our recommendation algorithm requires for the recommendation of an
item i to a user u both the user similarities of u and the item similarities
of i. This maps directly onto the �le buckets structure generated by the
item and user similarity phases.

To match every user with every item, every generated �le bucket in the
item similarity phase must be matched with every �le bucket from the
user similarity phase (Fig. 4.4). This approach again allows easy scaling,
since the couples of item and user �le buckets can be divided amongst
the available nodes (and cores) in the infrastructure.

…

Similarities

Item

Similarities

User

Figure 4.4: In the recommendation phase all the �le buckets of the item and
user similarities must be matched with each other.

A node needs only to load the item similarity �le bucket and the user

4.3 A File-Based Approach 99

similarity �le bucket as input for the recommendations of the items and
users contained in the buckets. By increasing the number of �le buckets,
their �le size can be reduced which may allow a node to fully load the
required data into RAM memory. A trade-o� between the number of
jobs (couples of buckets) and the size of the job (size of the buckets) will
have to be made.

4.3.2 Experimental Results

To validate our �le-based recommendation approach we used our cul-
tural events dataset collected from the UITinVlaanderen website. This
events dataset was particularly interesting to test our recommendation
algorithm because events are one-and-only items [110] and di�cult to
recommend with a non-hybrid recommender.

The dataset contained the metadata of 53,000 items (i.e., events) and
consumptions of 1,700 users. We aggregated the 14,000 implicit and
explicit user consumptions (i.e., user feedback), into 6800 consumptions
by using a simple weighing scheme. In total 4700 unique events of the
dataset were eventually consumed at least once.

Since the focus here is on the applicability of our �le-based approach,
we do not present any quality metrics about the recommendations them-
selves. The recommendation quality will not be in�uenced by our dis-
tributed calculation approach and therefore depends solely on the in-
volved recommendation algorithm. Instead we plot the execution time of
the three introduced phases of our recommendation work�ow for chang-
ing hardware con�gurations (Fig. 4.5).

By doubling the number of used computing nodes on the HPC in-
frastructure we can see that the execution time of each of the phases
decreases to halve the time. We repeated the experiment with a �xed
amount of nodes while varying the number of cores in each node. Similar
results were obtained.

The execution time of the �rst phase is signi�cantly higher than that
of the second and third phases. This is a result of the number of items
versus the number of users available in the dataset (53,000 versus 1,700)
and therefore not a consequence of the employed algorithm. Note that
in the third phase the recommendation value for every item for every
user in the system is calculated.

As the experimental results illustrate, using a simple �le-based ap-
proach, we managed to deploy a complex hybrid recommendation algo-

100 High-Performance Recommending

10 20 40 80 160

Phase 1 6428 3210 1500 808 357

Phase 2 552 288 133 75 36

Phase 3 1070 614 314 138 75

0

1000

2000

3000

4000

5000

6000

7000

Ti
m

e
 (

s)

Number of nodes (3 cores per node)

Execution time on HPC

Figure 4.5: The execution time of the three phases executed on the HPC
infrastructure by 10, 20, 40, 80 and 160 computing nodes. All nodes having
three processor cores available. For phase 1, 200 �le buckets where used. Only
1 �le bucket was used for phase 2 considering the small number of users.

rithm on a distributed computing infrastructure by functionally dividing
the work into separate subtasks (i.e., our 3 phases) which could be fur-
ther decomposed into smaller chunks of work and mapped onto multiple
parallel computing nodes.

4.4 In-Memory, Content-Based Recommenda-

tion

In the previous section, we focused on functional parallelism by dividing
the recommendation process into separate phases each of which could be
mapped onto multiple worker nodes. While resulting processing times
scaled linearly with the applied hardware, e�ciency was lost by the over-
head introduced by chaining multiple phases together (each of which
required reading and writing intermediate data results from and to per-
manent storage). In this section, we focus on data parallelism in order
to simplify the parallel recommendation process, reduce the overhead
of separate phases, and avoid load imbalance issues. We show how a
content-based recommendation algorithm can be parallelized and dis-
tributed over multiple computing machines without underlying MapRe-
duce operations or �le system restrictions. While MapReduce has cer-
tainly proven its use for recommender systems [111, 112] in general, we

4.4 In-Memory, Content-Based Recommendation 101

believe the paradigm may sometimes lack the �exibility to take speci�c
algorithm properties into account to reach high parallel e�ciency values.

We show that speci�cally for the content-based recommendation al-
gorithm we can divide `work' evenly and independently such that by
tweaking certain parameters of the distribution process, a given hard-
ware con�guration is optimally engaged without inter-node communica-
tion and mid-computation disk access. Because our approach executes
completely in-memory (i.e., only RAM is used to store mid-computation
values), disk access is reduced to a minimum and high e�ciency values
can be obtained.

4.4.1 Dataset Speci�cation

We will validate our in-memory approach on the MovieLens 10M dataset.
This dataset contains 10 million ratings and 95,580 tags applied to 10,681
movies by 71,567 users of the online movie recommender service Movie-
Lens. Data is provided as three �les: ratings.dat (252MB), tags.dat
(3MB), and movies.dat (500KB). Interestingly, while every user in the
MovieLens dataset has rated at least 20 movies, some users have rated
considerably more. As shown in Fig. 4.6, 50% of all ratings originate
from only 15% of all users. This unequal distribution of ratings can
easily introduce load imbalance issues when carelessly distributing cal-
culations across worker nodes (a challenge which we will face). For more
detailed information about the dataset we refer to recommender systems
literature (such as [45, 46]).

4.4.2 Parallel CB Recommender

Here, we de�ne the recommendation algorithm that will be used to illus-
trate our in-memory approach. Since we focus mainly on optimally dis-
tributing and running the algorithm in parallel on a HPC infrastructure,
a default out-of-the-box content-based (CB) recommendation algorithm
(as described in [40]) was used as starting point. The CB algorithm calcu-
lates the (Jaccard) similarity between items based on the item metadata
(i.e., MovieLens �les: movies.dat and tags.dat) and recommends new
items to users based on these similarities. We use the MovieLens (10M)
dataset as input and deploy the algorithm to predict the user ratings for
unknown (user, item) pairs. Our Python implementation can be found

102 High-Performance Recommending

Figure 4.6: The number of ratings per user for the MovieLens 10M dataset.

in the Github platform4.

Calculating the recommendation value for a certain user and item re-
quires the comparison of similar items previously rated by the user. Al-
though the number of such processed similar items is usually limited in
size to reduce the computational burden and minimize possible noise [40],
we do not restrict the neighborhood size to illustrate the true scalability
of our method. In fact, the only optimization that is incorporated in
the algorithm is the temporary storage (caching) of calculated similar-
ity values to prevent unnecessary recalculations. However, since these
values can easily become too abundant to store (with limited RAM),
they are cleared with every item iteration. The pseudocode of the CB
recommendation algorithm can be found in the appendix (Algorithm 2).

The calculation of Rec(user, item) requires the rating data of the user
together with the item data of the item and any other item rated by the
user. We note that although the algorithm used in this work is content-

4https://github.com/sidooms/DistributedCB

4.4 In-Memory, Content-Based Recommendation 103

based, user ratings are still important as they are used in the weighted
average formula of the target user in the recommendation calculation
procedure. Because we want to distribute the calculation work over
multiple computing nodes, both user data (i.e., ratings) and item data
will have to be considered in the distribution process. Moreover, because
both data types are taken into account, our distribution paradigm can
be extended to also �t collaborative �ltering algorithms that focus on
rating data only.

4.4.3 Parallel Strategies

We want to split the work of a complete recommendation calculation (i.e.,
calculating the recommendations values for all user and item pairs) into
smaller pieces of work that require less input data and can be distributed
over available worker nodes. In the context of a recommender system,
input data consists of user data (usually ratings) and item data. The
actual work consists of the calculation of the recommendation value (i.e.,
numeric value indicating the interest of the user) for every (user, item)
pair in the system. This is usually visualized as a user-item matrix as
depicted in Fig. 4.7. Every dot in the matrix represents a recommen-
dation value to be calculated. The value of some dots may already be
known, as users may have rated some items (indicated by multiple Rs).
These ratings are considered the perfect prediction of the interest of the
user for that item.

The way in which the work (i.e., dots) is divided over available worker
nodes will have an impact on the amount of input data needed for that
node. We present three parallel strategies for dividing the work of a
recommender system and their data related consequences.

4.4.3.1 Splitting in Userjobs

We could partition the user-item matrix in horizontal subsets to dis-
tribute the users that must be processed across the available worker
nodes (Fig. 4.8). When these subsets are mapped onto worker nodes,
every node must then calculate the recommendation value for each of
these users in the subset and every item in the system.

Because the users are divided over di�erent jobs (we refer to these
as `userjobs'), the user input data can be split accordingly into smaller
subsets. Consequently, worker nodes will be able to work with smaller
datasets which can help to reduce RAM requirements. A rather technical

104 High-Performance Recommending

�� �� �� �� �� ��

 �� · · · · R ·

 �� R · · · · ·

 �� · · R · R ·

�� · R · · · ·

�� · R · · R ·

�� R · · · · ·

R rated value

· unrated value (needs calculation)

 rating data required for 	
�(��, ��)

Figure 4.7: The user-item matrix indicating the work related to a complete
recommendation calculation of every (user, item) pair.

downside of this division scheme is that with a bigger number of userjobs,
fewer computed intermediate item similarity values can be re-used. For
a (user, item) pair, an item similarity value will be calculated between
the item and all the items rated by the user. The more users are handled
by a single worker node, the more of these intermediate values can be
re-used. A large number of userjobs indicates a small number of users
per job and so fewer recycling of intermediate similarity values.

4.4.3.2 Splitting in Itemjobs

Alternatively, we could partition the user-item matrix into vertical sub-
sets and distribute the items across the available nodes (Fig. 4.9). Every
job (i.e., `itemjob') must now process the recommendation value for each
item of the subset and every user in the system.

The obvious advantage of this method is that since every user in the
system is now matched with a subset of items by every worker node, the
amount of redundant item similarity computations is reduced to zero.
On the other hand, because all users are processed, all user input data
(i.e., rating data) needs to be loaded by every itemjob which may be too
much for the RAM of a single worker node.

4.4 In-Memory, Content-Based Recommendation 105

�� �� �� �� �� ��

 �� · · · · R ·

 �� R · · · · ·

 �� · · R · R ·

�� · R · · · ·

�� · R · · R ·

�� R · · · · ·

 rating data required per userjob

 similarity calculated within userjob

 identical similarity (�
��(��, ��))

Figure 4.8: The user-item matrix split into a number of userjobs (every user-
job processes all items).

4.4.3.3 Hybrid Userjob, Itemjob Splitting

Since both splitting in userjobs and itemjobs have bene�ts and down-
sides, a meet-in-the-middle approach seems a good option. In this case,
we split the grid of user and item pairs into disjoint subsets of users
and items to be distributed across the available worker nodes. This ap-
proach allows partial recycling of similarity values while reducing the
required user input data. The number of userjobs and itemjobs can be
freely chosen and speci�cally tailored towards the available computing
hardware.

The hybrid userjob, itemjob approach introduces the highest �exibility
and can even be turned into one of the previous approaches by setting
the value of the number of userjobs (or itemjobs) to `1'. Therefore, we
will adopt the hybrid data parallelism strategy.

4.4.4 Load Balancing

If work is not evenly distributed among available workers then load im-
balance issues may arise. These occur when synchronization points are
reached by some workers earlier than others [97] and so workers display

106 High-Performance Recommending

�� �� �� �� �� ��

 �� · · · · R ·

 �� R · · · · ·

 �� · · R · R ·

�� · R · · · ·

�� · R · · R ·

�� R · · · · ·

 rating data required per itemjob

Figure 4.9: The user-item matrix split into a number of itemjobs (every
itemjob processes all users).

signi�cantly divergent walltimes (i.e., time to solution). Load imbalance
greatly impacts the e�ciency of algorithms because resources are un-
derutilized while fast workers wait for slow workers to �nish. If work is
load balanced, it can be evenly divided over computing nodes without
the need for extra inter-node communication (as would be the case in a
master-slave scenario). This relaxes network constraints and allows for
active engagement of all computing nodes.

For a system to be load balanced, work must be evenly distributed
among its workers. Speci�cally in the context of recommender systems,
this introduces two subproblems: How do we de�ne work, and how can
it be evenly distributed?

4.4.4.1 The De�nition of Work

A straightforward way of expressing work is by computation time.
Longer computation times indicate more work has been done. How-
ever, before the recommendation calculations are performed, the actual
computation time is unknown. What is known, are the total number of
users, items, available ratings, etc. If one of these metrics shows a posi-
tive correlation with the calculation time, it can be used as a shorthand
de�nition of work.

We have previously introduced the notion of userjobs and itemjobs.

4.4 In-Memory, Content-Based Recommendation 107

Because of this distinction, we want to be able to de�ne work in terms
of both user-related metrics and item-related metrics. We devised two
experiments focusing on these subsets of metrics.

4.4.4.2 The De�nition of Work: in Terms of Users

Intuitively, more processed users will result in longer computation times.
The number of ratings that are provided by these users however may also
be important. To avoid confusion, we note that when we refer to ratings
we are referring to the user-provided ratings that are already available
in the dataset (Rs in Fig. 4.7).

The CB algorithm as discussed in Section 4.4.2 requires that to calcu-
late Rec(user, item) all the ratings of that user will be taken into account.
So a job processing users with a low number of ratings may �nish faster
than a job with many ratings per user. We de�ne two recommendation
metrics as possible candidates for a user-related work de�nition: the
number of users and the total number of ratings provided by these users.

We measured the correlation and performed a simple regression anal-
ysis of these metrics with the actual resulting computation time for a
con�guration of 40 worker nodes (1 core per node). Each user was ran-
domly assigned to one of these nodes and each node processed all of the
items available in the MovieLens dataset (i.e., 40 userjobs, 1 itemjob).
Since the set of items processed by each worker was the same, the in�u-
ence of processed users (and therefore also ratings) on the computation
time could be isolated. Fig. 4.10 shows two scatterplots indicating the
computation time (of the 40 userjobs) in function of the number of users
per job (left) and number of ratings (given by these users) per job (right).

While the number of users is not entirely bad at predicting the exe-
cution time (R2 = 0.286), the number of ratings is an almost perfect
predictor (R2 = 0.9251). We learn from this that in order to achieve
a load balanced system we should take the number of available ratings
processed by each worker node into account rather than the number of
users.

To further illustrate this concept, we compared the calculation times
when evenly distributing the number of users versus distributing the
users in such a way that the total amount of ratings given by these
users is (as good as) equal for each node. Fig 4.11 shows the results,
and as expected, the distribution of users shows a much more irregular
surface pattern while the distribution of ratings results in a load balanced

108 High-Performance Recommending

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1650 1700 1750 1800 185046
00

48
00

50
00

52
00

Correlation execution time and users

Number of users

E
xe

cu
tio

n
tim

e
(s

)

Correlation value = 0.53

R² = 0.286

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

230000 240000 250000 260000 27000046
00

48
00

50
00

52
00

Correlation execution time and ratings

Number of ratings

E
xe

cu
tio

n
tim

e
(s

)

Correlation value = 0.96

R² = 0.9251

Figure 4.10: Scatterplots indicating for a con�guration of 40 worker nodes
(i.e., 40 userjobs, 1 itemjob) the correlation of the number of users (left) and
the number of given ratings (right) with the calculation time of each job.

system.

Because work (or calculation time) is largely connected with the num-
ber of available ratings, we should strive towards an equal distribution
of the number of ratings among worker nodes. Equally distributing the
users is not enough because of the large divergence in number of ratings
per user for our dataset.

4.4.4.3 The De�nition of Work: in Terms of Items

To de�ne work in terms of items the obviously available metric is the
number of items that are processed by a worker node. However, with
the algorithm presented in Section 4.4.2, the workload associated with an
item may vary. To calculate the recommendation value Rec(u, i) all the
ratings of user u must be taken into account (for loop in Rec(user, item)
procedure). We can express the true workload of item i by analyzing
the number of times this for loop will be iterated on. This amount of
iterations depends on the number of ratings of u and on the fact that u
may or may not have already rated i. If u has rated i, Rec(u, i) will not
be calculated and the amount of iterations will be zero. Therefore, for a
given set of users, the number of iterations for an item will be equal to
the sum of the ratings of the users minus the sum of the ratings of the
users that have rated i (because they will be skipped). We de�ne a metric
item iterations or iter(i), as the total number of iterations that must be

4.4 In-Memory, Content-Based Recommendation 109

Equally distributing users across worker nodes

E
xe

cu
tio

n
tim

e
(s

)
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

makespan= 549s, userjobs=40, itemjobs=1

Worker node (1−40)

Equally distributing ratings across worker nodes

E
xe

cu
tio

n
tim

e
(s

)
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

makespan= 159s, userjobs=40, itemjobs=1

Worker node (1−40)

Figure 4.11: The resulting calculation times when equally distributing the
number of users across worker nodes (left) versus distributing the number of
users such that their total number of ratings are equal across worker nodes
(right).

run for an item i to calculate the recommendation values Rec(u, i) for
all users u.

iter(i) := |number of iterations for item i|
:= |all ratings| − |skipped ratings|
:= |all ratings| −

∑
(∀u|u rated i)

|ratings of u|

Again we set up a simple regression experiment for the two item-related
metrics (number of items versus number of item iterations) with the
actual computation time. The items were randomly distributed over 40
worker nodes (1 core per node) and every node processed every user (i.e.,
1 userjob, 40 itemjobs). When inspecting the predictive capabilities of
our metrics, both number of items (R2 = 0.9342) and the number of item
iterations (R2 = 0.943) were found to be very good predictors for the
calculation time.

When work was actually divided equally according to these two metrics
and results were compared, the number of item iterations proved to be
slightly better in terms of load balance (Fig. 4.12).

To conclude, we note that to obtain a load balanced system we should

110 High-Performance Recommending

Equally distributing items across worker nodes

E
xe

cu
tio

n
tim

e
(s

)
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

makespan= 239s, userjobs=1, itemjobs=40

Worker node (1−40)

Equally distributing item iterations

E
xe

cu
tio

n
tim

e
(s

)
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

makespan= 41s, userjobs=1, itemjobs=40

Worker node (1−40)

Figure 4.12: Calculation times for equally distributing the number of items
(left) versus equally distributing the number of item iterations (right).

strive to an equal distribution of both number of ratings and number of
item iterations over the available worker nodes.

4.4.5 Work Distribution

We now detail how we distribute work equally among worker nodes. Only
if work is equally distributed, a load balanced situation can be achieved
and therefore a higher parallel e�ciency.

4.4.5.1 The Partition Problem

The problem of equally distributing work across homogeneous workers is
not new, it is in fact a very well-studied problem in the theory of approx-
imation algorithms [113], often referred to as `makespan minimization'.
In this problem, a number of jobs (with di�erent estimated processing
times) need to be scheduled across a number of (identical) worker nodes,
such that the maximum time for any node to �nish its work (i.e., the
makespan) is minimized. In our context, we need to partition users and
items in subsets to be processed by worker nodes such that the result-
ing subsets show an equal amount of ratings and item iterations. To do
this, we need to solve the makespan minimization problem, but since
it is considered to be NP-complete [113], a fully polynomial algorithmic
approach might not exist. However, countless approximation schemes
have been proposed to tackle this problem (e.g., [114�117]).

4.4 In-Memory, Content-Based Recommendation 111

The problem with optimization schemes such as Monte Carlo, genetic
algorithms, etc. is that they often require a large number of iterations
to converge to an acceptable solution. The runtime of the partitioning
of work among worker nodes will however be of crucial importance to
the �nal performance of the system. This partitioning will have to be
executed sequentially (i.e., can not be parallelized) and thus strongly
limits the parallel e�ciency. Moreover, we must make sure not to put
more e�ort (i.e., time) into optimizing the partitioning than would be
won by the improved load balancing. Since speed is so important, instead
of applying more advanced optimization solutions we employ a simple
O(n log n), greedy partitioning algorithm (Algorithm 1).

Algorithm 1 Work Distribution

1: Let jobs be a list of jobs
2: Sort jobs according to estimated workload (high to low)
3: for all jobs do
4: assign job to worker node with currently lowest workload

The accuracy of this solution depends on the speci�cs of the input data
and the number of desired partitions. If all users and items are equal in
terms of our de�nition of work then the algorithm will provide an optimal
solution. On the other hand, if they are extremely divergent and lots of
partitions are needed, the results (in terms of `makespan minimization')
may be poor.

While we found this solution to be su�ciently accurate (i.e., leading
to su�ciently load balanced systems) for most hardware con�gurations,
some situations do require some extra attention. The accuracy of this
simple greedy algorithm can be heuristically improved by our proposed
Robin Hood extension.

4.4.5.2 Robin Hood Extension

To improve the accuracy of the simple greedy partitioning algorithm, we
employ a method we refer to as the `Robin Hood' extension. The idea
is to iteratively take work from `the rich' and give it to `the poor' in
order to balance out the wealth inequality. In this context, we de�ne
wealth as the workload of a worker node after initial partitioning. Using
the de�nition of `work' in Section 4.4.4.1, we can compute this workload
of a worker node by summing up either the number of ratings (when
dividing in userjobs) or the number of item iterations (when dividing in

112 High-Performance Recommending

itemjobs) that need to be processed by the node. When the workload for
every worker node is known, we select the richest (i.e., highest workload)
worker node and the poorest (i.e., lowest workload) worker node. We
then randomly pick a user (or item) from the rich node and add it to
the users (or items) of the poor node. Doing so, we level out the max-
imum workload di�erence (i.e., makespan) associated with the worker
nodes. This process can be repeated until a desired threshold of min-
imum makespan has been reached or a maximum number of iterations
has been run.

As stated, this extension of the partition algorithm may only be needed
in a few cases where the partitioning algorithm performs worse than a
certain threshold of inequality. To illustrate the behavior of the Robin
Hood extension, we executed it after partitioning the items of the Movie-
Lens dataset over 40 itemjobs (and 1 userjob) with the simple greedy
partitioning algorithm. We set the extension to run 500,000 iterations
and we plotted the minimum makespan after every iteration (Fig. 4.13).
As shown in the �gure, the Robin Hood extension allows to rapidly
reduce the makespan di�erence within only a few thousand iterations.
While the makespan is reduced, work is more evenly divided over the
available worker nodes and so it becomes more di�cult to improve for
an increasing number of iterations.

4.4.5.3 Dividing in Userjobs and Itemjobs

In the context of recommender systems, data parallelism is a very promis-
ing concept because it allows the processing of extremely large datasets
on commodity computers. More interestingly, it introduces a degree
of �exibility in the sense that data can be partitioned into pieces that
maximize the utilization of worker resources (e.g., RAM) and therefore
computational e�ciency. We divide our data grid (users-items matrix)
by �rst splitting the users into U chunks of users to be processed by an
equal amount of userjobs, and then for each userjob splitting the items
into another I itemjobs. The �nal number of jobs will consequently be
the product of the number of userjobs and itemjobs.

total number of jobs = userjobs× itemjobs

As detailed in Section 4.4.3, a worker node calculating recommendation
values for (user, item) pairs must be able to hold all the ratings and item

4.4 In-Memory, Content-Based Recommendation 113

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

Item iterations difference reduction (Robin Hood extension)

Iterations of the Robin Hood extension (1−500k)

M
ax

im
um

 d
iff

er
en

ce
 p

er
ce

nt
ag

e
of

 it
em

 it
er

at
io

ns
 (

lo
g)

5e
−

08
5e

−
07

5e
−

06
5e

−
05

5e
−

04
0.

00
5

0.
05

userjobs = 1, itemjobs = 40

Figure 4.13: The declination of the item iterations di�erence between worker
nodes after each iteration of the Robin Hood extension (up to 500K iterations).
Note that the Y-axis is on a logarithmic scale and expressed as a percentage of
the total number of item iterations.

data of these users and items in RAM. Therefore the most constraining
resource requirement in the system is the amount of RAM in a computing
node. Since user feedback data is usually more abundant than item data
(for MovieLens 10M the ratio is 70:1) we start by dividing the user data.
Data is split into equally-sized but smaller parts (i.e., userjobs). By
equally-sized we mean in fact equal in terms of the metrics we de�ned in
Section 4.4.4.1. Since we are dealing with user data, the relevant metric
here is number of ratings. We use the partition method as described in
Section 4.4.5.1 to divide the users in a number of parts such that each
part contains an equal number of ratings. The number of userjobs can be
freely chosen, but as mentioned, this will drastically impact the worker
nodes resource requirements.

We then continue to split the input data in terms of items (i.e.,
itemjobs) for every userjob. As we de�ned number of item iterations

114 High-Performance Recommending

items

u
se

rs

userjobs division itemjobs division work deployment

Figure 4.14: Overview of the work distribution from input data in terms of
users and items to the �nal mapping of the data on worker nodes.

as a good predictor for workload in terms of items, we divide the items
in a number of parts such that each part contains about an equal num-
ber of iterations. Since the number of iterations depends on the number
of ratings that must be processed, itemjob division must be carried out
after the userjob division.

Since both the userjobs and itemjobs are divided in a way that opti-
mizes load balance, running both processes sequentially will also lead to
a load balanced system. A graphical overview of the distribution of work
in terms of users and items can be found in Fig. 4.14.

While the number of userjobs and itemjobs can be freely chosen, the
choice does also impact the �nal load (im)balance state of the system.
When dividing a set of numbers into x subsets of numbers with an (as
much as possible) equal sum, the value of x is of great importance. It
is easier to split up the numbers equally over 2 subsets, than over 4
subsets. Since the employed partition algorithm is heuristic in nature,
the solution it generates depends on the di�culty of the problem. To
investigate the e�ect of the number of userjobs and itemjobs on the �nal
load imbalance of the system we ran some benchmarks.

We ran a number of job division processes (without Robin Hood exten-
sion) with varying userjob and itemjob parameters and compared their
resulting maximum item iterations di�erence (Fig. 4.15). The di�erence
in terms of number of ratings was negligible (because there are 10 000
times less ratings than item iterations to divide) and is therefore not
displayed.

Fig. 4.15 shows the opposite e�ects of the number of userjobs and
itemjobs on the resulting di�erence. A larger number of userjobs implies
working with smaller subsets of ratings that consequently need to be di-
vided further into itemjobs. Therefore, more userjobs implies a smaller
item iterations di�erence while more itemjobs implies a bigger item iter-

4.4 In-Memory, Content-Based Recommendation 115

Worst case iteration difference

Itemjobs

M
ax

im
um

 it
em

 it
er

at
io

ns
 d

iff
er

en
ce

 (
M

ili
on

s)

2 4 8 16 32 64 128 256 512 2048 8192

0
2

4
6

8
10

1 userjob 2 userjobs 1s baseline

Figure 4.15: The maximum iterations di�erence for a work division (without
Robin Hood extension) with a varying number of userjobs and itemjobs. As a
baseline we indicate the number of item iterations that can be processed in 1
second.

ations di�erence because of the increased complexity of the problem.

A di�erence of 4 million item iterations (indicated on the �gure) in our
system corresponded with 1s di�erence in computation time (which was
only 0.002% of the total time). It is clear that for most con�gurations
the item di�erence will be negligible with respect to the total calculation
time. The results and benchmarks presented here, apply speci�cally
to the MovieLens dataset. Other datasets might introduce other ratios
of ratings, users and items and so these benchmarks would have to be
repeated to determine the accuracy of partitioning. If the load imbalance
caused by the partition algorithm turns out too big, the Robin Hood
extension can be used.

4.4.6 Performance Model

In this section we evaluate the performance of our proposed content-
based in-memory recommendation algorithm. As stated earlier, we do

116 High-Performance Recommending

not consider any qualitative aspects of the �nal recommendation output.
The distribution of the calculation task across di�erent machines does
not in�uence in itself the quality of the recommendations (e.g., metrics
such as prediction accuracy) and thus a qualitative evaluation is in this
context not relevant.

The performance of a parallel algorithm is not easily measured as it
can be in�uenced by many things. As [97] suggests, performance may
be limited by load imbalance issues, the amount of serialized parts of
the concurrent execution, and communication overhead that may be in-
troduced because of the increased amount of worker nodes. We have
partitioned the complete recommendation problem into any prede�ned
number of subtasks with equal complexity. These recommender subtasks
can then be mapped onto worker nodes without introducing load imbal-
ance issues. Our algorithm and parallel strategy are devised in such
a way that jobs are executed independently and so no communication
overhead is introduced by increasing the number of worker nodes. Serial
code fragments, on the other hand, could not be avoided. That is, some
code can only be executed by one processing node and therefore limits
the performance of our system.

In previous sections, we mainly focused on the recommendation calcu-
lation part of our algorithm, but for a realistic performance model, we
have to consider the complete recommendation process. This process also
includes processing input data and running the work division as detailed
in Section 4.4.5. To gain insight into the performance of the complete
recommendation process we started by measuring the execution time
of every part of the process. We de�ne these parts in function of how
well they can be parallelized: serial, parallelU , parallelI , or parallelC .
Parts that are serial can not be parallelized and have to be executed
sequentially. Parts that are parallel on the other hand can be run in
parallel on a number of worker nodes. We de�ne three types of parallel
to make a distinction between parts that are able to run in parallel on
a number of userjobs (parallelU), number of itemjobs (parallelI), or on
all the jobs at the same time including multiple processing cores per job
(parallelC).

An example of what might be considered parallelU is the processing of
user input data. After a certain node has read the input data from disk
(which we do not take into account here), these data need to be parsed
and stored into a memory data structure. Every worker node needs to do
this, but only for the subset of user input data that was divided by the

4.4 In-Memory, Content-Based Recommendation 117

serial parallel user parallel item parallel core

parallel user

parallel user

parallel item

parallel item

parallel item

parallel core

parallel core

parallel core

parallel core

#
 u

se
rj

o
b

s

#
 i

te
m

jo
b

s

#
 c

o
re

s

Total parallel execution time

Figure 4.16: A schematic view of the total execution time of the complete
recommendation process in terms of how di�erent parts of the algorithm can
be parallelized.

userjob work division. Therefore we refer to this work as parallelizable
in terms of userjobs.

We ran the complete recommendation process with a single worker
node and one active processing core as a performance baseline. For this,
we set the number of userjobs and itemjobs to `1' (so all users and items
are processed by a single job). Table 4.6 shows the resulting execution
times for each part in function of the way they can be parallelized. As
expected, the recommendation calculation itself, which can be fully par-
allelized (PC), accounts for most of the processing time.

To gain some insights into the parallel performance of this algorithm,
we calculate the speedup for a �xed-size problem (Amdahl's Law [118]).
In its simplest form, speedup Sp is de�ned by Formula 4.3. If s is the
amount of serial work and p the amount of parallel work, we de�ne

Parallelizability Time (s) Time (%)

serial (s) 41 0.02339

parallelU (PU) 29 0.01675

parallelI (PI) 0.01 0.00001

parallelC (PC) 174 936 99.95985

Total: 175 006 100

Table 4.6: The execution times for a complete recommendation calculation
process with 1 worker node (1 userjob, 1 itemjob, 1 core).

118 High-Performance Recommending

T (1) as the execution time on 1 worker node and consequently T (N) the
execution time on N worker nodes.

T (1)= s+ p (4.1)

T (N)= s+
p

N
(4.2)

Sp=
T (1)

T (N)
(4.3)

We adapt this formula to introduce our notion of userjobs U , itemjobs
I, and processing cores C. The total number of worker nodes in our
context will be equal to U × I and every one of these worker nodes may
be equipped with C processing cores. So we rede�ne the speedup in
terms of U , I, and C.

Sp =
T (1, 1, 1)

T (U, I, C)
(4.4)

To calculate the speedup of our system, we must know the baseline
time T (1, 1, 1) (which we measured in Table 4.6) and T (U, I, C), which
is the time for the system to complete the calculations with U userjobs,
I itemjobs and C cores (per worker node). We de�ne T (U, I, C) as:

T (U, I, C) = s+
PU
U

+
PI
I

+
PC

U × I × C
(4.5)

If we complete the baseline numbers (as percentages) from Table 4.6
in equations (4.4) and (4.5), we can express the speedup model for our
algorithm in terms of userjobs, itemjobs and cores:

Sp(U, I, C) =
100

.02339 + .01675
U + .00001

I + 99.95985
U×I×C

(4.6)

To validate this speedup model, we compared the predicted values
with empirically determined speedup values. For a number of (indepen-
dent) variations of userjobs, itemjobs and cores, we ran the complete
recommendation process and measured T (U, I, C). Since also T (1, 1, 1)

4.4 In-Memory, Content-Based Recommendation 119

50 100 200 400 800 1200

50

100

200

400

800

1200

Total amount of processing cores (U x I x C) (log)

S
pe

ed
up

 (
im

pr
ov

em
en

t t
ow

ar
ds

 u
ni

pr
oc

es
so

r
ba

se
lin

e)
 (

lo
g)

Speedup model validation

 predicted model speedup
 measured real speedup

Figure 4.17: Validation of the speedup model by comparing model-predicted
speedup values with empirically determined speedup values. Note that both
the X-axis and the Y-axis are on a logarithmic scale.

is known, we were able to compute the actual speedup and compare
it to the predictions of the model. Fig. 4.17 visualizes the model to-
gether with the actual speedup values for the di�erent variations. When
we perform a simple regression analysis, we �nd that our model has an
R2 = 0.9982. The maximum speedup error in the model was 9% (for
(U, I, C) = (2, 2, 6)), the average error rate was 4%. We therefore con-
sider our model to be valid with an average error rate below 5% and
usable as predictor for the speedup value of our recommender system.

With this model we are now able to explore speedup values for any
desired range of (U, I, C) settings. Fig. 4.18 shows the speedup values
for a di�erent number of cores with an equal amount of userjobs and
itemjobs varying from 1 to 2048. It is interesting to see that the speedup
value converges to a number between 4000 and 4500. This limitation
is the consequence of the fraction of non-parallel code as predicted by
Amdahl's Law [97, 118] which states:

lim
N→∞

Sp(N) =
1

s
. (4.7)

120 High-Performance Recommending

Speedup for U,I

Number of worker nodes (Userjobs * Itemjobs)

S
pe

ed
up

1² 2² 4² 8² 16² 32² 64² 128² 256² 512² 2048²

10
00

20
00

30
00

42
75

1 core 2 cores 4 cores 8 cores

Figure 4.18: Speedup as predicted by the speedup model for various (U, I)
settings.

The execution time of the parallelizable parts of the code can be made
in�nitesimally small (for large values of worker nodes N), so that the re-
sulting �nal execution time consists almost completely of (and is there-
fore also limited by) the serial fraction of the code. If we calculate
Formula (4.7) with the known value of the serial fraction (Table 4.6), we
�nd our speedup limitation (Formula 4.9).

lim
U,I,C→∞

Sp(U, I, C) =
1

s
(4.8)

lim
U,I,C→∞

Sp(U, I, C) =
100

0.02339
= 4275 (4.9)

Although the performance of our algorithm may be limited by a
speedup value of 4275, this limit is only reached for very high values
of userjobs and itemjobs (>512). If both the amount of userjobs and

4.4 In-Memory, Content-Based Recommendation 121

itemjobs is 512, the resulting number of jobs will be 5122(=262 144).
If every job is mapped on a worker node, this would require an un-
reasonably large cluster. Therefore we conclude that the scalability of
our algorithm will be limited by the availability of computing hardware
before its theoretical limit of speedup is reached.

We de�ne parallel e�ciency εp for our system in terms of userjobs,
itemjobs, and cores as the following.

εp(U, I, C) =
Sp(U, I, C)

U × I × C
(4.10)

Using the speedup model as input, we are able to explore the scalability
of our algorithm in terms of e�ciency for any desired range of (U, I, C)
settings. If we would run our recommender system on a cluster with 200
worker nodes each with 8 processing cores (U , I, C equal to 10, 20, 8),
we can expect a speedup value of 1142 which gives us a parallel e�ciency
of 71.4%. If we now compare our parallel e�ciency with results found
in similar related work, such as 90% e�ciency for a Hadoop-based item-
based CF recommender with 8 nodes [104], we �nd that our solution
easily achieves higher e�ciency values (and so higher speedup values)
for the same con�guration (U , I, C equal to 4, 2, 1), namely 99.8%.

In Fig. 4.19 we plotted both speedup and e�ciency (with four process-
ing cores). Both graphs intersect at 50% for a number of worker nodes
equal to 322(= 1024). The targeted minimum parallel e�ciency for a
given scenario will ultimately depend on the availability of the hardware
infrastructure and related costs.

It is clear that to come to an appropriate amount of userjobs, itemjobs
and cores, a trade-o� will have to be made between how fast the algo-
rithm comes to a solution and how e�ciently resources are used. Hager
et al. [97] suggest the construction of a cost model and minimizing the
product of walltime and infrastructure cost as a sensible balance. As
mentioned before, the available RAM of worker nodes may also be lim-
ited so that a certain minimum number of userjobs will be needed to
meet hardware requirements. More userjobs implicates more fragmen-
tation of the user input data and therefore reduced RAM requirements
per worker node.

For general purposes, we suggest to set the number of used cores (C)
to the number available in a single computing node and the number
of userjobs (U) so that the associated RAM requirements match the

122 High-Performance Recommending

Optimal U,I (4 cores)

Number of worker nodes (Userjobs x Itemjobs)

S
pe

ed
up

1² 2² 4² 8² 16² 32² 64² 256² 1024²

10
00

21
39

30
00

42
75

0
30

50
70

10
0

SpeedupEfficiency

E
ffi

ci
en

cy

Figure 4.19: Modeled speedup and e�ciency for worker nodes with 4 cores
and various (U, I) settings.

available RAM. The number of itemjobs I can then be set such that the
total number of jobs is a factor of the total number of computing nodes.

Our proposed in-memory algorithm o�ers complete �exibility as to
the number of subtasks the recommendation problem should be parti-
tioned in, and can therefore easily be optimized for any given set of cost
constraints or for any given hardware con�guration.

4.4.7 The Performance on another Dataset

The true performance of the system will in the end be very dependent
on the available hardware infrastructure, applied (U, I, C) settings and
the dataset at hand. To gain more insight into the generalizability of
our results, we did a small experiment with varying (U, I, C) settings
on another dataset. We used a dataset borrowed from our previous
experiments on a cultural events website. This dataset contained 40,000
ratings, from 10,000 users on 40,000 events, which is considerably smaller
than the MovieLens 10M dataset.

4.4 In-Memory, Content-Based Recommendation 123

The resulting speedup and e�ciency values (Table 4.7) show that the
e�ciency of the performance of the recommender system on this dataset
is slightly less than for the MovieLens dataset. For the calculation with
200 nodes, each having 8 cores, the e�ciency drops from 71.4% (for
MovieLens) to 52%. This is to be expected since the cultural dataset is
much smaller (about 50 times). A smaller dataset indicates less work,
while the typical overhead of reading data and executing the job division
stays about the same, thus decreasing the overall e�ciency.

These results however indicate an interesting transition from an o�ine
recommendation scenario to a possible real-time recommender, without
the need for a customized incremental recommendation algorithm. The
full recommendation calculation on a single machine takes about two
hours, which would force the recommender system to calculate recom-
mendations in an o�ine batch scenario. However, if a computing infras-
tructure with 200 worker nodes (8 cores per node) is available then the
calculation takes only 8 seconds which paves the way towards real-time
(content-based) recommendation for an online recommender. So while
our distributed recommender will show higher e�ciency values for bigger
datasets, even for small datasets the merits of increasing the recommen-
dation calculation performance are clear.

U I C Time (s) Speedup E�ciency (%)

1 1 1 6691 1 100
2 2 1 2020 3.3 83
4 4 1 587 11.4 71
8 8 1 164 40.8 64
16 16 1 43 155.6 61
32 32 1 12 581.7 57
2 2 4 525 12.7 80
4 4 4 157 42.5 66
8 8 4 42 159.3 62
16 16 4 12 557.5 54
10 20 8 8 836.2 52

Table 4.7: Performance results of the system with a smaller dataset.

124 High-Performance Recommending

4.5 Caching for In-Memory Neighborhood-

Based Models

A fast execution time can be the di�erentiating factor between real-time
incorporating user feedback and daily batch processing recommender
systems. In this section we try to reduce execution time and allow
�exible memory usage by introducing caching principles for in-memory
neighborhood-based recommendation algorithms.

A cache enables rapid access to popular or frequently accessed
data [119]. Its use can signi�cantly speed up data throughput and there-
fore also greatly impacts the total execution time of algorithms that are
largely data dependent, such as recommender systems.

We focus on collaborative �ltering systems, more speci�cally nearest
neighbor (KNN) algorithms because they are most likely to bene�t from
cache enhancement. The general idea behind collaborative �ltering algo-
rithms is that community knowledge can be exploited to generate more
accurate recommendations for individual users [40]. KNN algorithms try
to harvest this community information to identify similar users or items
in the system. Similarity can be computed in many ways, but most often
involves comparing the ratings either given by users or received by items
and the calculation of some kind of similarity metric. The rating behav-
ior of such similar neighbors can then be used to extrapolate ratings for
new users or items. These types of algorithms will have to determine
the pair-wise similarity values for all users or items in the system, val-
ues which will then be re-used many times during the recommendation
calculations. Such similarity values seem therefore very well suited for
caching.

Research literature is rather limited on the topic of caching and recom-
mender systems. To our knowledge, two main contributions exist that
report on enhancing recommendation response times through the use of
caches. The work of Qasim et al. has introduced the concept of partial-
order based active cache [120] in which a caching system is constructed
that allows to estimate nearest neighbor type queries from other queries
in the cache. The usefulness of the cache is thereby extended beyond
exactly matching previously-cached entries. The caching structure is in-
tended to prevent recommendation lists to be calculated by estimating
them based on previous answers in the cache.

Another cache-enhanced recommender system was the genSpace rec-
ommender system presented by Seth et al. as a prefetching cache that

4.5 Caching for In-Memory Neighborhood-Based Models 125

prefetches all recommendations in order to prevent slow on-demand rec-
ommendation calculation [121]. Their approach di�ers from ours since
their cache rather prevents unnecessary recommendation recalculation
while we attempt to speed up the calculation of the complete recom-
mendation process (rating prediction for all users and items) in order to
reduce overall calculation time without compromising recommendation
accuracy.

In the next sections we will de�ne a user-based collaborative �lter-
ing algorithm and show why and how this algorithm may bene�t from
caching internal values.

4.5.1 The UBCF Algorithm

To be able to experiment with di�erent caching modes for recommenda-
tion algorithms, we implemented the well known user-based collaborative
�ltering algorithm (UBCF) [40]. This algorithm is widely accepted and
commonly used in recommender systems in various domains. Here we
apply it to predict a rating for all user-item pairs, based on the ratings
of similar users (i.e., neighbors). The high-level algorithm pseudocode
can be found in the appendix (Algorithm 3).

Our implementation employs a simple weighted average scheme to
come up with the �nal recommendation value. Pearson correlation was
used as similarity metric and the neighborhood size was restricted to
the top 20 neighbors. A straightforward linear transformation was em-
ployed to rescale the Pearson correlation value from [-1,+1] to [0,1] to
simplify the calculations. Note that no intermediate storage is used, all
calculations are performed in-memory.

4.5.2 Similarities Usage Frequency

To calculate the predicted rating of a user for an item, neighboring users
will have to be determined. That in turn requires the pair-wise similarity
of that user with every other user in the system that rated the item. The
most important line of code in the UBCF algorithm pseudocode is line 19:

neighbor_similarity ← Pearson(user, neighbor)

Using a code pro�ler, we analyzed the runtime of our recommender
system and found that 78% of the total execution time was spent calcu-

126 High-Performance Recommending

lating these similarity values. Therefore, we want to construct a caching
system �t for the storage of these values in order to reduce recalculation
overload on the one hand and memory (RAM) requirements on the other
hand.

We start o� with the hypothesis that not all calculated similarity values
are equally useful. So when the recommendation values for all user-item
pairs are calculated, in the end some user similarity values will have been
used more than others.

To gain insight into the distribution of the usage of user-user sim-
ilarity values, we set up an experiment using the MovieLens (100K)
dataset. We calculated the recommendation value for each user-item
pair in the dataset (without caching) and counted how frequent every
user-user similarity was used. User similarity (with Pearson correlation)
is a symmetric relationship and so the total number of calculated user-
user couples can be de�ned as 943∗942

2 (self-similarities are not taken into
account). Fig. 4.20 shows every one of these couples on the X-axis and
their corresponding usage frequency on the Y-axis.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
5

0

200

400

600

800

1000

1200
User similarities usage frequency

User−user couples

U
sa

ge
 fr

eq
ue

nc
y

Figure 4.20: Every user-user couple in the system with its corresponding
similarity usage frequency after having calculated all recommendation values
for the MovieLens 100K dataset. Couples are ordered by descending frequency.

Fig. 4.20 does not show a horizontal �at line but rather a long tail
curve and so we �nd our hypothesis con�rmed: some user similarities
are more frequently used than others in the recommendation calcula-
tion process. The question now remains how we can use this knowledge

4.5 Caching for In-Memory Neighborhood-Based Models 127

to our advantage. In previous sections the problem of limited RAM
was already mentioned. Because of this limitation it may be impossible
to simply compute all user-user similarities and keep them available in
memory during the recommendation calculation. So if we can store only
a limited amount of pre-calculated similarity values in memory, it may
be a good idea to make sure the most interesting values are stored. If we
de�ne most interesting as `most used' then we need a way of predicting
how much a given user-user similarity value will be used throughout the
recommendation process.

The usage frequency of user similarity values will be largely depending
on the number of ratings provided by each user. Users with a large
number of ratings may show overlap (rated the same items) with more
users and their similarity will consequentially be needed more often. To
examine the correlation of the number of ratings of users with their
similarity usage throughout the recommendation process, we set up an
experiment with three simple usage prediction formulas: min, max, and
sum. For each user-user similarity value we tried to predict its usage by
applying each of these aggregation operators on the number of ratings
of both users.

Figure 4.21: Prediction of the usage frequency of user-user similarity values
by means of three aggregation operators together with the actual empirically
measured usage frequency.

Fig. 4.21 plots the prediction operators applied to all user-user simi-
larity pairs in the system together with the empirically measured actual
usage value. As expected, we can see a correlation between the total
number of ratings of a user-user pair and its usage frequency. The max-
imum operator seems to be the best estimation operator but has still a
far from perfect accuracy.

To improve this accuracy, we looked into deterministically computing

128 High-Performance Recommending

the usage frequency instead of predicting it in a heuristic way. We con-
sidered the abstract user similarity pair (ux, uy). This similarity may
be used while calculating the recommendation pair (ux, i) with i an
item that ux has not rated. To determine the recommendation value of
(ux, i), user similarities of ux are needed for every user that has rated
item i (see UBCF algorithm in Section 4.5.1). So the similarity pair
(ux, uy) will be calculated a number of times equal to the number of
items that uy has rated, but that are not rated by ux. Since here the
user similarity has symmetric properties, the user similarity of (ux, uy)
and (uy, ux) will be the same, and both should be taken into account.
To conclude we can state that the number of times a user similarity pair
(ux, uy) will be used during the UBCF recommendation process, will be
equal to the sum of the number of items rated by uy but not by ux and
the number of items rated by ux but not by uy. We can reformulate this
as the cardinality of the inverse intersection (which is mathematically
referred to as the symmetric di�erence) of the sets of rated items by ux
and uy as shown in Fig. 4.22.

Items rated by u

Items rated by u

y

x

Figure 4.22: Venn diagrams indicating the items rated by users ux and
uy. The cardinality of the inverse intersection (or symmetric di�erence) corre-
sponds to the usage frequency of the similarity value (ux, uy).

We can now experiment with a caching system that incorporates this
usage frequency knowledge and measure how it a�ects overall perfor-
mance.

4.5.3 Caching Algorithms

To measure the impact of caching on the performance of the UBCF
algorithm, we compare two di�erent caching strategies. On the one hand

4.5 Caching for In-Memory Neighborhood-Based Models 129

we work with the existing LRU (Least Recently Used) caching principle
and on the other hand we present our self-designed `SMART' cache.

The LRU caching principle is a commonly used caching system where
entries that have been used the least recently will be overwritten when
the cache is full. This approach follows the temporal locality principle
that recently requested data has a high probability to be requested again
in the near future [119]. A disadvantage of LRU is that only the time
of the data access is considered and not the frequency. Therefore we
devised a `SMART' cache which takes this data frequency information
into account.

The SMART cache is a type of priority cache that incorporates in-
formation about how much an entry will be accessed throughout the
program life cycle. Every cache entry is associated with a priority that
re�ects the number of times the entry will be accessed. When the cache
is full, a new entry with a larger priority (i.e., predicted number of ac-
cesses) will overwrite an existing one with the lowest priority.

4.5.4 Experimental Results

The �rst thing to measure is the performance of the UBCF algorithm
when using either the LRU or SMART caching strategy. As baseline
we considered the UBCF algorithm implementation without a cache. In
that case no user similarities are stored and they have to be recalculated
every time they are used throughout the recommendation calculation.
We compared the execution time of this baseline algorithm to the UBCF
algorithm with an LRU cache or SMART cache for storing the user sim-
ilarities during execution. Recommendation values (predicted ratings)
were calculated for all user-item pairs in the MovieLens (100K) dataset.
The experiment was repeated for cache sizes of 20%, 40%, 60%, 80% and
100%. The cache size is expressed as a percentage of the total number of
user-user similarity values (which is n∗(n−1)

2 for n the number of users in
the system). A cache size of 100% therefore indicates that all user-user
similarity values can be stored in memory and no values need to be recal-
culated. Fig. 4.23 shows the results in terms of speedup (i.e., execution
time reduction compared to the baseline) for the di�erent settings.

The simple LRU caching principle performed considerably better than
the SMART system for the low cache sizes (20% and 40%). When the
cache size grows, this di�erence decreases, and with cache sizes nearing
100%, the SMART approach overtakes LRU in terms of speedup towards

130 High-Performance Recommending

0

1

2

3

4

5

6

7

20% 40% 60% 80% 100%

S
p

e
e

d
u

p

Cache Size (100% = complete cache)

Speedup results (outer-user ordering)

LRU SMART

Figure 4.23: Speedup results for the LRU and SMART caching approaches
towards the no-caching baseline for di�erent cache sizes.

the baseline. Interestingly, the performance of the LRU system remains
stable between speedup values of 5 and 6 (in comparison to the SMART
system) for the varying cache sizes. This seems to indicate that the
LRU caching system has an optimal cache size (where performance gain
saturates) below the 20% limit.

We repeated the experiment using only the LRU cache and tested
with smaller cache stepsizes. Fig. 4.24 shows the results of an interesting
range of cache sizes between 0.1% and 0.6%. Zoomed in on that range,
the saturation e�ect of the speedup towards the baseline is clearly visible.
While the SMART caching approach seemed to linearly improve with an
increasing cache size, the LRU reaches a saturated maximum speedup
value at a cache size between 0.2% and 0.3%. This range seems to
correspond with the amount of user similarities associated with one user.
For our dataset, there are 943 users and so 942 (n− 1) user similarities
per user. To store 942 user similarities in the cache, a cache size of 0.21%
would be needed. This 0.21% corresponds to the optimal cache size in
the range 0.1% and 0.6%.

The performance of a cache depends partly on the order in which
new entries are provided, therefore it is interesting to see how the 2
caching systems perform under altered job execution orderings. The or-
der in which the user-user similarity values will be inserted in the cache
depends greatly on how the UBCF algorithm loops over the di�erent

4.5 Caching for In-Memory Neighborhood-Based Models 131

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

1

2

3

4

5

6

7
LRU Speedup results (outer−user ordering)

Cache Size (in percentage)

S
pe

ed
up

Figure 4.24: Speedup results for the LRU cache with smaller cache sizes to
reveal the performance gain saturation point.

user-item pairs. In our reference implementation we calculated the rec-
ommendation value for every user for every item in that speci�c order.
So the user-item pairs will be sequentially (u1, i1), (u1, i2), ... (u1, ini),
(u2, i1), (u2, i2), ... (u2, ini), ... (unu , ini) for nu and ni being respec-
tively the total number of users and items. Since every user is handled
sequentially, many similarities will be re-used in short intervals. This
behavior is exactly what the LRU caching approach takes advantage of
and explains its success compared to the SMART cache.

To study the impact of the job order on the caching performance, the
experiment was re-run with an altered job ordering. To change the order
in which similarities would be inserted in the cache, we simply switched
the �rst two lines of the pseudocode fragment. Because of the switch,
user-item pairs are processed iterating over the items �rst. We refer to
this approach as the `outer-item' order (as opposed to the `outer-user'
order, which we started o� with). The corresponding user-item pairs will
now be sequentially (u1, i1), (u2, i1), ... (unu , i1), (u1, i2), (u2, i2),
... (uun , i2), ... (unu , ini). Fig. 4.25 shows the speedup results for this
altered scenario.

As expected, the performance of the LRU cache is greatly reduced
and for every cache size the SMART cache shows faster speedup values.
Although the SMART cache is faster than the LRU method, it is still

132 High-Performance Recommending

0

1

2

3

4

5

6

7

20% 40% 60% 80% 100%

S
p

e
e

d
u

p

Cache Size (100% = complete cache)

Speedup results (outer-item ordering)

LRU SMART

Figure 4.25: Speedup results for the LRU and SMART caching approaches
(for di�erent cache sizes) with a reversed user-item pair handling execution
ordering.

somewhat slower than the speedup values of the SMART cache in the
outer-user ordering situation. In general the speedup values are below
those of the outer-user ordering, but the SMART cache seems less af-
fected (than LRU) by the change in ordering. The LRU cache shows no
indication of saturation as was the case for the outer-user situation.

We repeated the experiment with a third alternate job ordering sit-
uation where all user-item pairs were processed in random order. The
aggregated results of multiple runs turned out to be almost identical to
the outer-item results.

Our experimental results indicate how the order in which user-item
recommendation values are calculated, can dramatically impact the LRU
cache performance and therefore also the total execution time. Optimal
results were obtained when calculating the recommendation values of
each user for every item sequentially before moving on to the next user
(outer-user strategy). The LRU-enhanced UBCF algorithm performed
between 5 and 6 times better in that situation than the no-cache baseline
and required a cache size of only 0.2% (vs. the SMART approach which
required a cache size of 60% to obtain similar results). For a random
job (and outer-item) execution ordering on the other hand, the SMART
approach proved best in terms of stability and performance.

Although this work focused mainly on in-memory algorithms, these

4.6 Conclusion 133

results may as well be useful for other situations where caching strate-
gies can be applied to user-based collaborative �ltering algorithms e.g.,
caching similarity values to reduce database access.

4.6 Conclusion

In this chapter we focused on the recommendation calculation process
from a high-performance viewpoint. We approached the problem of dis-
tributing the recommendation process on a HPC infrastructure in two
ways. First, we illustrated functional parallelism by splitting up the rec-
ommendation process in di�erent functional parts and showed how each
part could be distributed and computed independently using a �le-based
data approach. The resulting execution time scaled linearly with the
applied computing hardware. Because the functional parts were how-
ever depending on the output of previous phases, the performance of
our functional parallelism approach was inherently limited. Execution
processes needed to wait for each other (causing load imbalance issues),
and slow disk access was required at the start and end of every phase.

We then presented a second approach towards distributed recommen-
dation calculation, applying an in-memory strategy. A content-based
recommendation algorithm was used for illustration purposes, but we
showed how the approach could be generalized to other recommenda-
tion algorithms as well. Here we applied the concept of data parallelism
by splitting up the required data in blocks such that every chunk of
work could be processed independently leading to embarrassingly par-
allel problems which can easily be distributed across worker nodes. We
optimized the work to be as load balanced as possible to increase overall
parallel e�ciency. We showed how the in-memory approach obtained
higher parallel e�ciency values than state-of-the-art methods and we
presented a model for predicting the e�ciency and speedup given a spe-
ci�c hardware con�guration.

Finally, we investigated caching mechanisms for in-memory
neighborhood-based recommendation models which are prone to frequent
reusing mid-computation values such as similarity values. By carefully
structuring and ordering the recommendation calculation process, exe-
cution time speedup values up to 6 were obtained using a simple caching
strategy (i.e., LRU) and low cache sizes (i.e., O(n) with n the number
of users).

Overall we have shown that the problem of increasing dataset sizes

134 High-Performance Recommending

for recommender systems can be tackled by applying various high-
performance techniques such as parallelism, distributed computing and
caching strategies. By carefully analyzing the calculation process and its
data requirements, we were able to signi�cantly increase the performance
of such complex data focused algorithms without the use of restraining
technologies as MapReduce.

Chapter 5

O�ine Optimization of

Personalized Hybrid

Recommender Systems

5.1 Introduction

Years of research contributions by hundreds of researchers, have led
to an abundance of recommendation algorithms that can be used to
combat information overload. Recommendation algorithms come in all
sorts and sizes, from really simple ones as SlopeOne [122] to extensive
mathematical-based ones as SVD++ [61]. Algorithms can be based
on collaborative �ltering principles, content-based, knowledge-based,
demographic-based, etc. More recently also context-based [123, 124] and
social-based [125] algorithms are starting to show up. Each and every
one of these algorithms have their own advantages, downsides and op-
timal use cases and scenarios. As stated earlier, also the availability of
recommendation frameworks (or platforms) that o�er out-of-the-box rec-
ommendation solutions is on the rise. It seems that, by eagerly tackling
the information overload problem with new methods, the recommender
domain in itself is becoming overloaded with available algorithms which
makes it more di�cult (for recommender system administrators) to select
the right algorithm for the job.

Instead of using one algorithm, sometimes multiple algorithms are
combined into a so-called hybrid recommender system. Hybrid recom-
mender systems have long been popular, and are widely used in many

136 O�ine Optimization of Personalized Hybrid RecSys

real-world applications because of their obvious advantages over indi-
vidual recommendation algorithms. By combining and integrating dif-
ferent types of recommendation algorithms, hybrid recommenders are
able to overcome the drawbacks associated with each of them individu-
ally [38, 39, 126]. A problem that most hybrid recommenders nowadays
are facing, is that they are inherent static in nature. Very often they are
trained or manually tweaked before deployment, but at runtime their
con�guration remains the same. Their static nature prevents them from
being deployed in other scenarios, with other algorithms, or for other
(types of) users.

Because hybrid systems are cumbersome to con�gure (often done man-
ually), the number of incorporated individual algorithms is usually rather
limited to two or three algorithms at most. Since hybrid systems inherit
the properties of their individual components, it seems more interest-
ing however to have hybrid recommenders composed of more algorithms
than just a few. Ideally, a hybrid recommender system would include
all existing recommendation algorithms and be capable of intelligently
deciding what algorithm (or what combination of algorithms) generates
the most interesting results for any given user in a system.

In this chapter, we strive towards the ideal hybrid recommender system
which automatically �ne-tunes itself based on given individual recom-
mendation algorithms and user input data. We focus speci�cally on two
hybridization techniques i.e., hybrid switching and weighted hybridiza-
tion and include up to 10 individual algorithms in our experiments.

Research Questions

• How can hybrid recommender system con�gurations be automati-
cally generated?

• How can we optimize hybrid con�gurations?

• What are the optimization limitations?

5.2 Related Work

Burke et al. [37] was one of the �rst to categorize hybrid recommender
systems in function of their combining strategies: weighted, switching,
mixed, feature combination, cascade, feature augmentation, and meta-
level. Every combining strategy comes with its own speci�c properties

5.2 Related Work 137

and consequences. Two of the most commonly combined recommenda-
tion algorithms are the content-based (CB) and the collaborative �ltering
(CF) approach [127�129], because they tend to complement each other
in various ways. Cornelis et al. [108] for example combined elements of
CB and CF to recommend time-speci�c items (i.e., events), which get
rated only after users have consumed (i.e., visited) the items. Since in
these types of hybrids, speci�c properties of the individual algorithms
are exploited, they lack extendibility and easy integration of more (and
other types of) algorithms. Very often only two algorithms are combined
using a simple combining strategy, e.g. [130] where the predictions of two
types of collaborative �ltering systems are combined linearly (weighted)
using the following formula.

P = α× Palgo1 + (1− α)× Palgo2

Hybrid solutions that integrate more than 2 individual recommenda-
tion algorithms often apply ensemble learning techniques. The general
idea of ensemble learning is to combine multiple (smaller) individual
models to obtain a global model which performs better than the individ-
ual ones. For a thorough introduction and analysis of ensemble-based
systems in decision making, we refer to the excellent introduction by
Polikar [131].

A recent hybridization technique is feature-weighted linear stacking
(FWLS) [132], which continues on the original concept of stacking [133],
where multiple recommendation models are stacked (or blended) to-
gether. The advantage of the stacking technique is that individual com-
ponents are loosely coupled, which allows easy integration of new algo-
rithms and tuning of the end results by adjusting the individual coe�-
cients (i.e., weights) of the models. These coe�cients are usually deter-
mined by taking into account so-called meta-features, which are metrics
describing some speci�c properties of the dataset at hand. In FWLS, the
coe�cients associated with the models are parametrized as linear func-
tions of the meta-features. The STREAM (Stacking Recommendation
Engines with Additional Meta-Features) system [134] experimented with
eight di�erent meta-features, and ultimately found the number of user
ratings and item ratings the most interesting. These metrics can be used
to di�erentiate the usability of individual recommendation algorithms for
speci�c recommendation scenarios. However, for the STREAM approach
to be successful, expert knowledge about the properties of the integrated

138 O�ine Optimization of Personalized Hybrid RecSys

recommendation algorithms and its in�uencing factors is required (i.e.,
no black box algorithms). The most famous application of stacking is the
winning entry of the Net�ix Prize1, where the BellKor's Pragmatic Chaos
team stacked over hundred di�erent models together into one blend (in
fact even a blend of blends) [47�49]. Their optimization target however
was overall RMSE, and so the weights for the individual algorithms were
the same for every user (i.e., static hybrid).

Ensemble systems often try to optimize general recommendation met-
rics such as RMSE. Recent research however, is moving away from gen-
eralizing users, and towards a per user focus. Ekstrand et al. [41] showed
that recommenders fail (and succeed) on di�erent items and users (al-
though their focus was on switching hybrids). Hybrid recommender
systems would obviously bene�t from being able to predict which rec-
ommendation algorithm works best for which user. The importance of
individuality of users was also noted by the work of Kille et al. [42], in
which they tried to model the di�culty of generating recommendations
for individual users.

The AdaRec system [126] proposed a dynamic hybrid strategy that
modi�ed its prediction strategy at runtime to cope with unique domains,
trends and user interests. Focus however, was on a switching strat-
egy that selected the most suitable recommendation algorithm rather
than composing a dynamic weighted hybrid that incorporates input from
all algorithms. In [135], the authors describe their system Semantic-
Movie which integrates multiple recommendation approaches (recom-
mender agents in their words) into a single agent ensemble. Combining
weights are generated by default, but can be manually adjusted per user.
Automatically adjusting weights (through a learning component) accord-
ing to user feedback was however deferred to future work.

The topic of automatically adjusting user-speci�c weights for dynamic
ensembles has been touched by Bellogín [39, 136]. From an informa-
tion retrieval perspective, he proposed adaptations of query performance
techniques to de�ne performance predictors in recommender systems.
Using these predictors, recommendation strategies can then be dynam-
ically �ne-tuned. The selection of predictors and individual recom-
menders to be used in the ensemble is limited by speci�c constraints
e.g., the predictors should correlate positively with the performance of
not all but some recommenders.

Our goal is to concentrate on the most relevant ongoing topics of hybrid

1http://www.netflixprize.com

5.3 General Architecture 139

recommender research. We focus on dynamically optimizing user-speci�c
hybrid systems using machine learning approaches. We compare the
popular hybrid switching approach with the weighted hybrid strategy
and show how both can be optimized, yielding a performance boost in
comparison to individual recommendation algorithms or static hybrid
systems. Individual recommendation algorithms are considered black
boxes and therefore any type can be used.

5.3 General Architecture

A1 A2 A3 ... An-2 An-1 An

Training set

Hybrid

Evaluation

Test set

Figure 5.1: The high-level architecture of the hybrid system. Rating data is
split in a training and test set. Multiple recommendation algorithms then gen-
erate recommendations, which are combined into one set of recommendations
and �nally evaluated based on the test set.

Our general architecture corresponds to a common hybrid recom-
mender system layout as depicted in Fig. 5.1. A rating dataset is divided

140 O�ine Optimization of Personalized Hybrid RecSys

into a training and test set, which are then respectively used as input
for the hybrid recommender and for the �nal evaluation of the system.
The hybrid recommender system consists of multiple recommendation
algorithms which run in parallel on the provided data and are �nally
aggregated into hybrid recommendation results.

For our experiments we will be using the MovieLens 100K dataset
which has the advantage that every user in the system will have at least
rated 20 items. Since we are tackling the hybridization problem on a
user-speci�c level, we also want to evaluate user-speci�c and so training
and test sets will contain all users but only a subset of their ratings. For
each user we adopt a split of 60% (train) and 40% (test) ratings. Because
every user has rated at least 20 items, every user will have a minimum
of 8 ratings in the test set.

To serve as individual recommendation algorithms in the hybrid sys-
tem, we selected the following 10 algorithms from the rating predictors
available in the MyMediaLite framework. For each of these algorithms,
default settings were used as set in MyMediaLite version 3.09.

• BiasedMatrixFactorization • SlopeOne
• MatrixFactorization • UserItemBaseline
• FactorWiseMatrixFactorization • UserKNN
• SigmoidSVDPlusPlus • Constant1
• BiPolarSlopeOne • Constant5

The output of each of these single algorithms is directed to the `Hy-
brid' module, where results are collected and aggregated. We speci�cally
focus (and compare) two common hybridization strategies: a switching
approach, where only the best algorithm is selected, and a weighted ap-
proach where all algorithms contribute to the �nal recommendations
according to a speci�c weight.

In the end, the system is evaluated according to a k -fold evaluation
procedure. The training dataset is used throughout the system to calcu-
late the individual and �nally the hybrid recommendation values. Sub-
sequently, the results are compared with the test set. This process is
repeated 10 times (i.e., 10 folds).

5.4 O�ine Optimization for Hybrid Recommenders 141

5.4 O�ine Optimization for Hybrid Recom-

menders

We are attempting to optimize hybrid recommender systems in an o�ine
setting. To be able to handle the problem of selecting or composing an
optimal hybrid recommender, we consider our problem as an optimiza-
tion task.

minimize
x

f(x)

Here, the goal is to minimize a de�ned objective function f(x) by pro-
viding it with an optimal input x. For the hybrid recommendation use
case, the objective function could be an evaluation metric which we want
to optimize (e.g., accuracy, diversity, serendipity, etc.) and the input x
the hybrid recommender. The better the recommender, the better the
values of the objective function.

Since we are working in an o�ine setting, we need to select an objec-
tive function that can be evaluated o�ine, or in other words, without
requiring additional user input. For the purpose of demonstrating the
o�ine optimization procedure, we optimize the accuracy metric: Root
Mean Squared Error (RMSE).

RMSE =

√√√√ 1

|τ |
∑

(u,i)∈τ

(r̂ui − rui)2

In RMSE, system-predicted ratings r̂ui are compared with true rat-
ings rui contained in a certain test set τ of user-item pairs (u, i) [137].
We adopt RMSE because it is one of the most popularly used evalua-
tion metrics in the recommender systems domain and is easily computed
in an o�ine context. Recent research [53, 63, 138, 139] shows that al-
though recommendation accuracy is principal to achieve user satisfac-
tion, it is not the only important metric and often metrics as diversity,
transparency or trust should be considered as well. We note however,
that our o�ine optimization strategy is not limited to RMSE, and can
incorporate any desired metric as long as it can be calculated o�ine on
a given set of ratings.

142 O�ine Optimization of Personalized Hybrid RecSys

5.4.1 Evaluating Optimization

Aside from de�ning the objective function (i.e., RMSE), we also need
data to calculate f(x) given a certain x. Two available datasets are the
training set and the test set. The test set is clearly unusable since we
want to avoid tuning to the test set ; the test set should only be used
in the �nal evaluation of the complete system and not in intermediate
optimizing iterations, to guarantee evaluation fairness. We therefore
focus on using the training set as input for our optimization task. In
other words, we intend to optimize our hybrid system in terms of RMSE
on the training set. We then hypothesize that, a decrease of RMSE (lower
RMSE is better) on the training set will result in a similar decrease on
the test set. This may not be the case if the optimization that was
learned from this procedure is not generalizable i.e., too speci�c to the
training set.

To prevent over�tting the training set, we do not train our optimiza-
tion on the full training set, but rather on 10 distinct subsets of this
training set. Such a subset divides the training set into a smaller sub-
training set and subtest set, much like the general 10-fold evaluation
procedure of the system, with a user-speci�c ratio of 60/40 (Fig. 5.2).
The objective function results are then averaged (arithmetic mean) over
these 10 subdatasets. A downside of this optimization procedure, is that
it requires to run the individual algorithms on 11 di�erent datasets: 10
subfolds of the training set (to optimize the hybrid), and once on the full
training set (for the �nal recommendations).

With a de�ned objective function and data to train (and evaluate)
on, we can now proceed to the optimization of our hybrid recommender
system. We explore both the switching and weighted hybrid strategies.

5.5 Hybrid Switching Strategy

The hybrid switching technique entails the switching between di�erent
recommendation algorithms by means of a switching strategy [37]. It is
a very easy and straightforward method since in the end only one al-
gorithm will contribute to the �nal recommendations. The selection of
the `best' recommendation algorithm for a given scenario often depends
on objective metrics such as metadata availability (e.g., content-based
when item features are available), the number of total ratings (e.g., col-
laborative �ltering when a large number of items have been rated), etc.

5.5 Hybrid Switching Strategy 143

 Subtraining set Subtest set

 Subtraining set Subtest set

 Subtraining set Subtest set

...

Training setTraining set
Fold 1

Fold 2

Fold 10

...

Figure 5.2: The training set is split into 10-folds with a 60/40 subtraining set
and subtest set, which are then used to optimize the hybrid con�guration.

However, since we are optimizing hybrid recommender systems at user-
level, the switching strategy should also be implemented at user-level so
that for every user, a single best algorithm can be selected.

Our user-speci�c switching selection strategy, starts with the determi-
nation of a default algorithm. This default algorithm serves as a fallback
option when no clear `best' algorithm could be detected for a user. The
default algorithm is determined by evaluating RMSE values for all algo-
rithms over all users on the subtest datasets, and so will be the same for
every user.

Next, for every user a `best' algorithm is detected among the avail-
able individual recommendation algorithms. Best in this case, is de�ned
as providing the best (averaged out) RMSE values on the 10 subtest
datasets. Aside from best RMSE, also the variance among the 10 (i.e.,
one for every subtest dataset) RMSE values is taken into account. This
variance serves as a con�dence value indicating the stability of the RMSE
values among the di�erent subtest datasets. A high variance indicates
divergent RMSE values and so the average may not be a good prediction
of the RMSE value the algorithm will �nally deliver. Our experiments
have shown that a reasonable method of coping with this situation, is
imposing a cuto� variance threshold that, when reached, automatically
discards the algorithm from the selection process (for the current user).
This way only algorithms which show good and little varying RMSE val-
ues across the subtest datasets will be compared and ranked. When all,
or all but one, algorithm is discarded, the default algorithm is selected for

144 O�ine Optimization of Personalized Hybrid RecSys

the current user. The pseudocode of this best switching selection strat-
egy can be found in the appendix (Algorithm 4). For the experiments,
we used a cuto� variance threshold value of 0.2, which was empirically
determined.

5.6 Weighted Hybrid Strategy

Another hybridization technique, is the weighted hybrid recommendation
technique. With this method the scores of individual recommendation
algorithms are combined together into a single hybrid recommendation
score [37]. Individual algorithms can be associated with di�erent weights
to allow �ne-grained control over the contribution of the individual al-
gorithms to the �nal score. Weights can be set in such a way that this
weighted technique produces the same results as hybrid switching (i.e.,
if only one algorithm contributes to the �nal score). The real power
of the weighted technique however, lies in the ability to join multiple
algorithms together and form a new hybrid algorithm. We therefore hy-
pothesize that this technique may yield better or at least equal results
as the hybrid switching technique.

An additional advantage of the weighted hybrid strategy towards other
strategies like Meta-Level or Feature Augmentation is its black box ap-
proach. Individual algorithms are considered black boxes, which are
served input data and produce output data without revealing any inter-
nal processing information. Since the �nal score takes only the output of
the algorithms into account, new algorithms can easily be added to the
system without the need for structural changes. We intend to optimize
a hybrid system built on many (i.e., 10) di�erent algorithms, and so the
black box approach seems a valuable advantage.

The core challenge of the weighted hybrid technique is to �nd appro-
priate weights for the individual algorithms. We de�ne this problem in
the form of an optimization task. We adopt the notation from related
work [136] where a dynamic ensemble recommender was de�ned as fol-
lows.

g(u, i) = γa1 ∗ ga1(u, i) + γa2 ∗ ga2(u, i) + ...+ γan ∗ gan(u, i)

Here γ is the weighting factor for the individual algorithms a that weighs
the recommendation values ga(u, i) for a user u and item i. Since our
approach is a user-speci�c one, we want to optimize the weights of the

5.6 Weighted Hybrid Strategy 145

algorithms speci�cally for every user so that every user may bene�t from
a personalized hybrid recommender system. User-speci�c weights can be
added to the optimization task in the following way.

g(u, i) = γa1(u) ∗ ga1(u, i) + γa2(u) ∗ ga2(u, i) + ...+ γan(u) ∗ gan(u, i)

We can now denote the objective function as

f(γ(u))

where

γ(u) = (γa1(u), γa2(u), ..., γan(u))

with n the total number of recommendation algorithms. Through an
optimization process we seek to minimize the objective function (i.e.,
RMSE). This metric can again be measured o�ine by evaluating the
subtest sets and averaging out the values as was done to optimize the
hybrid switching strategy.

We constrain possible weight values to the interval [0,1] so that val-
ues can be easily interpreted and compared. A �nal recommendation
score for a user u and item i, given the weight vector and individual
recommendation scores, can then be calculated by means of an average
weighted formula.

g(u, i) =
γa1(u) ∗ ga1(u, i) + γa2(u) ∗ ga2(u, i) + ...+ γan(u) ∗ gan(u, i)

γa1(u) + γa2(u) + ...+ γan(u)

In our weighted hybrid optimization procedure, γ(u) will be optimized
such that g(u, i) minimizes RMSE on the subtest datasets. In this pro-
cedure we iteratively try to improve the individual weights of the weight
vector. To reduce the number of iterations required for this optimization,
we start the procedure by selecting the best start vector out of a number
of randomly generated weight vectors. The best vector being the one
that results in the lowest RMSE value on the subtest datasets. Together
with the random vectors, we compare all the individual weight vectors
for every single recommendation algorithm in the system. We de�ne an
individual weight vector as a vector that allows only a single algorithm to
contribute to the �nal score e.g, γ(u) = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0). Doing
so, forces the system to take also individual algorithms into account.

146 O�ine Optimization of Personalized Hybrid RecSys

After the selection of the start vector, this weight vector can be im-
proved one weight at a time. Since this optimization procedure must
run for every user in the system, we want it to produce qualitative re-
sults in a very short time frame (almost real-time). For this, we have
implemented a standard binary search procedure where improved weight
values will be searched in iteratively diminishing intervals both upwards
and downwards as Fig. 5.3 illustrates. We have experimented with other
optimization procedures such as a custom genetic algorithm and publicly
available optimization tools (such as SciPy2), but found our standard bi-
nary search procedure to produce the best or equal results in less time.
To reduce the risk of ending up in locally-optimal RMSE solutions, in-
stead of selecting only one start vector (from the randomly generated
ones), multiple vectors could be optimized to �nd the overall best vec-
tor. We experimented with di�erent settings and even implemented a
back-tracking mechanism to allow the optimization procedure to escape
locally-optimal solutions. We found that this approach did not yield sig-
ni�cantly improved results and therefore we did not include this in our
algorithm presented below. We hypothesize that the randomization of
the start vector in itself already prevents ending up in the most obvious
local RMSE solutions.

min = 0.0
max = 1.0
weight = ...

min = weight
weight = (min + max) / 2

min = weight
weight = (min + max) / 2

weight
better?

max = weight
weight = (min + max) / 2

max = weight
weight = (min + max) / 2

max = weight
weight = (min + max) / 2

weight
better?

min = weight
weight = (min + max) / 2

YesNoYesNo

UpwardsDownwards

Figure 5.3: The binary search procedure to improve the weights in the weight
vector. The �tness of a weight vector (i.e., is a weight better?) is de�ned in
terms of RMSE on the subtest datasets.

We note that although the procedures searches for an improve-
ment one weight at a time, the evaluation (i.e., is the new
weight value better?) will be performed on the weight vector

2http://docs.scipy.org/doc/scipy/reference/optimize.html

5.7 O�ine Optimization Results 147

as a whole. If for example, the start weight vector is γ(u) =
(0.5, 0.1, 0.8, 0.3, 0.4, 0.4, 0, 0.6, 0.8, 0.1) and we seek an improvement of
the �rst weight in upwards direction, we will evaluate if the weight
vector γ(u) = (0.75, 0.1, 0.8, 0.3, 0.4, 0.4, 0, 0.6, 0.8, 0.1) yields improve-
ment. Improvement, as stated earlier, is de�ned as yielding a reduced
RMSE value on the subtest datasets. We again take the variance of the
generated RMSE values into account to model for con�dence. When
a cuto� threshold for variance is reached, the evaluation discards the
weight vector and the weight suggestion is considered `not better'.

The binary search procedure is repeated for every weight in two di-
rections until no more improvements can be found or a �xed number of
iterations have passed. The pseudocode of this weighted average opti-
mization strategy can be found in the appendix (Algorithm 5).

For the experiments, we used the same variance cuto� threshold value
as for the hybrid switching strategy (i.e., 0.2). The maximum number of
iterations was set to 500 and 1000 random weight vectors were used to
boost the start weight vector. Adjusting the number of iterations allows
to �ne-tune the trade-o� between optimization time and quality.

5.7 O�ine Optimization Results

We evaluate the performance of the o�ine optimization of the two hy-
bridization techniques as previously discussed. We �rst evaluate the
performance (in terms of rating prediction accuracy) of the 10 individ-
ual recommendation algorithms that were selected from the MyMedi-
aLite framework. We then continue to evaluate and compare the hybrid
switching and weighted hybrid strategies. While the optimization pro-
cedures operated on the subtest datasets, all the results in this section
have been calculated on the true test set.

5.7.1 Individual Algorithms

We evaluated the RMSE values of the 10 individual algorithms, averaged
over all users (and 10 folds). Default parameter settings where applied
as set in MyMediaLite version 3.09. Table 5.1 shows the results of the
RMSE evaluation.

As the table shows, many of the individual algorithms show a simi-
lar performance. Exceptions to this are the SigmoidSVDPlusPlus, Con-
stant5 and Constant1 algorithms, which perform considerably worse.

148 O�ine Optimization of Personalized Hybrid RecSys

Closer inspection of the results of SigmoidSVDPlusPlus, revealed high
variance in results so that for some users the algorithm performed con-
siderably worse than for others (a result we noted also in previous ex-
periments [53]). This result interestingly underlines the need for a user-
speci�c approach towards recommendation. We hypothesize the Sig-
moidSVDPlusPlus algorithm needs more data to increase its relevancy
or needs at least better �ne-tuned parameters. For the Constant algo-
rithm (which predicts a constant value of 1 or 5), poor RMSE results
were to be expected.

To observe the relationships of the algorithms among each other, we
plotted the RMSE values for the 7 most similar (in terms of RMSE)
algorithms showing their respective 95% con�dence intervals in Fig. 5.4.
From the �gure it now more clearly shows that UserKNN, UserItemBase-
line and SlopeOne can be considered to have equal performance as well
as BiPolarSlopeOne, MatrixFactorization and FactorWiseMatrixFactor-
ization. The BiasedMatrixFactorization resides somewhere in between.
These results are con�rmed as we calculate the statistical signi�cant dif-
ferences among the algorithms with a Wilcoxon Signed-Rank Test (Ta-
ble 5.2).

Method RMSE

UserKNN 0.9458
UserItemBaseline 0.9473
SlopeOne 0.9476
BiasedMatrixFactorization 0.9576
BiPolarSlopeOne 0.9759
MatrixFactorization 0.9767
FactorWiseMatrixFactorization 0.9817
SigmoidSVDPlusPlus 1.2808
Constant5 1.7420
Constant1 2.7912

Table 5.1: The RMSE values for the individual algorithms averaged out over
all users according to a 10-fold evaluation on the test set. Results are sorted
from low to high RMSE.

5.7 O�ine Optimization Results 149

RMSE individual recommendation algorithms

R
M

S
E

0.90

0.92

0.94

0.96

0.98

1.00

U
se

rK
N

N

U
se

rI
te

m
B

as
el

in
e

S
lo

pe
O

ne

B
ia

se
dM

at
rix

Fa
ct

or
iz

at
io

n

B
iP

ol
ar

S
lo

pe
O

ne

M
at

rix
Fa

ct
or

iz
at

io
n

Fa
ct

or
W

is
eM

at
rix

Fa
ct

or
iz

at
io

n

0.90

0.92

0.94

0.96

0.98

1.00

U
se

rK
N

N

U
se

rI
te

m
B

as
el

in
e

S
lo

pe
O

ne

B
ia

se
dM

at
rix

Fa
ct

or
iz

at
io

n

B
iP

ol
ar

S
lo

pe
O

ne

M
at

rix
Fa

ct
or

iz
at

io
n

Fa
ct

or
W

is
eM

at
rix

Fa
ct

or
iz

at
io

n

Figure 5.4: The RMSE values for the 7 most similar individual recommenda-
tion algorithms, averaged out over all users according to a 10-fold evaluation
on the test set.

5.7.2 Hybrid Switching Approach

For the evaluation of the hybrid switching strategy, we performed mul-
tiple experiments, each time increasing the number of individual algo-
rithms that were used in the hybrid recommender. The algorithms are
added in order of their individual performance, from good (low RMSE)
to bad (high RMSE). We de�ne the following hybrid systems in the ex-
periment:

BS2 := UserKNN + UserItemBaseline

BS3 := BS2 + SlopeOne

BS4 := BS3 +BiasedMatrixFactorization

BS5 := BS4 +BiPolarSlopeOne

BS6 := BS5 +MatrixFactorization

BS7 := BS6 + FactorWiseMatrixFactorization

BS8 := BS7 + SigmoidSV D ++

BS9 := BS8 + Constant5

BS10 := BS9 + Constant1

150 O�ine Optimization of Personalized Hybrid RecSys

1 2 3 4 5 6 7 8 9 10

1: UserKNN - .302 .864 ** ** ** ** ** ** **
2: UserItemB... - .396 ** ** ** ** ** ** **
3: SlopeOne - ** ** ** ** ** ** **
4: BiasedMatr... - ** ** ** ** ** **
5: BiPolarSl... - .589 .255 ** ** **
6: MatrixFact... - .551 ** ** **
7: FactorWise... - ** ** **
8: Sigmoid... - ** **
9: Constant5 - **
10: Constant1 (**: p < .05) -

Table 5.2: Pair-wise p-values of the null hypothesis, that the two systems
have an equal performance, as computed by a Wilcoxon Signed-Rank Test.

BS stands for `Best Switching' and the index refers to the number
of individual algorithms participating in the hybrid recommender. For
every one of these setups, we optimize the hybrid to select the best in-
dividual algorithm for every user individually. The results, as calculated
on the test set, are shown in Fig. 5.5.

The result of the best individual algorithm (i.e., UserKNN) was added
to the plot as a baseline for comparison. The �gure demonstrates how
each of the hybrid recommenders in the experiment achieves better re-
sults (i.e., lower RMSE values) in comparison with the best individual
algorithm. Adding individual algorithms improves the result of the hy-
brid up to a number of 4 algorithms (i.e., BS4), results then slightly
deteriorate and �nally stabilize in the end.

From the results it is clear that our user-speci�c hybrid switching strat-
egy performs better than simply selecting the best single algorithm and
using that for every user. It is however interesting that the results do
not continue to improve when additional algorithms are added. The rea-
son for this, is that the systems BS5, BS6 and BS7 add variations of
already included algorithms (i.e, SlopeOne and BiasedMatrixFactoriza-
tion) rather than adding completely new algorithms as is the case for
BS2, BS3 and BS4. These variations perform considerably worse than
their original algorithm, and so adding them only brings noise into the
system i.e., their results on the subtest datasets do not generalize to

5.7 O�ine Optimization Results 151

the true test set. The performance of the last systems BS8, BS9 and
BS10 remains stable because for these hybrid recommenders the perfor-
mance of the added algorithms (i.e., SigmoidSVD++, Constant1, and
Constant5) is so bad (or their variance so high) that they will almost
never be selected as `best' algorithm for a user. When we inspect, for
BS10, the number of times each algorithm was chosen (Fig. 5.6), we �nd
our argument con�rmed.

RMSE hybrid switching

R
M

S
E

0.930

0.935

0.940

0.945

0.950

0.955

0.960

U
se

rK
N

N

B
S

2

B
S

3

B
S

4

B
S

5

B
S

6

B
S

7

B
S

8

B
S

9

B
S

10

0.930

0.935

0.940

0.945

0.950

0.955

0.960

Figure 5.5: The RMSE results for multiple experiments with a hybrid switch-
ing setup. The index in the X-axis labels refers to the number of individual
algorithms participating in the hybrid recommender.

When comparing the RMSE results for the hybrid switching systems,
only two systems were found to have a statistical signi�cant di�erence
with p < 0.05: the UserKNN algorithm and the BS4 hybrid system,
although on average all hybrid systems seem better than UserKNN. In
conclusion we state that, the best performing hybrid switching strategy
(i.e., BS4) yields a signi�cant improvement towards the individual algo-
rithms approach, but the participating algorithms in the hybrid must be
carefully chosen in order to obtain good results.

152 O�ine Optimization of Personalized Hybrid RecSys

FactorWiseMatrixFactorization − 4%
Constant1 − 0%

BiasedMatrixFactorization − 11%

Constant5 − 0%

SlopeOne − 20%

UserItemBaseline − 27%

BiPolarSlopeOne − 6%
SigmoidSVDPlusPlus − 1% UserKNN − 23%

MatrixFactorization − 7%

Hybrid switching algorithm counts for BS10

Figure 5.6: The number of times each algorithm was selected as `best' algo-
rithm, counted over all users for hybrid setup BS10.

5.7.3 Weighted Hybrid Approach

For the evaluation of the weighted hybrid strategy, experiments were
iteratively performed with an increasing number of individual recom-
mendation algorithms participating in the hybrid system. Every hybrid
now optimizes the weight vectors indicating the importance of the indi-
vidual algorithms on a user-speci�c basis. The �nal prediction scores for
every user are compared against the true ratings in the test set.

BS4 W2 W3 W4 W5 W6 W7 W8 W9 W10

BS4 - .327 .781 .105 .114 ** ** ** ** .622
W2 - .207 ** ** ** ** ** ** .140
W3 - .177 .192 ** ** ** ** .831
W4 - .967 .331 .150 .122 .222 .257
W5 - .311 .138 .112 .207 .277
W6 - .636 .562 .799 **
W7 - .913 .829 **
W8 - .746 **
W9 - **
W10 (**: p < .05) -

Table 5.3: Pair-wise p-values of the null hypothesis, that the two systems
have an equal performance, as computed by a Wilcoxon Signed-Rank Test.

5.7 O�ine Optimization Results 153

RMSE weighted hybrid

R
M

S
E

0.
92

0.
93

0.
94

0.
95

0.
96

BS4 W2 W3 W4 W5 W6 W7 W8 W9 W10

0.
92

0.
93

0.
94

0.
95

0.
96

Figure 5.7: The RMSE results for multiple experiments with a weighted
hybrid setup. The index in the X-axis labels refers to the number of individual
algorithms participating in the hybrid.

Fig. 5.7 shows the RMSE results for multiple hybrid con�gurations
with a varying number of participating individual algorithms. Table 5.3
depicts the statistical signi�cance of the di�erence between the algo-
rithms. Algorithms are added in the same order as detailed in the previ-
ous subsection (e.g., W3 =W2+SlopeOne). As a comparison baseline,
the best result of the hybrid switching strategy (i.e., BS4) was added to
the plot.

The results show that most of the weighted hybrid con�gurations (ex-
cept for W2) perform better than the BS4 baseline. Moreover, the
performance increases (or at least remains stable) when new algorithms
are added. Exceptions are the W9 and W10 con�gurations, which show
a decreased performance (increased RMSE) towards the previous con�g-
urations. This is caused by the algorithms that are added in those con-
�gurations, namely Constant5 and Constant1. The Constant algorithm
predicts always the same recommendation score (i.e., here either 1 or
5). When considering the weighted average formula used for this hybrid
strategy (see Section 5.6), adding a Constant algorithm in the equation
will function as a general weighting factor for the �nal prediction value.

154 O�ine Optimization of Personalized Hybrid RecSys

This weighting factor can either boost or decrease the �nal recommen-
dation score. When the Constant5 algorithm is used in the calculation
of the �nal prediction score, all predicted scores (for that user) will be
slightly increased or similarly decreased when applying Constant1. The
reason that Constant1 has a bigger (negative) impact on performance
becomes clear when we inspect the distribution of the rating values for
our dataset. In previous chapters we showed how this distribution was
slightly skewed towards the higher values of the rating scale (see Fig. 2.12
in Chapter 2) and therefore decreasing the �nal recommendation score
will (on average) worsen performance more than increasing the score.

We can take a closer look at the weight vectors produced by our opti-
mization procedure. Speci�cally, we are interested in how the algorithms
(on average) contribute to the �nal prediction scores, what algorithms are
used, and how many algorithms (i.e., algorithms with non-zero weights)
are usually combined. We focus on the weights generated by the W7
hybrid con�guration, which showed the best performance.

Inspecting the complete set of weights produced by our optimization
procedure for all users, we logged for each algorithm the number of times
a non-zero weight was generated. Fig. 5.8 shows a pie chart detailing
the normalized (percentage) counts for the individual recommendation
algorithms.

FactorWiseMatrixFactorization − 17%

BiasedMatrixFactorization − 14%

SlopeOne − 14%

UserItemBaseline − 12%

BiPolarSlopeOne − 13%

UserKNN − 12%

MatrixFactorization − 17%

Weighted hybrid, algorithms used in final score for W7

Figure 5.8: The distribution of the usage of each algorithm in the weight
vectors for all users. The results are normalized in percentage.

5.7 O�ine Optimization Results 155

The �gure shows an approximately even distribution of the values,
which indicates that the system involves every algorithm about the same
number of times in the �nal prediction score. It seems that the weighted
hybrid strategy is able to make use of all given algorithms, without
degrading the performance when variations of the same algorithm are
present (as was the case for the hybrid switching strategy).

Aside from how much the algorithms are used, it is also interesting
to know how many algorithms usually contribute to the �nal prediction
score for a user. Again inspecting the complete set of weight vectors
produced for all users, we logged the amount of non-zero weights in each
weight vector. Fig. 5.9 shows the resulting histogram for the W7 hybrid
con�guration.

1 2 3 4 5 6 7

Number of algorithms used in final score for W7

Number of algorithms used

%
 o

f a
ll

pr
ed

ic
tio

ns

0
5

10
15

20
25

30

Figure 5.9: The histogram of the number of algorithms used for all users
(normalized in percentage).

From the histogram we learn that the weighted hybrid strategy is usu-
ally combining multiple algorithms together. For some users, the results
of as many as 6 algorithms are combined into the �nal recommendation
score. For others, on the other hand, only a single algorithm is used. It
is interesting to see that the weighted hybrid strategy does indeed revert
to a hybrid switching strategy when it seems appropriate.

A �nal interesting aspect of the generated weight values, is the weight
value itself. Table 5.4 displays for every algorithm (used in W7) the

156 O�ine Optimization of Personalized Hybrid RecSys

average weight value over all weight vectors for all users without counting
the zero weights.

Algorithm Average Weight

UserKNN 0.426
UserItemBaseline 0.421
SlopeOne 0.389
BiasedMatrixFactorization 0.282
BiPolarSlopeOne 0.257
MatrixFactorization 0.249
FactorWiseMatrixFactorization 0.201

Table 5.4: The average weight values (in range [0,1]) over all users for every
algorithm used by the weighted hybrid con�guration W7.

The order of the averaged out weights for the algorithms, matches
the order of the performance results for the individual algorithms. This
con�rms that the results of our o�ine optimization strategy do in fact
correlate with the �nal results as obtained by the test set.

5.8 Discussion

Fig. 5.10 overviews the �nal results of our hybrid strategy evaluation.
The three result values indicate the results as obtained by the three
respective recommendation strategies: best individual algorithm (same
for all users), user-speci�c best switching, and user-speci�c weighted hy-
brid. For each of these systems the best results are shown in the graph
i.e., UserKNN (best individual), BS4 (best switched), and W7 (best
weighted). The di�erences between the results (all of which are found to
be statistical signi�cant p < 0.05) con�rm the original hypothesis that a
user-speci�c hybrid switching strategy will yield better results than an
individual algorithm and a weighted hybrid system will outperform even
the hybrid switching strategy.

5.9 Conclusion

We started by noting the existence of vast numbers of recommenda-
tion algorithms available to tackle the information overload problem.
Combining multiple algorithms together, seemed a sensible approach to

5.9 Conclusion 157

RMSE strategies comparison

R
M

S
E

0.
92

0.
93

0.
94

0.
95

0.
96

Best individual Best switched Best weighted

0.
92

0.
93

0.
94

0.
95

0.
96

Figure 5.10: A comparison of the best RMSE results obtained by the three
systems compared in our evaluation: individual algorithms, a switching ap-
proach and a weighted hybrid approach. All of these di�erences were found to
be statistical signi�cant.

harvest the union of their merits. However, combining algorithms into
hybrid recommender systems can be cumbersome; often manual con�g-
uration is required such that the recommender can not be easily re-used
for other scenarios.

We considered the con�guration of a hybrid system as an optimization
problem which generated hybrid recommender systems that are automat-
ically �ne-tuned towards individual users. Focus was on the commonly
used switching and weighted hybridization techniques. We demonstrated
an approach that allowed the hybrid recommender system to optimize
recommendations o�ine.

Results showed that the switching strategy was highly sensitive to the
used individual algorithms i.e., best results when most di�erent algo-
rithms were used. The weighted strategy, on the other hand, was more
robust and, even with the simple binary search optimization procedure,
it obtained signi�cantly better results by blending the individual algo-
rithms into user-speci�c ensembles.

Although the evaluation of our methods focused on the popular ac-
curacy metric RMSE, other o�ine calculable metrics can be optimized

158 O�ine Optimization of Personalized Hybrid RecSys

for. The evaluation intended to show the success of the optimization
procedure, and the speci�c advantages of the weighted hybrid procedure
over a hybrid switching approach. Implementing the weighted average
strategy in a hybrid recommender allows for easy adding new algorithms
or variations of existing algorithms without fundamentally disrupting
user experience. The quality of o�ine optimization depends however on
the quality of the available data and will therefore always be fundamen-
tally limited in potential in comparison to online and user interactive
approaches. This e�ect is known in research as the magic barrier.

Chapter 6

Online Optimization of

Personalized Hybrid

Recommender Systems

6.1 Introduction

In the previous chapter we pursued the ideal hybrid recommender which
was capable of integrating all known recommendation algorithms and
auto-adapting its hybrid con�guration to dynamically generate optimal
recommendations for individual users. Now, we build on these results
and try to get the recommender out of the lab by assessing and im-
proving its ability towards meeting real-world requirements for an online
recommendation scenario.

With the term online in this chapter, we refer to both the interpre-
tation as an Internet-connected system which can be interacted with by
online users, and the idea of an online algorithm which is an algorithm
that solves problems in real-time based on limited data input. A typical
example of an online algorithm is the �rst �t algorithm found in the
bin-packing world [140]. Given a set of trucks to load packages on, the
algorithm decides for every package what its optimal place would be to
minimize the total number of used trucks. An online variant of such an
algorithm decides what truck to use based only on the knowledge of any
previous packages. While more optimal algorithmic solutions take into
account the complete set of all packages, such data is not always avail-
able in online systems. The same situation applies to the recommender

160 Online Optimization of Personalized Hybrid RecSys

systems domain. In previous chapters we always started from a rating
dataset, but what if we start without ratings, and for each added rat-
ing we want to provide an updated recommendation list? Such an online
recommendation scenario will be the focus of this chapter, both from the
Internet-connected perspective as from the online algorithm perspective.

The most important requirement speci�c for an online recommender
system is scalability. For online systems it is extremely di�cult to
predict the number of active users since online popularity is very variable.
An online system may serve a number of users ranging from just a few
hundreds to many thousands and even millions. More importantly, the
number of users may change very quickly in short periods of time because
of online viral e�ects. Therefore an online system should be able to
dynamically scale with the workload it is presented with.

Another requirement for online systems is responsiveness. Nowa-
days users have grown accustomed to fast and responsive online services.
Whether they are searching on Google, posting updates to Facebook or
watching videos on YouTube, they expect an instant response from the
system they interact with. Responsiveness in terms of a recommender
system scenario would mean that user interactions have immediate vis-
ible e�ects. For example, a user that rates a recommended movie as
bad does not want to see that movie in its recommendation list anymore
(even though the system may only calculate new recommendations once
a day).

While recommender systems in the past often acted as black boxes
where ratings go in and recommendations come out [81], users nowadays
expect some kind of explanation about the origin of the recommenda-
tions. Online platforms like IMDb or Amazon1 display their recommen-
dations with accompanying titles as `People who liked this also liked...',
`Frequently Bought Together' or `Customers Who Bought This Item Also
Bought'. Despite their simplicity, the titles succeed in explaining to the
users how the recommendations are calculated. Even though the expla-
nation may be an oversimpli�cation of the true recommendation calcu-
lation process, it may still serve to inspire user trust and loyalty [141].
Therefore it is important for an online (recommender) system to be (or
at least seem) transparent to the user.

Finally, users should have some form of control. It has been shown
that dynamic user interaction with a recommender system increases
user satisfaction and may even boost the relevance of predicted con-

1http://www.amazon.com

6.2 Related Work 161

tent [79, 80, 142]. Our online recommender system should therefore
interactively o�er some way for users to be in control of their resulting
recommendations or at least have some way of in�uencing and guiding
the system other than by merely providing ratings. In conclusion, the
discussed real-world challenges for an online recommender system can
be summarized in the following list of requirements (REQs).

• REQ1 Responsiveness

• REQ2 Scalability

• REQ3 System transparency

• REQ4 User in control

We refer to these as REQ1 [Responsiveness], REQ2 [Scalabil-
ity], REQ3 [Transparency] and REQ4 [Control]. In this chapter,
we evaluate and improve the ability of our hybrid recommendation strat-
egy to meet these requirements in an online recommendation scenario.
But �rst we discuss some related work that speci�cally focuses on the
above online requirements.

Research Questions

• How can hybrid optimization be applied in online environments?

• How can system and user requirements be aligned?

6.2 Related Work

Responsiveness for recommender systems translates to being able to re-
act in (almost) real-time to the arrival of new ratings in the system. Most
recommendation algorithms need to retrain their complete model to in-
tegrate new data which can rarely be done in real-time. For some spe-
ci�c recommendation algorithms, online updating approaches have been
developed such as SVD [143] or MatrixFactorization [144]. In [145], the
StreamRec recommender system was demonstrated which allowed instant
recommendation updates using an underlying item-based collaborative
�ltering approach. Since the online updating approaches are usually
algorithm-speci�c, few research actually focuses on real-time updating
hybrid models.

For related work regarding scalability, we refer to our chapter focusing
on high-performance recommending (Section 4.2.1).

162 Online Optimization of Personalized Hybrid RecSys

Providing system transparency and user control in a recommender sys-
tem should prevent users from feeling trapped inside a �lter bubble2 of
tailored information. Explanations have been known to positively in-
crease the user perceived system transparency [146]. User control in a
system is however di�cult to achieve. Aside from processing ratings,
recommendation algorithms usually do not provide the tools for users
to allow �ne-grained preference feedback. In [142] meta-recommendation
systems were introduced. The authors experimented with a hybrid sys-
tem called MetaLens that allowed users control over their recommenda-
tions by means of a preference screen where a number of item features
could be �ltered on. Their user-study con�rmed that users preferred
the advanced level of control o�ered by their system. Another interac-
tive recommender system is the TasteWeights system by Bostandjiev et
al. [79]. As we already discussed in Section 3.3.1, their user study also
indicated that explanations and interaction with a visual representation
of the hybrid system increases the user satisfaction and recommendation
relevance. The same results were found by Gretarsson et al. [80].

While separately each of our online requirements has been tackled in
related research, to our knowledge no work exists that takes all four
requirements into account at the same time. We focus on realistically
deploying our hybrid optimization approach to an online environment in
a scalable and user friendly way.

6.3 Online Optimization for Hybrid Recom-

menders

Fig. 6.1 illustrates the optimization process for one user of the hybrid
recommender based on the results of the previous chapter. The process
starts with the concept of a rating dataset. We assume a user has already
expressed an opinion about a number of items present in the system. In
a �rst step, we use the rating dataset to create multiple fold datasets
which are then split according to some pre-set ratio into training and
test fold datasets. Fig. 6.1 illustrates the situation with 3 fold datasets.
Each training subset of the fold datasets is provided as input to a num-
ber of recommendation algorithms (2 algorithms a1 and a2 depicted in
the �gure as a black square and triangle shape). At the same time the
complete rating dataset is also provided as input to instances of the same

2http://www.thefilterbubble.com

6.3 Online Optimization for Hybrid Recommenders 163

Dataset

Train

Test

E
V
A
L
U
A
T
E

Train

Test

E
V
A
L
U
A
T
E

Train

Test

E
V
A
L
U
A
T
E

Aggregated fitness
(+ Variance)

Recommendations

Optimize

Train

Fo
ld

 d
at

as
et

s
A

ll
d

at
a

Slow (hours) Fast (seconds)

a1

a1

a1

a1

a1

a2

a2

a2

a2

a2

Example recommendation algorithms:

Aggregation weights vector:

(Aggregates recommendation results)

Figure 6.1: The optimization process for the hybrid recommender illustrated
for one user, using 3 folds and 2 (individual) recommendation algorithms.

algorithms. Each algorithm then, in parallel, trains its models based on
the given input. In the �gure, 2 algorithms are de�ned and so 4 instances
of those algorithms (3 for the fold datasets and 1 for the complete rating
dataset) will be trained, which results in the computation of 8 models.
This computational step can be potentially very slow depending on which
recommendation algorithms are involved. Algorithms like MatrixFactor-
ization are generally accepted to train fast [147], while other algorithms
like KNN methods can be very slow [148] (depending on the parameters
e.g., neighborhood size). Although this computation phase will be very
slow, it needs to be run only once in order for the system to be able
to present a user with recommendations. After this initial computation
the system will be able to incorporate new rating data and react to user
responses in real-time as we will show later in this section.

When the training of the algorithm models has �nished, the system

164 Online Optimization of Personalized Hybrid RecSys

uses the output i.e., recommendations to optimize a weight vector used
for the con�guration of the �nal hybrid recommendation list. We inte-
grate a weighted hybrid approach (which performed best in the previous
section) and therefore such a weight vector is needed for the aggregation
of the individual recommendation list. This aggregation is represented
as a vertical trapezoid shape in the �gure that takes multiple recom-
mendation results as input and outputs one hybrid recommendation list.
In a �rst optimization step, the outputs of the recommendation algo-
rithms trained on the fold datasets are aggregated using an initial start
weight vector (identical for all folds). Since the fold datasets were split
in training and test sets (and models were only trained on the train-
ing sets), the remaining test sets can be used to evaluate the quality of
the aggregated result. We do not specify an exact method of evaluation
as this will depend on the end goal of the recommender (e.g., user sat-
isfaction, recommendation accuracy, item coverage, etc.). The output
of the evaluation must however be quanti�able into a numeric value so
that it can be compared and measured. Three evaluation values result
from the scenario as depicted in the �gure, one for each fold. The eval-
uation scores are aggregated, by some chosen aggregation function e.g.,
arithmetic mean, into a single �tness value indicating the quality of the
current weight vector. The variance of the individual evaluation scores
between the folds must also be taken into account to indicate the consis-
tency of the performance of the weight vector over the di�erent dataset
folds.

The weight vector is then step-wise optimized by applying standard
optimization procedures borrowed from the machine learning domain
until a certain number of iterations has passed or a su�cient �tness
value has been reached. In the previous chapter we illustrated the o�ine
optimization procedure using binary search and RMSE as evaluation
criteria. The optimization method can be any chosen method as long as
it has a fast convergence rate to the optimal value. The training of the
algorithms will not be run often, so it does not matter if it takes a long
time (i.e., hours) to complete. This step of optimizing the weight vector
however will be executed frequently and therefore should be as fast as
possible (i.e., complete in a matter of seconds). When the weight vector
has been optimized, it can be used to generate the �nal recommendations
by applying it to aggregate the algorithm models which were trained on
the complete rating dataset (at the bottom of the �gure).

When applying optimization methods, part of the data is often dedi-
cated for the evaluation of the objective function. Because of our pro-

6.3 Online Optimization for Hybrid Recommenders 165

posed procedure of training and testing on fold datasets, all of the rating
data can still be integrated in the models of the �nal (non-fold) rec-
ommendation algorithms. Furthermore because of its high-level spec-
i�cation, the hybrid optimization procedure can be applied to di�er-
ent methods of recommendation strategies (e.g., rating prediction versus
item prediction).

6.3.1 Avoiding Over�tting

One potential problem of the optimization procedure as described above
is over�tting [131]. For users with a low number of ratings the system is
prone to over�t. Such users could be handled in two ways: we could re-
quire more ratings from the user before calculating the recommendations,
or train the models on the few ratings available and as weights use a de-
fault pre-computed weight vector that has shown to yield good results
for many other users of the system (i.e., non-personalized approach).

To prevent over�tting for users with a large number of ratings, it is
better to not use all data for the optimization but instead only a ran-
dom subsample of the dataset. Creating (and optimizing for) multiple
randomly subsampled datasets at the same time is even better, and so
this is implemented in our approach. By optimizing for multiple folds at
the same time and taking into account the agreement of the evaluation
of the models (i.e., the variance) the optimization process is forced to
generalize over the complete rating dataset as well as over random sub-
sampled subsets. If the provided ratings are good indicators of possible
future ratings, then the system should be able to generalize well. By
changing the number of fold datasets and the training-test split ratio the
process can be �ne-tuned for the speci�c needs and properties of every
use case.

Using very few folds, say in the extreme case only 1, requires very few
computational e�ort but dramatically increases the over�tting risk. The
opposite extreme case where the number of folds (and training-test ratio)
is so high that every data point (i.e., rating) in a certain fold serves as the
test set while all other ratings make out the rating dataset is referred to
in literature as Leave-one-out cross-validation [149]. While this method
is very thorough in using all data, it is computationally very expensive.
A well-accepted meet-in-the-middle approach in recommender systems
literature is the k -fold cross validation method where k folds are gen-
erated and used for testing, k often set to 10 for robustness [150, 151].
It improves the chance of generalizability (reduces over�tting) with only

166 Online Optimization of Personalized Hybrid RecSys

limited additional computational burden. Ultimately also the speci�cs
of the involved scenario will be important factors e.g., the size of the
dataset, number of samples/ratings per user, etc. In Fig. 6.1, 3-fold
cross validation is illustrated.

6.4 A Responsive Online Recommender

In the introduction we de�ned our requirements for an online recom-
mender system, one of which was REQ1 [Responsiveness]. For the
proposed hybrid optimization process both slow and fast components
were discussed i.e., the training of the models versus the optimizing of
the weight vectors. By combining both components, the system can be
made responsive, or at least appear responsive to the user.

As most recommender systems, the proposed system in this work suf-
fers from the cold-start syndrome [152]. Without any data, no models
can be trained, no weights optimized and therefore no recommendations
can be generated. Two common ways of dealing with the cold-start prob-
lem is either by presenting the user with a list of default non-personalized
recommendations (e.g., most popular items), or not presenting any rec-
ommendations at all and requiring (more) data from the user before
presenting any results.

As soon as data (i.e., user ratings) are available, the models can be
trained. Since the optimization process requires the output of trained
models, the initial training step must be completed �rst. While the
initial training of the models may be slow, only the �rst time it will
block the recommendation process i.e. when the models are trained on
a new user for the �rst time. With the models trained, the optimization
step is designed to complete almost instantly, which can be leveraged to
making the system feel responsive.

For a system to feel responsive it must react to user input in almost
real-time. If we were to add new ratings to the training sets and require
the models to be recomputed, the system would be too slow. Instead
we propose to add new ratings to the test fold datasets. As shown in
Fig. 6.2, by adding new ratings directly to the test datasets, they a�ect
the optimization of the weight vector which in turn in�uences the �nal
recommendation list. So by adding newly provided ratings to the test
fold datasets and instantly re-optimizing the user's weight vector, the
new rating can trigger changes in the �nal recommendation list.

Every now and then the individual models can be retrained o�ine

6.5 Server-clients Structure 167

Dataset

Train

Test

E
V
A
L
U
A
T
E

Train

Test

E
V
A
L
U
A
T
E

Train

Test

E
V
A
L
U
A
T
E

Aggregated fitness
(+ Variance)

Recommendations

Optimize

Train

Fo
ld

 d
at

as
et

s
A

ll
d

at
a

Slow (hours) Fast (seconds)

New ratings

a1

a1

a1

a1

a2

a2

a2

a2

Figure 6.2: The optimization process, detailing how new ratings are added
to the test fold datasets where they can have an instant a�ect on the �nal
recommendations without the need for retraining the individual models.

(incorporating the new ratings since last training) and then be inserted
back into the online system, all of this hidden from the user. That way,
the system is capable of calculating powerful and complex models and
at the same time respond in real-time to provided user feedback (which
was requirement REQ1 [Responsiveness]).

6.5 Server-clients Structure

An important requirement for online recommenders is REQ2 [Scala-
bility]. For online systems it is very hard to predict a realistic number
of engaged users. There might be thousands of users or even millions
depending on the popularity. Therefore, for online recommenders, scala-
bility will be even more important than for closed environment (o�ine)
recommenders. For a recommender to be scalable, its underlying model
must be scalable i.e., able to handle a growing number of users or data
without exponentially taking more time to calculate. When considering
our hybrid model which integrates multiple fold datasets and various
individual recommendation algorithms, it may seem like some compro-
mise to scalability will have to be made. We will show however that

168 Online Optimization of Personalized Hybrid RecSys

by adopting a client-server architectural design, our hybrid system par-
allelizes extremely well, which allows it to scale naturally to available
hardware and large user bases.

Hybrid Model

Train

Algorithm

Train

Algorithm

Train

Algorithm

Train

Algorithm

Train

Algorithm

Train

Algorithm

Algorithm Algorithm

Dataset Dataset

Test Test Test

A
lgo

rith
m

 P
ro

xy

A
lgo

rith
m

 P
ro

xy

A
lgo

rith
m

 P
ro

xy

A
lgo

rith
m

 P
ro

xy

A
lgo

rith
m

 P
ro

xy

A
lgo

rith
m

 P
ro

xy

A
lgo

rith
m

 P
ro

xy

A
lgo

rith
m

 P
ro

xy

Optimizer Combiner

Server
Clients

(Separate processes)

a1 a2

a1

a1

a1

a2

a2

a2

Figure 6.3: The client-server architectural design, illustrating how each indi-
vidual algorithm is executed in a separate process (potentially on a di�erent
machine) and communicates with the Hybrid Model by means of proxy objects.

Fig. 6.3 illustrates the architectural design applied to the scenario from
Fig. 6.1. There are 3 fold datasets and 2 individual recommendation al-
gorithms (the symbolical black square and triangle). For each of the
training fold datasets, instances of both algorithms are trained in addi-
tion to the instances trained on the complete rating dataset, bringing the
total number of algorithm instances for this scenario to 8. The main prin-
ciple of the client-server approach is to isolate parts of the system that
can run in parallel into their own separate processes. The �gure shows
the main server process i.e., the Hybrid Model, which stores the test fold
datasets, optimizes weight vectors (Optimizer component), combines the
�nal recommendations (Combiner component), and communicates with
the instances of the individual algorithms.

Instead of running the client instances in the same process as the server
(and thus limiting their ability to parallelize), they are executed in sepa-
rate processes and communication is handled by Algorithm Proxy compo-
nents. Communication by means of proxy components allows the Hybrid

6.5 Server-clients Structure 169

Model to interact with the algorithm instances independent of their true
location, which may be on the same computing node, another node in
the local network, or a random computer across the Internet.

Hybrid Model Algorithm Proxies Algorithms

Start()

Proxy Generator

Initialize() Initialize()Initialize proxies()

AddRatings() AddRatings() AddRatings()

Train() Train() Train()

Proxy objects

RecommendForUser() RecommendForUserFolds() RecommendForUserFolds()

Fold RecommendationsFold Recommendations

OptimizeWeightVector()

RecommendForUser() RecommendForUser()

RecommendationsRecommendations

CombineRecommendations()

Recommendations

Sl
o

w
 (

h
o

u
rs

)
Fa

st
 (

se
co

n
d

s)

Figure 6.4: Sequence diagram illustrating the execution �ow of the complete
recommendation process from initialization to returning the recommendation
results.

The main control �ow of the recommendation process is depicted in
Fig. 6.4. When the system is �rst started, the proxies are initialized
by the Proxy Generator component. This component initializes the pro-
cesses of the individual recommendation algorithms across available com-
puting nodes. If multiple computing nodes are available, the component
attempts to distribute the processes over the nodes as equally as possi-
ble. A link to the proxy objects is provided back to the Hybrid Model to
allow future communication. When the model is initialized, ratings can
be added, which are processed in training and test datasets and passed
to the appropriate algorithm proxies (training fold datasets to the fold
algorithms, full rating dataset to the non-fold algorithms).

When the Train() command is triggered, the command is delegated
to all the algorithm proxies in parallel, which causes all of them to start
training at the same time in their own separate processes. Since the

170 Online Optimization of Personalized Hybrid RecSys

total time will be equal to the maximum execution time over all trained
algorithms, this phase may take long (i.e., hours) to complete. When
all algorithms have completed training, the Hybrid Model is noti�ed and
may start accepting recommendation requests for speci�c users.

The request for recommendations for a speci�c user triggers a chain
of events eventually leading to the �nal recommendations. First the
weight vector for that user must be calculated (if not already available)
by the optimization procedure in the Hybrid Model. The optimization
requires the test fold datasets (which are available in the Hybrid Model)
and the recommendations for the algorithms trained on the training fold
datasets. With the weight vector available, all that remains is to apply it
in the �nal phase which is the combination of the results of the individual
recommendation algorithms trained on the complete rating dataset.

The main advantage of our client-server architecture is the deployment
�exibility. Because the principal calculating components are decoupled
and running in their own separate processes controlled by one server (i.e.,
the Hybrid Model), they can be distributed across computing nodes as
desired. This allows to take into account the speci�c properties of the
individual algorithms. Algorithms that require a lot of RAM memory
may be deployed on dedicated machines, while disk-intensive algorithms
may be deployed on machines with specially equipped hard drives. Fur-
thermore, all of the algorithms are executed in parallel which reduces the
main scalability of the system to the scalability of the least scalable in-
tegrated individual recommendation algorithm. The only computations
a�ected by the number of integrated individual recommendation algo-
rithms are the optimizing and combining processes in the Hybrid Model.
We will show however that the impact of these e�ects on the general
scalability of the system is limited.

6.5.1 Performance Optimization: Prefetching

Implementing the above described approach requires some optimization
to avoid that bottlenecks as network speed may compromise the per-
formance of the system. To illustrate the e�ect of network speed on
overall performance, consider the pseudocode algorithm for weight vec-
tor evaluation as shown in the appendix (Algorithm 6). Assume we are
in a rating prediction scenario and are evaluating the quality of a weight
vector using the popular RMSE metric as objective function.

The code fragment shows two procedures which are needed for the

6.5 Server-clients Structure 171

evaluation of a given weight vector weights_vector. Here the RMSE
value serves as �tness value allowing to compare (and therefore optimize)
the quality of di�erent weight vectors. RMSE is calculated by comparing
all the ratings of the given user in the test fold dataset with the predicted
score of the algorithms. The predicted score is calculated using a simple
weighted average formula to aggregate the individual prediction scores
of the recommendation algorithms.

Although the naive code fragment functions correctly, it will not be
very e�cient considering our client-server architecture. The reason for
this, is line 18:

prediction← algorithm.get_recommendation(user, item)

While the weight vector evaluation and predict functions will run in the
server process of the Hybrid Model (Optimizer component), the above
line of code requests the recommendation value for a certain user and
item from an algorithm proxy, triggering the request to be passed to
the actual process of the recommendation algorithm which may be run-
ning on another computer. So every time the request is made, in the
background a network connection may be set up and torn down for the
required communication between the algorithm proxies and the actual
algorithm processes. Such a request is individually considerably fast, but
in the pseudocode fragment the request would be called for every rating
in the test fold dataset and for every algorithm proxy, which could limit
the performance of the optimization method in the Hybrid Model.

We implemented the proposed approach in Python using the XML-
RPC 3 package for the communication between the algorithm proxies
and the actual algorithm processes. The XML-RPC package wraps
every request as an XML document that is transported over HTTP.
While the overhead of one request is small, the accumulated overhead of
many of such requests greatly in�uenced the end performance of our sys-
tem. Since the performance of the optimizing part of the Hybrid Model
should be very high to meet our REQ1 [Responsiveness] requirement,
a prefetching strategy was devised.

Instead of requesting the prediction values at the moment they are
needed in the calculation, it proved better to request them all at once be-
fore the start of the calculations. Many small data requests can as such

3http://docs.python.org/2/library/xmlrpclib.html

172 Online Optimization of Personalized Hybrid RecSys

be bundled in one single network request, which dramatically reduces
network connection overhead. The recommendation value is needed for
each rated item and for each algorithm; so if our system integrates 3
algorithms and the current user (of which the weight vector is being op-
timized) has rated 100 items, then 300 single data requests for prediction
values would be transferred over the network. With the prefetching ap-
proach, only 3 requests are made (one for every algorithm). Implement-
ing a prefetching approach was necessary to guarantee the performance
of both the Optimizer and Combiner components of the Hybrid model.

6.5.2 Limitations

While the proposed model aims for �exibility and performance, its com-
plexity imposes heavy constraints on underlying hardware con�gura-
tions. For the client-server architecture to be truly e�ective, every pro-
cess should be able to run on a dedicated processor core. Since data
is replicated in multiple folds and over multiple instances, the available
RAM memory of the system will also be a limiting factor. Although our
proposed approach in theory can be deployed on any hardware con�gu-
ration, an optimal con�guration would be a cluster of computing nodes
with a total number of dedicated processors of at least the number of
spawned processes, linked together with a high-speed network connec-
tion. Every algorithm will be instantiated (#folds + 1) times: once to
train on all rating data and once per fold dataset. Each algorithm runs
in its own process and so the total number of required processor cores
can be determined by Formula 6.1. Note that the Hybrid Model itself
also runs in a separate process (hence the additional +1).

required processor cores = 1 + ((#folds+ 1)×#algorithms) (6.1)

6.5.3 Online User Interface

Previous sections addressed the online requirements of REQ1 [Respon-
siveness] and REQ2 [Scalability], which were both focused on the
system side of the recommender. The remaining requirements are the
transparency of the system (REQ3 [Transparency]) and user control
(REQ4 [Control]), both of which directly a�ect the user side of the
recommender and thus need to be integrated in the interaction process
between user and system i.e., the user interface (UI). In this section we

6.5 Server-clients Structure 173

discuss some UI considerations for our online hybrid optimized recom-
mender system.

As mentioned earlier in Chapter 3 (Section 3.3.1), adding explanations
to recommendation results is an easy way to increase the transparency
of a recommender system and by extension the user satisfaction. The
origin of for example collaborative �ltering results may be easily captured
by phrases as `recommended because similar users have liked this item'.
For recommender systems based on hybrid principles however, it will
be more di�cult to explain in a concise sentence why items are being
recommended.

Also in Chapter 3, we presented a visualization framework for hybrid
recommendation results. This framework introduced explanations for
hybrid recommendations by presenting users with the calculation for-
mula and resulting recommendation value (see Fig. 3.16). While this
provided optimal transparency of the recommendation process, such a
visualization is only appropriate for advanced or administrative users.

The framework does however have an interesting hybrid con�guration
interface that can be re-used for both the purpose of system transparency
and user control. Our online recommender system is based on a weighted
hybrid strategy which by its very nature o�ers components for user con-
trol: the weight vectors. The weights in the weight vector, model the
contribution of each individual recommendation algorithm to the �nal
hybrid recommendation output and thus can be used as proxies for the
importance of the algorithm for a speci�c user. By allowing users not
only to inspect their weight vector but also to modify the individual
weights manually, users can directly in�uence and �ne-tune their rec-
ommendation lists to their speci�c (and maybe contextual) interests.
As previously illustrated in Fig. 3.15, weight vectors can be visually in-
spected and manipulated in a very intuitive interaction process i.e., by
sliders. An accompanying pie chart could help to visualize the contribu-
tion of every algorithm to the �nal recommendation score (if all algorithm
weights are in the interval [0, 1]).

In the previous sections we detailed how the hybrid system can auto-
matically optimize the weight vector for a speci�c user. This optimiza-
tion will however be based on some measurable evaluation metric e.g.,
RMSE which might not correspond to the users' expectations (maybe
users prefer serendipity instead of recommendation accuracy). By al-
lowing to tweak the weight vector manually and thereby overriding the
automatically determined weight vector, users are able to �ne-tune their

174 Online Optimization of Personalized Hybrid RecSys

recommendations to their own speci�c expectations. Note that in Sec-
tion 6.3 we explained how the process of calculating the weight vector
and combining the �nal recommendations could (and should) be com-
puted very fast. Therefore when a user overrides the weight vector, new
hybrid recommendations can be generated instantly which provides the
user-system interaction process a very natural feel.

6.5.4 System Experts Versus Normal Users

While inspecting and manipulating the weight vector for the individual
algorithms is indeed a way of introducing control and transparency to
the system, the above approach would still fail for normal non-technical
users. For system experts or researchers who are evaluating the rec-
ommender system, direct control over the weight vector will be very
interesting, but for ordinary users who are oblivious to the technicalities
of the recommender system, manually adapting the weights may be a
too technical task.

What is possible however, is to simplify the algorithms to the users
e.g., instead of saying `content-based recommender' we could say `movies
similar to the ones you liked'. By translating algorithms to their most
de�ning feature, the e�ect of changing the weights could be made un-
derstandable for normal users. In Fig. 6.5 this scenario is illustrated
for three recommendation algorithms. Novelty could refer to an algo-
rithm focusing on (i.e., predicting more) novel movies and the same for
Popularity and Similarity.

Figure 6.5: Illustration of how algorithms can be translated to their most
de�ning features to make changing the weights more interpretable for non-
technical users.

Recommendation algorithms that are not easily translated to an un-
derstandable concept for normal users e.g., MatrixFactorization could
simply be referred to as `Best system guess' or `Determined by magic'
as used sometimes in Google services (e.g., Fig. 6.6, which was a sort
option in the former Google Reader platform).

As an extension, the system could o�er various post-recommendation

6.6 Online Optimization Results 175

Figure 6.6: Popup on the former Google Reader platform providing the option
to Sort by magic.

�lters like genre �lters (often demanded by users for movie recommenda-
tion scenarios [89]) which can be easily implemented in the user interface
without any modi�cations to the underlying recommender system. Ulti-
mately, the combination of both using �lters and manipulating the weight
vector through the user interface provides users with the necessary tools
to interactively tailor their recommendations to their own interest in a
transparent way.

6.6 Online Optimization Results

We want to evaluate our system in four dimensions focusing on our self-
de�ned online requirements of responsiveness, scalability, transparency
and control. The �rst two requirements can be evaluated experimentally
by deploying the system on actual hardware and measuring the resulting
execution and response times. We present the results of such experiments
in the following sections.

To properly evaluate user-related metrics as control and transparency
however, a typical approach is to perform an online experiment involv-
ing actual users, which allows the analysis of user behavioral patterns
and user satisfaction indicators. For this purpose we created a Google
Chrome extension � called MovieBrain � that deployed our proposed
hybrid optimization system as a dynamic and interactive movie recom-
mender system that integrated with the IMDb website. Details about
this online evaluation and its results can be found in the next chapter.

6.6.1 Scalability

The concept of scalability can focus on two scenarios: strong scaling or
weak scaling [97]. In a strong scaling scenario, the amount of work stays

176 Online Optimization of Personalized Hybrid RecSys

constant while the number of workers (e.g., computing nodes, processor
cores, etc.) varies. The term weak scaling refers to the opposite sce-
nario where the number of workers is constant while the amount of work
changes. So when a system is referred to as `scalable' it could mean
two things. Either the system is capable of scaling across multiple com-
puting nodes thereby reducing the total execution time through parallel
computing (i.e., strong scaling), or the system is capable of processing
increasingly bigger workloads without exponentially increasing the ex-
ecution time (i.e., weak scaling). Either scenario is interesting for our
online system and so in this section we investigate both.

The following experiments were run on the High Performance Com-
puting (HPC) infrastructure available for researchers at our university4.
The computing nodes deployed in the experiments have the following
speci�cations.

• CPU : dual-socket quad-core Intel Xeon L5420 (Intel Core microar-
chitecture, 2.5 GHz, 6 MB L2 cache per quad-core chip), thus 8
cores / node

• memory : 16 GB RAM (DDR2 FB-DIMM PC-5300 CL5)

Computing nodes are interconnected by an In�niband (i.e., high-speed)
network and each dispose of a local hard disk (private storage) and have
access to shared storage (GPFS) as well.

In the experiments, the complete recommendation process (from ini-
tialization to the generation of the �nal recommendations) is deployed
in various experimental con�gurations. We used our MovieTweetings
dataset as simulation data for these con�gurations. The 200K snap-
shot was used, which includes 200,000 ratings by 25,011 users for 14,732
movies. A split ratio of 6:4 was set for the training-test fold datasets.

Our hybrid optimized approach integrated individual recommendation
algorithms as black boxes i.e., only the input and output of the algo-
rithms are taken into account by the system without knowledge of the
internal recommendation calculation process. Because of this approach
there are no restrictions towards the type of recommendation algorithms
that can be integrated. To illustrate this behavior, in the following ex-
periments we use (rating prediction) recommendation algorithms from
the MyMediaLite recommendation algorithms software library. As eval-
uation function for the optimization process (see Section 6.3), RMSE

4http://www.ugent.be/hpc/en

6.6 Online Optimization Results 177

was implemented. The StochasticHillClimber method (parameter Max-
Evaluations=1000) from PyBrain5, a modular machine learning library
for Python, was integrated as optimization function.

6.6.1.1 Strong Scalability

To investigate the strong scaling ability of our system, we experiment
with deploying the system on a varying number of computing nodes
while keeping the workload constant. The experimental setup is de�ned
in the following list.

• Dataset : 200K MovieTweetings snapshot

• Algorithms: MatrixFactorization, SlopeOne, LatentFeatureLogLin-
earModel

• Computing nodes: 1, 2, 3, 4, 5 (8 cores per node)

• Fold datasets: 2, 4

The 3 MyMediaLite algorithms were selected based on their divergent
properties regarding complexity, execution time and RAM consumption
as detailed by Table 6.1. Default initialization parameters were used as
set in MyMediaLite version 3.10.

Complexity Time RAM

MatrixFactorization complex fast low
SlopeOne simple fast low
LatentFeatureLogLinearModel complex slow high

Table 6.1: The divergent properties regarding complexity, execution time and
RAM consumption for 3 rating prediction algorithms from the MyMediaLite
recommendation library.

The experiment begins with the startup of the system: computing
nodes are initialized and algorithm proxies are constructed. When the
system is ready to accept ratings, the rating dataset MovieTweetings is
loaded and the individual algorithm models are trained on their (fold)
datasets. Then, for 100 randomly selected users (each having more than
20 ratings) the system is sequentially requested to calculate (i.e., opti-
mize) the weight vectors for these users and combine their �nal hybrid
recommendation lists.

5http://pybrain.org

178 Online Optimization of Personalized Hybrid RecSys

The experiment was repeated with 1, 2, 3, 4, and 5 computing nodes
and for two fold dataset settings: 2 and 4. For each of these con�gura-
tions, the execution times of the individual phases of the recommenda-
tion process were measured and are displayed in Fig. 6.7 (exact numbers
available in Table 6.2). The `4 fold, 1 node' con�guration failed to com-
plete because the required amount of RAM exceeded the available RAM
in a single computing node (16GB).

1 2 3 4 5

Time recommendation process, 2 fold datasets

Number of computing nodes (PCs)

T
im

e
(s

)

0
10

0
20

0
30

0
40

0

Predict for 100 users
Train models
Add ratings
Initialization

1 2 3 4 5

Time recommendation process, 4 fold datasets

Number of computing nodes (PCs)

T
im

e
(s

)

0
10

0
20

0
30

0
40

0

Figure 6.7: The execution times of the individual phases of the complete
recommendation process deployed on hardware con�gurations ranging from 1
to 5 computing nodes and for 2 (left) or 4 (right) fold datasets.

From the �gure the initialization time for the di�erent con�gurations
seems identical, but closer inspection reveals a small increase for con�g-
urations of more than 1 computing node. This increase in time is caused
by the required extra network communication overhead that is needed
to signal the other computing nodes. For the same reason also the time
for the adding of the ratings increases. The time to train the models
and the �nal prediction time interestingly remain nearly unchanged for
an increasing number of computing nodes (both for the 2 fold and 4 fold
results). This observed behavior supports our claim that when all pro-
cesses in the system are able to run in parallel (each on its own dedicated
processor core), the end performance would only be limited by the slow-
est integrated individual recommendation algorithm. Table 6.3 lists for
every experimental con�guration the consequential number of parallel
spawned processes versus the number of available processors. Only the
single computing node con�gurations require more processors than avail-
able, and so for these conditions the execution times may be suboptimal.

6.6 Online Optimization Results 179

#Folds = 2

#Nodes: 1 2 3 4 5

Start time 21.6 24.5 26.8 25.4 25.7
Rating time 3.4 3.4 3.9 4.7 5.2
Train time 153.5 152.8 152.2 148.1 151.3

Predict time 95.0 95.2 95.0 95.9 94.6
Total time 273.5 275.9 277.8 274.1 276.8

#Folds = 4

#Nodes: 1 2 3 4 5

Start time **** 27.9 25.4 27.7 28.0
Rating time **** 3.4 3.4 3.3 5.0
Train time **** 158.0 154.5 152.0 153.4

Predict time **** 141.0 140.3 141.2 142.2
Total time **** 330.3 323.6 324.2 328.6

Table 6.2: The execution times of the individual phases of the complete rec-
ommendation process deployed on hardware con�gurations ranging from 1 to
5 computing nodes and for 2 or 4 fold datasets.

The e�ect is very limited visible in the training time which is increased
by a few seconds. Among the 3 chosen algorithms for this experiment, 2
of them �nish fast, which means that 6 out of the 10 parallel computing
processes will �nish fast, allowing the 2 extra processes to start with only
a few seconds delay. For the other (more than 1 node) con�gurations
the total training time will be equal to the time it takes for the slowest
algorithm (i.e., LatentFeatureLogLinearModel) to complete.

Folds \Nodes 1 2 3 4 5

2 10/8 10/16 10/24 10/32 10/40
4 16/8 16/16 16/24 16/32 16/40

Table 6.3: The number of spawned parallel processes versus the number of
available processor cores (each computing node has 8 cores) for the di�erent
experimental con�gurations.

While the total system execution time does not decrease with an in-
creased number of computing nodes (as expected), it is also interest-
ing to note that it does not increase. Scaling a software system over

180 Online Optimization of Personalized Hybrid RecSys

multiple computing nodes may often increase the communication over-
head required to manage the running instances and therefore introduce
some form of delay linked with the number of computing nodes. Thanks
to a high-speed network infrastructure and some implementation opti-
mizations (e.g., prefetching in Section 6.5.1) we were able to reduce the
parallel overhead to an absolute minimum.

When comparing the 2 fold con�guration with the 4 fold results, very
similar �gures can be noted. The time to train the models for a 4 fold
con�guration is equal to the time for the 2 fold con�guration, again il-
lustrating how the training time is independent of the number of folds,
algorithms or available computing nodes. When a su�cient number of
parallel processors are available, the training time will equal the time for
the slowest individual recommendation algorithm to complete its work.
The main di�erence between the 2 and 4 fold con�gurations is the di�er-
ence in prediction time. Because the 4 fold con�guration has more fold
datasets, the optimizer will have to take more data into account to op-
timize the user weight vectors, which explains the increase in execution
time.

6.6.1.2 Weak Scalability

To experiment with the weak scaling ability of our system, we perform
a similar experiment but this time the number of computing nodes (i.e.,
workers) stays constant while varying the dataset size (i.e., amount of
work to be processed). The following list describes the experimental
setup.

• Dataset : 40K, 80K, 120K, 160K, 200K MovieTweetings snapshots

• Algorithms: MatrixFactorization, SlopeOne, LatentFeatureLogLin-
earModel

• Computing nodes: 5

• Fold datasets: 2, 4

The algorithms used in this experiment are identical to those of the
previous experiment, again using their default initialization parameters
as set in MyMediaLite version 3.10. The properties of the speci�c Movie-
Tweetings snapshots are detailed in Table 6.4.

Just as before, the system was instructed to run through the consec-
utive phases of initialization, adding ratings, training models and pre-
dicting for 100 randomly selected users with more than 20 ratings. The

6.6 Online Optimization Results 181

40K 80K 120K 160K 200K

#Ratings 40,000 80,000 120,000 160,000 200,000
#Users 9,063 14,180 19,337 22,259 25,011
#Items 6,798 9,419 11,595 13,445 14,732

Table 6.4: The basic properties of the di�erent MovieTweetings snapshots
used in this experiment.

experiment was repeated for iteratively growing dataset sizes and for 2
and 4 fold datasets. The execution times of the individual phases are
displayed in Fig. 6.8 and detailed in Table 6.5.

Time recommendation process, 2 fold datasets

Dataset size

T
im

e
(s

)

0
10

0
20

0
30

0
40

0

40K 80K 120K 160K 200K

Predict for 100 users
Train models
Add ratings
Initialization

Time recommendation process, 4 fold datasets

Dataset size

T
im

e
(s

)

0
10

0
20

0
30

0
40

0

40K 80K 120K 160K 200K

Figure 6.8: The execution times of the individual phases of the complete
recommendation process for di�erent sizes of the rating dataset (40K to 200K)
and for 2 (left) or 4 (right) fold datasets.

For the weak scaling experiment every con�guration was run on 5 com-
puting nodes each featuring 8 processing cores and so this time the num-
ber of spawned processes did not exceed the number of available cores.
Since all processes could be divided over 5 di�erent computing nodes no
RAM issues occurred and every con�guration could be completed.

The initialization time follows the same patterns as in previous results,
but the time to add the ratings increases more. This makes perfect sense
as the increasing datasets will require more time to process. While the
time to train the models remained the same in previous results, here the
training time increases linearly with the increasing dataset size. This
was again to be expected since the end performance of the system will be

182 Online Optimization of Personalized Hybrid RecSys

#Folds = 2

Dataset size: 40K 80K 120K 160K 200K

Start time 24.9 25.1 24.9 25.0 24.9
Rating time 1.6 2.0 2.5 2.8 3.2
Train time 69.2 89.4 110.2 130.6 149.4

Predict time 85.0 88.1 89.7 87.5 91.4
Total time 180.7 204.5 227.3 245.9 268.9

#Folds = 4

Dataset size: 40K 80K 120K 160K 200K

Start time 23.8 24.3 25.8 23.8 23.8
Rating time 2.2 3.7 4.1 6.0 6.8
Train time 70.7 91.7 113.4 132.5 152.8

Predict time 124.5 130.3 133.8 128.9 139.5
Total time 221.3 250.0 277.1 291.3 322.9

Table 6.5: The execution times of the individual phases of the complete rec-
ommendation process deployed on 5 computing nodes for varying dataset sizes
(40K to 200K) and for 2 or 4 fold datasets.

depending on its slowest component, the LatentFeatureLogLinearModel
algorithm, which takes linearly more time to train for increasing rating
dataset sizes. The time to train for the 2 fold dataset con�guration is
again equal to the 4 fold dataset con�guration as was observed in the
strong scaling scenario.

Two observations can be noted regarding the prediction times. First,
the time it takes to sequentially predict for 100 random users is again
higher for the 4 fold con�guration than the 2 fold, which is caused by the
increased complexity in optimizing the user weights vector over multiple
fold datasets. Second, the prediction time also seems to increase as the
dataset size grows larger. The reason for this is linked with the selection
of the random users for each dataset. While in previous experiment the
100 random users were selected and then re-used for the di�erent con�g-
urations, here the random selection process had to be repeated for every
dataset size (a user selected in the 200K snapshot might not be present
in the 40K snapshot). We counted for each selection of 100 random users
per dataset size the total number of ratings for those users and found it
to be highly correlated with the �nal prediction execution time. More
ratings will lead to larger cardinalities of the test fold datasets used for

6.6 Online Optimization Results 183

the optimization of the user weight vectors, which again increases the
complexity of the prediction task. Because in the larger dataset sizes
there are more users with >20 ratings, the chance of randomly selecting
users with more ratings is larger than for the small dataset sizes.

6.6.2 Responsiveness

While the previous experiments focused on scalability, they also provide
some insight into the responsiveness of the system. We have de�ned the
requirement of responsiveness as being able to respond to user requests
and changing input data in real-time. Or at least appear as such to a
user. In the experiments, we deployed our system and measured the ex-
ecution times of the di�erent phases. The last phase of the experiment
triggered the weight vector optimization by generating recommendations
for 100 random users. As the results of the experiments revealed, the
total time for this phase was for most con�gurations below 100 seconds,
and therefore <1s per user, which is acceptable for most online scenarios.
In less than one second, the live optimization approach managed to take
into account the ratings of the user and personalize its weight vector
for improved hybrid recommendation results. When no new ratings are
available, and the weight vector has already been calculated, the pre-
diction time will be even less (in terms of ms). For the con�gurations
that showed higher prediction times (e.g., 139.5s for the 4 fold, 200K,
weak scaling scenario), parameters of the optimization approach can be
modi�ed to speed up the process (e.g., the MaxEvaluations setting of
the StochasticHillClimber method).

6.6.3 Live Optimization Versus O�ine Retraining

We proposed a live online optimization strategy that, complementary
with o�ine training, can be used to provide users with a sense of real-time
interaction. It would however be interesting to know how the qualitative
improvement of the live optimization relates to that of the o�ine training
phase. The frequency in which the o�ine models should be retrained may
be con�gured depending on how well the live optimization performs. If
the live optimization phase shows equal predictive power as retraining
the o�ine models, then the latter may be disregarded altogether (since
it is computationally more complex and time-consuming).

To investigate the recommendation quality impact of the live optimiza-
tion phase versus the o�ine retraining phase, we propose the following

184 Online Optimization of Personalized Hybrid RecSys

experimental approach. For a number of random users in a dataset we
split their ratings in a distinct training set and test set. We then fur-
ther split the training set into two parts. We thus end up with three
datasets, two for training and one for evaluation (test set). We want to
compare the recommendation quality in three scenarios. The �rst is the
baseline scenario in which the models are trained o�ine on half of the
training set. The second scenario, also trains the models o�ine on half
of the training set, but as soon as training is completed, the other half of
the training set is added online and processed by the live optimization
approach. In the third and �nal scenario the models are trained o�ine
on all of the training set. For each of these scenarios we compare the
recommendation quality by calculating the RMSE accuracy metric using
the test set. We graphically illustrate the experiments in Fig. 6.9.

By comparing the results from the three experiments, we can inspect
the capability of the live optimization approach to use the newly added
ratings to improve the recommendation quality (scenario 2). And more
interestingly, we can compare this to the scenario where all the ratings (of
the training set) would have been included in the o�ine model (scenario
3).

We run the experiment on two di�erent datasets: the MovieTweetings
and MovieLens dataset. Both consist of movie rating data, are identi-
cally structured and provide a 100K ratings snapshot. MovieLens does
however only integrate users with a minimum number of 20 ratings, while
MovieTweetings has no such �ltering. To be able to make a fair compar-
ison we therefore also constructed a similar variant of MovieTweetings
by removing users with less than 20 ratings. From these three datasets
we randomly selected 500 users and simulated the above described sce-
narios, each time measuring the �nal RMSE recommendation accuracy
metric.

The recommendation algorithms used for these scenarios are the same
as described in the scalability experiments: MatrixFactorization, Latent-
FeatureLogLinearModel and SlopeOne all originating from the MyMedi-
aLite recommendation framework.

Fig. 6.10 shows the results for the MovieTweetings dataset. The three
scenarios are presented on the X-axis, their corresponding RMSE values
on the Y-axis. The �rst (baseline) scenario shows the highest RMSE
value, which was to be expected as in this scenario the least amount of
ratings are used. For scenario 2, where the remaining half of the training
ratings were added to the live system, the RMSE value slightly improves.

6.6 Online Optimization Results 185

Training set (50%) Test set (50%)

Training set 1 (25%) Training set 2 (25%)

Dataset processing

Experimental scenarios:

Training set 1 (25%)Scenario 1 (baseline):

Scenario 2:

Scenario 3:

Training set 1 (25%) Training set 2 (25%)

RMSE calc.

Offline training

Offline training Live optimization

Training set (50%)

Offline training

RMSE calc.

RMSE calc.

Figure 6.9: Visualization of the data processing strategy and the 3 experi-
mental scenarios for comparing the impact of the o�ine training phase and live
optimization phase on the �nal RMSE value for 500 random users. Note that
the dataset split is performed for every of those 500 users and their resulting
RMSE values are averaged.

The biggest RMSE improvement is however clearly found in scenario 3.

Fig. 6.11 shows the results for the other two datasets: MovieLens and
MovieTweetings with only users with minimum 20 ratings. For these
datasets similar results can be noted: the live optimization approach
slightly improves the RMSE value of the baseline scenario, but the best
gain is found when all of the ratings are used to train the individual
models.

We note that the exact values of the calculated metric (here RMSE)
may di�er depending on the individual recommendation algorithms, the
applied optimization approach, and the tuning of many di�erent con-
�guration parameters (such as the number of fold datasets, etc.). The

186 Online Optimization of Personalized Hybrid RecSys

experiments do however illustrate the relative performance of the live
optimization approach versus the predictive power of o�ine training the
models on more data.

1 2 3

MovieTweetings

Scenarios

R
M

S
E

1.
80

1.
85

1.
90

1.
95

1.964

1.954

1.845

Figure 6.10: The measured RMSE value of 500 random users of the Movie-
Tweetings dataset for three experimental scenarios.

1 2 3

MovieTweetings (min 20 ratings/user)

Scenarios

R
M

S
E

1.
70

1.
75

1.
80

1.
85

1.
90

1.
95

2.
00

1.974

1.918

1.82

1 2 3

MovieLens

Scenarios

R
M

S
E

0.
93

5
0.

94
0

0.
94

5
0.

95
0

0.
95

5
0.

96
0

0.
96

5

0.96

0.958

0.943

Figure 6.11: The measured RMSE value of 500 random users of the Movie-
Tweetings dataset where each user has at least 20 ratings (left), and the Movie-
Lens dataset (right) for three experimental scenarios.

6.7 Discussion 187

6.7 Discussion

We have shown that the performance and scalability of the online recom-
mender system can indeed be reduced to the performance of the slowest
integrated individual recommendation algorithm as long as the underly-
ing hardware con�guration provides su�cient parallel processing power.
The complexity of the hybrid optimizer did however turn out to be in�u-
enced by the number of used fold datasets. Because of this, a trade-o�
will have to be made between having many folds (e.g., 10) to reduce
the chance of over�tting the model and having a small number of folds
to reduce the complexity (i.e., increasing the speed) of the optimizer
component. The number of fold datasets should therefore be su�ciently
large while making sure the performance of the optimizer component
can still be considered fast enough to guarantee instant responsiveness
to new ratings.

From the results we learned that o�ine retraining the individual rec-
ommendation models has a signi�cantly higher impact on recommen-
dation quality than the online optimization approach. While the latter
is useful for providing a sense of real-time interactivity with the sys-
tem, o�ine retraining should be scheduled as much as possible in order
to guarantee the best recommendation results. When dedicated com-
putation hardware is available, we propose to continuously retrain the
individual models in the background.

In the end, the presented hybrid optimizing system o�ers su�cient
�exibility for a customized con�guration for any speci�c use case. Con-
�gurable components include the individual recommendation algorithms,
the number of folds, the evaluation metric (i.e., the optimization goal)
and the optimization method itself.

6.8 Conclusion

We discussed the architectural design of our hybrid optimization strat-
egy and detailed realistic implementation issues to assure the system
meets the proposed requirements for an online recommendation sce-
nario: responsiveness, scalability, system transparency and user control.
By adopting a client-server architecture we showed how the system can
be distributed across multiple computing nodes in a very �exible and
transparent way, allowing multiple recommendation algorithms to run
in parallel for optimal performance. We illustrated how the results and

188 Online Optimization of Personalized Hybrid RecSys

internal processes of the system could be visualized to users in the form
of a responsive user interface allowing users an advanced and intuitive
level of control over their recommendation lists.

Through experimental evaluation we validated the architectural design
and our claim that the performance and scalability of the system can be
reduced to the performance and scalability of the worst (i.e., slowest)
individual recommendation algorithm integrated in the hybrid system.
The added overhead of the hybrid optimization was shown to be very
limited as long as a su�cient number of computing nodes (or parallel
processor cores) are available.

Chapter 7

Online Evaluation of

Personalized Hybrid

Recommender Systems

7.1 Introduction

We have evaluated our proposed hybrid recommender system o�ine and
discussed its ability to run in an online environment. What now remains
is to make the system available to real users and measure their interaction
and user satisfaction in an online evaluation experiment. Organizing user
experiments is easy for companies with a large customer base, lots of user
data and a high-tra�c website; it is however less straightforward for a
single academic researcher with limited resources. Here, we present our
approach towards exposing our dynamic hybrid recommender system to
online users by means of a Google Chrome extension called `MovieBrain'.
We expand on issues as user data collection, hardware deployment, and
online experiences.

First we de�ne some of the properties of our recommender system �
which we refer to as the brain (recommender) � that will have to be taken
into account. The brain recommender is a typical rating prediction based
recommender system which takes user ratings as input and for each user
outputs a list of unrated items which are predicted to receive the highest
rating values. While the brain (recommender) has no limitation on what
item domain it is applied to, it does have some speci�c runtime prop-
erties. For one, the brain is customizable, which means that users can

190 Online Evaluation of Personalized Hybrid RecSys

change settings and interact with the brain other than merely providing
ratings. Furthermore, the brain is scalable in terms of hardware deploy-
ment, meaning that it can run on a single computing machine but is
also able to �exibly distribute its processing tasks across multiple nodes
if available. Like many other rating prediction based recommendation
algorithms, the brain requires some time to train its model during which
it is unresponsive and thus unable to answer any user requests. After
the initial training, the brain is ready to recommend items to users.

Considering our academic context, the available resources to imple-
ment our online evaluation project are quickly summed up: no existing
user base, no online platform, no team of programmers or marketeers,
and a very limited �nancial budget. What we do have at our disposal is
a small webserver and access to a high-performance computing (HPC)
infrastructure which is however shared with other university members
and works on a request-only basis. These constraints, resources and
properties can be summarized in the following list.

Brain recommender properties

• User customizable

• Scalable hardware deployment

• Unresponsive training phase

Available resources

• Small webserver

• Limited �nancial budget

• Access to a shared HPC environment

In the following sections we detail how we expose our brain recom-
mender system to live user testing while respecting the aforementioned
constraints and resources of our typical academic context. Note that for
related work, we refer to previous chapters where we already discussed
research on online and user-centric experiments.

Research Questions

• How can a user-centered experiment be deployed with limited re-
sources?

• How do users interact with a self-con�guring hybrid recommender
system?

7.2 MovieBrain: a Movie Focus 191

• How useful is the hybrid system to users?

7.2 MovieBrain: a Movie Focus

The item domain of movies has been much explored in the context of rec-
ommender systems research, mostly because of the availability of public
rating datasets as the MovieLens and Net�ix dataset. For many re-
searchers these datasets used to be the only source of realistic rating
data available. For the online evaluation of our brain recommender sys-
tem we also opt for the movie domain, but for di�erent reasons. We
would like to integrate our recommendation service with an existing in-
formation system to be able to primarily focus on the recommendation
job and keep the implementation overhead and required user e�ort to a
minimum. We chose the movie domain because of the integration pos-
sibility with the IMDb website. This website o�ers a vast amount of
information on a wide catalog of movies and also collects and aggregates
ratings on a 1 to 10 star rating scale. Interestingly, many users provide
such ratings and furthermore the ratings can be made public. If we were
able to somehow extend the functionality of the IMDb platform we could
re-use the ratings already provided by IMDb users and thus reduce the
initial threshold of asking users for ratings before being able to provide
recommendations (i.e., avoid the cold-start problem).

Another reason for focusing on the movie domain is the availability of
our MovieTweetings dataset which consists of IMDb ratings that have
been posted on Twitter. The MovieTweetings dataset nicely comple-
ments the public ratings on the IMDb platform and helps to further
alleviate any cold-start symptoms. To summarize, in order to evalu-
ate our brain recommender system we focus on the movie item domain
by extending the IMDb platform and complement existing public rat-
ings with the MovieTweetings dataset. To do so, we created a Google
Chrome (browser) extension which we named MovieBrain and discuss
more extensively in the following sections.

7.3 A 3-tier Architecture

The online evaluation task of our brain recommender system naturally
requires at least a two-component architecture: a visual front end for
user interaction and a back end for computation purposes. We add

192 Online Evaluation of Personalized Hybrid RecSys

MovieBrain Chrome Extension Central webserver Shared HPC infrastructure

Visual front-end Mediating middleware Computing back-end

Figure 7.1: The 3-tier architecture connecting the visual front end with the
computing back end through a mediating middleware layer.

however an additional component in the middle for control, caching and
data management. As indicated in Fig. 7.1, a Google Chrome extension
(i.e., a plugin for the Google Chrome Internet browser) is used to handle
user interaction on the front end side. A webserver functions as the
mediating middle layer and in the back end our university-shared HPC
infrastructure powers the brain itself.

7.4 Computing Back End

As mentioned, our university o�ers its researchers a HPC infrastructure
free of charge. Since the infrastructure is shared among researchers,
certain limitations are however in e�ect. For one, all computation tasks
need to be compiled in the form of job scripts which require to specify
in advance the anticipated resource usage. These resources include the
number of computing nodes, processing cores per node, the amount of
used RAM and expected computation time. Jobs crossing their resource
boundaries are killed instantly. Furthermore all jobs are limited to a
maximum continuous execution time of 72 hours. Jobs submitted to the
infrastructure are processed in a queue and systematically started by a
job scheduler that takes into account the availability of the requested
resources and overall fair-use quota among all users. As of a result,
heavy resource dependent jobs will be executed only when the resources
are available and priority will be given to users that have been using the
HPC less frequent. Since a limited budget does not allow the acquisition
of a dedicated calculation server (or renting e.g., Amazon EC2 machines),
the constraints imposed by the infrastructure at hand will need to be
aligned carefully with the properties of the brain recommender. We
summarize the following list of infrastructural challenges that need to be

7.4 Computing Back End 193

tackled at the computing back end of our MovieBrain project.

HPC challenges

• Jobs scheduled instead of executed instantly

• Limited job execution time

• Job execution depending on available (and requested) resources

With a dedicated calculation server, setting up the computing back end
would be a straightforward task of installing the brain recommender on
the server and executing it. In the case of our shared infrastructure the
task of running the brain requires more attention. The job execution time
on the cluster is limited but obviously we want the brain recommender
to remain continuously active during the online evaluation. Assuming
the online evaluation period will exceed 72 hours, a multi-job strategy
imposes itself.

7.4.1 Multi-Job Strategy

Instead of running the brain in a single job, we schedule multiple brain
jobs such that their execution times overlap. By maintaining an index
to running jobs, the system (i.e., the middleware) can be pointed to a
new active job when an old one is killed for exceeding the execution time
limit. By starting new jobs at �xed intervals (e.g., every 50 hours) the
brain recommender could (at least theoretically) be active inde�nitely.

One problem with this approach is that jobs are only started when
the requested resources are actually available. Due to the infrastructure
being shared, the availability of resources may vary greatly from e.g.,
100 free computing nodes with 8 parallel processing cores and 16GB
of RAM each, to 1 partially available or even no available nodes. The
brain recommender � in its current con�guration1 � requires at least 8
processing cores and 8GB of RAM. Fortunately however2, one of the
properties of the brain recommender was hardware scalability, which
allows to align job resource requirements with the computing hardware
availability. When few resources are available, the brain jobs can be set

1The amount of needed resources depends on the speci�c con�guration of the
recommender e.g., involved recommendation algorithms, number of dataset folds,
optimization method, etc.

2This is of course no coincidence. The brain has been made to scale across hard-
ware exactly to be able to cope with such changing hardware con�gurations.

194 Online Evaluation of Personalized Hybrid RecSys

to run on multiple shared computing nodes with limited resources rather
than requiring a dedicated computing node which may not be available.

The combination of submitting multiple jobs overlapping in time, and
the �exibility to adjust job resource requirements, greatly increases the
possibility to keep a brain recommendation process active for an online
evaluation period on our shared HPC environment. We do however need
to take into account the situation where the complete HPC cluster is busy
and no jobs can be started regardless of how few resources are requested.
Since such a situation may occur beyond our control, the best way of
dealing with this is making sure that no data is lost, and users are gently
made aware of the temporary unavailability of the brain at the front
end of the MovieBrain system (i.e., Chrome extension). Regardless of
the hardware platform, handling unavailability will be crucial anyway to
prevent user frustration in the inevitable event of a server crash, Internet
outage or other unforeseeable circumstances.

7.4.2 Multi-Brain Strategy

Using the multi-job strategy, the challenges imposed by our shared HPC
environment can be met. The challenges originating from the intrinsic
runtime properties of the brain recommender however remain. The brain
requires a training phase during which internal models representing user
preferences are learned. During such training, the brain is unresponsive.
In the previous chapter we illustrated our live optimization approach
which handled new ratings in real-time. Our results showed however
that o�ine retraining yields the best quality improvement and should
preferably be run in the background as much as possible.

We therefore propose also a multi-brain strategy which entails start-
ing multiple brain jobs in parallel. One brain may be training, while
another (already trained) brain process remains available to respond
to user queries. Iteratively training either one of the brain processes,
keeps the brain as updated as possible to new user data without being
o�ine. Extending this approach to multiple parallel brain servers al-
lows to load balance user requests and thus increases the perceived user
responsiveness even further.

In conclusion, Fig. 7.2 illustrates the complete process �ow of the brain
recommender executing within the constraints of the available computing
back end. Note that the combined multi-job and multi-brain strategies
require a substantial amount of parallel running jobs, which maps per-

7.5 Mediating Middleware 195

TRAIN

TRAIN

END

TRAIN

TRAIN

END …

 TRAIN

TRAIN

END

 TRAIN

TRAIN

END …

 TRAIN

TRAIN

END

TRAIN

TRAIN

END

 TRAIN

TRAIN

END

 TRAIN

TRAIN

END

M
u

lt
i-

b
ra

in

M
u

lt
i-

jo
b

 s
tr

a
te

g
y

Single job maximum execution time

Time

Figure 7.2: The multi-job and multi-brain strategies illustrated in time. The
multi-brain strategy alternately trains brain processes to be as responsive as
possible to new user data (i.e., ratings). The multi-job strategy lets overlap
multiple jobs to make sure there is always an active brain process when a job
on the HPC infrastructure exceeds its maximum allowed execution time.

fectly on a HPC infrastructure but rather poorly on non-parallel hard-
ware.

7.5 Mediating Middleware

The middleware layer, where our webserver resides, links the visual front
end with the computing back end. All communication from front end to
back end is passing through the webserver. This indirect communication
architecture has many advantages including added control, security, and
improved data management. User interactions on the front end can be
�ltered and sanitized before sending them to the multiple back end cal-
culation servers. For example, when the same action is repeated multiple
times by a user in a short period of time (e.g., user constantly refreshing
her recommendation list), those actions can be easily aggregated into a
single request and the results can even be cached in the middleware to
prevent users from unnecessarily overloading the back end. Shielding the
front end from directly triggering back end actions also increases security
by not exposing the valuable hardware to possibly malignant users.

Fig. 7.3 depicts the middleware in more detail. An external application
programming interface (API) exposes brain recommender functionality
to the outside. The API directs requests to the request controller com-
ponent which are then directed to the HPC controller if necessary. The
middleware also provides data management and thus the request con-

196 Online Evaluation of Personalized Hybrid RecSys

Background

processes

User Data

Caching

Logging

API
Request

controller
HPC

Middleware

Figure 7.3: Amore detailed view of the middleware functionality. The middle-
ware connects requests from the front end to the back end, manages a database
and periodically runs background processes for e.g., the steering of the brain
processes in the HPC infrastructure.

troller has access to a local database which can be used for the storage
of user data (e.g., user ratings), caching and logging. By keeping track
of the training cycle of the brain servers in the back end, the middle-
ware is capable of predicting which user requests should be answered
from cache and which need to be transferred to the brain (e.g., after re-
training the brain, recommendation results could be di�erent). Through
such a caching strategy, requests to the brain back end can e�ectively be
reduced to the bare minimum.

Apart from exposing the functionality of the brain recommender, the
middleware also runs background processes. Those processes (imple-
mented as cronjobs on our linux-based webserver) e.g., checking the
IMDb pro�les of active users for new ratings and keeping the database
up to date. Another crucial background task is the steering of the brain
eco-system in the back end. The middleware keeps track of running
brain processes, initiates the training of brains and periodically starts
new brain jobs on the HPC to ensure the availability of active brain
processes. When a new brain process is started, user ratings from the
database are imported and complemented with ratings from the Movie-
Tweetings dataset to avoid cold-start symptoms for new users or unrated
items as much as possible.

7.6 Visual Front End 197

7.6 Visual Front End

Since the middleware exposes the brain functionality through an API,
there is no limitation as to what types of front end systems could be
attached. Using the API to construct an HTML-based website would
be just as easy as building e.g., a smartphone app. However, for our
MovieBrain front end, other aspects than mere implementation issues
should also be taken into account. The brain recommender system o�ers
movie recommendations, but this alone, may not su�ce to attract users
to the system. If the front end would be a stand alone website, users
would need to register, login, provide ratings and only after having con-
tributed a considerable amount of e�ort would they be able to actually
bene�t from the provided recommendation service.

We aim to optimally attract online users to our system by reducing
the required e�ort to bene�t from the service and integrating as much
as possible in users' personal work�ows. For that, a web browser plugin
is extremely well suited.

Browser plugins integrate seamlessly in people's everyday Internet ac-
tivity (i.e., browsing the web), they allow to inject custom code into ex-
isting websites and track users browsing behavior. We opted for a Google
Chrome extension, but a Firefox plugin would have suited equally well.
Our MovieBrain Chrome extension extends the IMDb website function-
ality by o�ering user customizable movie recommendations (IMDb cur-
rently only o�ers a limited and static recommendation list). The beauty
in this work�ow lies in the fact that for users interested in the MovieBrain
service, their ratings already available in IMDb can simply be re-used.
Furthermore IMDb is a widely used and popular web platform, so re-
quiring that users have an IMDb account should not be preventing user
adoption, on the contrary, MovieBrain may bene�t from increased user
trust through its association with the familiar IMDb platform.

Another advantage of a front end Chrome extension is improved scala-
bility. Since an extension is a self-contained �le hosted at the client side,
the impact on the webserver will be limited to HTTP calls to the API.

A Chrome extension may manifest itself in various forms3. Most visu-
ally, icons can be added in the browser toolbar or address bar triggering
certain popups or actions, but just as easy web code (mostly HTML
and JavaScript) can be injected in websites browsed by the user. The

3For more information visit https://developer.chrome.com/extensions/

overview.

198 Online Evaluation of Personalized Hybrid RecSys

combination of both o�ers a more than su�cient set of tools for the
construction of our MovieBrain front end.

Overall, the look and feel of the front end is based on the popular
Bootstrap4 framework and custom JavaScript code to make it as respon-
sive as possible and meet the current-day high-quality design standards
that Internet users have become accustomed to.

7.6.1 Login Made Easy

Our MovieBrain project integrates with the IMDb platform and so there
is a one-to-one mapping of MovieBrain users to IMDb users. Therefore
we can simply identify users with their IMDb userid, rather than requir-
ing them to come up with new (MovieBrain-) user credentials. With
reduced user e�ort in mind, the tedious step of providing user login and
password can even be avoided altogether by injecting some (client-side)
user-detecting code into the HTML source of web pages on the IMDb
domain. The MovieBrain Chrome extension installs a small icon in the
browser toolbar advertising the MovieBrain service to the user. When
users click the icon for the �rst time, a popup is shown asking users
to browse to (or refresh) an IMDb page after being logged in to IMDb.
By doing so, we are able to detect the IMDb userid and at the same
time authenticate the user without asking for credential data. The user
is noti�ed that its IMDb username has been detected successfully by
a small change in the appearance of the toolbar icon, and logging in
to the MovieBrain system is then literally as easy as clicking a button
(illustrated in Fig. 7.4).

7.6.2 Background Detection

As mentioned, a Chrome extension has the ability to inject web code
into browsed websites. This allows us to detect � and act on � some
interesting user actions. Other than detecting the IMDb username, the
MovieBrain front end detects two additional events. Firstly, the front
end detects when a user rates a new movie on IMDb (using the web-
based rating system). Detecting new ratings is interesting because the
middleware can be noti�ed of this event, triggering (in the background
processes) the scanning of the user's IMDb pro�le for the new ratings,
which can subsequently be inserted into the brain processes leading to

4http://getbootstrap.com

7.6 Visual Front End 199

Figure 7.4: Screenshot of the MovieBrain login form where the IMDb user-
name is automatically detected instead of troubling the user with typical
user/password forms.

an overall more responsive recommender system. The second detected
event is a change in the total ratings count of the user. Whenever a new
rating is detected, the total number of ratings (of the respective user) is
retrieved from IMDb and added as a badge indication to the MovieBrain
icon in the toolbar (Fig. 7.5). The badge indication is an easy way for
users to keep track of their number of ratings and may even serve as a
reminder to keep rating movies once in a while.

7.6.3 Getting Recommendations

After a user has clicked the login button, personalized movie recommen-
dations are shown (Fig. 7.6). New users will however be unfamiliar to
the brain until their user data is transferred and the brain retrained. Be-

Figure 7.5: Screenshot of the badge indication of the MovieBrain icon which
advertises the number of user ratings to stimulate active rating behavior.

200 Online Evaluation of Personalized Hybrid RecSys

Additional movie information popover

Action

links

Figure 7.6: Screenshot of the MovieBrain front end illustrating the visual-
ization of the recommendation results. By default only movie thumbnails and
titles are shown but when clicked a popover information panel reveals addi-
tional movie details.

cause of the multi-brain strategy, brain models are retrained constantly
and so the maximum time new users will have to wait for personal-
ized recommendations is the time it takes for one such training to com-
plete (about 10 minutes for our current brain con�guration). Before the
availability of their (personalized) recommendations, users are shown a
non-personalized list of popular movies to keep their attention. When
available, recommendations will be requested from the brain and there-
after served from cache (in the middleware) until further retraining or the
arrival of new data (i.e., new ratings or user settings) may have caused
changes.

For the visualization of the recommendation results we combined all
of our experience from research in previous chapters and experiments.
Users want visual and attractive user interfaces, but as we noted in
previous results, some users will want more information than others.
We therefore opted for a two-level visual design where movies are ini-

7.6 Visual Front End 201

tially represented by their movie poster thumbnails and titles. Clicking
a movie, triggers an additional popover information panel with more de-
tailed movie information and includes two action links: Hide and Open
IMDb. The `Hide' link hides the movie from the recommendation list
and noti�es the middleware to prevent it from showing up again in future
recommendation lists. Clicking the `Open IMDb' link opens the movie
information page on the IMDb website allowing users to read more in-
formation, extend their watchlists or rate the movie. By default we show
no more than 20 movies but more can be dynamically loaded by clicking
the `More' button at the bottom of the page (visible in Fig. 7.9).

7.6.4 System Transparency and User Control

The added value of the brain recommender system was customizability
in the sense that users can interact with settings of the recommender
which allows them to improve the recommendation quality according to
their own personal expectations. The front end supports user interaction
by providing a settings dialog window with sliders and control buttons
(Fig. 7.7). Changed settings are reported to the back end brain processes
using the middleware API causing the recommendations for the respec-
tive user to be recalculated in a matter of seconds (no slow retraining
needed).

MovieBrain currently integrates 4 individual recommendation algo-
rithms. For each of these algorithms a visual slider element allows to
tweak its importance in the recommendation calculation process. Next
to each slider a simpli�ed description of the recommendation algorithm
(i.e., in terms of its most de�ning feature) makes the settings more in-
terpretable for non-technical users. There is also an option to set the
settings to `Automatic' which allows the system to choose appropriate
settings for the user (using the optimization strategy detailed in previous
chapters).

In Chapter 3 (Section 3.3.2), we learned that users greatly appreci-
ate the ability to �lter movie recommendations on genre to more closely
match volatile contextual expectations; sometimes users just want a com-
edy instead of a highly interesting and sophisticated documentary. In
the MovieBrain front end, users can �lter genres by intuitively dragging
genre buttons to either an exclude or include area (Fig. 7.8). Excluding
a genre, causes all recommended items from that genre to be discarded
from the recommendation list. If genres are dragged onto the include
area, only recommended items containing at least all of these genres will

202 Online Evaluation of Personalized Hybrid RecSys

Interpretable algorithm descriptions

Automatic weight adjustment

Figure 7.7: Screenshot of the MovieBrain front end illustrating the settings
page which allows to modify the importance of individual algorithms. Simpli-
�ed algorithm descriptions allow users to understand the settings, and weights
can be set to automatic.

be displayed. This �ltering scheme enables users to model �ne-grained
preferences like `show me all recommended romantic comedies but ex-
clude animation movies'. Genres are �ltered in the middleware after the
recommendations are requested from the brain which eliminates unnec-
essary communication to the brain processes and speeds up the overall
system.

An overview of the general layout of the MovieBrain front end is shown
in Fig. 7.9. At the top of the recommendation visualization screen the
settings and genre �ltering screens can be triggered as modal HTML
forms.

7.7 Online Evaluation Results

The MovieBrain Chrome extension was made publicly available on the
Chrome web store5. As more users installed and used the extension, more
data was collected which could ultimately be used to evaluate the user
experience of the brain recommender in a very realistic usage scenario.

5https://chrome.google.com/webstore

7.7 Online Evaluation Results 203

Draggable genre buttons

Exclude and include area

Figure 7.8: Screenshot of the MovieBrain front end illustrating the genre
�ltering feature. Genre buttons can be dragged to an include or exclude area
which are subsequently �ltered in the middleware.

All requests to the middleware API were logged so that user interaction
with the front end and typical user behavioral patterns could potentially
be analyzed.

Since we wanted the logged data to be a good representative of re-
alistic user behavior, we tried to attract genuinely interested users and
avoided recruiting arti�cial test users as much as possible. Attracting
real users to an online service is however challenging. Simply publish-
ing the Chrome extension in the online store does not su�ce since there
are thousands of other extensions competing for attention. To stimu-
late real user adoption, we therefore created a complementary website6,
engaged social media channels and published blog posts on appropriate
online channels (e.g., reddit.com). At the time of analysis, a total of 70
users had installed the extension. In the following subsections we present

6http://www.themoviebrain.com

204 Online Evaluation of Personalized Hybrid RecSys

D

User interaction: Settings

User interaction: Genre filtering

Implicit feedback tracking

Figure 7.9: Screenshot of the MovieBrain front end illustrating the general
layout, user interaction options via the Settings and Genre �ltering and implicit
feedback tracking through the monitoring of the Hide, Open IMDb, and More

links.

their activity patterns as measured over 107 days. All data generated by
testing or administrative accounts has been removed.

7.7.1 Brain Recommender Con�guration

The deployment of the hybrid recommender con�guration in the
MovieBrain extension used the following settings:

• Dataset : MovieTweetings (latest data)

• Algorithms: MatrixFactorization, UBCF, MyLogPopular and
MyRecentMovies

• Computing nodes: 2

• Fold datasets: 3

• Train-test ratio: 6:4

• Optimization method : StochasticHillClimber (PyBrain)

7.7 Online Evaluation Results 205

For the MatrixFactorization algorithm, we used the MyMediaLite
framework with its default settings. The UBCF recommender is a typi-
cal user-based collaborative �ltering algorithm which �nds similar users
and bases its recommendations on their ratings. This recommendation
algorithm is also available in the MyMediaLite framework, but for perfor-
mance reasons we used our own implementation. The default MyMedi-
aLite version calculates all neighbors from all users before being able to
generate recommendations for one user. This process is not only slow and
ine�cient but also requires (for our dataset) more than 16GB of RAM
to keep all similarity values in memory and so could not be used on the
default computing nodes of our HPC infrastructure. We implemented
our own UBCF algorithm that integrated an intelligent caching approach
(see Section 4.5 in Chapter 4) which greatly reduced the required RAM
memory and increased the overall calculation speed of the algorithm.
The remaining MyLogPopular and MyRecentMovies algorithms are also
self-implemented algorithms which simply rank movies by either their
popularity or recentness.

7.7.2 Click Tracking

To gain insight into the resulting user satisfaction, speci�c user inter-
activity patterns can be analyzed. In total, 3 satisfaction indicators we
consider particularly interesting: clicking on either the More link, Hide
link, or the Open IMDb link in the front end. Each of these actions
can be regarded as an implicit indicator of user satisfaction e.g. a user
that wants to load more recommendations may be positively interested
in the system. Fig. 7.10 shows the number of clicks on the three available
action links per user.

All three �gures clearly show typical long tailed distributions; a few
users have a high number of clicks but most users close to none. When
considering theMore clicks, a signi�cant di�erence can be noted between
the highest number of clicks (almost 400) and the lowest (no clicks). It
seems that while some users really take the time to browse through
endless movie suggestions, most users don't process more than 20 rec-
ommendations (i.e., the maximum number of recommendations shown).
These users may simply be happy with their �rst 20 results, or on the
other hand may be so disappointed by the �rst results that they have
lost interest.

When we inspect clicks on the Open IMDb link however, we �nd that
the number of users that clicked the Open IMDb link at least once is

206 Online Evaluation of Personalized Hybrid RecSys

0 10 20 30 40 50 60 70

0
10

0
20

0
30

0

Click tracking: 'More' link

User

N
um

be
r

of
 c

lic
ks

0 10 20 30 40 50 60 70

0
20

40
60

80

Click tracking: 'Open IMDb' link

User
0 10 20 30 40 50 60 70

0
50

10
0

15
0

20
0

Click tracking: 'Hide' link

User

Figure 7.10: The number of clicks on the three action links: More (left),
Open IMDb (middle) and Hide (right) per user. Users on the X-axis are sorted
by number of clicks to improve visual interpretation.

greater than the number that clicked the More link and so data seems
to show that a lot of users are indeed happy with (or at least intrigued
by) their �rst 20 results.

One user has used the Hide feature almost 200 times. However, while
at �rst we considered hiding recommendations negative implicit feed-
back, it turned out that users tend to use the feature in another way.
Users that hide movie recommendations do not necessarily hate the
movie, they might just be bored by getting the same recommendation,
or maybe they already saw the movie but didn't rate it. One user wrote
the following feedback on a Reddit blog post about the MovieBrain ex-
tension:

�The settings and �lters are easily adjustable for when you're trying to
get recommendations based on speci�c criteria, and I personally love the
ability to hide selections, because it allows me to constantly be looking for
new titles to add to my giant `to watch' list.�

The interpretation of hiding a recommendation result may thus not
necessarily be negative since users might use the feature to maximize
their recommendations browsing experience.

7.7.3 User Activity

It would be interesting to know how frequent users use the MovieBrain
extension. For this purpose we analyzed user activity in relation to time.
In Fig. 7.11 we show for every user on the X-axis, the days they were
active on the extension. The users have been sorted chronologically in
the order of their �rst installation of the extension. We note that the

7.7 Online Evaluation Results 207

skewed shape of the graph is the result of various promotion campaigns
for the MovieBrain extension. The plot e.g., shows how users 20 to 50
all installed the extension in a short period of time, which was the e�ect
of promoting the extension on Reddit.

●

●●

●

●

●●

●

●

●

●

●

●
●

●
●

●●
●●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●
●●
●

●

●

●

●

●●

●

●●

●●

●●

●●●●

●
●

●●●●●●●
●●
●

●
●

●●●●

●

●●●

●●
●

●

●

●●●●
●
●

●

●

●

●●
●

●●

●
●

●●●●●

●

●●●●●●

●

●

●

●●●●

●

●

●

●

●

●

●
●

●●

●

●

●●●

●

●●

●

●

●●

●

●●
●

●

●

●

●●
●

●●

●

●●●●●

●

●

●

●

●

●

●

●●
●●

●●
●●
●

●

●

●

●●●
●●

●●

●●●

●●
●●●●●●

●●

●

0 10 20 30 40 50 60 70

0
20

40
60

80
10

0

Daily MovieBrain user activity

User (chronologically)

T
im

e
(d

ay
s

si
nc

e
la

un
ch

)

Figure 7.11: The daily MovieBrain user activity. For every user on the X-axis
we plot their active days on the Y-axis. Users are sorted chronologically by the
date they �rst installed the extension.

While 25 users have installed the extension and never used it again, we
can see how most users actually do keep using the extension over time.
Some users even keep actively using it up to 100 days after they installed
it. We can thus hypothesize that the system succeeds in presenting su�-
ciently di�erent results over time, or that it provides su�cient �exibility
to adapt to changing contexts and environments.

Fig. 7.12 depicts the user activity in more detail, split up in di�erent
action categories. For every user on the X-axis all of their activities as
logged by the API in the middleware are summed and displayed as a
stacked barplot.

A number of observations can be made. First, interaction patterns are
user-dependent and may di�er signi�cantly from one user to another.

208 Online Evaluation of Personalized Hybrid RecSys

Detailed MovieBrain user activity

User

A
ct

iv
ity

 fr
eq

ue
nc

y

0
20

0
40

0
60

0
80

0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69

Action link: more
Action link: hide movie
Action link: open IMDb
Reset settings
Edit settings
Edit genre filters
Get recommendations

Figure 7.12: A stacked barplot illustrating the number of activities for each
user as logged by the API in the middleware.

While some users have interacted with the extension over 200 times (one
user even more than 900 times), other users show very limited activ-
ity. Second, the most observed interaction is the `get recommendations'
action, which makes sense as it represents the primary objective of the
service. Most observed after that, are the click tracking actions, and
then the settings and �lter interactions. When we sum up all activities
over all users (Fig. 7.13), we �nd this con�rmed. Overall, 55% of all
observed interactions are recommendation requests, 33% represents click
tracking, and the remaining 12% of the activities are interactions with
the settings and �lters of the system.

7.7.4 API and System Stability

The stability of the system and API has been proven to be acceptable.
Over the course of more than 100 days the system remained stable and
available to its users. The only time the system was actually unavailable
was due to an unforeseen power outage in the data center that powers
the distributed brain processes. Users were made aware of the problem
by means of social media and an appropriate noti�cation message in the
extension itself.

We do note that although the system is scalable and was built for high
performance, the number of concurrent users was rather limited and so no

7.7 Online Evaluation Results 209

Get recommendations − 55%

Open IMDb page − 9%

Hide recommendations − 9% Load more recommendations − 15%

Change algorithm weights − 3%

Set genre filters − 8%

Automatic algorithm weights − 1%

User activities comparison

Figure 7.13: A comparison of the user activities captured during an analysis
of the MovieBrain Chrome extension involving 70 users.

additional scaling measures such as load balancing, or allocating more
calculation servers needed to be taken. Fig. 7.14 shows the measured
API activity over the course of the 107 days online evaluation. In the
�gure on the left we grouped API requests per 5 minutes which reveals
the detailed spikes in user activity during the evaluation period. The
maximum spike is about 120 requests per 5 minutes, which can still be
easily handled, even by our small webserver. In the �gure on the right
we show the same measurement, but with requests grouped per days.

7.7.5 Settings and Filters Interaction

The MovieBrain extension allows users to in�uence the recommendation
process by changing settings and applying �lters. These activities are
also logged by the API and thus can be analyzed to provide us insight
into typical user behavior. Fig. 7.15 shows how the genre �lters are used
by our users. Of the 70 users in total, about half of them actively used the
genre �lters feature and are shown on the X-axis. The Y-axis represents
the number of include or exclude �lters respectively with the positive and
negative bars. Include �lters are genres that the user wanted included
for all recommendation results. So including the genre `action' would
result in recommending only movies that have at least the action genre
contained in their metadata information. The exclude �lters allow to
model the opposite behavior, where all movies containing a given genre

210 Online Evaluation of Personalized Hybrid RecSys
0

20
40

60
80

10
0

12
0

Overview API calls

Time (grouped per 5 minutes)

N
um

be
r

of
 A

P
I r

eq
ue

st
s

0
20

0
40

0
60

0
80

0

Overview API calls per day

Time (grouped per day)

N
um

be
r

of
 A

P
I r

eq
ue

st
s

Figure 7.14: A detailed measurement of the API requests that were generated
by the MovieBrain extension since the launch of the service. The �gure on the
left shows the requests grouped per 5 minute, the �gure on the right shows the
same analysis grouped per day.

can be excluded from the recommendations.

The results in the plot show how users tend to use the exclude feature
more than the include. We hypothesize it is easier stating what we don't
like as opposed to isolating what we do like. Furthermore the exclude
�lters are less restrictive7 than the include �lters especially when multiple
�lters are combined. We note that the few users in the plot with a high
number of include �lters, are most likely experimenting or playing with
the �lters feature since combining that much include �lters will result in
almost no recommended movies. The top-3 genres that were included
are comedy, adventure and action, the top-3 genres that were excluded
are documentary, �lm-noir and music.

Apart from the genre �lters, users could also interact with settings
that allowed to con�gure the individual in�uence of 4 recommendation
algorithms. It is interesting to see how many users actually use this
feature, and how di�erent their manual settings are. In total 21 users
(i.e., 30%) have overridden the automatic settings. For all these users,
we show in Fig. 7.16 their selected manual settings for each of the 4
available algorithms which are values contained in the interval [0,100].
Note that the users were sorted according to their value on the Y-axis to

7Excluding a genre removes all recommended items from that genre, while includ-
ing a genre causes only items of that genre to be recommended.

7.7 Online Evaluation Results 211

Genre filters usage

User

N
um

be
r

of
 g

en
re

s
in

cl
ud

ed
 (

>
0)

 o
r

ex
cl

ud
ed

 (
<

0)

−
10

0
10

20

−5

−3
−2−2

−1−1−1

−5

0
−1

−7

−1
−2

−7

0

−3

−6

−2

−5

0 0
−1

0

−2

−13

−2

−6

0 0

−
10

0
10

20

0

3

0 0 0 0 0

21

2
1

0 0
1

6

1
0 0 0 0

1 1
0

7

1

13

1

20

1 1

Figure 7.15: Bar plots illustrating how users engage with the genre �lters
feature. For every user that has actively used the genre �lters, we show their
total number of included genres on the positive bars and the number of excluded
genres on the negative bars.

improve the clarity of the graph and therefore there is no correspondence
of users on the X-axis (e.g., user 20 in the MatrixFactorization results
plot may not be the same user 20 in the UBCF plot).

The most important observation that can be made from the settings
plot is that almost all values are di�erent for all users. So when users
are allowed to con�gure their own settings, they will be di�erent, which
again supports our striving for user-speci�c approaches in recommender
systems. The values for each algorithm range almost linearly between 0
and 100. This means that no single algorithm was selected by all users
as `the best', but rather every user showed a di�erent appreciation for
di�erent algorithms.

212 Online Evaluation of Personalized Hybrid RecSys

5 10 15 20

Settings MatrixFactorization

User

V
al

ue
 (

%
)

0
10

30
50

70
90

5 10 15 20

Settings UBCF

User

V
al

ue
 (

%
)

0
10

30
50

70
90

5 10 15 20

Settings MyLogPopular

User

V
al

ue
 (

%
)

0
10

30
50

70
90

5 10 15 20

Settings MyRecentMovies

User

V
al

ue
 (

%
)

0
10

30
50

70
90

Figure 7.16: The individual manual settings that 21 users have set for 4
di�erent recommendation algorithms. Note that to simplify each graph, the
users on the X-axis have been sorted according to their value on the Y-axis
and so they should not be compared over multiple plots.

So �lters and settings are used by respectively 50% and 30% of all
users of the MovieBrain extension, which is not overwhelmingly much.
We however analyzed the di�erence between users that interacted with
either the setting or �lter features and users that did not, and found an
interesting pattern. Fig. 7.17 shows again the user activity in relation to
time, but we have split up the user activity of the di�erent types of users
(in the �gure referred to as interactive and non-interactive users). The
interactive users represent the users that have at least once used either
the setting or genre �lters (red squares in the �gure). Interestingly, we
found that the interactive users generate over 80% of all activity in the

7.7 Online Evaluation Results 213

●●

●

●

●

●

●

●●

●
●

●●●●●

●● ●● ●● ●●●● ● ●●

●

●

●●

●

●●
●

●

●

●

●●

●

●
●

●

●

●●
● ●●

●●
●●●

●●

●

10 20 30 40 50 60 70

0
20

40
60

80
10

0
User Activity: interactive vs non−interactive

User (chronologically)

T
im

e
(d

ay
s

si
nc

e
la

un
ch

)

●
Interactive user
Non−interactive user

Figure 7.17: Daily MovieBrain activity where we distinguish between users
who use the setting or �lter features (interactive users) and users who do not
(non-interactive users). The interactive users generated over 80% of all ob-
served activity.

MovieBrain extension. We found the activities of getting recommenda-
tions and updating settings or �lters to be highly correlated (Pearson
correlation values of 0.97 and 0.94, both p < 0.05) and interactive users
tend to use the MovieBrain service more often (as the �gure shows). We
must be careful not to confuse correlation with causality, but still the
link between customer retention and recommendation customizability is
a very interesting observation.

7.7.6 Subjective User Feedback

We conclude the results section of our MovieBrain analysis by discussing
some of the more subjective user feedback we collected during the online
evaluation experiment. While we logged a great number of implicit feed-
back indicators, users were also able to explicitly communicate their
opinions and ideas through a number of online channels. The extension

214 Online Evaluation of Personalized Hybrid RecSys

itself allowed feedback by means of an HTML feedback form, the exten-
sion could be reviewed on the Chrome web store, discussed on blogs and
interacted with on social media (Facebook and Twitter).

Almost all explicit feedback was overall positive. Users liked the novel
interaction features, were intrigued by the results and generally enjoyed
the system. An example of a review provided by a user on the Chrome
web store is displayed in Fig. 7.18.

Figure 7.18: A review provided by a user of the MovieBrain extension on
the Chrome web store. Apart from some minor bug reporting, explicit user
feedback was overall positive.

The only non-positive feedback that we did receive, concerned mostly
minor bugs in the system such as already rated movies still appearing in
the recommendations. All of which were easily �xed in a few consecutive
updates8 of the extension. One problem we found however to be quite
harmful for the perceived recommendation quality of the system was the
`Bieber problem'.

7.7.6.1 The Bieber Problem

We de�ne the Bieber problem as the problem of avoiding the recom-
mendation of items that are extremely `popular' (in terms of attracting
attention) but at the same time considered really bad by many. Rec-
ommending such an item may have disastrous e�ects on the perceived
recommendation quality in general. In a sense, the Bieber problem could
be considered a modern version of the Napoleon Dynamite problem [153]
where the extreme bipolarity of users' opinions (they either love it or hate
it) makes items di�cult to recommend.

8The Google Chrome web browser has an auto-updating policy which made it very
easy to push updates of the MovieBrain extension to users.

7.8 About Generalizability 215

Our dataset included a movie titled �Justin Bieber's Believe� which
was rated by a signi�cant amount of people, but in most cases the rating
was extremely low9. The di�culty for recommender systems is that the
number of ratings for a movie usually correlates positively with its public
opinion or popularity, and is therefore often integrated as a feature in
recommendation calculations. We had to manually adjust the calculation
model of our popularity-based recommendation algorithm after a number
of users explicitly complained seeing the Justin Bieber movie in their
recommendation results.

7.8 About Generalizability

We used the MovieBrain extension to expose our �nished and working
recommender system as a live online experiment. We note however that
much of this work is in fact generalizable. In the introduction we de�ned
a set of properties speci�c to our brain recommender, but most of these
properties are very commonly found in typical (academic) recommender
system implementations.

Infrastructure-wise we assumed a worst-case scenario (no budget, and
no dedicated hardware) and detailed some strategies to overcome the lim-
itations of using a shared and time-limited HPC infrastructure to power
our online experiment. In many cases however, researchers will have
access to dedicated hardware (or e.g., rented Amazon EC2 instances)
which greatly simpli�es the infrastructural challenges (a multi-job strat-
egy would not be needed).

We focused on the movie domain because of the attractiveness of in-
tegrating the IMDb platform in combination with the availability of the
MovieTweetings dataset. Previously however (see Section 2.7 in Chap-
ter 2), we generalized the procedure for mining other domain rating
datasets from Twitter (e.g., books, music, etc.). Thus, while we focused
on the item domain of movies and IMDb, a similar approach could be
taken towards the item domain of books and the Goodreads website, or
the music domain and Pandora, or even the shopping domain and the
Amazon website could be targeted as such. We have made the code of
the MovieBrain Chrome extension publicly available10 to inspire fellow
academic researchers.

9The corresponding IMDb score for this movie is 1.5/10 while it is rated by over
15K users.

10https://github.com/sidooms/MovieBrain

216 Online Evaluation of Personalized Hybrid RecSys

7.9 Conclusion

We started this chapter at the point where most recommender systems
research stops: the availability of a working recommender system. As
the necessity of evaluating such systems by actual users (rather than
o�ine calculated accuracy metrics) becomes more and more apparent,
we show that, even with limited resources, our recommender system
can be exposed to a potentially large online user base by integrating an
existing website, dataset and web browser.

We introduced a basic 3-tier architecture for supporting our online
evaluation experiment. In the back end a shared high-performance com-
puting (HPC) infrastructure was found a suitable hardware environment
provided some parallel strategies were implemented. A webserver in the
middleware added security, data management and �ne-grained control
over the calculation process running in the back end. At the front end,
we discussed the merits of a browser plugin and detailed our MovieBrain
Chrome extension which integrated the popular IMDb platform and was
powered by the MovieTweetings dataset.

We presented results collected from both an implicit and explicit per-
spective from 70 genuine users over 107 days. We provided a detailed
analysis of how the extension was actually used and re�ected on how
user behavior at times showed to be signi�cantly divergent. Observed
user interaction with the customizability features such as genre �lters
and settings indicated how involved users are more active, more prone
to use the service more often and ultimately succeed in taking control
over their recommendation experience.

Chapter 8

Conclusions

8.1 Summary of Chapters

It all started with the information overload problem. The exponentially
increasing rate at which content is generated everyday makes it extremely
di�cult for consumers to �nd what they want. Recommender systems'
primary goal is to bridge the ever expanding gap between relevant con-
tent and users by automating content �ltering through personalized rec-
ommendation approaches. Eagerly combating information overload for
many years, has led to hundreds of recommendation algorithms being
developed and thus the recommendation challenge has now shifted to-
wards selecting the optimal strategy for a given situation, context and
user. In this work we aimed to investigate approaches towards automat-
ically combining multiple recommendation algorithms into personalized
hybrid systems �ne-tuned speci�cally for such scenarios. Each of the
previous chapters o�ered a speci�c building block towards achieving this
goal.

Chapter 2 focused on the collection of user data, which provided the
fuel to power recommendation engines. Through a number of practical
use cases and experiments on an existing website, we showed the value
of user feedback and how its di�erent types present di�erent properties
and challenges. Implicit feedback is very easy to collect, but contains
less intrinsic information compared to explicitly provided feedback such
as ratings. The latter is however much harder to obtain from users.
We discussed the shortcomings of existing public rating datasets and
presented our approach towards building our own public movie rating
dataset MovieTweetings which we mined from IMDb ratings posted on

218 Conclusions

Twitter. The MovieTweetings dataset was benchmarked with a number
of known recommendation algorithms and compared with another public
movie rating dataset MovieLens. MovieTweetings showed surprisingly
similar features, but was found to be more sparse due to it being a natural
dataset and included more recent and current-day popular movies. We
successfully generalized our data collection approach of mining ratings
from Twitter to other domains such as books, music or video clips and
even found those datasets to be overlapping, which may prove extremely
valuable for future cross-domain recommender systems research.

Chapter 3 discussed the human-recommender interaction process
from two perspectives: feedback mechanisms and recommendation pre-
sentation. Above all, users turned out to have often orthogonal opinions
about the ideal interaction process. Some users want very active in-
volvement, rate a lot of items and like to express their preferences as
�ne-grained as possible. Other users however, will not interact with the
system at all, and expect a more passive, `lean back ' experience. The
well-known 5-star rating system came out best in multiple independent
user studies, but ultimately each speci�c scenario will require its own cus-
tomization to properly align both system requirements and the required
cognitive e�ort from users. The duality of users also turned out to be im-
portant for user interface design. When recommendations are presented,
users will want more or less information and may need proper explana-
tions to go along with the recommended items. We built an interactive
recommendation front end that integrated well-known recommendation
algorithms and datasets, and allowed us to experiment with strategies
to integrate user control and system transparency into a typical hybrid
recommendation process. This front end was made publicly available.

Chapter 4 was all about performance. Complex recommendation
algorithms typically require lots of computation power especially when
processing large datasets or deployed in hybrid con�gurations. To reduce
the computational burden of the recommendation process we analyzed
its ability to map processing tasks on distributed and parallel hardware.
While most distributed recommender systems rely on the commonly ac-
cepted MapReduce paradigm, we avoided such technological dependen-
cies. Using a �le-based approach, we split up a complex hybrid recom-
mendation algorithm in multiple phases and restructured input and out-
put data for each phase to optimize its distributed computing capability.
Some e�ciency was however lost because of the synchronization overhead
after each phase and mid-computation disk access requirements. We then
turned to a data parallelism paradigm to reduce the overhead of multiple

8.1 Summary of Chapters 219

phases and prevent load imbalance issues. We showed how a content-
based recommendation algorithm could be turned into an embarrassingly
parallel problem. By tweaking certain parameters of the distribution
process we were able to optimally align processing tasks with underlying
computation hardware which allowed us to surpass the parallel e�ciency
of current state-of-the-art distributed recommender systems. We �nally
focused on caching strategies for neighborhood-based recommendation
algorithms and showed how storing only a limited amount of similarity
values can signi�cantly speed up the recommendation process in case of
limited RAM scenarios.

Chapter 5 tackled the problem of automatically combining multiple
recommendation algorithms into hybrid systems. We experimented with
strategies for user-speci�c optimization (unique hybrid con�guration per
user) that also allowed a certain level of user control in the calculation
process. We compared the hybrid recommendation approaches of hybrid
switching and weighted hybridization and reported results on experiments
that included up to 10 individual recommendation algorithms. Data
showed how the switching approach was more sensitive and outperformed
by the weighting approach. The latter proved more stable which allowed
new algorithms to be included without fundamentally disrupting the
recommendation experience of users.

Chapter 6 aimed to assess and improve the ability to get the o�ine
optimization system (detailed in Chapter 5) out of the lab and meet
online, real-world requirements as scalability, responsiveness, user control
and system transparency. We introduced a client-server architecture and
showed how it reduced the scalability of the complete system to that of its
worst scalable component. The hybrid recommender system was made
responsive by disconnecting a fast, real-time optimization phase from a
slow training phase which could run in the background. The proposed
architecture and its properties were experimentally validated in a number
of experiments simulating e.g., weak and strong scaling scenarios.

Chapter 7 �nally integrated all the pieces of our PhD puzzle in an
online evaluation experiment. We built a self-learning and personalized
hybrid recommender system and exposed it to actual users in the form
of a Google Chrome extension called MovieBrain. We presented a 3-
tier architecture where a computing back end was linked with a front
end by means of a middleware layer which added data management,
security, control and caching features. The back end was designed to
run on a high-performance computing environment to guarantee optimal

220 Conclusions

performance and scalability. We reported some speci�c measures to deal
with the limitations of a shared computing environment and detailed how
to implement our live optimization and background retraining approach
as multiple processing jobs. The Chrome extension in the front end
visualized movie recommendation results and allowed users to in�uence
the (back-end) calculation process using dynamic settings and interaction
features. User interaction data of 70 users was collected and analyzed
over a period of 107 days. The users that engaged the control features,
turned out to be more active and more prone to use the MovieBrain
recommendation service over longer periods of time. When we analyzed
the manual provided settings of the active users, user behavior turned
out to be signi�cantly di�erent on an individual per-user basis. Both
through implicit interaction and by means of explicit feedback, users
indicated their enthusiasm towards our system and fully embraced the
enhanced movie recommendation experience that was provided.

8.2 Final Conclusions

Our �nal conclusion is threefold. First, we conclude that we success-
fully managed to design, build and test a recommender system that was
able to automatically compose itself into hybrid con�gurations tailored
speci�cally to individual users.

Second, we underline the importance of a user-speci�c recommendation
approach. While the base assumption of recommendation algorithms is
usually that `users are all the same' and they can be grouped together
in clusters of similar neighbors, throughout this work on multiple occa-
sions we found users to be signi�cantly di�erent. Feedback experiments
showed how there were active and passive users, users that want complex
user interfaces and users that like simple interfaces. Our optimization ex-
periments showed how optimal hybrid con�gurations per user also turned
out to be unique, regardless of whether they were generated by the sys-
tem or set manually by the users themselves. In the end every user is
unique and therefore requires a unique approach.

Third, in order to keep striving towards an improved recommendation
experience for users it is important that we shift focus from marginally
improving mathematical-based recommendation algorithms towards in-
creasing active user involvement in the recommendation process. While
recommender systems were designed to outsource the manual content
�ltering process to algorithmic intelligence, ironically we believe it to be

8.3 Summary of Contributions 221

manual user involvement that will help push the current limit of recom-
mender systems which is known as the magic barrier.

8.3 Summary of Contributions

During the course of this work, we have published 5 international journal
publications, 8 conference or workshop papers, 1 demo and 1 newsletter
(all �rst author). For a detailed overview of publications, we refer to
the `List of Publications' in this work. Accompanying presentations and
posters can be found on slideshare1. We furthermore present a short-list
of contributions that we have made publicly available on Github2 and es-
teem to be of value for researchers both in and outside the recommender
systems domain.

1. MovieTweetings (Chapter 2, Section 2.4)
A movie rating dataset composed out of IMDb ratings that are
posted on Twitter. The dataset has the same format as the popular
MovieLens dataset to allow easy integration into existing projects.
An extended version of this dataset has been used for the RecSys
Challenge 2014 3 which had over 200 registered participants.

2. Twitter-ratings (Chapter 2, Section 2.7)
A collection of scripts to download and extract rating datasets from
Twitter. Any ratings that are posted by means of a social shar-
ing feature on a website in a pre-formatted way can be targeted.
Examples for Goodreads (books), Pandora (music) and YouTube
(video clips) are included.

3. Recsys-frontend (Chapter 3, Section 3.3.3)
A con�gurable HTML-based front end for movie recommender sys-
tems. Movie recommendation results can be visualized and the
MyMediaLite software library is integrated to allow experimenta-
tion with a list of well-known recommendation algorithms both
individually or in a hybrid context.

4. DistributedCB (Chapter 4, Section 4.4)
A parallel and distributed content-based recommendation algo-
rithm. Data is pre-processed to optimize the distribution of work

1http://www.slideshare.net/simondooms/presentations
2https://github.com/sidooms
3http://2014.recsyschallenge.com

222 Conclusions

and reduce any load imbalance issues to a minimum. The content-
based recommendation task is then reduced to an embarrassingly
parallel problem that scales across multiple computing nodes and
their parallel processing cores.

5. MovieBrain (Chapter 7, Section 7.6)
A Google Chrome extension that integrates the IMDb website and
provides customizable movie recommendations. Dynamic sliders
and interactive drag and drop genre �lters allow to in�uence the
recommendation calculation process. Recommendation results are
visualized in a 2-level thumbnail-based design and user interaction
is logged by means of click tracking.

8.4 Glimpses of Future Work

Since research is a never ending quest for improvement, there are nu-
merous areas where future work may focus on. We brie�y touch some of
the, in our opinion, most interesting directions.

The MovieBrain recommender system as designed in this work could
be extended into a �exible recommendation service. The API in the
middleware could be made publicly available and the back end moved
to a more public hosting infrastructure such as Amazon. That way, the
recommendation service could be easily integrated with a whole range
of public movie information systems that may bene�t from dynamic and
interactive movie recommendations such as Kodi media center software
(formerly known as XBMC), the Rotten Tomatoes website, smartphones
apps, etc.

One of our main conclusions was that every user is unique and may
therefore require a unique and personalized approach towards recommen-
dation. Future work could focus on automatically personalizing parts of
the recommendation process, such as feedback collection, recommenda-
tion calculation, and recommendation visualization. It may be possible
to detect, and therefore dynamically adjust, what user interfaces work
best for which users, or what feedback systems work best in certain con-
texts.

Our hybrid recommender system was able to automatically optimize
hybrid con�guration parameters and allowed users to manually update
and change the settings. An interesting next step may be to suggest
settings to users. Based on the collective data of many users, it may be

8.4 Glimpses of Future Work 223

possible to extrapolate trends and for example detect that younger users
will prefer more recent movies over movie classics they may have never
seen.

Last, but certainly not least, we mention the highly promising cross-
domain recommendation opportunity made possible by our work on min-
ing rating datasets from Twitter. While not further explored in this work,
we have shown data to be available that supports cross-domain recom-
mendation approaches. Users that like certain genres of movies may also
have a similar taste in music, or maybe not. Future research could fo-
cus on user preferences and more speci�cally the transferability of those
preferences to other item domains.

Appendix

Appendix 227

Pseudocode Algorithms

Here we present the pseudocode for some of the algorithms that were
discussed in this work. For each algorithm the relevant chapter and
section are detailed.

Algorithm 2 Complete CB Recommendation (Chap 4, Sec 4.4.2)

1: for all items do
2: cached_item_similarities← {empty}
3: for all users do
4: if user has not rated item then
5: calculate Rec(user, item)

6:

7: //Calculates the recommendation value for a (user, item) pair
8: procedure Rec(user, item)
9: vote← 0
10: weights← 0
11: for all items ir rated by user do
12: weight← Simil(item, ir)
13: vote← vote+ (weight× rating for ir)
14: weights← weights+ weight

15: return (vote / weights)

16:

17: //Calculates the similarity value of a (item1, item2) pair
18: procedure Simil(item1, item2)
19: if similarity in cached_item_similarities then
20: return similarity
21: else
22: top ← The number of metadata item attributes that

item1 and item2 have in common (intersection)
23: bottom ← The total number of metadata item attributes of

item1 and item2 (union)
24: similarity ← top / bottom
25: Add similarity to cached_item_similarities
26: return similarity

228 Appendix

Algorithm 3 UBCF Recommendation Calculation (Chap 4, Sec 4.5.1)

1: for all users do
2: for all items do
3: calculate Rec(user, item)

4:

5: //Calculates the recommendation value for a (user, item) pair
6: procedure Rec(user, item)
7: vote← 0
8: weights← 0
9: neighbors← Neighbors_who_rated_item(user, item)
10: for all neighbors do
11: simil← neighbor_similarity
12: rating ← neighbor_rating
13: vote← vote+ (simil × rating)
14: weights← weights+ simil

15: return (vote / weights)

16:

17: procedure Neighbors_who_rated_item(user, item)
18: for all neighbors who rated item do
19: neighbor_similarity ← Pearson(user, neighbor)

20: return The 20 most similar neighbors together with their
original rating for item (neighbor_rating)

Appendix 229

Algorithm 4 Best Switching Selection Strategy (Chap 5, Sec 5.5)

1: default_algo← Determine_default_algorithm()
2: for all users do
3: algo_selection_list← {empty}
4: for all algorithms do
5: RMSE, variance← evaluate_algorithm(user, algorithm)
6: if variance <V ARIANCE_THRESHOLD then
7: algo_selection_list ← algo_selection_list +

(RMSE, algorithm)

8: if length of algo_selection_list >2 then
9: user_algorithm← select algorithm with lowest RMSE
10: else
11: user_algorithm← default_algo

12:

13: procedure Determine_default_algorithm
14: all_algo_values← {empty}
15: for all algorithms do
16: algo_values← {empty}
17: for all users do
18: RMSE ← evaluate_algorithm(user, algorithm)
19: algo_values← algo_values+ (algorithm, RMSE)

20: RMSE ← average of algo_values
21: all_algo_values← all_algo_values+(algorithm, RMSE)

22: algorithm← select best from all_algo_values
23: return algorithm

24:

25: procedure Evaluate_algorithm(user, algorithm)
26: RMSE_list← {empty}
27: for all subtest_sets do
28: RMSE ← calculate RMSE of actual ratings in subtest_set

and predicted ratings by algorithm
29: RMSE_list← RMSE_list+RMSE

30: RMSE ← average of RMSE_list
31: variance← variance of RMSE_list
32: return RMSE, variance

230 Appendix

Algorithm 5 Weighted Average Strategy (Chap 5, Sec 5.6)

1: weights_vectors ← random weight vectors, and all individual
weight vectors

2: weights_vectors← select the best from weights_vectors
3: iterations← 0
4: current_RMSE ← Evaluate_weights_vector(weights_vector)
5: //Start worse than current_RMSE
6: previous_RMSE ← current_RMSE + 1
7: while (iterations <MAX_ITERATIONS) and

(previous_RMSE >current_RMSE) do
8: previous_RMSE ← current_RMSE
9: weight_vector ← Optimize_weights_vector(weights_vector)
10: current_RMSE ← Evaluate_weights_vector(weights_vector)
11: iterations← iterations+ 1

12:

13: procedure Optimize_weights_vector(weights_vector)
14: old_RMSE ← Evaluate_weights_vector(weights_vector)
15: for all weights in weights_vector do
16: new_RMSE, new_weight← upwards binary search for im-

proved weight
17: if new_RMSE <old_RMSE then
18: return weights_vector with new_weight

19: new_RMSE, new_weight ← downwards binary search for
improved weight

20: if new_RMSE <old_RMSE then
21: return weights_vector with new_weight

22: return weights_vector

23:

24: procedure Evaluate_weights_vector(weights_vector)
25: RMSE_list← {empty}
26: for all subtest_sets do
27: RMSE ← calculate RMSE of actual ratings in subtest_set

and predicted ratings by calculating the weighted average score with
weights_vector

28: RMSE_list← RMSE_list+RMSE

29: RMSE ← average of RMSE_list
30: variance← variance of RMSE_list
31: if variance >V ARIANCE_THRESHOLD then
32: return worst case RMSE, so this weights_vector will be

discarded
33: else
34: return RMSE, variance

Appendix 231

Algorithm 6 Weight Vector Evaluation (Chap 6, Sec 6.5.1)

1: //Calculates the �tness i.e., RMSE value for a weight vector
2: RMSE ← 0
3: count← 0
4: for all ratings in the test fold dataset of the user do
5: prediction← Predict(user, item, weights_vector)
6: error ← prediction− rating
7: RMSE ← RMSE + (error × error)
8: count← counts+ 1

9: RMSE ← SQRT(RMSE / count)
10: return RMSE
11:

12: //Calculates the weighted prediction using the weight_vector
13: procedure Predict(user, item, weights_vector)
14: numerator ← 0
15: denominator ← 0
16: for all algorithms do
17: weight← get weight from weights_vector
18: prediction← algorithm.get_recommendation(user, item)
19: numerator ← prediction× weight
20: denominator ← denominator + weight

21: weighted_prediction_value← numerator/denominator
22: return weighted_prediction_value

References

[1] Goldberg D, Nichols D, Oki BM, Terry D. Using Collaborative
Filtering to Weave an Information Tapestry. Commun ACM. 1992;
35(12):61�70.

[2] Resnick P, Iacovou N, Suchak M, Bergstrom P, Riedl J. GroupLens:
An Open Architecture for Collaborative Filtering of Netnews. In:
Proceedings of the 1994 ACM Conference on Computer Supported
Cooperative Work, CSCW '94. New York, NY, USA: ACM. 1994;
pp. 175�186.

[3] Lops P, de Gemmis M, Semeraro G. Content-based Recommender
Systems: State of the Art and Trends. In: Recommender Systems
Handbook, pp. 73�105. 2011;.

[4] Suksom N, Buranarach M, Thein YM, Supnithi T, Netisopakul
P. A knowledge�based framework for development of personalized
food recommender system. In: The Fifth International Conference
on Knowledge, Information and Creativity Support Systems. 2010;
pp. 25�27.

[5] Tung HW, Soo VW. A personalized restaurant recommender agent
for mobile e-service. In: e-Technology, e-Commerce and e-Service,
2004. EEE'04. 2004 IEEE International Conference on. IEEE.
2004; pp. 259�262.

[6] Berkovsky S, Freyne J. Group-based recipe recommendations:
analysis of data aggregation strategies. In: Proceedings of the
fourth ACM conference on Recommender systems. ACM. 2010; pp.
111�118.

[7] Mooney RJ, Roy L. Content-based book recommending using
learning for text categorization. In: Proceedings of the �fth ACM
conference on Digital libraries. ACM. 2000; pp. 195�204.

234 References

[8] Gorgoglione M, Panniello U, Tuzhilin A. The e�ect of context-
aware recommendations on customer purchasing behavior and
trust. In: Proceedings of the �fth ACM conference on Recommender
systems. ACM. 2011; pp. 85�92.

[9] Koenigstein N, Dror G, Koren Y. Yahoo! music recommendations:
modeling music ratings with temporal dynamics and item taxon-
omy. In: Proceedings of the �fth ACM conference on Recommender
systems. ACM. 2011; pp. 165�172.

[10] Jameson A. More than the sum of its members: challenges for
group recommender systems. In: Proceedings of the working con-
ference on Advanced visual interfaces. ACM. 2004; pp. 48�54.

[11] Lu HY, Lu J, Al-Hassan M. A Framework for Delivering Person-
alized E-Government Tourism Services. 2010;.

[12] Castagnos S, Jones N, Pu P. Eye-tracking product recommenders'
usage. In: Proceedings of the fourth ACM conference on Recom-
mender systems. ACM. 2010; pp. 29�36.

[13] Symeonidis P, Nanopoulos A, Manolopoulos Y. MoviExplain: a
recommender system with explanations. In: Proceedings of the
third ACM conference on Recommender systems. ACM. 2009; pp.
317�320.

[14] Lee DH. Pittcult: trust-based cultural event recommender. In:
Proceedings of the 2008 ACM conference on Recommender systems.
ACM. 2008; pp. 311�314.

[15] Klamma R, Cuong PM, Cao Y. You never walk alone: Recom-
mending academic events based on social network analysis. In:
Complex Sciences, pp. 657�670. Springer. 2009;.

[16] Gipp B, Beel J, Hentschel C. Scienstein: A research paper recom-
mender system. In: International Conference on Emerging Trends
in Computing. 2009; pp. 309�315.

[17] Tayebi MA, Jamali M, Ester M, Glässer U, Frank R. Crimewalker:
a recommendation model for suspect investigation. In: Proceedings
of the �fth ACM conference on Recommender systems. ACM. 2011;
pp. 173�180.

References 235

[18] Paparrizos I, Cambazoglu BB, Gionis A. Machine learned job rec-
ommendation. In: Proceedings of the �fth ACM Conference on
Recommender Systems. ACM. 2011; pp. 325�328.

[19] Wu X, Zhang Y, Guo J, Li J. Web video recommendation and
long tail discovering. In: Multimedia and Expo, 2008 IEEE Inter-
national Conference on. IEEE. 2008; pp. 369�372.

[20] Yu Z, Zhou X. TV3P: an adaptive assistant for personalized TV.
Consumer Electronics, IEEE Transactions on. 2004;50(1):393�399.

[21] Sales T, Sales L, Pereira M, Almeida H, Perkusich A, Gorgônio K,
de Sales M. Towards the upnp-up: Enabling user pro�le to support
customized services in upnp networks. In: Mobile Ubiquitous Com-
puting, Systems, Services and Technologies, 2008. UBICOMM'08.
The Second International Conference on. IEEE. 2008; pp. 206�211.

[22] Liu J, Dolan P, Pedersen ER. Personalized news recommendation
based on click behavior. In: Proceedings of the 15th international
conference on Intelligent user interfaces. ACM. 2010; pp. 31�40.

[23] Schafer JB, Konstan J, Riedl J. Recommender systems in e-
commerce. In: Proceedings of the 1st ACM conference on Elec-
tronic commerce. ACM. 1999; pp. 158�166.

[24] Said A, Tikk D, Shi Y, Larson M, Stumpf K, Cremonesi P. Recom-
mender systems evaluation: A 3D benchmark. In: ACM RecSys
2012 Workshop on Recommendation Utility Evaluation: Beyond
RMSE, Dublin, Ireland. 2012; pp. 21�23.

[25] Herlocker JL, Konstan JA, Terveen LG, Riedl JT. Evaluating
collaborative �ltering recommender systems. ACM Transactions
on Information Systems (TOIS). 2004;22(1):5�53.

[26] Shani G. Tutorial on Evaluating Recommender Systems. In: Pro-
ceedings of the Fourth ACM Conference on Recommender Systems,
RecSys '10. New York, NY, USA: ACM. 2010; pp. 1�1.

[27] Shani G, Gunawardana A. Evaluating recommendation systems.
In: Recommender systems handbook, pp. 257�297. Springer. 2011;.

[28] Hayes C, Cunningham P. An on-line evaluation framework for
recommender systems. Tech. rep., Trinity College Dublin, Depart-
ment of Computer Science. 2002.

236 References

[29] Amatriain X, Pujol JM, Tintarev N, Oliver N. Rate it again: in-
creasing recommendation accuracy by user re-rating. In: Proceed-
ings of the third ACM conference on Recommender systems. ACM.
2009; pp. 173�180.

[30] Amatriain X, Pujol JM, Oliver N. I like it... i like it not: Evaluating
user ratings noise in recommender systems. In: User Modeling,
Adaptation, and Personalization, pp. 247�258. Springer. 2009;.

[31] Kelly D, Teevan J. Implicit feedback for inferring user preference:
a bibliography. In: ACM SIGIR Forum, vol. 37. ACM. 2003; pp.
18�28.

[32] Hu Y, Koren Y, Volinsky C. Collaborative �ltering for implicit
feedback datasets. In: Data Mining, 2008. ICDM'08. Eighth IEEE
International Conference on. IEEE. 2008; pp. 263�272.

[33] Jawaheer G, Szomszor M, Kostkova P. Comparison of implicit and
explicit feedback from an online music recommendation service.
In: HetRec '10: Proceedings of the 1st International Workshop on
Information Heterogeneity and Fusion in Recommender Systems.
New York, NY, USA: ACM. 2010; pp. 47�51.

[34] Gantner Z, Rendle S, Freudenthaler C, Schmidt-Thieme L. My-
MediaLite: A free recommender system library. In: Proceedings of
the �fth ACM conference on Recommender systems. ACM. 2011;
pp. 305�308.

[35] Ekstrand MD, Ludwig M, Konstan JA, Riedl JT. Rethinking the
recommender research ecosystem: reproducibility, openness, and
LensKit. In: Proceedings of the �fth ACM conference on Recom-
mender systems. ACM. 2011; pp. 133�140.

[36] Said A, Tikk D, Cremonesi P. Benchmarking. In: Recommendation
Systems in Software Engineering, edited by Robillard MP, Maalej
W, Walker RJ, Zimmermann T, pp. 275�300. Springer Berlin Hei-
delberg. 2014;.

[37] Burke R. Hybrid Recommender Systems: Survey and Experiments.
User Modeling and User-Adapted Interaction. 2002;12:331�370.

[38] Adomavicius G, Tuzhilin A. Toward the next generation of rec-
ommender systems: A survey of the state-of-the-art and possible

References 237

extensions. Knowledge and Data Engineering, IEEE Transactions
on. 2005;17(6):734�749.

[39] Bellogín A. Performance prediction and evaluation in Recom-
mender Systems: An Information Retrieval perspective. Ph.D.
thesis, Universidad Autonoma de Madrid. 2012.

[40] Jannach D, Zanker M, Felfernig A, Friedrich G. Recommender
systems: an introduction. Cambridge University Press. 2010.

[41] Ekstrand M, Riedl J. When recommenders fail: predicting recom-
mender failure for algorithm selection and combination. In: Pro-
ceedings of the sixth ACM conference on Recommender systems.
ACM. 2012; pp. 233�236.

[42] Kille B, Albayrak S. Modeling Di�culty in Recommender Sys-
tems. In: Workshop on Recommendation Utility Evaluation: Be-
yond RMSE (RUE 2011). 2012; p. 30.

[43] Srinivas KK, Gutta S, Scha�er D, Martino J, Zimmerman J. A
Multi-Agent TV Recommender. In: proceedings of the UM 2001
workshop `Personalization in Future TV'. 2001; .

[44] Herlocker JL, Konstan JA, Borchers A, Riedl J. An algorithmic
framework for performing collaborative �ltering. In: Proceedings of
the 22nd annual international ACM SIGIR conference on Research
and development in information retrieval. ACM. 1999; pp. 230�237.

[45] Bobadilla J, Serradilla F, Bernal J. A new collaborative �lter-
ing metric that improves the behavior of recommender systems.
Knowledge-Based Systems. 2010;23(6):520�528.

[46] Peralta V. Extraction and Integration of MovieLens and IMDb
Data. Tech. rep., Technical Report, Laboratoire PRiSM, Université
de Versailles, France. 2007.

[47] Töscher A, Jahrer M, Bell RM. The bigchaos solution to the net�ix
grand prize. Net�ix prize documentation. 2009;.

[48] Piotte M, Chabbert M. The pragmatic theory solution to the net-
�ix grand prize. Net�ix prize documentation. 2009;.

[49] Koren Y. The bellkor solution to the net�ix grand prize. Net�ix
prize documentation. 2009;.

238 References

[50] de Castro PA, de França FO, Ferreira HM, Von Zuben FJ. Apply-
ing biclustering to perform collaborative �ltering. In: Intelligent
Systems Design and Applications, 2007. ISDA 2007. Seventh In-
ternational Conference on. IEEE. 2007; pp. 421�426.

[51] Hurrell E, Smeaton AF. A conversational collaborative �ltering
approach to recommendation. In: Advances in Visual Informatics,
pp. 13�24. Springer. 2013;.

[52] Said A, Fields B, Jain BJ, Albayrak S. User-centric evaluation of a
k-furthest neighbor collaborative �ltering recommender algorithm.
In: Proceedings of the 2013 conference on Computer supported co-
operative work. ACM. 2013; pp. 1399�1408.

[53] Dooms S, De Pessemier T, Martens L. A user-centric evaluation
of recommender algorithms for an event recommendation system.
In: RecSys 2011 Workshop on Human Decision Making in Recom-
mender Systems (Decisions@ RecSys' 11) and User-Centric Evalu-
ation of Recommender Systems and Their Interfaces-2 (UCERSTI
2) a�liated with the 5th ACM Conference on Recommender Sys-
tems (RecSys 2011). Ghent University, Department of Information
technology. 2011; pp. 67�73.

[54] Yi J, Nasukawa T, Bunescu R, Niblack W. Sentiment analyzer:
Extracting sentiments about a given topic using natural language
processing techniques. In: Data Mining, 2003. ICDM 2003. Third
IEEE International Conference on. IEEE. 2003; pp. 427�434.

[55] Morstatter F, Pfe�er J, Liu H, Carley KM. Is the Sample Good
Enough? Comparing Data from Twitter's Streaming API with
Twitter's Firehose. In: ICWSM. 2013; .

[56] Gena C, Brogi R, Cena F, Vernero F. The impact of rating scales
on user's rating behavior. In: User Modeling, Adaption and Per-
sonalization, pp. 123�134. Springer. 2011;.

[57] Bellogín A, de Vries A, He J. Artist popularity: do web and social
music services agree. In: Int. Conf. on Weblogs and Social Media
(ICWSM), Boston. 2013; .

[58] Baeza-Yates RA, Ribeiro-Neto BA. Modern Information Retrieval
- the concepts and technology behind search, Second edition. Pear-
son Education Ltd., Harlow, England. 2011.

References 239

[59] Marlin BM, Zemel RS. Collaborative prediction and ranking with
non-random missing data. In: Proceedings of the third ACM con-
ference on Recommender systems. ACM. 2009; pp. 5�12.

[60] Cremonesi P, Koren Y, Turrin R. Performance of Recommender
Algorithms on Top-n Recommendation Tasks. In: Proceedings of
the Fourth ACM Conference on Recommender Systems, RecSys
'10. New York, NY, USA: ACM. 2010; pp. 39�46.

[61] Koren Y. Factorization meets the neighborhood: a multifaceted
collaborative �ltering model. In: Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery and
data mining. ACM. 2008; pp. 426�434.

[62] Campos PG, Díez F, Cantador I. Time-Aware Recommender Sys-
tems: A Comprehensive Survey and Analysis of Existing Evalua-
tion Protocols. User Modeling and User-adapted Interaction. 2014;
.

[63] McNee SM, Riedl J, Konstan JA. Being Accurate is Not Enough:
How Accuracy Metrics Have Hurt Recommender Systems. In: CHI
'06 Extended Abstracts on Human Factors in Computing Systems,
CHI EA '06. New York, NY, USA: ACM. 2006; pp. 1097�1101.

[64] Bellogín A, Castells P, Cantador I. Precision-oriented evaluation
of recommender systems: an algorithmic comparison. In: RecSys.
2011; pp. 333�336.

[65] Koren Y, Bell RM, Volinsky C. Matrix Factorization Techniques
for Recommender Systems. IEEE Computer. 2009;42(8):30�37.

[66] Cremonesi P, Garzotto F, Negro S, Papadopoulos A, Turrin R.
Comparative Evaluation of Recommender System Quality. In: CHI
'11 Extended Abstracts on Human Factors in Computing Systems,
CHI EA '11. New York, NY, USA: ACM. 2011; pp. 1927�1932.

[67] De Pessemier T, Dooms S, Deryckere T, Martens L. Time Depen-
dency of Data Quality for Collaborative Filtering Algorithms. In:
Proceedings of the Fourth ACM Conference on Recommender Sys-
tems, RecSys '10. New York, NY, USA: ACM. 2010; pp. 281�284.

[68] Campos PG, Díez F, Sánchez-Montañés M. Towards a More Re-
alistic Evaluation: Testing the Ability to Predict Future Tastes

240 References

of Matrix Factorization-based Recommenders. In: Proceedings of
the Fifth ACM Conference on Recommender Systems, RecSys '11.
New York, NY, USA: ACM. 2011; pp. 309�312.

[69] Said A, Wetzker R, Umbrath W, Hennig L. A hybrid PLSA ap-
proach for warmer cold start in folksonomy recommendation. In:
Proceedings of the RecSys'09 Workshop on Recommender Systems
& The Social Web. CEUR-WS Vol. 532. 2009; pp. 87�90.

[70] Li B, Yang Q, Xue X. Can Movies and Books Collaborate? Cross-
Domain Collaborative Filtering for Sparsity Reduction. In: IJCAI,
vol. 9. 2009; pp. 2052�2057.

[71] Pan W, Xiang EW, Liu NN, Yang Q. Transfer Learning in Collab-
orative Filtering for Sparsity Reduction. In: AAAI, vol. 10. 2010;
pp. 230�235.

[72] Fernández-Tobías I, Cantador I, Kaminskas M, Ricci F. Cross-
domain recommender systems: A survey of the state of the art. In:
Proc. 2nd Spanish conf. on Information Retrieval. CERI. 2012; .

[73] Goldberg K, Roeder T, Gupta D, Perkins C. Eigentaste: A con-
stant time collaborative �ltering algorithm. Information Retrieval.
2001;4(2):133�151.

[74] Cosley D, Lam SK, Albert I, Konstan JA, Riedl J. Is seeing believ-
ing?: how recommender system interfaces a�ect users' opinions. In:
Proceedings of the SIGCHI conference on Human factors in com-
puting systems. ACM. 2003; pp. 585�592.

[75] Hill W, Stead L, Rosenstein M, Furnas G. Recommending and
evaluating choices in a virtual community of use. In: Proceedings
of the SIGCHI conference on Human factors in computing systems.
ACM Press/Addison-Wesley Publishing Co. 1995; pp. 194�201.

[76] Preston CC, Colman AM. Optimal number of response categories
in rating scales: reliability, validity, discriminating power, and re-
spondent preferences. Acta psychologica. 2000;104(1):1�15.

[77] Harper FM, Li X, Chen Y, Konstan JA. An economic model of
user rating in an online recommender system. In: User Modeling
2005, pp. 307�316. Springer. 2005;.

References 241

[78] Sparling EI, Sen S. Rating: how di�cult is it? In: Proceedings of
the �fth ACM conference on Recommender systems. ACM. 2011;
pp. 149�156.

[79] Bostandjiev S, O'Donovan J, Höllerer T. TasteWeights: a visual
interactive hybrid recommender system. In: Proceedings of the
sixth ACM conference on Recommender systems. ACM. 2012; pp.
35�42.

[80] Gretarsson B, O'Donovan J, Bostandjiev S, Hall C, Höllerer T.
Smallworlds: Visualizing social recommendations. In: Computer
Graphics Forum, vol. 29. Wiley Online Library. 2010; pp. 833�842.

[81] Herlocker JL, Konstan JA, Riedl J. Explaining collaborative �lter-
ing recommendations. In: Proceedings of the 2000 ACM conference
on Computer supported cooperative work. ACM. 2000; pp. 241�250.

[82] Bilgic M, Mooney RJ. Explaining recommendations: Satisfaction
vs. promotion. In: Beyond Personalization Workshop, IUI, vol. 5.
2005; .

[83] Tintarev N. Explanations of recommendations. In: Proceedings of
the 2007 ACM conference on Recommender systems. ACM. 2007;
pp. 203�206.

[84] Chen Y, Pu P. CoFeel: Using Emotions for Social Interac-
tion in Group Recommender Systems. In: First International
Workshop on Recommendation Technologies for Lifestyle Change
(LIFESTYLE 2012). 2012; p. 48.

[85] Devendorf L, O'Donovan J, Höllerer T. TopicLens: An Interactive
Recommender System based on Topical and Social Connections.
In: First International Workshop on Recommendation Technolo-
gies for Lifestyle Change (LIFESTYLE 2012). 2012; p. 41.

[86] Vlachos M, Svonava D. Graph Embeddings for Movie Visualiza-
tion and Recommendation. In: First International Workshop on
Recommendation Technologies for Lifestyle Change (LIFESTYLE
2012). 2012; p. 56.

[87] O'Donovan J, Smyth B, Gretarsson B, Bostandjiev S, Höllerer T.
PeerChooser: visual interactive recommendation. In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Sys-
tems. ACM. 2008; pp. 1085�1088.

242 References

[88] Chen L, Pu P. Critiquing-based recommenders: survey and emerg-
ing trends. User Modeling and User-Adapted Interaction. 2012;
22(1-2):125�150.

[89] Dooms S, De Pessemier T, Verslype D, Nelis J, De Meulenaere J,
Van den Broeck W, Martens L, Develder C. Omus: an optimized
multimedia service for the home environment. Multimedia Tools
and Applications. 2013;pp. 1�31.

[90] McCarthy JF, Anagnost TD. MusicFX: an arbiter of group pref-
erences for computer supported collaborative workouts. In: Proc.
ACM Conf. Computer supported cooperative work, CSCW '98. New
York, NY, USA: ACM. 1998; pp. 363�372.

[91] Keckler S, Olukotun K, Hofstee H. Multicore processors and sys-
tems. Springer. 2009.

[92] Sarwar B, Karypis G, Konstan J, Riedl J. Application of dimen-
sionality reduction in recommender system-a case study. Tech.
rep., DTIC Document. 2000.

[93] Sarwar B, Karypis G, Konstan J, Riedl J. Incremental singular
value decomposition algorithms for highly scalable recommender
systems. In: 5th Int. Conf. Computer and Information Science.
Citeseer. 2002; pp. 27�28.

[94] Takács G, Pilászy I, Németh B, Tikk D. Scalable collaborative
�ltering approaches for large recommender systems. J of Machine
Learning Research. 2009;10:623�656.

[95] Anand SS, Mobasher B. Intelligent techniques for web personal-
ization. In: Proc. Int. Conf. Intelligent Techniques for Web Per-
sonalization. Springer-Verlag. 2003; pp. 1�36.

[96] Herlocker J, Konstan JA, Riedl J. An empirical analysis of design
choices in neighborhood-based collaborative �ltering algorithms.
Information retrieval. 2002;5(4):287�310.

[97] Hager G, Wellein G. Introduction to High Performance Computing
for Scientists and Engineers. Boca Raton, FL, USA: CRC Press,
Inc., 1st ed. 2010.

[98] Han P, Xie B, Yang F, Shen R. A scalable P2P recommender
system based on distributed collaborative �ltering. Expert Systems
with Applications. 2004;27(2):203 � 210.

References 243

[99] Xie B, Han P, Yang F, Shen RM, Zeng HJ, Chen Z. DCFLA: A
distributed collaborative-�ltering neighbor-locating algorithm. Inf
Sci. 2007;177(6):1349�1363.

[100] Lämmel R. Google's MapReduce programming model-Revisited.
Science of Computer Programming. 2008;70(1):1�30.

[101] Dean J, Ghemawat S. MapReduce: simpli�ed data processing on
large clusters. Communications of the ACM. 2008;51(1):107�113.

[102] Zhao Z, Shang M. User-based collaborative-�ltering recommenda-
tion algorithms on hadoop. In: 3rd Int. Conf. Knowledge Discovery
and Data Mining (WKDD'10). IEEE. 2010; pp. 478�481.

[103] Schelter S, Boden C, Markl V. Scalable similarity-based neigh-
borhood methods with MapReduce. In: Proc. 6th ACM Conf. on
Recommender Systems. ACM. 2012; pp. 163�170.

[104] Jiang J, Lu J, Zhang G, Long G. Scaling-up item-based collab-
orative �ltering recommendation algorithm based on hadoop. In:
Services (SERVICES), 2011 IEEE World Congress on. IEEE. 2011;
pp. 490�497.

[105] Lemire D, McGrath S. Implementing a Rating-Based Item-to-
Item Recommender System in PHP/SQL. Tech. Rep. D-01, On-
delette.com. 2005.

[106] Woerndl W, Schueller C, Wojtech R. A Hybrid Recommender Sys-
tem for Context-aware Recommendations of Mobile Applications.
In: Proceedings of the 2007 IEEE 23rd International Conference
on Data Engineering Workshop. 2007; pp. 871�878.

[107] Davidson J, Liebald B, Liu J, Nandy P, Van Vleet T, Gargi U,
Gupta S, He Y, Lambert M, Livingston B, Sampath D. The
YouTube video recommendation system. In: Proceedings of the
fourth ACM conference on Recommender systems, RecSys '10.
2010; pp. 293�296.

[108] Cornelis C, Guo X, Lu J, Zhang G. A fuzzy relational approach to
event recommendation. In: Proceedings of the Indian International
Conference on Arti�cial Intelligence. 2005; .

[109] Amatriain X, Jaimes A, Oliver N, Pujol JM. Data Mining Methods
for Recommender Systems. In: Recommender Systems Handbook,
pp. 39�71. 2011;.

244 References

[110] Cornelis C, Lu J, Guo X, Zhang G. One-and-only item recommen-
dation with fuzzy logic techniques. Information Sciences. 2007;
177(22):4906�4921.

[111] Das A, Datar M, Garg A, Rajaram S. Google news personalization:
scalable online collaborative �ltering. In: Proc. 16th Int. Conf.
World Wide Web. ACM. 2007; pp. 271�280.

[112] De Pessemier T, Vanhecke K, Dooms S, Martens L. Content-based
recommendation algorithms on the Hadoop mapreduce framework.
In: Proc. 7th Int. Conf. Web Information Systems and Technolo-
gies. Ghent University, Department of Information technology.
2011; .

[113] Hochbaum DS, Shmoys DB. Using dual approximation algorithms
for scheduling problems theoretical and practical results. J ACM.
1987;34(1):144�162.

[114] Bilolikar V, Jain K, Sharma M. An Annealed Genetic Algorithm
for Multi Mode Resource Constrained Project Scheduling Problem.
Int J of Computer Applications. 2012;60(1):36�42.

[115] Gomez-Gasquet P, Segura-Andres R, Franco D, Andres C. A
makespan minimization in an m-stage �ow shop lot streaming with
sequence dependent setup times: MILP model and experimental
approach. In: 6th Int. Conf. Industrial Engineering and Industrial
Management. 2012; pp. 332�339.

[116] Liu M, Zheng F, Wang S, Xu Y. Approximation algorithms for
parallel machine scheduling with linear deterioration. Theoretical
Computer Science. 2012;.

[117] Ahmadizar F. A new ant colony algorithm for makespan minimiza-
tion in permutation �ow shops. Computers & Industrial Engineer-
ing. 2012;.

[118] Amdahl G. Validity of the single processor approach to achieving
large scale computing capabilities. In: Proc. spring joint computer
Conf. ACM. 1967; pp. 483�485.

[119] Qasim U. Active Caching For Recommender Systems. Ph.D. thesis,
New Jersey Institute of Technology, New Jersey. 2011.

References 245

[120] Qasim U, Oria V, fang Brook Wu Y, Houle ME, Özsu MT. A
partial-order based active cache for recommender systems. In:
Proc. ACM Conf. Recommender systems (RecSys 2009). 2009; pp.
209�212.

[121] Seth S, Kaiser G. Towards using Cached Data Mining for Large
Scale Recommender Systems. In: Proc. Conf. Data Engineering
and Internet Technology (DEIT 2011). 2011; .

[122] Lemire D, Maclachlan A. Slope one predictors for online rating-
based collaborative �ltering. Society for Industrial Mathematics.
2005;5:471�480.

[123] Adomavicius G, Tuzhilin A. Context-aware recommender systems.
In: Recommender systems handbook, pp. 217�253. Springer. 2011;.

[124] Hussein T, Linder T, Gaulke W, Ziegler J. Hybreed: A software
framework for developing context-aware hybrid recommender sys-
tems. User Modeling and User-Adapted Interaction. 2012;pp. 1�54.

[125] Song Y, Zhang L, Giles CL. Automatic tag recommendation algo-
rithms for social recommender systems. ACM Transactions on the
Web (TWEB). 2011;5(1):4.

[126] Aksel F, Birturk A. An Adaptive Hybrid Recommender System
that Learns Domain Dynamics. In: International Workshop on
Handling Concept Drift in Adaptive Information Systems: Impor-
tance, Challenges and Solutions (HaCDAIS-2010) at the European
Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases. 2010; p. 49.

[127] Balabanovi¢ M, Shoham Y. Fab: content-based, collaborative rec-
ommendation. Communications of the ACM. 1997;40(3):66�72.

[128] Pazzani MJ. A framework for collaborative, content-based and
demographic �ltering. Arti�cial Intelligence Review. 1999;13(5-
6):393�408.

[129] Han EHS, Karypis G. Feature-based recommendation system. In:
Proceedings of the 14th ACM international conference on Informa-
tion and knowledge management. ACM. 2005; pp. 446�452.

[130] Salehi M, Pourzaferani M, Razavi SA. Hybrid attribute-based rec-
ommender system for learning material using genetic algorithm

246 References

and a multidimensional information model. Egyptian Informatics
Journal. 2013;.

[131] Polikar R. Ensemble based systems in decision making. Circuits
and Systems Magazine, IEEE. 2006;6(3):21�45.

[132] Sill J, Takács G, Mackey L, Lin D. Feature-Weighted Linear Stack-
ing. CoRR. 2009;abs/0911.0460.

[133] Wolpert DH. Stacked generalization. Neural networks. 1992;
5(2):241�259.

[134] Bao X, Bergman L, Thompson R. Stacking recommendation en-
gines with additional meta-features. In: Proceedings of the third
ACM conference on Recommender systems. ACM. 2009; pp. 109�
116.

[135] Lommatzsch A, Kille B, Kim JW, Albayrak S. An adaptive hy-
brid movie recommender based on semantic data. In: Proceedings
of the 10th Conference on Open Research Areas in Information Re-
trieval. Le centre de hautes etudes internationales d'informatique
documentaire. 2013; pp. 217�218.

[136] Bellogín A. Predicting performance in recommender systems. In:
Proceedings of the �fth ACM conference on Recommender systems.
ACM. 2011; pp. 371�374.

[137] Ricci F, Rokach L, Shapira B, Kantor PB, eds. Recommender
Systems Handbook. Springer. 2011.

[138] Pu P, Chen L, Hu R. A user-centric evaluation framework for
recommender systems. In: Proc. 5th ACM conf. recommender sys-
tems. ACM. 2011; pp. 157�164.

[139] Knijnenburg BP, Willemsen MC, Gantner Z, Soncu H, Newell C.
Explaining the user experience of recommender systems. User
Modeling and User-Adapted Interaction. 2012;22(4-5):441�504.

[140] Xia B, Tan Z. Tighter bounds of the First Fit algorithm for
the bin-packing problem. Discrete Applied Mathematics. 2010;
158(15):1668�1675.

[141] Tintarev N, Mastho� J. Designing and evaluating explanations for
recommender systems. In: Recommender Systems Handbook, pp.
479�510. Springer. 2011;.

References 247

[142] Schafer JB, Konstan JA, Riedl J. Meta-recommendation systems:
user-controlled integration of diverse recommendations. In: Pro-
ceedings of the eleventh international conference on Information
and knowledge management. ACM. 2002; pp. 43�51.

[143] Brand M. Fast Online SVD Revisions for Lightweight Recom-
mender Systems. In: SDM. SIAM. 2003; .

[144] Rendle S, Schmidt-Thieme L. Online-updating regularized kernel
matrix factorization models for large-scale recommender systems.
In: Proceedings of the 2008 ACM conference on Recommender sys-
tems. ACM. 2008; pp. 251�258.

[145] Chandramouli B, Levandoski JJ, Eldawy A, Mokbel MF. Stream-
Rec: a real-time recommender system. In: Proceedings of the 2011
ACM SIGMOD International Conference on Management of data.
ACM. 2011; pp. 1243�1246.

[146] Tintarev N, Mastho� J. E�ective explanations of recommenda-
tions: user-centered design. In: Proceedings of the 2007 ACM
conference on Recommender systems. ACM. 2007; pp. 153�156.

[147] Nikulin V, Huang TH, Ng SK, Rathnayake SI, McLachlan GJ. A
very fast algorithm for matrix factorization. Statistics & Probability
Letters. 2011;81(7):773�782.

[148] Jahrer M, Töscher A, Legenstein R. Combining predictions for ac-
curate recommender systems. In: Proceedings of the 16th ACM
SIGKDD international conference on Knowledge discovery and
data mining. ACM. 2010; pp. 693�702.

[149] Moore AW. Cross-validation for detecting and preventing over-
�tting. School of Computer Science Carneigie Mellon University.
2001;.

[150] Duda RO, Hart PE, Stork DG. Pattern classi�cation. John Wiley
& Sons. 2012.

[151] Witten IH, Frank E. Data Mining: Practical machine learning
tools and techniques. Morgan Kaufmann. 2005.

[152] Schein AI, Popescul A, Ungar LH, Pennock DM. Methods and
metrics for cold-start recommendations. In: Proceedings of the
25th annual international ACM SIGIR conference on Research and
development in information retrieval. ACM. 2002; pp. 253�260.

248 References

[153] Thompson C. If you liked this, you're sure to love that. The New
York Times. 2008;21.

