Diversity of zoonotic enterohelical Helicobacter species and detection of a putative novel gastric Helicobacter species in wild and wild-born captive chimpanzees and western lowland gorillas

Bram Flahou a,*, David Modrý b,c,d, Kateřina Pomajbíková b,c, Klára J. Petrželková b,c,e,f, Annemieke Smet a, Richard Ducatelle a, Frank Pasmans a, Rui M. Sá b,g, Angelique Todd h, Chie Hashimoto i, Martin Mulama j, John Kiang k, Mirko Rossi l, Freddy Haesebrouck a

a Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salsburylaan 133, 9820 Merelbeke, Belgium
b Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Brno, Palackeho 1–3, 612 42 Brno, Czech Republic
c Biology Center, Institute of Parasitology, Academy of Sciences of the Czech Republic, Branišovská 31, CZ-370 05 České Budějovice, Czech Republic
d CEITEC, Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences, Hudcova 70, 621 00 Brno, Czech Republic
e Department of Mammal Ecology, Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Kvetna 8, 603 65 Brno, Czech Republic
f Liberec Zoo, Masarykova 1347/31, 460 01 Liberec, Czech Republic
g Centre for Research in Anthropology, ISCTE-Instituto Universitário de Lisboa, Av. Forças Armadas, 1649-026 Lisboa, Portugal
h WWF, Dzanga Sangha Protected Areas, Bangui, Central African Republic
i Primate Research Institute, Kyoto University, Kanrin, Inuyama, Aichi 484-8506, Japan
j Sweetwaters Chimpanzee Sanctuary, Ol Pejeta Conservancy, 10400 Nanyuki, Kenya
k Limbe Wildlife Centre, Limbe, Cameroon
l Department of Food Health and Environmental Hygiene, Faculty of Veterinary Medicine, University of Helsinki, PO Box 66 (Agnes Sjöberginkatu 2), FI-00014 Helsinki, Finland

ARTICLE INFO

Article history:
Received 25 February 2014
Received in revised form 26 August 2014
Accepted 30 August 2014

Keywords:
Enterohelical Helicobacter species
Gastric Helicobacter species
Helicobacter cinaedi
'Candidatus Helcobacter homininae'
Chimpanzee
Gorilla

ABSTRACT

A number of Helicobacter species cause gastrointestinal or hepatic disease in humans, including H. pylori, gastric non-H. pylori helicobacters from animal origin and enterohelical Helicobacter species. Little is known on the presence of Helicobacter species in great apes, our closest living relatives and potential reservoirs of microorganisms that might emerge in humans. The aim of the present study was to investigate the presence of gastric and enterohelical Helicobacter species in African chimpanzees and gorillas. Fresh fecal samples were collected from wild endangered chimpanzees and critically endangered western lowland gorillas from different African National Parks, as well as wild-born captive animals from primate sanctuaries. Intact Helicobacter bacteria were demonstrated in feces by fluorescence in situ hybridization. Screening using a Helicobacter genus-specific PCR revealed the presence of Helicobacter DNA in the majority of animals in all groups. Cloning and sequencing of 16S rRNA gene fragments revealed a high homology to sequences from various zoonotic enterohelical Helicobacter species, including H. cinaedi...
and H. canadensis. A number of gorillas and chimpanzees also tested positive using PCR assays designed to amplify part of the ureAB gene cluster and the hsp60 gene of gastric helicobacters. Phylogenetic analysis revealed the presence of a putative novel zoonotic gastric Helicobacter taxon/species. For this species, we propose the name ‘Candidatus Helicobacter homininae’, pending isolation and further genetic characterization. The presence of several Helicobacter species not only implies a possible health threat for these endangered great apes, but also a possible zoonotic transmission of gastric and enterohepatic helicobacters from these primate reservoirs to humans.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A number of Helicobacter species have been reported or suggested to cause gastrointestinal or hepatic disease in humans, including H. pylori, gastric non-H. pylori helicobacters from animal origin (comprising H. suis, H. felis, H. bizzozeronii, H. salomonis and H. heilmannii), H. hepaticus, H. pullorum, H. cinaedi and H. fennelliae (Kusters et al., 2006; Haebesbrouck et al., 2009; Karagin et al., 2010; Hansen et al., 2011). Apart from humans, members of the genus Helicobacter have also been detected in a wide variety of other animal species, both domesticated and non-domesticated (Fox et al., 2007; Haebesbrouck et al., 2009; Schrenzel et al., 2010; Lertpiriyapong et al., 2014). These include various non-human primates, such as rhesus macaques, mandrills and crab-eating macaques (O’Rourke et al., 2004; Schrenzel et al., 2010). However, little is known on the presence of Helicobacter species, both gastric and enterohepatic, in great apes. One report has described the presence of Helicobacter DNA in feces of a limited number of western gorillas, bonobos and orangutans in zoological gardens (Schrenzel et al., 2010). In another study, attempts were made to amplify a 1200 bp Helicobacter 16S rRNA gene fragment from gastric biopsies from a number of captive wild-born chimpanzees, however without success (Moodley et al., 2012). Therefore, no evidence of gastric colonization by Helicobacter bacteria nor a possible co-evolution of Helicobacter species in our closest relatives has been demonstrated so far.

According to the IUCN list Red List of Threatened Species, chimpanzees (Pan troglodytes) and western lowland gorillas (Gorilla gorilla gorilla) are classified as endangered and critically endangered, respectively. Disease transmission from humans to these endangered species is of great concern, because human infectious pathogens have the potential to be transmitted to primates, in particular those animals habituated to human presence (Ferber, 2000). Great apes have been habituated to human presence for the purposes of ecotourism and research; during the habituation process animals become accustomed to human presence and are thought eventually to accept a human observer as a neutral element in their environment.

On the other hand, great apes may serve as a reservoir for the transmission of a wide range of pathogenic microorganisms to humans, especially since close relationships with humans have been established, for instance in primate sanctuaries or during the habituation process of great apes. Identification of such infectious agents in these animals is an important step for predicting and preventing emerging infectious diseases in humans (Levecke et al., 2010; Menezes-Costa et al., 2013; Sak et al., 2013).

The aim of the present study was to investigate the presence of gastric and enterohepatic Helicobacter species in wild western lowland gorillas and chimpanzees as well as wild-born animals housed in African sanctuaries.

2. Methods

2.1. Animals and sampling

Fresh fecal samples from wild great apes were collected during follow of the animals or from/under their night nests. For animals in captivity within sanctuaries, fecal samples were collected by staff during routine cleaning. All fecal samples were immediately preserved in 96% ethanol for transport and until further processing. Different groups of animals were studied: (1) unhabituated (n = 10) as well as human-habituated (n = 10) western lowland gorillas (G. gorilla gorilla) from the Dzanga-NDoki National Park, Central African Republic; (2) unhabituated western chimpanzees (P. troglodytes verus) from Cantanhez National Park, Guinea Bissau (n = 19) as well as eastern chimpanzees habituated to human presence (P. troglodytes schweinfurthii) from Kalinzu Forest Reserve in Uganda (n = 20); (3) wild-born captive chimpanzees (n = 14) and gorillas (n = 15) from Limbe Wildlife Centre, Cameroon as well as wild-born captive chimpanzees (n = 15) from the Sweetwaters Chimpanzee sanctuary, Kenya. Animals from sanctuaries were in daily contact with their keepers. Habituated apes were followed on a daily basis by researchers, local trackers and assistants, and observers aim to maintain a minimum distance of 7 m or more. Unhabituated groups can be accidentally encountered by the habituation or research team, although there were no systematic attempts to locate them. All fecal samples were collected noninvasively and did not cause any observable distress to the animals.

2.2. DNA extraction, PCR assays, cloning and sequencing

Prior to DNA extraction, evaporation of ethanol and homogenization of samples were performed as described by Sak et al. (2013). Subsequently, DNA extraction from fecal samples was performed using the QIAamp DNA Stool Mini Kit (Qiagen, Hilden, Germany) or the PSP Spin Stool DNA Kit (STRATEC Molecular GmbH, Berlin, Germany) and DNA extracts were eluted and frozen at −20 °C in elution buffer.
buffers provided by the manufacturer. Isolated DNA was used for several PCR assays, of which amplification conditions can be found in Table 1.

Samples were screened for the presence of *Helicobacter* DNA using a previously described *Helicobacter* genus PCR, amplifying ~389 bp of the 16S rRNA gene (Choi et al., 2001). PCR products from all *Helicobacter*-positive samples were cloned using a TOPO® TA Cloning® Kit with PCR® 2.1-TOPO® Vector and TOP10 E. coli, according to the manufacturer’s guidelines (Life Technologies, Carlsbad, CA, USA). For each successful cloning reaction, 5–10 clones were analyzed using universal M13 primers. Amplicons of the expected size were purified using a MSB Spin PCRapace kit (STRATEC Molecular GmbH). Purified PCR products were sequenced using the BigDye Terminator sequencing kit (Applied Biosystems, Foster City, CA, USA) and sequences were determined on an automatic DNA sequencer (ABI Prism 3100 Genetic analyzer, Applied Biosystems). The electropherograms were exported to Kodon software (Applied Maths, Sint-Martens-Latem, Belgium), which was used for curating DNA sequences, including the removal of primer sequences.

For a number of samples from chimpanzees, a PCR was performed targeting part of the *hsp60* gene (~179 bp, depending on the species involved), in an attempt to confirm the putative detection of *H. cinaedi/fennelliae*, which were by far the most prevalent species in all groups when analyzing 16S rRNA gene sequences in this study. The obtained PCR fragments were purified and sequenced as described above.

In order to detect DNA from gastric *Helicobacter* spp., all samples were subjected to a PCR assay designed to amplify part of the *urease* A and B genes of gastric helicobacters (~250 bp, depending on the *Helicobacter* species involved). Samples positive for the presence of gastric *Helicobacter* DNA were also subjected to a PCR assay designed to amplify part (~198 bp) of the *hsp60* gene from gastric helicobacters. These primer pairs were designed based on multiple alignments of known *ureAB* and *hsp60* gene sequences from gastric helicobacters. The obtained PCR fragments were purified and sequenced as described above.

For animals harbouring 16S rRNA clones with a high homology to the 16S rRNA from *H. pylori* (see Supplementary Table 1), a *H. pylori*-specific PCR was performed as well (Table 1).

2.3. Phylogenetic analysis of gastric *Helicobacter* species

For phylogenetic analysis, the intergenic region between *ureA* and *ureB* and the stop codon of *ureA* were removed, followed by concatenation of the two gene fragments. Alignments of *hsp60* and concatenated *ureAB* genes were first generated at the amino acid level using MAFFT-FFT-NS-i version 7 (Katoh and Standley, 2013) and then back-translated to nucleotide sequences using the TranslatorX perl script (Abascal et al., 2010) (Figs. S1 and S2). Distance matrices were generated using SplitsTree 4, applying the Kimura-2 parameter model, and phylogenetic networks were calculated using the Neighbor-Net algorithm (Bryant and Moulton, 2004). The phylogenetic trees were reconstructed using Bayesian phylogenetic inference. Two independent analyses of four MCMC chains run for 10 million generations with a tree sample each 5000 generations were conducted for each gene using MrBayes v 3.2.1 (Ronquist et al., 2012). The substitution model space was sampled during Bayesian MCMC to avoid a priori model testing. The number of discrete categories used to approximate the gamma distribution was set to 6.

2.4. Fluorescent in situ hybridization

The following probes were used for fluorescent in situ hybridization (FISH): EUB338–TEX615 (eubacterial 16S rRNA probe; 5′-GCTGCCCTCCCGTAGGAGT-3′; fluorescence emission maximum at 615 nm) (Amann et al., 1992), HRHShort-6FAM (*Helicobacter* genus-specific probe based on 16S rRNA gene sequences of known *Helicobacter* species; 5′-TTCAGGCGCGGATCCCGTCGAG-3′; fluorescence emission maximum of 6-FAM: 521 nm) (this study), HEL717–6FAM (*Helicobacter* genus-specific probe based on 16S rRNA gene sequences of known *Helicobacter* species; 5′-AGGTCGCTTCGCAATGAGTA-3′) (Chan et al., 2005).

Table 1

<table>
<thead>
<tr>
<th>Target gene (amplicon size in bp)</th>
<th>Primers</th>
<th>Variable parameters used</th>
<th>Reference</th>
</tr>
</thead>
</table>
| 16S rRNA (389 bp) | Hcom1: 5′-GTAAGGCTCACCAAGGCTAT-3′
Hcom2: 5′-CCACCTACCTCCTCCACATC-3′ | MgCl₂ conc. (mM) 63
Annealing temp. (°C) 35
No. of cycles 35 | Choi et al., 2001 |
| ureAB (~250 bp) | NHPHkorfT: 5′-CDGTRMGTITGGARCCCG-3′
NHPHkorfR: 5′-GTGDTDGGDCRCRATWGA-3′ | 2.5
57
40 | This study |
| hsp60 gastric
Helicobacter spp. (198 bp) | hspGF: 5′-BACAYTYCDGCHAAYTCYGATS-3′
hspGR: 5′-WGRGYGTCATTITBTGNGCRTT-3′ | 3.0
54
40 | This study |
| hsp60 gastric/enterohpetic
Helicobacter spp. (~179 bp) | Apehsp60F: 5′-GARGCWARGNATYRAYGA-3′
Apehsp60R: 5′-CRCCYTCATDGTNGMYTC-3′ | 3.0
52
40 | This study |
| ureAB of *H. pylori* (217 bp) | BFpypL_F1: 5′-AAAGAGCCTGGTTTCTATGCGG-3′
BFpypL_R1: 5′-GGCTTITACCGCCAACATTTA-3′ | 2.5
59
40 | This study |
mentioned above, fecal samples were stored in 96% ethanol immediately after collection. An aliquot was resuspended in 4% paraformaldehyde and incubated for 1 h at room temperature. After centrifugation (15 min, 2500 × g), the pellet was washed and resuspended in Hank’s balanced salt solution (HBSS; Life Technologies). Ten microliter of this sample was applied onto a poly-L-lysine coated slide and dried for 5 min at 95 °C. Subsequently, slides were dehydrated in a series of ethanol (50, 80, 96%) and left to dry. Samples were incubated in hybridization buffer (100 mM Tris–HCl pH 7.2; 0.9 M NaCl; 0.1% SDS) containing 200 μg/mL of the HEL177–6FAM probe and 1000 μg/mL of the HRRShort–6FAM and EUB338–TEX615 probes in a dark, sealed moist chamber at 44 °C overnight. Slides were washed 3 times for 15 min in prewarmed (44 °C) hybridization buffer and incubated 2 times for 15 min in prewarmed (44 °C) washing solution (100 mM Tris–HCl pH 7.2; 0.9 M NaCl). Finally, slides were rinsed with HPLC-grade water, air dried in the dark, mounted with VECTASHIELD HardSet Mounting Medium (Vector labs, Burlingame, USA) and analyzed using a Leica DMRB fluorescence microscope.

3. Results

3.1. Detection of Helicobacter DNA and bacteria in fecal samples from gorillas and chimpanzees

Helicobacter DNA was detected in the majority of samples from animals in all groups tested. Subsequent cloning and sequencing revealed nucleotide sequences (European Nucleotide Archive accession numbers HG737359–HG737545) with a high homology to known 16S rRNA gene sequences from various, mostly enterohepatic Helicobacter species. When comparing nucleotide sequences from different clones present in one sample and showing the highest similarity to the same Helicobacter species, minor differences could nevertheless be observed. An overview of the number of positive animals in each group, as well as the putative species, is shown in Table 2. A substantial number of animals harboured 16S rRNA gene fragments from several Helicobacter spp., suggesting multiple species can colonize the same animal. Detailed information for each animal can be found in supplementary Table 1.

FISH was performed on fecal samples from a number of Helicobacter-positive gorillas and chimpanzees from Limbe Wildlife Centre, revealing the presence of intact Helicobacter bacteria (Fig. 1).

3.2. Identification of a putative novel gastric Helicobacter species in great apes

A total of 14 samples also revealed a PCR amplicon of the expected size using the primer set amplifying part of the urease A and B genes of gastric helicobacters (1 habituated and 2 unhabituated gorillas from the Central African Republic, 1 habituated chimpanzee from Uganda as well as 7 unhabituated chimpanzees from Guinea-Bissau and 3 chimpanzees from African sanctuaries). Successful sequence analysis of PCR products from 7 animals (2 gorillas from the Central African Republic, 1 chimpanzee from Uganda as well as 3 chimpanzees from Guinea Bissau and 1 chimpanzee from the Kenyan sanctuary) revealed a low percentage of query coverage or identity with urease gene sequences of known valid gastric Helicobacter species (European Nucleotide Archive accession numbers HG737546–HG737552). However, all obtained sequences shared 97–98% identity with “Helicobacter heliMannii”–like

Table 2

Results of the 16S rRNA-based Helicobacter genus-specific PCR, cloning and sequencing performed on DNA prepared of fresh fecal samples.

<table>
<thead>
<tr>
<th>Animal group</th>
<th>Origin</th>
<th>Animals positive for Helicobacter spp./total no. of animals</th>
<th>Putative species detected (maximum identity: no. of positive animals (n); number of clones/total number of Helicobacter clones in this group)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unhabituated gorillas</td>
<td>CAR*</td>
<td>10/10</td>
<td>H. mesocricetorum-“H. apodorum” (100%; n = 4; 8/29)/H. trogonotum (99–100%; n = 3; 6/29)/H. gannani (99–100%; n = 3; 5/29)/H. typhlonius (99–100%; n = 2; 2/29)/H. cinaedi-fennelliae (99%; n = 2; 4/29)/H. pylori-macacae (99–100%; n = 2; 2/29)/H. rodentium (96%; n = 1; 2/29)/H. pullorum-equorum-canadensis (99%; n = 1; 1/29)</td>
</tr>
<tr>
<td>Habitated gorillas</td>
<td>CAR</td>
<td>8/10</td>
<td>H. cinaedi-fennelliae (99%; n = 2; 7/19)/H. pylori-macacae/Wolinella sp. canine oral taxon 173 (100%; n = 2; 2/19)/H. rodentium (97–100%; n = 2; 4/19)/H. pylori-cetorum-bizzozeroni (100%; n = 1; 1/19)/Helicobacter sp. MIT 03-3238 (99%; n = 1; 2/19)/H. rappini (99%; n = 1; 3/19)</td>
</tr>
<tr>
<td>Gorilla in sanctuary</td>
<td>Cameroon</td>
<td>5/15</td>
<td>H. cinaedi-fennelliae (99%; n = 1; 14/19)/H. rodentium (99–100%; n = 2; 5/19)</td>
</tr>
<tr>
<td>Unhabituated chimpanzees</td>
<td>Guinea-Bissau</td>
<td>15/19</td>
<td>H. cinaedi-fennelliae (98–99%; n = 8; 25/33)/H. pylori (100%; n = 3; 3/33)/H. typhlonius (99–100%; n = 2; 3/33)/H. suis (98%; n = 1; 1/33)/H. trogonotum (99%; n = 1; 1/33)</td>
</tr>
<tr>
<td>Habituated chimpanzees</td>
<td>Uganda</td>
<td>14/20</td>
<td>H. cinaedi-fennelliae (96–99%; n = 10; 28/33)/H. pylori-macacae (95–100%; n = 2; 2/33)/H. bizzozeroni-fels (99%; n = 1; 1/33)/H. gannani (99%; n = 1; 1/33)/H. masoronomyrins (99%; n = 1; 1/33)</td>
</tr>
<tr>
<td>Chimpanzee in sanctuary</td>
<td>Cameroon</td>
<td>7/14</td>
<td>H. cinaedi-fennelliae (99%; n = 3; 11/16)/H. pylori (96–99%; n = 2; 2/16)/H. typhlonius (99%; n = 1; 2/16)/H. rodentium (100%; n = 1; 1/16)</td>
</tr>
<tr>
<td>Chimpanzee in sanctuary</td>
<td>Kenya</td>
<td>14/15</td>
<td>H. cinaedi-fennelliae (92–99%; n = 4; 17/39)/H. typhlonius (100%; n = 2; 4/39)/H. apodemus-mesocricetorum (100%; n = 2; 3/39)/H. gannani (99–100%; n = 2; 5/39)/H. canadensis (100%; n = 1; 7/39)/H. pylori-macacae (100%; n = 1; 1/39)/H. masoronomyrins (99%; n = 1; 1/39)/H. cinaedi-cants-pullorum (99%; n = 1; 1/39)</td>
</tr>
</tbody>
</table>

* Results of putative species detected and maximum identity were obtained by searching NCBI nucleotide databases using the BLASTN algorithm.
* Central African Republic.
organism strain SH6, isolated in vivo by mouse passaging homogenized gastric tissue from a 70-year-old Japanese male human patient (Matsumoto et al., 2009).

In addition, samples positive in the ureAB-based PCR were subjected to another PCR, targeting part of the hsp60 gene of gastric Helicobacter species (primer set hspGF/hspGR, for details: see Table 1). For 1 chimpanzee from Guinea Bissau and 1 chimpanzee from Uganda, a clear PCR product was obtained and nucleotide sequences (European Nucleotide Archive accession numbers HG737553–HG737554) showed 97% and 91% identity, respectively, with H. felis hsp60.

We further investigated the phylogenetic relationship between the ureAB and hsp60 of these ape-associated gastric helicobacters and those of formerly described species. To determine whether the data sets support conflicting phylogenies or a single tree, Neighbor-Net networks were generated for pairwise sequence distances between Helicobacter spp. ureAB or hsp60 genes (Fig. 2A and B; amplification using primer sets NHPhkortF/NHPhkortR and

Fig. 1. Fluorescent in situ hybridization performed on a fecal sample from a Chimpanzee, Cameroon. (A) Shown are curved, rod-shaped bacteria hybridizing with green fluorescent Helicobacter genus-specific probes HRHShort-6FAM and HEL717-6FAM. (B) Shown are all bacteria hybridizing with the red fluorescent eubacterial 16S rRNA probe EUB338-TEX615.

Fig. 2. Phylogenetic networks of Helicobacter species based on partial ureAB (A) and hsp60 (B) genes. Amplification was performed using primer sets NHPhkortF/NHPhkortR and hspGF/hspGR, respectively. The networks were built with SplitsTree4 (version 4.11.3) by the Neighbor-Net method. The clones from wild great apes, as well as strain SH6 are written as white letters on a black background. The ureAB network clearly indicates clustering of clones from wild great apes with “Helicobacter heilmannii”-like organism strain SH6, isolated from a Japanese human patient, suggesting these bacteria constitute a new Helicobacter taxon/species. HabGorCAR: clone from a habituated gorilla, Central African Republic; HabChimpUg: clone from a habituated chimpanzee, Uganda; UnhabChimpGuinea: clone from an unhabituated chimpanzee, Guinea-Bissau.
hspGF/hspGR, respectively). The analysis showed conflicting phylogenetic signals, represented as parallel paths in the network, for both datasets. In particular, the nest-like structure of the split graph generated for hsp60 hampered a correct reconstruction of the phylogeny of gastric Helicobacter species for this gene (data not shown). However, despite conflicting signals, partial ureAB gene sequences exhibit a significant “tree-like” structure and the clones obtained from great apes and “Helicobacter heilmannii”-like organism strain SH6 from a human patient form a distinct cluster, separated from the other species. A monophyletic relationship among the helicobacters from great apes and the human strain SH6 was confirmed by Bayesian phylogeny of ureAB (Fig. 3; 98.8% of posterior probability). In addition, the Bayesian analysis positioned the great apes clade in the larger monophyletic clade including all the different H. heilmannii s.l. species (Haesebrouck et al., 2011) with a posterior probability of approximately 78%.

For 1 chimpanzee from Guinea-Bissau (identification number T2484/10), an amplicon of the expected size was obtained using primers targeting part of the ureAB gene cluster from H. pylori. Subsequent nucleotide sequencing of this 217 bp fragment revealed an identity of 100% to known H. pylori ureAB gene sequences.

4. Discussion

Besides humans, very little information is available on the prevalence of Helicobacter spp. in other extant members of the Hominidae family. One report described the presence of Helicobacter 16S rRNA gene fragments, with a high homology to the 16S rRNA gene from H. cinaedi, in fecal samples of 4 western gorillas (Gorilla gorilla), 1 bonobo (Pan paniscus), 1 Bornean orangutan (Pongo pygmaeus) and 4 Sumatran orangutans (Pongo abelii), all kept in captivity in zoos (Schrenzel et al., 2010). Most great ape species are endangered or even critically endangered, which demonstrates the need for further investigation into the presence of potential pathogens in these animals, including Helicobacter spp. The present study aimed at evaluating the presence of gastric and enterohepatic Helicobacter species in the gastrointestinal tract of wild (both unhabituated and habituated) western lowland gorillas and chimpanzees as well as in wild-born animals housed in African sanctuaries, by detecting and analyzing Helicobacter DNA, as well as intact bacteria, in fecal samples of these animals.

Helicobacter DNA was detected in the majority of fecal samples from wild animals and animals from African sanctuaries. Sequencing of the obtained clones revealed that most fragments showed a high homology to 16S rRNA gene sequences of several, mainly enterohepatic, zoonotic Helicobacter species. Fluorescence in situ hybridization performed on a number of positive fecal samples demonstrated the presence of intact bacteria belonging to the genus Helicobacter, confirming that these bacteria indeed colonize the gastrointestinal tract of great apes.

Both in chimpanzees and gorillas, the majority of clones shared 99% identity with H. cinaedi/femelliae. H. cinaedi is known to colonize various animal species, including dogs, cats and hamsters, as well as humans, in which it is considered a strong candidate causative agent for
gastrointestinal disease (Kiehlbauch et al., 1995; Hansen et al., 2011). Moreover, H. cinaedi and other, closely related Helicobacter species such as H. westmaedi, have been described to cause bacteremia and concurrent systemic disease, especially in patients suffering from AIDS or other immunocompromising diseases (Tee et al., 1996; Trivett-Moore et al., 1997; Rimbara et al., 2013). Similar reports have been published for H. fennelliae-like organisms (Kemper et al., 1993). Other putative species detected in the present study include ‘H. macacae’, previously isolated from rhesus monkeys with and without chronic idiopathic colitis (Fox et al., 2007), H. pullorum and H. canadensis, as well as several species mainly detected in rodents, such as H. trogontum (only detected in unhabituated animals), H. rodentium, H. gannmani, H. mesocricetorum, H. mastomyrinius and H. typhlonius. In addition to H. cinaedi and H. fennelliae, several of these species (H. rodentium, H. canadensis, H. pullorum) have been associated with diarrhoea, colitis or chronic liver diseases in humans (Fox et al., 2000; Ceelen et al., 2005; Nakonieczna et al., 2010; Hansen et al., 2011). Although the exact pathogenic significance of these enterohelial Helicobacter species remains to be investigated in great apes, it should be kept in mind that their transmission to these endangered species might be of concern (Ferber, 2000; Sak et al., 2013). Not only direct contact between humans and apes, but also the more frequent presence of humans in the vicinity of habituated apes or those under habitation may account for transmission of pathogens, for instance through contamination of the environment (Sak et al., 2013; Hasegawa et al., 2014).

The presence of these infections in chimpanzees and gorillas having contact with humans, for instance in primate sanctuaries or in groups of apes habituated to the presence of humans, indicates that Helicobacter species should be considered to be added to the list of infectious microorganisms transmissible to humans by great apes. Great apes should therefore be considered as a non-human reservoir of Helicobacter species for a potentially highly susceptible human population, since prevalences of HIV are high in Sub-Saharan countries, exceeding 5% in countries like Cameroon, Kenya and Uganda (World Health Organization, 2011).

However, caution is advisable with regards to Helicobacter species designation. First, the cloned and sequenced 16S rRNA fragments only cover about 350 bp. Attempts to amplify larger fragments using previously described and validated Helicobacter genus-specific PCR’s (Moya et al., 2008) were in general unsuccessful. Degradation of DNA into smaller fragments is the most likely cause. Second, the use of 16S rRNA gene sequences does not always provide conclusive evidence for Helicobacter identification to the species level (Vandamme et al., 2000). Our attempt to confirm the putative detection of H. cinaedi/fennelliae by amplifying and sequencing part of the hsp60 gene sequence (Mikkonen et al., 2004) for the sample from one chimpanzee from Guinea-Bissau and one from Kenya resulted in nucleotides sequences (European Nucleotide Archive accession numbers HG737555–HG737556) showing the highest homology to known H. cinaedi strains, although with an identity of only 87–89%. In addition, we observed the presence of slightly different sequences apparently belonging to the same Helicobacter species in samples from the same animal, which suggests the presence of genetic variation in Helicobacter species colonizing individual animals. Future research, including bacterial isolation attempts, should elucidate the exact species and strains involved. Possibly, H. cinaedi strains colonizing great apes differ from those in other animal species, for instance due to coevolution with the host. Alternatively, these differences may reflect the presence of a hitherto unknown, new Helicobacter species.

Besides the superfluous presence of DNA from enterohelial helicobacters, some 16S rRNA clones, both in chimpanzees and gorillas, showed a high homology to gastric helicobacters (including H. pylori, H. bizzozeronii, H. felis). This somewhat contrasts to what has been described by Moodley et al. (2012), who attempted to amplify a 1200 bp Helicobacter 16S rRNA gene fragment from gastric biopsies from a number of captive wild-born chimpanzees, however without success (Moodley et al., 2012). Interestingly, the use of H. pylori ureAB-specific primers in the present study confirmed the presence of H. pylori DNA in the gastrointestinal tract of at least 1 chimpanzee. This was an unhabituated animal from Guinea-Bissau, suggesting that the infection may have been contracted in the absence of close contact with humans. The fact that all other animals were negative when using this primer set, together with the absence of H. pylori in the animals investigated by Moodley et al., indicates that H. pylori infection in great apes is not common. Whether H. pylori truly colonizes the stomach of some great apes remains to be investigated, but nevertheless, it has been shown to be able to persistently colonize the stomach of chimpanzees after experimental infection (Hazell et al., 1992).

In order to identify gastric helicobacters to the species level, the analysis of (partial) ureAB and hsp60 gene sequences has been shown to be far more informative compared to 16 rRNA sequence analysis (O’Rourke et al., 2004; Mikkonen et al., 2004). In our study, this indeed revealed the presence of gastric Helicobacter DNA. Interestingly, partial ureAB gene sequences from animals in all groups (unhabituated and habituated gorillas and chimpanzees from different geographical locations) were very similar. They showed a relatively high homology to only one so-called “Helicobacter helmännii”-like organism, namely strain SH6 isolated from a 70-year-old Japanese patient suffering from chronic gastritis (Matsumoto et al., 2009). Phylogenetic analysis, especially of the partial ureA and ureB genes, strongly suggests that these ape-associated helicobacters constitute a new taxon/species belonging to the H. helmännii sensu lato group (Haesebrouck et al., 2011) and also that these helicobacters colonizing chimpanzees and gorillas probably share a recent common ancestor with other gastric non-H. pylori Helicobacter species. Members of this group of gastric non-H. pylori Helicobacter species are known to cause gastric disease in their natural hosts, including pigs and non-human primates (Mackie and O’Rourke, 2003; Haesebrouck et al., 2009; De Bruyne et al., 2012). Future isolation attempts, for instance from the stomach mucosa of deceased chimpanzees/gorillas, may provide additional data regarding the identity and diversity of gastric
Helicobacter taxa, although isolation of gastric non-*H. pylori* helicobacters in general is extremely difficult and time-consuming (Baele et al., 2008). Until further confirmation, we propose the name 'Candidatus Helicobacter homininae', capable of colonizing great apes, as shown in the present study, as well as humans suffering from gastric disease, as shown for "Helicobacter heilmannii"-like organism strain SH6 (Matsumoto et al., 2009).

In conclusion, we demonstrated for the first time the presence of Helicobacter DNA as well as intact bacteria belonging to the Helicobacter genus in feces of two endangered primate species, i.e. chimpanzees and western lowland gorillas, regardless of geographical location or level of contact with humans. Several enterohelobacterial, as well as a putative new gastric Helicobacter species, were detected. Most species have previously been described to infect humans and to cause gastrointestinal or systemic disease, both in healthy and immunocompromised individuals. Therefore, future research should not only focus on the possible health threat for these endangered great apes, but also on a possible zoonotic transmission of gastric and enterohelobacterial helicobacters, which eventually may lead to new emerging diseases.

Acknowledgments

This study was funded by a grant from the Research Fund of Ghent University, Ghent, Belgium (Grant no. GOA01G00408). This research was also co-financed by the European Social Fund and state budget of the Czech Republic. Field work was supported by the Grant Agency of the Czech Republic (number 206/09/0927) and the Japan Society for the Promotion of Science and Ministry of the Environment, Japan. We are grateful to Sofie De Bruycerke and Nathalie Van Ryssegberge for their invaluable technical assistance. In Guinea-Bissau we would like to thank IBAP (Instituto da Biodiversidade e Áreas Protegidas) for permits and logistical support, as well as all park rangers in Cantanhez National Park for the help during fieldwork. We would like to thank the government of the Central African Republic, namely the Ministre de l’Education Nationale, de l’Alphabetisation, de l’Enseignement Superieur, et de la Recherche for providing research permits to conduct our work in the Central African Republic; World Wildlife Fund and the administration of DSPA for granting research approval and assistance with obtaining permits; and the Primate Habituation Programme for providing logistical support in the field. Research in Kalinzu Forest Reserve was approved by Uganda National Council for Science and Technology, Uganda Wildlife Authority, and Uganda National Forest Authority. We are grateful to the staff of African sanctuaries, who provided us with samples of captive apes housed in sanctuaries.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.vetmic.2014.08.032.

References

Lertpiriyapong, K., Handt, L., Feng, Y., Mitchell, T.W., Lodge, K.E., Shen, Z., Dewhirst, F.E., Muthupalani, S., Fox, J.G., 2014. Pathogenic properties

