Investigating AOB and NOB kinetic parameters for oxygen under moderate climate wastewater conditions

Dries Seuntjens1, Chaïm De Mulder1, Haydée De Clippeleir2,3, Sudhir Murthy2, Hongkeun Park3, Kartik Chandran3, Ingmar Nopens4, Siegfried E. Vlaeminck1

1 LabMET Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium
2 DC Water Authority, 5000 Overlook Ave. SW, Washington DC 20032, USA
3 Columbia University Department of Earth and Environmental Engineering, Columbia University, 500 West 120th Street, New York, NY 10027
4 BIOMATH, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium

To date, almost all reported kinetic parameters of ammonia and nitrite oxidizing bacteria (AOB and NOB) for oxygen are measured at temperatures higher than 20°C. The oxygen competition between these two groups of organisms at lower temperatures is however of great interest for the realization of a nitrite shunt in municipal wastewater treatment. This study investigated the temperature dependency of AOB and NOB oxygen Monod kinetics, i.e. R_{max} and K_{O_2}. Nitrifying sludge originating from a sewage treatment plant (Breda, NL) was sampled over the temperature range of 10.5-17.2°C. The sludge contained AOB *Nitrosomonas* as detected by Illumina, and NOB genera *Nitrospira* and *Nitrobacter*, as revealed by qPCR. The Arrhenius temperature relationship, with $R_{\text{max}}(T) = R_{\text{max}}(T_{\text{ref}}) \times \theta(T-T_{\text{ref}})$, was fitted to the R_{max} data ($T_{\text{ref}}=13.9°C$). The results yielded θ values that were in line with literature values: $\theta=1.11$ ($R^2=0.81$), for AOB and $\theta=1.06$ ($R^2=0.53$) for NOB. Surprisingly, AOB R_{max} rates were higher than NOB R_{max} rates over the whole temperature interval, which is in contrast to typical activated sludge. For K_{O_2} values, no good temperature relationships were found. In contrast to textbook knowledge, the results showed a higher K_{O_2} for AOB (0.55-2.43 mg O$_2$/L) compared to NOB (0.12-0.84 mg O$_2$/L). Overall, the obtained biokinetic parameters provide further insight for a better process modeling and control towards achieving energy-neutral wastewater treatment.