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Abstract

Maerl beds are sensitive biogenic habitats built by an accumulation of loose-lying, non-geniculate coralline algae. While
these habitats are considered hot-spots of marine biodiversity, the number and distribution of maerl-forming species is
uncertain because homoplasy and plasticity of morphological characters are common. As a result, species discrimination
based on morphological features is notoriously challenging, making these coralline algae the ideal candidates for a DNA
barcoding study. Here, mitochondrial (COI-5P DNA barcode fragment) and plastidial (psbA gene) sequence data were used
in a two-step approach to delimit species in 224 collections of maerl sampled from Svalbard (78u96’N) to the Canary Islands
(28u64’N) that represented 10 morphospecies from four genera and two families. First, the COI-5P dataset was analyzed with
two methods based on distinct criteria (ABGD and GMYC) to delineate 16 primary species hypotheses (PSHs) arranged into
four major lineages. Second, chloroplast (psbA) sequence data served to consolidate these PSHs into 13 secondary species
hypotheses (SSHs) that showed biologically plausible ranges. Using several lines of evidence (e.g. morphological characters,
known species distributions, sequences from type and topotype material), six SSHs were assigned to available species
names that included the geographically widespread Phymatolithon calcareum, Lithothamnion corallioides, and L. glaciale;
possible identities of other SSHs are discussed. Concordance between SSHs and morphospecies was minimal, highlighting
the convenience of DNA barcoding for an accurate identification of maerl specimens. Our survey indicated that a majority of
maerl forming species have small distribution ranges and revealed a gradual replacement of species with latitude.
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Introduction

Maerl or rhodolith beds are accumulations of slow-growing,

unattached non-geniculate (non-articulated) coralline algae that

build three-dimensional habitats [1] that accommodate a wide

biodiversity and are, therefore, considered as hotspots of marine

life [2]. Commercial dredging together with a range of indirect

impacts (bottom-fishing, aquaculture, eutrophication, sediment

dredging) are known to negatively affect their conservation and

structure [3]. As a result, maerl beds are listed as threatened and/

or declining habitats by OSPAR (The Convention for the

Protection of the marine Environment of the North-East Atlantic)

[4] and treated as Special Areas of Conservation by EU Habitats

Directive (Annex I, categories ‘‘sandbank covered by seawater all

the time’’ and ‘‘large shallow inlets and bays’’). In addition, the two

coralline algal species commonly regarded as the main constituents

of maerl beds in Europe (Phymatolithon calcareum (Pallas) W.H.

Adey & D.L. McKibbin and Lithothamnion corallioides (P.L. &

H.M. Crouan) P.L. & H.M. Crouan) are listed in Annex V as

species whose eventual exploitation must be compatible with

maintaining a favorable conservation status.

Maerl beds are widely distributed along the coasts of the North-

East Atlantic protected by the OSPAR Convention (OSPAR

maritime area) and the adjacent Macaronesia. They are partic-

ularly frequent in Scotland, Ireland, Brittany and Galicia [4] at

depths ranging from the intertidal to 50 m, but they reach up to

60 min the Canary Islands and Madeira [4–7]. Up to 24 species of

maerl have been recorded along the OSPAR area and southern
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adjacent regions (Madeira Archipelago and Canary Islands)

(Table 1). However, the actual number might be smaller as the

taxonomic validity of eight taxa seems dubious because they were

only reported in pioneer works from the 19th century and early

20th (Lithothamnion breviaxe Foslie, L. fornicatum Foslie, L.
fruticulosum (Kützing) Foslie, L. intermedium Kjellman, L.
nodulosum Foslie, L. norvegicum (Areschoug) Kjellman, L.
tusterense Foslie and L. ungeri Kjellman). Maerl-forming algae

belong to six genera (Lithothamnion, Lithophyllum, Mesophyllum,
Neogoniolithon, Phymatholithon and Spongites) from two families

(Corallinaceae and Hapalidiaceae) within the order Corallinales

(Rhodophyta). According to the literature, four species are widely

distributed and seemingly follow a latitudinal replacement cline:

Lithothamnion tophiforme (Esper) Unger and Lithothamnion
glaciale Kjellman are mostly arctic and subarctic species, while

P. calcareum and L. corallioides occur from the North and Celtic

Seas to Madeira-Canary Islands (L. corallioides) or Azores (P.
calcareum). The remaining 12 species occupy narrower latitudinal

ranges. Eight of them were reported for regions with a long

tradition of taxonomic surveys: Scotland, Britain, Ireland, and

French Brittany (Lithothamnion lemoineae Adey, L. sonderi
Hauck, Phymatolithon purpureum (P.L. Crouan & H.M. Crouan)

Woelkerling & L.M. Irvine, Mesophyllum lichenoides (J. Ellis) Me.

Lemoine, Lithophyllum dentatum (Kützing) Foslie, L. duckerae
Woelkerling, L. fasciculatum (Lamarck) Foslie and L. hibernicum
Foslie). The remaining four include species reported for Macar-

onesia (Neogoniolithon brassica-florida (Harvey) Setchell & L.R.

Mason, Lithophyllum crouanii Foslie, Spongites fruticulosa Kütz-

ing) plus Mesophyllum sphaericum V. Peña, Bárbara, W.H. Adey,

Riosmena-Rodrı́guez & H.G. Choi, a maerl alga known from a

single location in Galicia. An overwhelming majority of the

previous studies have entirely relied on traditional practices of

taxonomy based on morphological/anatomical characters even

though morphological identification of non-articulated coralline

algae is challenging because phenotypic plasticity and convergence

have resulted in a lack of well-defined diagnostic characters [8].

Only very recently, DNA information has been used to identify

and delineate European maerl-forming species [9] shedding light

on our fragmentary knowledge on alpha diversity and genuine

distribution of maerl-forming species.

The onset of the 21st century has witnessed notable technolog-

ical advances that can facilitate and accelerate the description of

biodiversity [10,11]. In particular, DNA barcoding (http://www.

ibol.org/) employs short, standardized DNA fragments as a

diagnostic tool for identifying species [12]. In Rhodophyta,

DNA barcodes obtained by sequencing the 5’ end of the

mitochondrial gene cytochrome oxidase I (COI-5P) [13,14]

proved very effective to shortcut the difficulties of morphology-

based identification, allowing an accurate identification of known

species [15–23] and/or the detection of cryptic ones [16,20,24–

26]. In comparison, COI-5P sequences have been less frequently

used to delineate new species of red algae [15,18,20,22,25].

Indeed, when DNA barcoding suggested the existence of new

species, it was rarely regarded as a definitive proof; instead, it was

used along with other genetic, morphological, geographical or

ecological features in what has been referred to as integrative

taxonomy [10,27,28].

Despite the above, DNA barcodes have been used as an

exploratory tool for poorly surveyed taxa provided that the groups

delineated by barcodes are regarded as primary species hypothesis

(PSHs) [29,30]. PSHs can then be further tested with other sources

of molecular, morphological, geographical and/or ecological

evidence and even a multistep approach has been proposed to

turn PSHs into more conclusive secondary species hypotheses

(SSHs) [10] (for a similar approach see the molecular-assisted

alpha taxonomy in [26]). In this context, the initial step is crucial

and consists of the partition of COI-5P sequences into a set of

PSHs. Recently, two methods based on distinct criteria have been

proposed to infer the limits of the various PSHs when only

molecular data are available and with no need for prior

assumptions. On the one hand, the Automatic Barcode Gap

Discovery (ABGD) [30] is a fast method that uses distances to split

the sequence alignment into a set of PSHs following a recursive

procedure until there is no further partitioning. This procedure

automatically finds breaks in the distribution of genetic pairwise

distances, referred to as the ‘barcode gap’, even when intra- and

interspecific distances overlap. On the other hand, the General

Mixed Yule Coalescent (GMYC) model [29] is based on detecting

the shift of the branching rate that takes place in clock-constrained

calibrated trees at the point of transition from species-level

(speciation) to population-level (coalescence) evolutionary process-

es. Using a likelihood criterion, the GMYC method permits an

automated species delineation with appropriate statistical mea-

sures of confidence. A later extension of the method allows for a

variable transition from coalescent to speciation among lineages

[31]. GMYC has been shown to be robust to a range of departures

from its assumptions (varying population sizes among species,

alternative scenarios for speciation/extinction, population growth

and subdivision within species) but the accuracy of its delimitations

can be compromised in groups with large effective population sizes

and short divergence times between species [32]. Other potential

shortcomings of the GMYC method have been extensively

discussed elsewhere [33].

In this study, COI-5P sequences were obtained for maerl-

forming species along the OSPAR maritime area and the adjacent

Macaronesia. DNA barcodes were used to delimit a set of PSHs

that were subsequently corroborated or challenged with indepen-

dent molecular, geographic, and morpho-anatomical evidence.

Materials and Methods

Study area and sample collection
As the study did not involve endangered or protected species, no

specific permissions were required for sampling at most locations

(see Table S1 for coordinates). Still, sampling at two locations

situated within a national park in NW Spain (lat 42.211u long

28.896u and lat 42.394u long 28.815u) was conducted with the

permission of the park authority (Parque Nacional Marı́timo

Terrestre de las Islas Atlánticas de Galicia) and the park authority

has signed a document stating its interest in the results of this

study.

Collection information for all the specimens used in this study is

available at the Barcode of Life Data Systems (BOLD: www.

boldsystems.org; project ‘‘maerl-NE Atlantic’’). From 1999 to

2011, maerl specimens were extensively sampled by SCUBA

diving or dredging within 4 out of the 5 regions of the OSPAR

maritime area (Table S1); sampling ranged from the low intertidal

to 40 m depth. Despite our efforts, no sample could be obtained

for region V where maerl beds are probably restricted to the

Azores Archipelago. To circumvent this shortage, samples were

collected from the other two Macaronesian Archipelagos: the

Canaries and Madeira. Sampling sites included type/neotype

localities for 3 out of the 4 widely distributed maerl-forming

species: L. corallioides (Rade de Brest, Finistere, France [34]), P.
calcareum (Falmouth Harbour, Cornwall, England [35]), and L.
glaciale (Spitsbergen Island, Svalbard Archipelago [36]). Addi-

tionally, our samples included holotype material of the recently

described M. sphaericum from the herbarium SANT of Uni-
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versidad de Santiago de Compostela [9] and neotype material of

P. calcareum from the herbarium BM of the British Museum of

Natural History [35].

Freshly collected material was transported to the laboratory in

seawater, oven-dried or air-dried as soon as possible, and

vouchered in silica. Vouchers were temporarily deposited in a

personal collection (BioCost Research Group, University of A

Coruña, Spain) and will be transferred to the official SANT

Herbarium. When feasible, several specimens per morphotype

(differences in size, shape, branch thickness, and general habit)

were sequenced at each locality. This sampling regime was

intended to maximize the detection of species encountered at the

various collecting sites while keeping the sequencing effort to a

reasonable size. All specimens were photographed and identified

to the lowest taxonomic level possible using morphology-based

keys and specialized literature. A selection of specimens was also

examined under scanning electron microscope (SEM, model

JEOL JSM 6400, University of A Coruña).

Field identification
A putative species name was assigned to all specimens based on

their gross morphology. Our 224 collections were partitioned into

10 different morphospecies belonging to 4 genera and 2 families

(Hapalidiaceae and Corallinaceae). Most plants were identified

either as P. calcareum (140 collections) or as L. corallioides (60),

two main constituents of maerl in Atlantic Europe. A much

smaller number of collections fitted the description of L. glaciale
(9), M. sphaericum (4), L. dentatum (2), and L. fasciculatum (1).

Finally, eight plants exhibited external features typical of the genus

Lithothamnion; however, none of these plants exhibited diagnostic

characters necessary for their identification at the species level.

Nevertheless, based on some morphological distinctions, they were

partitioned into four morphospecies temporarily labeled as

Lithothamnion sp1 (3 collections), Lithothamnion sp2 (1),

Lithothamnion sp3 (1), and Lithothamnion sp4 (3).

DNA extraction, PCR amplification and sequencing
A subsample for DNA extraction was obtained by grinding a

portion of the living surface of each specimen after avoiding areas

with epiphytes, animal structures, and/or damaged tissue. Special

cautions were taken with the neotype of P. calcareum because this

specimen has been archived in BM since 1983 [35]. To avoid

contamination, this archival specimen was processed (DNA

extraction and PCR amplification) individually with fresh batches

of reactants on a separate date after carefully cleaning the

laboratory. To increase the possibility of detecting contamination,

several genes were amplified for this specimen on the same date

(SSU, rbcL, psbA, COI-5P) running negative controls in parallel

for each gene; none of the chromatograms showed evidence of

background signal and all negative controls were clean [37]. The

holotype of M. sphaericum in SANT was collected shortly before

the present study (October 2008) and processed alongside

topotype material of the same species. Attempts to acquire

sequence data from type material of other species included L.
corallioides, L. fornicatum, N. brassica-florida, and S. fruticulosa
but proved unsuccessful.

DNA was extracted with the DNeasy Blood & Tissue Kit Spin-

Column Protocol (Qiagen) following manufacture’s recommenda-

tions. Two gene fragments were amplified: (i) a fragment of 664 bp

of the standard DNA barcode (the 5’ end of the mitochondrial

gene cytochrome oxidase I, COI-5P) with primers GazF1 and

GazR1 from [14], and GCorR3 (5’TGATTYTTYGGA-

CATCCTGA3’), and (ii) a fragment of 892 bp of the plastidial

gene photosystem II reaction center protein D1 (psbA) with
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primers psbA-F1 and psbA-R2 from [38]. PCR reactants were

prepared in a laminar flow hood and PCRs were performed in

25 mL containing 2 mL of DNA template, 2.5 mL of 16 PCR

buffer, 2.5 mM MgCl2, 0.192 mM dNTPs, 0.1 mM of each

primer, and 1.2 U of Taq DNA Polymerase (Sigma-Aldrich) in a

Biometra TProfesional Basic thermocycler following [39]. Ampli-

fication success was evaluated by electrophoresis. After removing

the excess of primers and nucleotides with shrimp alkaline

phosphatase and exonuclease I enzymes, PCR products were

bidirectionally sequenced at Macrogen facilities (http://www.

macrogen.com). All sequences are publically available in BOLD

and GenBank (see Table S1 for BOLD IDs and GenBank

accession numbers).

Data analyses
Sequences were aligned and edited using the program Geneious

5.6.6. As we aimed to delimit species based on sequence data

rather than to assess their phylogenetic relationships, we chose not

to run maximum-likelihood or maximum parsimony analyses.

Instead, COI-5P sequences were partitioned into a set of PSHs

using two bioinformatics tools: ABGD [30] and GMYC [29,31].

For ABGC, genetic distances between specimens were calculated

using the Kimura two parameters (K2P) model, a standard metric

in DNA barcoding studies. ABGD was remotely run at http://

wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html using default

values except for the relative gap width (X) which was set to 10

to avoid the capture of small local gaps. For the GMYC method,

duplicate haplotypes were removed from the alignment using

DnaSP 5.10.01 [40]. Since the GMYC method is based on

branching rates, branch lengths were estimated under a relaxed

log-normal clock with the Bayesian analysis implemented in

BEAST 1.7.4. Following [31], BEAST was run using a coalescent

(constant population size) prior and the best-fitting model

identified by jModelTest (HKY+G with G = 0.153) [41,42]; the

parameters for the substitution model (substitution rate, rate

heterogeneity, and base frequencies) were unlinked across

positions. MCMC chains were run for 20 million generations

with a 10% burnin (determined by visual inspection of MCMC

progression). After termination, the MCMC output was analyzed

with TreeAnnotator 1.7.4 using all trees after the burnin, a

posterior probability limit of 0.5, targeting the maximum clade

credibility tree, and keeping the target node heights. Both the

single-threshold and the multiple-threshold versions of the GMYC

model [29,31] were optimized onto the output tree with the help

of the SPLITS v.1.0-19 package for R. AIC-based support values

for the GMYC clusters were calculated following [32]. BEAST

and TreeAnnotator were also employed to reconstruct a

phylogeny for the psbA gene with the same options used for the

COI-5P sequences but a different best-fitting model (GTR+G with

G = 0.175).

Results

Primary Species Hypothesis delineation based on COI-5P
sequence data

The 224 collections of maerl were sequenced for a 664 bp

fragment of the barcoding COI-5P gene; 29 unique haplotypes

were found with 227 variable sites. Genetic pairwise K2P distances

ranged from 0 to 0.21 while the shape of the pairwise distance

distribution was clearly bimodal with two conspicuous peaks at

Figure 1. Primary Species Hypothesis (PSHs) delineated with the COI-5P gene. Bayesian gene tree with posterior probabilities (.0.9) next
to each node. Branch tips are the 29 haplotypes detected in the study. Vertical thick lines indicate PSHs delineated with ABGD and GMYC methods;
numbers next to the vertical lines are PSH codes; letter A–D next to some nodes indicate major lineages. For ABGD, partitions for the more inclusive
(M) and less inclusive (L) results are shown. GMYC partitions include the single-threshold (S) and multiple-threshold (M) variants of the method. Grey
thick lines indicate discrepancies between partitions.
doi:10.1371/journal.pone.0104073.g001
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pairwise distances ,0.01 and 0.14–0.16 separated by a rough gap

of very low frequencies. The number of PSHs delineated with the

ABGD method varied with the maximum prior distance (P) used

in the analysis. Extreme prior thresholds led to uninformative

partitions where either each haplotype was delimited as a different

species or all haplotypes were included into a single PSH.

Intermediate values of P led to partitions with 9 (P = 0.013), 13

(P = 0.008) and 14 PSHs (P = 0.0017 to 0.005). Partitions with 9

and 14 PSHs are detailed in Fig. 1.

GMYC was applied to a phylogenetic tree reconstructed with a

relaxed lognormal clock. Effective sample size for each statistic of

the tree always was .500 and the MCMC converged to a

stationary distribution. The likelihood of the null model

(L0 = 170.19) was significantly lower than the maximum likelihood

of the single-threshold version of GMYC model (Lsingle = 177.97,

P-value = 0.0004). According to the latter, the transition from

speciation to coalescent occurred at a depth of 0.0014 substitutions

per site and resulted in a partition with 13 PSHs (confidence

interval 4–14): 7 distinct clusters plus 6 singletons (Fig. 1). The

likelihood of the multiple-threshold version of the model

(Lmultiple = 178.36) also was significantly higher than that of the

null model (P-value = 0.00028). This version detected a second

threshold for the speciation-coalescent transition towards the tips

of the tree at an extremely shallow depth of only 0.00026

substitutions per site. With this new threshold, the analysis

delimited 15 PSHs (confidence interval 4–15): 7 clusters plus 8

singletons. The mean support value across GMYC clusters was

similar in the single-threshold (0.7360.138) and in the multiple-

threshold (0.7460.237) methods. Nonetheless, the two new

clusters delimited by the multiple-threshold algorithm had very

little support (,0.45).

Although based on entirely different criteria, the partitions

delineated by ABGD and GYMC were notably congruent. The

less inclusive partition obtained by ABGD (14 PSHs) was nearly

identical to the one produced by the single-threshold version of the

GMYC model (13 PSHs). The only discrepancy involved

haplotype Hap_24 (a specimen from Svalbard Archipelago) which

was resolved as a singleton by ABGD while the GMYC model

clustered it with other collections from Svalbard and Scandinavia

(Hap_7). In comparison, the more inclusive partition of ABGD (9

PSHs) and the multiple-threshold GMYC (15 PSHs) showed more

discrepancies. However, their conflicting PSHs (greyed in Fig. 1)

seemed biologically implausible because (i) the more inclusive

hypothesis of ABGD clustered groups of haplotypes separated by

average K2P distances as large as 0.064 (PSHs 4 to 7 in Fig. 1) or

0.081 (PSHs 10 to 12), and (ii) the conflicting PSHs in the multiple-

threshold version of GMYC were separated by distances as small

as 0.002–0.005 (sequence divergence between and within PSHs is

shown in Table S2a).

COI-5P and psbA phylogenies and secondary species
hypothesis

The phylogeny inferred from the mitochondrial COI-5P gene

was well resolved (15 nodes with posterior .0.95 out of 26 nodes)

and four major lineages could be distinguished (Fig. 1). Regardless

of the approach used for species delineation, all the PSHs that

included more than one COI-5P haplotype always coincided with

clades with high statistical support (posterior .0.9) with the

exception of PSH 7.

The chloroplastic psbA gene was sequenced for fifteen of the

sixteen PSHs defined with COI-5P data. A fragment of 892 bp

generated for 29 specimens produced 15 haplotypes. The

phylogeny inferred from psbA data was remarkably congruent

with the one inferred from the COI-5P gene (Fig. 2). Again, four

major lineages could be recognized, one of them separated from

the others at an earlier time. Eleven PSHs were characterized by

unique psbA haplotypes. The remaining four PSHs shared psbA

haplotypes by pairs (PSH 4–5, PSH 6–7); these pairs corresponded

to those cases where the delineation produced by ABGD was in

conflict with the solution of the GMYC method. Most psbA

haplotypes exhibited pairwise distances within a range of 10

(equivalent to 98.8% similarity) to 113 differences (86.6%). Still, a

few PSHs were characterized by psbA sequences separated by

distances as small as 2 (PSH 13 vs. PSH 14, 99.8% similarity), 3

(PSH 15 vs. PSH 16, 99.6%) or 5 point mutations (PSH 10 vs.

PSH 11, 99.4%). Only two PSHs (PSH 3 and PSH 4) produced

more than one (two) psbA haplotypes that were separated by a

single mutation (99.9% similarity).

Given the consistency between the two phylogenies, any PSH

drawn using ABGD and GMYC that was either monophyletic for

psbA or had unique psbA haplotypes was proposed as a SSH. As a

result, 16 initial PSHs were converted to 13 SSHs (Fig. 2; see also

Table S2b for average COI-5P sequence divergence between and

within SSHs). Two pairs of PSHs alternatively recognized as either

a single PSH or as two different PSHs by ABGD and GMYC were

turned in a single SSH each (SSH 4+5, SSH 6+7). Unfortunately,

we did not manage to obtain a psbA sequence for PSH 9, a PSH

supported by only one of the partitions derived from the GMYC

model. Since its COI-5P sequence was very close to the haplotypes

found in PSH 8, we opted for a conservative inclusive approach

and considered these two PSHs as a single SSH (8+9). The final

partition into SSHs matched the delineation obtained with the

single-threshold alternative of GMYC applied to COI-5P data

only and was nearly identical to the less inclusive partition

generated by ABGD.

Matches in public data bases
Based on the literature and on the magnitude of intra-SSH

variability found in our study, we used ad-hoc cutoff values (.98%

identity for COI-5P, .99% for psbA) to determine which

GenBank searches had returned hits for potential conspecifics.

Only 9 out of our 29 COI-5P haplotypes (4 SSHs) and 3 out of the

15 psbA haplotypes (2 SSHs) resulted in a relevant match in either

GenBank or BOLD (Table S3). Altogether, we obtained hits for 4

out of our 13 SSHs: SSH4+5, SSH6+7, SSH12, and SSH16. Only

SSH4+5 resulted in a match to an identified species, L. glaciale:

our COI-5P sequences were 98.6–99.9% similar to, and shared

the same Barcode Index Number (BOLD:AAA6958), 39 acces-

sions uploaded to BOLD for plants collected in Northeast USA

and Canada. Also from OSPAR region I, SSH6+7 was conspecific

with plants (BIN BOLD: ABA9580) from the Pacific (British

Columbia) which, according to pictures logged in BOLD, have a

branched morphology typical of maerl-forming plants. Finally,

SSH12 and SSH16 had conspecific matches in GenBank with

specimens from Brittany, France, which were only identified as

Corallinales.

Concordance with morphological identification
The total number of species identified based on their

morphological features (10) was close to the number of SSHs

(13) delimited with molecular data. However, among the 11 SSH

with more than one specimen, only SSHs 1, 3, 11, and 13 were

consistently assigned to a single morphospecies (Fig. 2). Many

morphospecies contained collections from two, five or even six

distinct SSHs. The only exceptions were M. sphaericum, a maerl

species with a distinctive spherical morphology, and the three

collections assigned to morphospecies Lithothamnion sp2 that

clustered under SSH 2.
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Attribution of available species names
Six SSHs could be assigned to a species name using a body of

proofs. In two cases, name assignment rested on comparisons with

molecular data obtained from type material. SSH 12 was identical

to COI-5P sequences obtained from neotype material of P.
calcareum from BM. Likewise, our collections of SSH 1 included

the holotype of M. sphaericum.

For the second most widespread and common species in our

study (SSH 8+9), we tentatively attributed the species name L.
corallioides because the latter, together with P. calcareum, is

typically regarded as a common component of maerl beds in

Atlantic Europe. Furthermore, samples from the type locality of L.
corallioides (Rade de Brest, Finistère, France)[34] were resolved in

the SSH 8+9.

In light of the morphological traits observed by SEM together

with the existence of previous records from the same area, we

temporarily attributed the names L. fasciculatum and L. dentatum
to SSH 15 and SSH 16. In doing so, we used two names currently

available in the literature for the European Atlantic while

acknowledging that they belong to entities that need revision. A

reassessment of the lectotype of L. fasciculatum has revealed that

the epithet fasciculatum was misapplied to Atlantic plants

belonging to the genus Lithophyllum [43]. Likewise, it seems

unlikely that the coralline algae identified as L. dentatum in the

Atlantic and their Mediterranean counterparts may be conspecif-

ics [44]. Indeed, the Atlantic plants of L. dentatum were previously

considered a form of L. incrustans Philippi [45].

Finally, we attributed the species name L. glaciale to SSH 4+5

based on the result of the BOLD identification engine. The name

used in BOLD has not been confirmed by matching to sequences

of type material (see [46]) and should be used with caution.

Nonetheless, we also recorded SSH 4+5 in Spitsbergen Island

(Svalbard Archipelago), the type locality of L. glaciale and where

this coralline is reported to be common along the west and north

coasts of the island (see [36] and references therein). We did not

dare to link other SSHs to available species names and, therefore,

seven SSHs were left without a binomial name. Nevertheless, their

generic affiliations were evident based on their morphological

traits and the phylogenetic relationships inferred from our COI-5P

and psbA data, and we temporarily named them as Lithothamnion
sp.2 (SSH 6+7), Phymatolithon sp.1 (SSH 10), Phymatolithon sp.2

(SSH 11), Phymatolithon sp.3 (SSH 13), Phymatolithon sp.4 (SSH

14), Mesophyllum sp.1 (SSH 2), and Mesophyllum sp.2 (SSH 3).

Figure 2. Secondary Species Hypothesis (SSHs) corroborated with the psbA gene. Bayesian gene tree with posterior probabilities (.0.9)
next to each node. Branch tips are the 16 psbA haplotypes detected in the study. Numbers at the tip of the branches are Primary Species Hypothesis
(PSH) codes (see Fig. 1) while vertical thick lines delineate SSHs; letters A–D next to some nodes indicate major lineages. Stacked horizontal bars next
to the gene tree indicate the morphospecies identified at the onset of the study; numbers within bars are the actual number of specimens recorded
for each morphospecies. The distribution of each SSH across OSPAR regions and its taxonomic identity is also provided. * topotype specimens
sequenced, ** type specimen sequenced.
doi:10.1371/journal.pone.0104073.g002
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Geographical distribution
A majority of SSHs were restricted to one (6 SSHs) or two (4

SSHs) sampling areas (Fig. 3). The remaining three SSHs showed

wider, largely continuous distributions. Lithothamnion sp.2 (SSH

6+7; for equivalence between SSHs and species names see Fig. 2)

seemed confined to high latitudes in OSPAR regions I and II

where it showed minimal overlap with other maerl-forming plants

except the phylogenetically close L. glaciale (SSH 4+5). South-

ward, Lithothamnion sp.2 was replaced by two species, L.
corallioides (SSH 8+9) and P. calcareum (SSH 12), with wide

ranges that reached northwest Spain. None of the species found in

Macaronesia (Madeira and Canary Islands) was detected in the

OSPAR area and the other way around.

Each major lineage resolved in our phylogeny had different

ranges and limits. Lithothamnion (lineage A, Fig. 3) was detected

at mid to high latitudes in the OSPAR area, with a southern edge

in northwest Spain. Phymatolithon (Lineage B) went unrecorded in

OSPAR region I; instead, it reached the warmer coasts of southern

Portugal and Macaronesia, albeit with a replacement of species.

Finally, Lithophyllum (lineage C) was restricted to the British Isles

and north of France whereas Mesophyllum (lineage D) was

confined to southern latitudes (Spain, Portugal and Macaronesia).

Discussion

Delimitation and identification of species of coralline
algae forming maerl

Our spatially comprehensive sampling likely provides a

thorough picture of the alpha diversity of maerl along European

Atlantic coasts. Our analyses of both COI-5P and psbA sequence

data have delineated 13 SSHs, a number comparable to the 16

species reported for the OSPAR regions and Macaronesia (see

Table 1 for references). Nevertheless, linking available binomial

names to the SSHs uncovered in our study was a delicate task. In

addition to various analyses of the sequence data, additional

evidence (morpho-anatomical observations, previously known

species distribution, molecular data from type and topotype

specimens) was required to guide our decisions at the time of

attributing names. Following this approach, we managed to name

almost half of the species detected in our study with acceptable

confidence. However, it is likely that most, if not all, of the species

that we left unnamed in this study may have already been

described elsewhere.

We did not dare to identify SSH 6+7 (Lithothamnion sp. 2) to

species level. Its confinement to OSPAR region I and to

northernmost sites of region II suggests that L. tophiforme could

be a plausible name but our sequences did not match two

collections from New Foundland, Canada lodged in BOLD as L.
tophiforme. However, the identity of these collections in BOLD

has not been confirmed with sequence data from type material and

should be considered with caution. Lithothamion tophiforme is

mainly reported as an Arctic species that, in European waters, is

confined to very high latitudes [47]. Somewhat unexpectedly,

however, L. tophiforme went unrecorded in a detailed recent

investigation of the northernmost maerl communities currently

known, discovered in 2006 at 80u31’N in the Svalbard Archipel-

ago [36]. Instead, these communities were dominated by L.

glaciale, the only species that we found in our collections from

Svalbard. Interestingly, our BOLD searches revealed that

Lithothamnion sp. 2 also occurs in the North Pacific (British

Columbia). A comparable circumpolar distribution has been

reported for L. glaciale (see references in [48]).

Our results show that Phymatolithon sp.3 (SSH 13) is a major,

even dominant, component of maerl beds in Spain and Portugal.

Indeed, a recent quantitative study with DNA barcodes demon-

strates that the widespread belief that L. corallioides and P.
calcareum are the major builders of maerl in the temperate

European Atlantic does not hold for the Iberian Peninsula.

Instead, they are gradually replaced by Phymatolithon sp.3 in

Galicia (NW Spain) to become extremely rare in S Portugal [49].

Despite our efforts, we have been unable to resolve the identity of

this species beyond generic level. The examination by SEM

revealed traits also found in Phymatolithon lamii (e.g. sunken,

rimless conceptacles), a common coralline throughout the British

Isles, northern Spain, France, Norway, Iceland and eastern North

America [50]. It has also been reported from the western North

Pacific Ocean [51,52] and, more recently, from the Mediterra-

nean where it might be an alien species [53]. In addition, one of

the co-authors (V.P., unpublished results) recently sequenced a

600 bp long fragment of the psbA gene from the type specimen of

P. lamii (in PC) that reveals a low-moderate divergence with our

Phymatolithon sp.3. However, P. lamii has always been described

as encrusting thalli, and there is no previous record of its

occurrence as maerl. Hence, further sequence data from type

material will be required to assign a species name to SSH13.

Lastly, our results clearly indicate that the maerl-forming algae

that colonize Macaronesia deserve further study with appropriate

sampling design and molecular tools.

To our knowledge, this is the first barcoding study focused on

maerl-forming algae. Previous DNA barcode studies on coralline

algae mostly focused on geniculate forms [13,22,46,54] or were

intended to resolve infra-ordinal phylogenetic relationships among

the Corallinales [55]. Nevertheless, Bittner et al. [56] sequenced

geniculated and non-geniculated coralline algae, mainly from

South Pacific Islands, for psbA and COI-5P, and used ABGD and

GYMC to delineate species. As the authors found very divergent

numbers of ‘genetic species’ depending on the criteria and the

marker, they concluded that DNA-barcoding was non-accurate for

assessing the species diversity in this group (but see [33] for

alternative explanations when GMYC has a highly divergent

outcome). Contrarily, we are in favor of an integrative systematic

approach to investigate the diversity of maerl-forming red algae.

We propose the use of the mitochondrial COI-5P barcode as the

first marker and the plastidial psbA gene as a secondary marker

along with other lines of evidence. In this regard, we follow other

authors that already noted the intrinsic limitations of delimiting

species from single-locus studies and advocate the incorporation of

multiple lines of evidence (biogeographical, biological, additional

gene sequences) in this studies [10,32,33].

Despite considerable efforts to identify specimens collected in

this study based on their morpho-anatomical characters, sequence

data were incomparably more efficient. In fact, our Fig. 2 shows

that even maerl assigned to different morphogenera turned out to

belong to the same molecular entity. Initially, this considerable

Figure 3. Morphological variability and distribution of the Secondary Species Hypotheses (SSHs) along the OSPAR area. The table
indicates the number of specimens assigned to each SSH per OSPAR region and country. Vertical lines delimitate four major lineages revealed by
both COI-5P and psbA phylogenies; tentative names are provided for the clades (genus level) based on sequence information from type/topotype
material and on the occurrence of conspicuous morphological features. Lithoth. = Lithothamnion, Phymat. = Phymatolithon, Lithoph. =
Lithophyllum, Mesoph. = Mesophyllum. Scale divisions in the photographs are mm.
doi:10.1371/journal.pone.0104073.g003
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discrepancy between the morphological identification and the

molecular-based delimitation might seem astonishing. However, it

is just another example of the considerable challenge of

discriminating species in a group that largely lacks diagnostic

features but shows considerable morphological plasticity and

convergence. Species delimitation with molecular markers is

known to perform well with deeply divergent taxa such as those

found in our study. However, we still uncovered a few closely

related species that deserve further studies. It is increasingly

acknowledged that a multi-locus approach can define reliable

species boundaries in those cases [10,29,31,57,58]. Even for the

more closely related SSHs, the genealogical concordance observed

between loci located in different genomes lends additional support

to our partition. Finally, the congruence between partitions

recovered with analyses based on radically different criteria

(coalescence vs. distribution of pairwise differences between

sequences) indicates that there is a strong signal in the COI-5P

data set. If any, the only shortcoming encountered in the course of

that study was the erratic amplification of the COI-5P fragment

that failed on 1/3 of the specimens at the first attempt, although

repeated amplifications and/or re-extracting DNA from the same

individual often solved this issue. The remarkable coincidence

between the patterns revealed by our psbA and COI-5P sequence

data indicates that the plastidial marker, which is easier to amplify

than COI-5P, could be a useful alternative for the identification of

maerl-forming species (but see [54] for a intrageneric study where

the gene trees produced by COI-5P and by another plastid-

encoded gene, rbcL, were not always congruent). Compared to the

standard DNA barcode, psbA has lower resolution. However, most

of the maerl-forming taxa studied in the OSPAR region are deeply

divergent. The only exceptions were two pairs of closely related

species with low levels of interspecific divergence (2–3 nucleotide

substitutions) that could be mistaken for intraspecific variability (L.
fasciculatum vs. L. dentatum; Phymatolithon sp.3 vs. Phymatoli-
thon sp.4).

Species distribution and implication for future prospects
Our study reveals that two species of coralline algae are the

main constituent of maerl beds in temperate European Atlantic: L.
corallioides and P. calcareum. Another Phymatolithon (SSH13)

replaces them in the south while the cold OSPAR region I seems

dominated by two species of Lithothamnion (L. glaciale and

Lithothamnion sp.2-SSH 6+7). The remaining species unraveled in

our study are either infrequent and/or confined in space. The

gradual replacement of species with latitude (Fig. 3) is consistent

with the patterns of maerl distribution reported in the literature

(see Table 1 and references therein). The distribution of coralline

algae forming maerl in our study is likewise consistent with a

general pattern observed in many taxonomic groups where a

majority of species have small geographic ranges whereas a few

have large ones [59]. Biogeographical distribution patterns of

species are strongly controlled by climate [60,61]. For instance, the

confinement of L. glaciale to arctic and subarctic locations has

been attributed to the fact that this plant only produces

reproductive conceptacles when water temperatures are below

9uC in winter [62]. Maerl forming coralline algae are likely to be

affected by the ongoing global warming [63]. They may migrate to

regions where the climatic conditions are suitable for their

physiology or may become extinct. In that context, our study

provides an assessment of genuine distribution of maerl species as

well as an efficient tool to monitor putative shifts in southern and

northern ranges of each species delineated.
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