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4-HNE  4-hydroxynonenal  
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5-HT4R  5-hydroxytryptamine receptor 4 (protein) 
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Summary 

 

Chronic obstructive pulmonary disease (COPD) is mainly caused by cigarette smoking and is 

characterized by a chronic inflammatory response of the lung leading to a persistent airflow 

limitation. Cigarette smoke (CS) contains more than 4500 components, including reactive 

oxygen species, nicotine, acrolein and endotoxin (lipopolysaccharide), which can bind to 

inflammatory cells and epithelial cells, further increasing the pulmonary inflammation.  

 

(part on Transient Receptor Potential Channels has been removed from the electronic 

version of the dissertation) 

 

To investigate the altered pulmonary function present in patients with COPD, we measured 

the bronchial hyperresponsiveness (BHR) to serotonin (5-HT) in CS-exposed mice, using  

pharmacological and genetic approaches. 

 

First, the potential role of 5-hydroxytryptamine 4 receptors (5-HT4R) was analyzed. 

Genome Wide Association studies have demonstrated that genetic variants in the gene for 5-

HT4R are associated with pulmonary function, airway obstruction and COPD. In our study in 

mice, CS exposure increased the levels of 5-HT4R mRNA in the lungs and induced BHR to 

5-HT. Antagonism of 5-HT4R did not alter the response to 5-HT in CS-exposed mice. The 

BHR was also not different between wild-type and 5-HT4R KO mice. These data suggest that 

the 5-HT4R is not involved in the BHR to 5-HT in CS-exposed mice. 

 

In patients with COPD, irreversible airflow limitation is progressive, despite ample amounts of 

the smooth muscle relaxation factor nitric oxide (NO). Therefore, we analyzed the role of the 

principal NO receptor, soluble guanylyl cyclase (sGC) in BHR to 5-HT. In mice, CS 

exposure decreased sGC at the mRNA and protein level. Mice deficient in the sGCα1 

subunit had a higher responsiveness to serotonin after CS exposure compared to wild-type 



mice. Reactivation of sGC in wild-type mice, using a pharmacological activator of sGC, 

restored the sGC signaling and attenuated BHR in CS-exposed mice. In addition, the levels 

of sGC were decreased in smokers without airflow limitation and in patients with COPD, and 

correlated with disease severity. These new translational findings show that the sGC-cGMP 

pathway is a promising drug target in the treatment of COPD. 

 

 

  



Samenvatting 

 

Chronisch obstructief longlijden (COPD) wordt voornamelijk veroorzaakt door het roken van 

sigaretten en wordt gekenmerkt door een chronische inflammatoire reactie van de longen, 

wat leidt tot een aanhoudende luchtstroombeperking. Sigarettenrook (SR) bevat meer dan 

4500 componenten, waaronder reactieve zuurstofradicalen, nicotine, acroleïne en 

endotoxine (lipopolysaccharide), die kunnen binden aan inflammatoire cellen en 

epitheelcellen. Dit proces zorgt voor een verdere toename van de pulmonale inflammatie.  

 

(deel over Transient Receptor Potential Channels werd verwijderd uit de elektronische versie 

van het proefschrift) 

 

Om de wijzigingen in pulmonale functie bij patiënten met COPD te onderzoeken, hebben we 

de bronchiale hyperreactiviteit (BHR) ten opzichte van serotonine (5-HT) gemeten in SR-

blootgestelde muizen. Voor dit onderzoek werden farmacologische en genetische 

benaderingen gebruikt. 

 

 

Eerst werd de mogelijke rol van 5-hydroxytryptamine 4 receptoren (5-HT4R) onderzocht. 

Genome Wide Association studies hebben aangetoond dat genetische varianten in het gen 

voor 5-HT4R geassocieerd zijn met wijzigingen in pulmonale functie, luchtwegobstructie en 

COPD. Blootstelling aan SR verhoogde 5-HT4R mRNA in de longen en induceerde BHR ten 

opzichte van 5-HT in onze studie in muizen. Het neutraliseren van 5-HT4R in SR-

blootgestelde muizen veranderde de respons ten opzichte van 5-HT niet. De BHR ten 

opzichte van 5-HT was ook niet verschillend tussen wild-type en 5-HT4R KO muizen. Deze 

resultaten suggereren dat de 5-HT4R niet betrokken is in de BHR ten opzichte van 5-HT in 

SR-blootgestelde muizen. 

 



In patiënten met COPD is de onomkeerbare luchtstroombeperking progressief, ondanks de 

aanwezigheid van de gladde spier relaxerende factor zuurstofmonoxyde (NO). Daarom 

hebben we de rol van de voornaamste NO receptor, soluble guanylyl cyclase (sGC), in 

BHR ten opzichte van 5-HT geanalyseerd. SR-blootstelling in muizen verlaagde de 

hoeveelheid sGC, zowel op mRNA als op eiwitniveau. Muizen deficiënt voor de sGCα1 

subunit vertoonden een hogere reactiviteit ten opzichte van 5-HT na SR-blootstelling 

vergeleken met wild-type muizen. Reactivering van sGC in wild-type muizen, aan de hand 

van een farmacologische activator van sGC, herstelde de sGC signalisatie en verminderde 

de BHR in SR-blootgestelde muizen. In longweefsel van rokers zonder luchtstroombeperking 

en patiënten met COPD was de hoeveelheid sGC afgenomen; en gecorreleerd met de ernst 

van de ziekte. Deze nieuwe translationele bevindingen tonen aan dat de sGC-cGMP 

pathway een veelbelovend doelwit voor geneesmiddelen is voor de behandeling van COPD.  

  



PART I: INTRODUCTION 

Chapter 1. Chronic Obstructive Pulmonary Disease (COPD) 

1.1 Introduction 

Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease, affecting 

more than 200 million people worldwide 1. It is currently the fourth leading cause of death, 

following ischemic heart disease, stroke and lower respiratory infections (Figure 1) 2. The 

main risk factor for developing COPD is tobacco smoke (including passive smoking). Other 

important risk factors are exposure to indoor and outdoor air pollution, occupational dusts 

and chemicals 3. Moreover, tobacco smoke is responsible for the death of about 1 in 10 

adults worldwide, as it also causes cardiovascular disease and lung cancer 2. 

 

Figure 1. The top 10 causes of death in 2011,  

according to the World Health Organization (WHO) 
2
. 

 

COPD is defined by the Global Initiative for Chronic Obstructive Lung Disease (GOLD) as “a 

common preventable and treatable disease, characterized by persistent airflow limitation that 

is usually progressive and associated with an enhanced chronic inflammatory response in 

the airways and the lung to noxious particles or gases. Exacerbations and comorbidities 

contribute to the overall severity in individual patients.” 4.  

 



The chronic airflow limitation in patients with COPD is caused by a combination of small 

airway disease (obstructive bronchiolitis) and parenchymal destruction (emphysema). 

Chronic bronchiolitis is caused by infiltration of inflammatory cells in the small airways. 

This process induces thickening of the airway wall and increased deposition of connective 

tissue (fibrosis). Due to goblet cell metaplasia, mucus production is increased, leading to 

obstruction of the lumen. Emphysema is the abnormal enlargement of the airspaces, 

resulting from disruption of the alveolar attachments. This diminishes the ability of the 

airways to remain open during expiration. Chronic obstructive bronchiolitis and emphysema 

can occur separately or together, both causing a progressive decline of lung function 4-7.  

Patients with COPD often suffer from other extrapulmonary or systemic manifestations, such 

as osteoporosis, skeletal muscle dysfunction and cardiovascular diseases 6,8. 

 

1.2 Symptoms and diagnosis 

Patients with COPD have symptoms like dyspnea, chronic cough or sputum production. 

Although COPD is a very heterogeneous disease, airway limitation is considered as the main 

diagnostic indicator for COPD. The golden standard to measure airflow limitation, is 

spirometry. A post-bronchodilator FEV1/FVC (also known as Tiffeneau index) < 0.70 confirms 

the presence of persistent airflow limitation and of COPD. However, to assess the severity of 

COPD, a classification is made based on FEV1, expressed as a percentage of the normal 

FEV1 of age-, sex- and height-matched individuals (Table 1) 4.  

 

Table 1. Classification of severity of airflow limitation in COPD according 

to GOLD (in patients with FEV1/FVC < 0.70) 

GOLD 1 Mild FEV1 ≥ 80% predicted 

GOLD 2 Moderate 50% ≤ FEV1 < 80% predicted 

GOLD 3 Severe 30% ≤ FEV1 < 50% predicted 

GOLD 4 Very severe FEV1 < 30% predicted 

FEV1: forced expiratory volume in 1 second; FVC: forced vital capacity 



 

An acute worsening of the respiratory symptoms of the patient, or exacerbation, can be 

triggered by an infection with bacteria or viruses, by environmental pollutants or by other 

unknown factors 6,9. The frequency of these short periods of increased cough, dyspnea and 

production of sputum is different between COPD patients. To take the exacerbations into 

account, the GOLD classification was updated in 2012, now combining the symptoms, 

spirometric classification and/or the risk of exacerbations (Figure 2). This new approach 

reflects the complex pathophysiology of COPD better than the previous unidimensional 

analysis of airflow limitation 4. 

 

 

Figure 2. Combined COPD assessment. An mMRC grade ≥ 2 or a CAT score ≥ 10 indicates a high 

level of symptoms. The exacerbation risk is based on the amount of exacerbations in the preceding 

year. A patient with a low level of symptoms, 0 to 1 exacerbations per year and/or in GOLD category 1 

or 2, belongs to group A (low risk and less symptoms). Figure reproduced from 
4
. 

mMRC: Modified Medical Research Council questionnaire; CAT: COPD Assessment Test 

 

1.3 Comorbidities 

COPD is not only a disease of the lungs, but is also associated with systemic manifestations 

and comorbidities such as diabetes, osteoporosis, lung cancer and cardiovascular diseases 

6,8,10. These extrapulmonary manifestations of COPD increase the risks of admission to 

hospital and death. The mechanisms underlying the comorbidities in COPD are not yet fully 

elucidated.  

 



1.4 Therapy 

The most important therapy for patients who smoke, is smoking cessation. Several effective 

treatments exist that can help the patient to stop smoking, such as nicotine replacement 

products and smoking cessation counseling 11.  

None of the currently existing medications for COPD can modify the long-term decline in lung 

function. However, pharmacologic therapy can reduce symptoms of COPD, reduce the 

frequency and severity of exacerbations and improve the health status and exercise 

tolerance of the patient. Since COPD is a heterogeneous disease, with differences in the 

severity of symptoms, airflow limitation and frequency of exacerbations between patients, the 

pharmacological treatment should be patient-specific. Inhaled bronchodilators are the main 

treatment for COPD. Patients with very severe disease (GOLD stage 4) may need surgery 

such as lung transplantation or lung-volume reduction 6.  

Several anti-inflammatory therapies have been tested in patients with COPD (e.g. IL-1-

specific antibodies, TNF-specific antibody, leukotriene B4 receptor antagonists), but none of 

them have shown clinical benefits 12.   

 

1.5 Genetics 

There is a high variation in susceptibility to COPD between individuals, due to differences in 

genetic predisposition to the disease 13. The best known genetic risk factor is a severe 

hereditary deficiency of α-1 antitrypsin, a major circulating inhibitor of serine proteases. 

However, this genetic deficiency is rare. In the past, mainly candidate gene studies were 

performed. In these studies, genetic variants in genes thought to have a function in causing 

or preventing diseases such as COPD are analyzed 14. An important drawback of the 

candidate gene approach is that many genes with unknown functions are missed, whereas 

the more recent Genome Wide Association (GWA) studies are hypothesis-free. GWA 

studies include a panel of hundreds of thousands of single nucleotide polymorphisms (SNP) 

across the entire genome and relate them to diseases or health-related traits 15,16.  



A SNP is a variation at a single position in a DNA sequence among individuals. The DNA 

sequence is composed of four nucleotide bases: adenine, cytosine, guanine, and thymine. If 

more than 1% of a population does not carry the same nucleotide at a specific position in the 

DNA sequence, then this variation can be classified as a SNP. If a SNP occurs within a 

gene, then the gene is described as having more than one allele. A SNP that occurs in a 

coding region or exon is called coding SNP. A coding SNP may be nonsynonymous, 

meaning that it results in a change in the amino acid sequence of a protein. This may affect 

the function of the protein, in contrast to a synonymous SNP which codes for the same 

amino acid 16. Several SNPs within genes are known and have been associated with lung 

function and COPD, such as SNPs in Hedgehog Interacting Protein (HHIP), A disintegrase 

and metalloproteinase 19 (ADAM19) and 5-hydroxytryptamine receptor 4 (HTR4) (Figure 3) 

17-20. To identify the role of these newly discovered genes in the pathogenesis of COPD, 

experimental studies of the biological function of these genes are needed.  

 

Figure 3: Manhattan plot of the Genome Wide Association study of lung function (FEV1/FVC). The 

chromosomal position of SNPs exceeding the treshold (black horizontal line) of genome-wide 

significance (P < 5 x 10
-8

) is shown. Figure reprinted with permission from Hancock DB et al. Nature 

Genetics 2010; 42(1):45-52 
18

. 

 

 



1.6 Pathogenesis and pathophysiology 

COPD is characterized by an influx of inflammatory cells of both the innate and the 

adaptive immune system 21-23 in the lungs in response to the inhalation of noxious gases, 

such as cigarette smoke (Figure 4).    

Cigarette smoke contains more than 4500 components, including nicotine, acrolein and 

endotoxin, in its gaseous and particulate phases. Compounds such as endotoxin 

(lipopolysaccharide (LPS)) can directly activate pattern recognition receptors (PRR) 

expressed on alveolar macrophages, dendritic cells and epithelial cells 22,24. Cigarette smoke 

also causes injury to epithelial cells, which release damage-associated molecular patterns 

(DAMPs), such as uric acid, ATP and HMGB-1. DAMPs can also activate PRRs , leading to 

increased IL-1β. The cigarette smoke-induced release of proinflammatory cytokines and 

chemokines by airway epithelial cells and alveolar macrophages, attracts neutrophils and 

inflammatory monocytes to the lungs 22,25,26. Upon activation, neutrophils and macrophages 

cause lung destruction (emphysema) by releasing oxygen radicals and proteolytic enzymes 

such as neutrophil elastase and matrix metalloproteinases (MMPs) (Figure 4). 

Dendritic cells are localized in the lumen and directly beneath the epithelium of the airways, 

where they can easily pick up antigens and present them to naïve T lymphocytes in the 

draining lymph nodes 27,28. The exact nature of these antigens is not clear yet, but 

components of CS, microbial antigens or auto-antigens are plausible candidates 29-31. The 

activated antigen-specific CD4+ and CD8+ T lymphocytes and antibody-producing B cells 

migrate back to the lungs. After progression of the disease, lymphoid follicles containing 

segregated B- and T-cell zones, develop around the small airways and in the lung 

parenchyma 22,32,33 (Figure 4).   

Moreover, structural changes in the airways appear, including peribronchial fibrosis, airway 

smooth muscle hyperplasia and hypertrophy and goblet cell hyperplasia. This thickening of 

the airway wall and narrowing of the lumen is called airway wall remodeling (Figure 4). 

 



 

 

Figure 4. Schematic overview of the pathophysiology of COPD. 
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Chapter 2. Transient Receptor Potential (TRP) channels and TRPA1 

2.1 Transient Receptor Potential (TRP) channels 

Transient Receptor Potential (TRP) channels are cation channels that are able to respond to 

a large variety of physical and chemical stimulants. They play a critical role in sensing both 

the outside world (thermal sensation, touch, chemosensation) and the local environment 

(inflammation, tissue injury). The TRP superfamily is subdivided in six subfamilies: TRPC 

(canonical), TRPV (vanilloid), TRPM (melastatin), TRPA (ankyrin), TRPP (polycystin) and 

TRPML (mucolipin) 34,35 (Figure 5).  

 

 

Figure 5. Structure of the 6 subfamilies of the Transient Receptor Potential (TRP) superfamily.  

TRPV: vanilloid, TRPA: ankyrin, TRPC: canonical, TRPM: melastatin, TRPP: polycystin, TRPML: 

mucolipin. Figure reprinted with permission from Moran M et al. Nature Reviews Drug Discovery 

10:601-620 
35

. 

 

TRP channels are expressed and functional in various multicellular organisms (fruit flies, 

worms, zebrafish, mice, humans). Apart from their 6 transmembrane domains with a pore 

loop between the fifth and sixth segment and their selectivity for cations, the majority of TRP 



channels share a low level of structural similarity (Figure 5). Consistent with their diverse 

structure and expression on both neuronal and non-neuronal cells, TRP channels have very 

diverse functions throughout the body 35.  

 

2.2 Transient Receptor Potential (TRP) channels in inflammation and disease 

TRP channels have been mainly studied in the area of pain research. Several TRP channels 

are expressed on sensory nerves and are activated by heat, cold, pH and reactive 

chemicals. This activation can trigger an action potential in the sensory nerve, which is 

transmitted to the central nervous system where the sensation of pain is experienced 35 

(Figure 6).  

 

Figure 6. Transient Receptor Potential (TRP) channels on sensory neurons.  

TRPV: vanilloid, TRPA: ankyrin, TRPM: melastatin, DRG: dorsal root ganglion. Figure reprinted with 

permission from Moran M et al. Nature Reviews Drug Discovery 10:601-620 
35

. 

 

TRPV1, localized on sensory nerves, is activated by capsaicin, a component of chili peppers. 

Repeated administration of capsaicin desensitizes the sensory nerve, making it unresponsive 

to further attacks 36. Therefore, TRPV1 could have therapeutic potential in the treatment of  

pain.  



TRP channels are also implicated in other physiological processes such as bladder function, 

formation of the skin epidermal barrier and glucose tolerance. In the bladder, TRPV1-positive 

nerves mediate the micturition reflex 37. TRPV4 channels are expressed in the urothelium 

and in the detrusor muscle, making TRPV4 an interesting candidate in the management of 

an overactive bladder 37. In the skin, TRPV1 is highly present on various cell types 

(keratinocytes, sensory neurons,...) 38. TRPV1, TRPV3, TRPV4 and TRPV6 are involved in 

regulating the formation of the epidermal barrier of the skin 38,39. Inactivation of TRPV1 

protects against the development of type 1 diabetes and improves the glucose tolerance in 

type 2 diabetes 40. 

Mutations in TRP channels are the cause of certain diseases, such as autosomal dominant 

polycystic kidney disease (TRPP) 41, mucolipidosis type IV (TRPML) 42, autosomal dominant 

segmental glomerulosclerosis (TRPC6) 43, hypomagnesemia and hypocalcemia (TRPM6) 44. 

 

2.2.1 TRPA1 in inflammation and disease 

Transient Receptor Potential channel ankyrin 1 (TRPA1) has an unusually high number of 

ankyrin repeats at the amino terminus. TRPA1 can be activated directly by covalent 

modification of specific cysteine residues located in the ankyrin repeat domains 45 (Figure 7). 

TRPA1 can also be activated in an indirect way, by modulation by G protein-coupled 

receptors (GPCRs) through second messenger signaling pathways. Bradykinin activates the 

GPCR-coupled receptor BK2R, leading to activation of phospholipase C (PLC). Generally, 

PLC cleaves phosphatidylinositol 4,5-bisphosphate (PIP2) to diacylglycerol (DAG) and 

inositol 1,4,5-trisphosphate (IP3). After diffusion through the cytosol, IP3 interacts with 

calcium (Ca2+) channels in the membrane of the endoplasmic reticulum, leading to opening 

of these channels and subsequent release of Ca2+ in the cytosol. This increase in Ca2+ could 

activate TRPA1. DAG, present on the membrane, can lead to activation of protein kinase C, 

together with Ca2+. Phosphorylation by PKC can also activate TRPA1. However, the specific 



molecules downstream of PLC, that lead to activation of TRPA1 are not known yet 46  

(Figure 7). 

 

Figure 7. Activation mechanisms of TRPA1. TRPA1 can be activated directly by covalent 

modification of specific cysteine residues located in the ankyrin repeat domains; and indirectly by 

modulation by G protein-coupled receptors (GPCRs) through second messenger signaling 

pathways. GPCR: G protein-coupled receptor, PLC: phospholipase C. 

 

Many of the activators of TRPA1 cause pain in humans and mice. TRPA1 knockout mice 

show a reduced sensitivity to environmental irritants and reduced pain behavior 47. Therefore, 

TRPA1 antagonists are being investigated in pain research. 

TRPA1 is a sensor of inflammation throughout the body, including the gastrointestinal tract. 

TRPA1 is expressed on sensory nerves that innervate the colon and mediates the release of 

neuropeptides upon activation 48.  

 

2.3 TRP channels in airway diseases 

The airways are innervated by a dense network of nerve fibers. The majority of the fibers that 

innervate the respiratory tract are carried in the vagus nerve, and their neuronal cell bodies 

are localized in the nodose and jugular ganglia 49. Also nerves originating from the spinal 

cord innervate the airways with sensory neurons originating from the dorsal root ganglia. 
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The trigeminal ganglia contain the cell bodies of the trigeminal nerve fibers, with nerve 

endings in the nasal mucosa. The terminals of the sensory fibers, expressing TRP channels, 

are localized close to the epithelium, which allows them to detect noxious compounds, tissue 

injury and inflammation in the lungs 49,50. After activation of the TRP channels, the ganglia 

project the information from the airways through afferent fibers to the brain (nodose, jugular 

and trigeminal ganglia) or to the spinal cord (dorsal root ganglia) and initiate a nocifensive 

reflex such as bronchoconstriction, mucus secretion or cough 49 (Figure 8). The majority of 

sensory nerves in the lower airways are C-fibers that sense injury and mainly respond to 

chemical stimulation such as capsaicin and bradykinin 51,52. C-fibers, also often referred to as 

‘nociceptors’, contain neuropeptides such as substance P (SP), neurokinin A (NKA) and 

calcitonin gene-related peptide (CGRP) 53. Neuropeptides are locally released upon 

stimulation and induce a neurogenic inflammatory response (including plasma protein 

extravasation, bronchoconstriction, mucus secretion and chemotaxis of inflammatory cells to 

the site of injury) 53-55 (Figure 8). 

TRP channels are not only present on nerves, but also on non-neuronal cells. TRPA1 is 

expressed on airway epithelial cells and airway smooth muscle cells, TRPV1 on airway 

epithelial cells, TRPV4 on airway epithelial cells, airway smooth muscle cells, endothelium 

and macrophages, and TRPM8 on airway epithelial cells. The expression of TRP channels 

on inflammatory cells types has also been suggested 56-61.  

 



 

Figure 8. Innervation of the airways. Activation of TRP channels on airway sensory nerve endings can 

lead to a nocifensive reflex, such as coughing; and to the local release of neuropeptides, inducing 

neurogenic inflammation. TRPA1 is also present on non-neuronal cells, and its activation could lead to 

an additional inflammatory response. CNS: central nervous system, TRP: Transient Receptor 

Potential. 

 

Capsaicin, a TRPV1 agonist, causes coughing, sneezing and fluid secretion after application 

to human respiratory mucosa. However, in patients with idiopathic rhinitis, capsaicin induces 

symptomatic relief by desensitizing TRPV1-expressing sensory neurons 62. Multiple SNPs in 

the gene encoding TRPV4 are associated with COPD 63. TRPV4 is expressed on airway 

epithelium, endothelium and smooth muscle and could play a role in airflow obstruction by 

inducing contraction of the smooth muscle cells 59. Moreover, TRPV4 is important in 

regulating the airway epithelial barrier function and mucociliary transport 64,65. Activation of 

TRPV4 on alveolar macrophages triggers the production of reactive oxygen species and 

reactive nitrogen species 66. These effects of TRPV4 are implicated in the pathogenesis of 

COPD, so TRPV4 may be crucial in the development of COPD. 

TRPM8 is activated by cold and menthol. Activation of TRPM8 on lung epithelial cells 

induces production of inflammatory cytokines 67. TRPM8 may also be involved in cold-

induced exacerbations of asthma 68. 
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2.3.1 TRPA1 in airway diseases 

A large number of the TRPV1+ sensory neurons express TRPA1, which responds to 

endogenous mediators such as lipid peroxidation byproducts (4-hydroxynonenal: 4-HNE) 

and to exogenous irritants such as ozone, components of cigarette smoke (acrolein, nicotine, 

α,β-unsaturated aldehydes, LPS) and chlorine 69-71,72. Apart from its localization on nerve 

fibers, TRPA1 is also present on non-neuronal cells (epithelial cells, smooth muscle cells) 

57,60. 

The activation of TRPA1 on airway sensory nerves can lead to reflex coughing, mucus 

production, bronchoconstriction; and to a local release of neuropeptides, inducing neurogenic 

inflammation (Figure 8). This indicates that TRPA1 may be a good target in the treatment of 

various airway diseases. The importance of TRPA1 in the airways has already been 

demonstrated in a murine model of allergic airway inflammation 73. The OVA-induced 

infiltration of leucocytes in the airways, production of cytokines and mucus, and airway 

hyperreactivity is significantly reduced in TRPA1 KO mice. Treating OVA-challenged wild-

type mice with the TRPA1 antagonist HC-030031 inhibits the increased inflammation in 

bronchoalveolar lavage (BAL) fluid and prevents airway hyperreactivity. Both genetic deletion 

and pharmacologic inhibition of TRPA1 decrease the levels of neuropeptides in BAL fluid 73. 

TRPA1 KO mice, exposed to acute cigarette smoke for 3 days, have significantly lower levels 

of the neutrophil attracting chemokine KC (keratinocyte-derived chemokine; CXCL1). After 

intratracheal instillation with cigarette smoke extract (CSE) and treatment with HC-030031, 

wild-type mice also show lower levels of KC compared to vehicle-treated mice. Moreover, 

antagonism of the NK1 receptor, which binds substance P, has no influence on KC levels, 

while it does affect plasma protein extravasation 57, suggesting a role for TRPA1 in both 

neuronal and non-neuronal cells of the lung. 

Since TRPA1 is activated by several components of CS and is present on both airway 

sensory nerves and non-neuronal cells in the airways, we analyzed the role of TRPA1 in a 

murine model of CS-induced inflammation (see Chapter 7). 



Chapter 3. Serotonin (5-HT) and serotonin receptors 

3.1 Serotonin (5-HT) 

Serotonin (5-hydroxytryptamine, 5-HT) is a monoamine neurotransmitter (Figure 9) and 

regulates the function of several human organ systems and is involved in multiple disease 

processes. 5-HT signaling in the central nervous system (CNS) has been thoroughly 

described, where it is implicated in many psychiatric and neurological conditions such as 

depression, anxiety disorders, eating disorders and obsessive-compulsive disorder 74,75. 

However, the majority of total body 5-HT is found peripherally, where it is mainly synthesized 

(Figure 9), stored and released by enterochromaffin cells of the gut  76. Production of 5-HT 

has also been described in pulmonary neuroendocrine cells 77 and in rodent mast cells 78. 

After release in the blood circulation, 5-HT is rapidly taken up by platelets where it is stored 

and released during platelet aggregation.  

                      

   

 

Figure 9. A. Structure of 5-hydroxytryptamine (5-HT) (adapted from IUPHAR database 
79

) B. 

Synthesis of 5-HT. 5-HT is synthesized from the naturally occurring essential amino acid tryptophan. 

Tryptophan hydroxylase 1 is present in enterochromaffin cells, tryptophan hydroxylase 2 in neurons. 
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3.2 Serotonin receptors in inflammation and disease 

Serotonin receptors are ubiquitously expressed in the human body. Seven major families of 

5-HT receptors exist: 5-HT1, 5-HT2, 5-HT3, 5-HT4, 5-ht5, 5-HT6 and 5-HT7 receptor 80. The 5-

ht5 receptor has not yet been fully characterized and is therefore not identified as an official 

receptor. Except for 5-HT3 receptors, which are ligand-gated ion channels, all 5-HT receptors 

are G protein-coupled receptors with the typical structure of 7 hydrophobic transmembrane 

domains, 3 intracellular and 3 extracellular loops. 5-HT1R are mostly coupled to inhibitory Gαi 

proteins, leading to inhibition of adenylyl cyclase (AC) and a subsequent decrease of cAMP 

levels. 5-HT4R, 5-HT6R and 5-HT7R are linked to Gαs proteins, resulting in activation of AC 

and increased cAMP levels. 5-HT2R are coupled to Gαq proteins, which are linked to the 

phospholipase C signaling pathway 81,82 (Figure 10).  

 

Figure 10. Main signaling pathways of 5-HT receptors. The receptor is coupled to a heterotrimeric G 

protein, composed of α, β and γ subunits. In the inactive state, the Gα subunit is bound to guanosine 

diphosphate (GDP). Binding of 5-HT triggers a conformational change in the receptor, which catalyzes 

the replacement of GDP by GTP and the dissociation of Gα from the Gβγ subunits. A single 5-HTR 

can couple to one or more Gα subfamilies resulting in different outcomes. The main pathways of 5-HT 

receptors are depicted in the figure. Figure based on Dorsam RT and Gutkind JS. Nature reviews 

Cancer 2007; 7(2):79-94 
82
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Similar to their ligand 5-HT, the 5-HT receptors are found centrally, as well as peripherally, in 

the gastrointestinal tract, cardiovascular system, platelets, adrenal gland, bladder and lung. 

Consequently, 5-HT receptors have divergent functions.  

5-HT1R are clinically relevant in anxiety- and depression-related mood states. Mice deficient 

for 5-HT1 receptors show increased anxiety behavior and stress responses 83, while partial 

agonists of 5-HT1A receptor are effective anxiolytic agents 84,85. Moreover, 5-HT1AR is 

extensively expressed in the central respiratory network and pharmacological treatment with 

5-HT1AR agonists has anti-apneustic effects 86,87.  

5-HT2AR and 5-HT2BR mediate the contraction answer of the smooth muscle in peripheral 

tissues 88. The activation of 5-HT2BR in the heart may induce fibrotic cardiac valvulopathy 

(thickening of the heart valves) 89. In the central nervous system, 5-HT2AR antagonists are 

used for the treatment of schizophrenia 90.  

5-HT3R antagonists are currently used as anti-emetic drugs 91,92 and are beneficial as 

symptomatic drugs for patients with irritable bowel syndrome 93. 

5-HT4R will be described more thoroughly in section 3.2.1 and 3.3.1. 

5-HT6R are selectively expressed in the central nervous system, but their clinical significance 

remains unclear 94. 

5-HT7R are located in the thalamus, hypothalamus, hippocampus and cerebral cortex. In the 

periphery, 5-HT7R are present in smooth muscle cells of blood vessels and in the 

gastrointestinal tract 95. The pharmacological inhibition of 5-HT7R (present on dendritic cells) 

in mice reduces experimentally induced colitis, associated with lower proinflammatory 

cytokine levels 96. Similarly, 5-HT7R KO mice have significantly reduced intestinal 

inflammation 96. 

 

3.2.1 5-HT4 receptors in inflammation and disease 

5-HT4 receptors have been studied in learning and memory processes. 5-HT4R agonists 

have pro-cognitive effects, both on short term and long term memory 97. Moreover, 5-HT4R 



are involved in the processing of the amyloid precursor protein 98, and a decreased density of 

5-HT4R binding sites has been demonstrated in the brain of patients with Alzheimer’s 

disease 99, suggesting that 5-HT4R agonists could be beneficial in the treatment of memory 

disorders 100. Polymorphisms of the Htr4 gene, encoding the 5-HT4 receptors, have been 

correlated with bipolar disorders and depression 101. The brain of depressed suicide victims 

shows an altered expression of 5-HT4 receptors 102. Recently, evidence has been found that 

5-HT4 receptors may also be a direct target for treating depression 103. A study has shown 

that 5-HT4R KO mice have reduced hypophagia following stress 104, suggesting that 5-HT4R 

antagonists may be useful drugs to treat anorexia-related disorders 105.  

The use of 5-HT4R agonists has been most extensively studied in the gastrointestinal tract, 

for the treatment of conditions such as irritable bowel syndrome, constipation and gastro-

esophageal reflux 106,107. However, the 5-HT4R agonist cisapride has been withdrawn from 

the market due to cardiovascular adverse effects 108. The production of more selective 5-

HT4R agonists is therefore emerging.   

 

3.3 Serotonin receptors in airway diseases 

Several publications suggest a role for the serotonergic system in airway diseases. 

Symptomatic asthma patients have elevated levels of 5-HT in plasma compared with non-

asthmatics 109. Moreover, the 5-HT plasma levels are significantly correlated with FEV1 
109. In 

line with these findings, ketanserin, a 5-HT2R antagonist, has a beneficial effect on FEV1 in 

patients with chronic airflow limitation 110. Tianeptine, a drug that reduces the concentration 

of plasma 5-HT by enhancing the re-uptake of 5-HT, improves pulmonary function in children 

with asthma 111.  Also patients with COPD have elevated plasma 5-HT levels 112. 

Dietary supplementation of 5-hydroxytryptophan, the precursor of 5-HT, significantly reduces 

allergen-induced lung inflammation in a murine model, mainly by inhibiting the endothelial 

cell function during leukocyte recruitment 113. The expression of cytokines and chemokines is 

not different between mice on a diet with or without 5-hydroxytryptophan, and the systemic 5-

HT levels are also not affected 113.       



Pulmonary hypertension is a complication of COPD, associated with increased risks of 

exacerbation and decreased survival 114. There is currently no pharmacological treatment for 

pulmonary hypertension in COPD 114.  A commonly used murine model of PH is the chronic 

hypoxia model. 5-HT1BR KO mice develop less severe PH than wild-type mice, although they 

still respond to hypoxia 115. In mice deficient for 5HT2BR, PH is completely absent, indicating 

that activation of 5-HT2BR is an important step in the development of PH 116. 

 

3.3.1 5-HT4 receptors in airway diseases 

5-HT receptors, including 5-HT4R, are expressed by human airway epithelial cells 117 and by 

a broad range of inflammatory cell types, such as dendritic cells 118 and monocytes 119. In 

dendritic cells, the expression of 5-HT4R mRNA increases after maturation by LPS 120. The 

activation of 5-HT4R or 5-HT7R, using specific agonists, significantly increased the secretion 

of IL-8 and IL-1β in mature dendritic cells, while reducing IL-12 and TNFα levels 120. 

A meta-analysis of Genome Wide Association Study results (GWAS, see 1.5 Genetics) from 

4 CHARGE consortium studies (Atherosclerosis Risk in Communities (ARIC), Cardiovascular 

Health Study (CHS), Framingham Heart Study (FHS) and Rotterdam Study (RS-I and RS-II)) 

analyzed the pulmonary function in 20890 participants of European ancestry (11963 ever-

smokers and 8927 never-smokers). The meta-analyses were performed with adjustment for 

smoking status and quantity (pack-years). Polymorphisms in 8 regions were associated with 

FEV1/FVC, including HTR4, the gene encoding 5-HT4R in humans 18 (Figure 11).  

 



 

Figure 11. Regional association plot for the locus including HTR4, associated with FEV1/FVC. Figure 

reprinted with permission from Hancock DB et al. Nature Genetics 2010; 42(1):45-52 
18

. 

 

These loci, and other high-signal hits were replicated in the independent SpiroMeta 

consortium, counting 20288 participants 121. The association of HTR4 and FEV1/FVC was 

confirmed, and polymorphisms in HTR4 were also associated with FEV1 
121. In another 

GWAS, the HTR4 gene was implicated in the pathogenesis of airflow obstruction 122.  

The original CHARGE meta-analysis was repeated in individuals without asthma and COPD, 

remaining 17855 of the 20890 participants. Several SNPs in HTR4 again reached genome-

wide significance in individuals with normal pulmonary function 18. Soler Artigas et al. 

analyzed the clinical relevance of five loci reported by the SpiroMeta Consortium. 

Interestingly, genetic variants in HTR4 were associated with COPD 123. 

The functional role of 5-HT4R in airway diseases has already been investigated in some 

studies. The protein expression of 5-HT4R in human lung tissue is very low 124. In an in vitro 

study of human airways, electrical field stimulation (EFS) induces cholinergic contractions, 

which are further enhanced in the presence of 5-HT. This response is significantly 

antagonized by tropisetron, an antagonist of both 5-HT3R and 5-HT4R. Selective antagonists 

of 5-HT3R and 5-HT4R are also able to attenuate the facilitatory effect of 5-HT on cholinergic 

contraction, although the effect is less pronounced than tropisetron. The authors suggest that 



both 5-HT3R and 5-HT4R are present on postganglionic cholinergic nerves, which enhance 

the EFS-induced cholinergic contraction of human airways in vitro 125 (Figure 12). A study in 

guinea pigs has shown that 5-HT directly activates 5-HT2A receptors on airway smooth 

muscle cells, leading to bronchoconstriction. 5-HT4 receptors, present on cholinergic nerves, 

can be stimulated indirectly by 5-HT, causing the release of acetylcholine. The binding of 

acetylcholine to muscarinic receptors on airway smooth muscle cells eventually results in 

bronchoconstriction 126 (Figure 12). Recently, researchers have shown that rhesus monkeys, 

sensitized with house dust mite allergen (HDMA) and challenged with ozone + HDMA, have 

increased airway hyperresponsiveness compared to filtered air-exposed monkeys, even after 

prolonged recovery 127. This response is exacerbated by 5-HT, and significantly decreased in 

the presence of 5-HT2AR, 5-HT3R or 5-HT4R antagonists. 

The 5-HT-induced contraction in murine airways has been described in several publications 

128,129, but 5-HT4R have not been studied in mice before.  

 

 

Figure 12. Potential pathways of 5-HT-induced contraction, as suggested in previous studies 
125,126

. 5-

HT can directly stimulate 5-HT2AR on airway smooth muscle cells. However, in humans, 5-HT3R and 

5-HT4R 
125

 on parasympathetic cholinergic nerves can also be stimulated by 5-HT, leading to release 

of acetylcholine (Ach) and the indirect induction of bronchoconstriction. 
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Chapter 4. Soluble guanylyl cyclase 
§
 

4.1 Nitric oxide/soluble guanylyl cyclase(sGC)/cGMP pathway 

Nitric oxide (NO) is synthesized from the semi-essential amino acid L-arginine. This reaction 

is catalyzed by nitric oxide synthases (NOS) (Figure 13). The endothelial NOS (eNOS) and 

neuronal NOS (nNOS) are constitutive isoforms, present in respectively endothelial cells and 

neuronal cells of the brain and peripheral nerves 130. eNOS and nNOS are calcium 

dependent and induce the transient production of NO in response to various physiological 

stimuli. A third isoform, inducible NOS (iNOS), is upregulated by endotoxins or cytokines 

such as TNF-α, IFN-γ and IL-1β 131. In the lungs, the main sources of NO under basal 

conditions are vascular endothelial cells, macrophages, airway nerves and airway epithelial 

cells; the main effector cells for NO are the vascular smooth muscle and the airway smooth 

muscle 132,133.  

  

  Figure 13: Synthesis of nitric oxide (NO)  

 

Guanylyl cyclases (GCs), members of the family of nucleotide cyclizing enzymes, are widely 

distributed signal-transduction enzymes that catalyze the conversion of GTP to cGMP 

(Figure 13). Soluble GC (sGC) is a receptor for gaseous ligands (NO and CO) and is able to 

associate with the plasma membrane through protein-protein interactions in a Ca2+-

dependent manner 134. The downstream effects of the second messenger cGMP are 

mediated by 3 major types of intracellular effectors: cGMP-dependent protein kinases I and 

II, cGMP-gated ion channels and cGMP-regulated phosphodiesterases (PDEs) 135,136. The 

degradation of cGMP is catalyzed by PDE families (including PDE5). 

                                                

§
 Based on ‘Role of the nitric oxide - soluble guanylyl cyclase pathway in obstructive airway diseases’ 

Dupont LL, Glynos C, Bracke KR, Brouckaert P, Brusselle GG. Pulm Pharmac Ther 2014. 
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sGC is a heterodimer, consisting of a larger α-subunit and a smaller β-subunit (Figure 14). 

There are 2 forms of the α-subunit (α1 and α2) and of the β-subunit (β1 and  β2) . α1β1 and 

α2β1 are equally present in the brain, while α1β1 is the most prevalent form in other tissues 

such as the lung 137. Both forms have a similar catalytic rate and sensitivity towards NO. The 

β-subunit has an amino-terminal haem-binding domain and a prosthetic haem moiety, for 

sensing of NO (Figure 14). The haem moiety is a large heterocyclic organic ring with a 

central metal ion (Fe). sGC is activated by nanomolar concentrations of NO in the presence 

of the reduced Fe2+ (ferrous) haem moiety. Oxidized, Fe3+ (ferric) haem is insensitive to NO. 

Oxidation is induced by exogenous molecules, such as ODQ (1H-[1,2,4]oxadiazolo-[4, 3-

a]quinoxalin-1-one), and by endogenous molecules, including reactive oxygen species 

(ROS) and reactive nitrogen species (RNS) 134. The highly proinflammatory molecule 

peroxynitrite (ONOO-) is an example of RNS and can cause tissue injury in various organs. 

ROS are free radicals, such as superoxide (O2
•-) and hydrogen radical (HO•), which can 

cause cell dysfunction and cell death. Normally, they are counterbalanced by antioxidants 

and rapidly removed from the body. An imbalance between ROS/RNS and antioxidants leads 

to oxidative/nitrative stress 138-140.  

 

Figure 14: Structure of soluble guanylyl cyclase (sGC) . Both sGCα1β1 and sGCα2β1 heterodimers 

contain an N-terminal regulatory heme group, and a catalytic domain in the C-terminal part. The α2 

subunit can be bound to the plasma membrane by interaction with proteins such as post-synaptic 

density protein 95 (PSD-95).  Figure reprinted with permission from Friebe A and Koesling D. Nitric 

Oxide 2009 
141

.  

 

Friebe A et al, Nitric Oxide 2009



Both transmembrane and soluble forms of guanylyl cyclases exist. The transmembrane, 

particulate GC (pGC) acts as a receptor for atrial, brain (B-type) and C-type natriuretic 

peptides.  

 

4.2 Soluble guanylyl cyclase in inflammation and disease 

The NO/sGC/cGMP pathway is impaired in various diseases, and several steps in the 

pathway are potential therapeutic targets 134. The reduced bioavailability and/or 

responsiveness to endogenously produced NO contributes to the development of  

pathologies such as cardiovascular, pulmonary, endothelial, renal and hepatic diseases and 

erectile dysfunction. NO-donors, including organic nitrates, release NO by spontaneous 

decomposition or bioconversion, thereby activating sGC. Although NO-donors can be 

beneficial in certain groups of patients, their use is limited because of the potential lack of 

response, the development of tolerance and the non-specific interactions of NO with 

biomolecules 142.  

Two types of NO-independent drugs, that target sGC, may be more beneficial than NO-

donors. sGC stimulators stimulate sGC directly and enhance the sensitivity of the reduced 

enzyme to low levels of bioavailable NO (Figure 15) 143. While sGC stimulators are haem-

dependent, sGC activators activate the NO-unresponsive, haem-oxidized or haem-free 

enzyme (Figure 15) 144. BAY 58-2667 is the most potent sGC activator. It replaces the sGC 

oxidized, weakly bound prosthetic haem, leading to activation of the enzyme. Reduced haem 

is unresponsive to BAY 58-2667 134. 

Under physiological conditions, sGC is thought to exist as a pool of reduced NO-sensitive 

sGC and oxidized or haem-free NO-insensitive sGC. In pathophysiological conditions 

associated with oxidative stress, such as heart failure, the pool of NO-insensitive sGC is 

increased 145.  



 

Figure 15: Soluble guanylyl cyclase (sGC). Under physiological conditions, there is a balance 

between the reduced, NO-sensitive sGC and the oxidized, NO-insensitive sGC. Oxidative stress and 

reactive oxygen species shift the balance to the oxidized form, resulting in an impaired sGC/cGMP 

pathway. The enzyme can even lose the haem group (haem-free sGC). sGC stimulators enhance the 

sensitivity of the reduced enzyme to low levels of bioavailable NO, while sGC activators activate the 

NO-unresponsive, haem-oxidized or haem-free enzyme. 

 

In patients with arterial hypertension, the mRNA and protein levels of α1 and β1 subunits 

and the activity of sGC are reduced. The efficacy of the sGC activator BAY 58-2667 is further 

enhanced by oxidative stress, and therefore it selectively targets diseased blood vessels 134. 

The selectivity of BAY 58-2667 was confirmed in a mouse model, where treatment with the 

sGC activator protects against lethal endotoxic shock, while the sGC stimulator BAY 41-

2272 and the PDE-5 inhibitor sildenafil have no beneficial effect 146.  

To investigate the functional role of sGC, several genetic knockout mice were generated, 

which lack one of the three subunits (α1, α2 or β1). Because sGC is a heterodimer and the α 

subunits are less stable in the absence of the β subunit, sGCβ1 KO mice have reduced or 

undetectable levels of the α subunits. Also the levels of the β1 subunit are reduced in sGCα1 

and sGCα2 KO mice. Male sGCα1 KO mice on a 129S6 background develop hypertension, 

while female mice showed no change in blood pressure. However, on a C57Bl/6 background, 

male sGCα1 KO mice do not develop hypertension, due to strain-dependent differences in 

renin genes 147. 



4.3 Soluble guanylyl cyclase in pulmonary hypertension 

An impaired NO/sGC/cGMP pathway is involved in the pathogenesis of pulmonary 

hypertension. Pulmonary hypertension is classified in 5 main groups: 1) Pulmonary arterial 

hypertension, 2) pulmonary hypertension due to left heart disease, 3) pulmonary 

hypertension due to lung diseases (such as COPD) and/or hypoxia, 4) chronic 

thromboembolic pulmonary hypertension and 5) pulmonary hypertension with unclear 

multifactorial mechanisms. One of the main treatments of pulmonary arterial hypertension 

(group 1), are PDE-5 inhibitors. By inhibiting the degradation of cGMP, PDE-5 inhibitors 

cause pulmonary arterial vasodilation. However, treating patients with COPD-associated 

pulmonary hypertension (group 3) with the short-acting PDE-5 inhibitor sildenafil or the long-

acting PDE-5 inhibitor tadalafil did not improve exercise capacity or quality of life 148,149. Other 

studies have analyzed the effect of the sGC stimulator riociguat as a therapy for chronic 

thromboembolic pulmonary hypertension (group 4) and pulmonary arterial hypertension 

(group 1). In both patient groups, the exercise capacity was significantly improved after 

treatment with riociguat 150-152. sGC stimulators and activators are also effective when 

endogenous NO is depleted, have limited off-target effects and remain efficacious with 

prolonged use 134. In a murine model of chronic hypoxia, both the sGC activator BAY58-2667 

and the sGC stimulator BAY41-2272 significantly decreased pulmonary hypertension. 

However, a 10 times higher dose of the sGC stimulator was needed to obtain similar effects 

as the sGC activator 153.  

 

4.4 Soluble guanylyl cyclase in airway diseases 

The highest content of sGC is found in the lungs 137 and is therefore implicated in respiratory 

diseases, such as asthma. 

Patients with asthma have an elevated airway tone, despite the presence of large amounts 

of NO in the airways that could activate sGC and cause relaxation of the smooth muscle. In a 

murine model of allergic asthma, the levels of sGC α1, α2 and β1 are reduced in the lungs, 

both on mRNA and protein level. Mice treated with the selective sGC inhibitor ODQ have an 



increased airway reactivity to methacholine compared to naïve mice 154. This finding 

suggests that sGC could be inhibited in patients with asthma, leading to the observed airway 

hyperresponsiveness.  

Also in patients with COPD, the lungs contain ample amounts of NO, but the airway tone 

remains elevated. We have investigated the role of sGC in airway hyperresponsiveness in 

COPD (see Chapter 8) (Figure 16). 

 

 

 

Figure 16: The NO/sGC/cGMP signaling pathway in obstructive airway diseases. Bronchial and 

alveolar epithelial cells produce NO, which activates sGC under normal conditions. However, 

decreased sGC levels in COPD and asthma lead to an impaired downstream pathway; while 

upregulated PDE5 levels further decrease cGMP levels. Activated inflammatory cells such as 

macrophages and neutrophils also release NO and reactive oxygen species such as O2
-
. NO and O2

-
 

form ONOO
-
, leading to protein nitration. 

NO: nitric oxide, sGC: soluble guanylyl cyclase, GTP: guanosine triphosphate, cGMP: cyclic 

guanosine monophosphate, PDE5: phosphodiesterase 5, PKG: protein kinase G, O2
-
: superoxide, 

ONOO
-
: peroxynitrite. 
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PART II: RESEARCH WORK 

Chapter 5. Rationale and aims of the thesis 

Current therapy for COPD can only reduce the symptoms, but not the disease progression. 

Investigating the processes that are involved in the pathogenesis of COPD is important to 

identify new therapeutic targets.  

 

Transient Receptor Potential (TRP) A1 can be activated by components of cigarette smoke 

(including nicotine and acrolein). Activation of TRPA1 on sensory nerves innervating the 

airways can lead to reflex coughing, mucus production, bronchoconstriction; and to a local 

release of neuropeptides, inducing neurogenic inflammation. We hypothesized that TRPA1 

plays a crucial role in the induction of the pulmonary inflammation after CS exposure. 

We analyzed the expression of TRPA1 in murine ganglia containing the cell bodies of airway 

nerves and in human and murine lung tissue. To analyze the potential role of TRPA1 in CS-

induced pulmonary inflammation, wild-type mice were treated with a specific TRPA1 inhibitor. 

 

COPD arises from an interplay between environmental exposures (e.g. cigarette smoke) and 

genetic predisposition. Therefore, the study of gene-environment interactions is essential to 

elucidate the pathogenesis of COPD. Genome Wide Association studies have found 

associations between genetic variants in the gene encoding the human 5-hydroxytryptamine 

4 receptor (5-HT4R) and lung function, airflow obstruction and COPD. These associations 

suggest that 5-HT4R could be implicated in the pathogenesis of COPD. 5-HT4 receptors have 

already been implicated in the 5-HT-induced bronchoconstriction in vitro in human airways 

and in vivo in guinea pigs. We hypothesized that the 5-HT4R facilitates the cholinergic 

contraction of the airways, thereby contributing to the pathogenesis of COPD. We 

have tested our hypothesis using genetic and pharmacologic approaches. Using specific 

antagonists, we analyzed the role of 5-HT4R, 5-HT2AR and muscarinic receptors in the 

bronchial responsiveness to 5-HT in CS-exposed mice (pharmacologic approach). The 



bronchial responsiveness to 5-HT was also investigated in CS-exposed 5-HT4R KO mice and 

their wild-type littermates (genetic approach).   

 

In physiological conditions, the NO/soluble guanylyl cyclase (sGC)/cyclic guanosine 

monophosphate (cGMP) pathway has a relaxing effect on smooth muscle, leading to 

vasodilation and bronchodilation. However, although NO is present in the lungs of patients 

with COPD, the airway smooth muscle tone is elevated, implicating suboptimal activity of 

NO. Inflammatory stimuli, such as interleukin 1β and reactive oxygen species (ROS), down-

regulate the expression of sGC in animals models of lung injury and asthma. Therefore, we 

hypothesized that the expression of sGC is downregulated in COPD. We analyzed the 

expression level of sGC in smokers and patients with COPD; and in a murine model of CS 

exposure. The functional role of sGC was investigated in CS-exposed mice, using an 

activator of sGC (pharmacologic approach) and sGCα1 KO mice (genetic approach). 

  



Chapter 6. Translational research in COPD – Methods 

In this dissertation, we have performed translational research combining functional in vivo 

studies in a murine model of COPD and ex vivo expression studies in humans. This chapter 

addresses all techniques used for the research work. 

 

6.1 Ex vivo: Human lung tissue 

The department of Respiratory Medicine of Ghent University Hospital has set up a tissue 

bank, consisting of lung tissue and induced sputum of never smokers, smokers without 

airflow obstruction and patients with COPD 1,2. The categories are made based on the GOLD 

classification strategy (see Chapter 1). Specimens of peripheral lung tissue are obtained 

from human subjects with solitary pulmonary tumors undergoing lung resection surgery in 

Ghent University Hospital. Lung tissue is taken at a maximal distance of the pulmonary 

lesion by a pathologist. All subjects provided written informed consent and were interviewed 

about their smoking habits and medication use. The studies are approved by the Medical 

Ethical Committee of the Ghent University Hospital.  

A part of the lung tissue is snap-frozen in liquid nitrogen, and stored at -80°C for use in 

Western Blot. A second part is stored in an RNA Stabilization Reagent (Qiagen, Hilden, 

Germany), and used for RNA extraction and qRT-PCR. Thirdly, the lung is fixed in 4% 

paraformaldehyde, embedded in paraffin and cut into 3 µm transverse sections followed by 

immunohistochemical staining. Another part, used for cryosections,  is frozen in an Optimum 

cutting temperature (OCT) medium (Fisher Scientific, Erembodegem, Belgium) and stored at 

-80°C. 

The procedures for qRT-PCR, Western Blot and immunohistochemical staining are explained 

more thoroughly in paragraph 6.2. 

 

6.2 In vivo: Murine model of cigarette smoke exposure and COPD 

Extensive studies in humans are often technically not feasible or morally inconceivable; and 

in vitro studies only study an isolated part of the body. Although these studies are 



indispensable for research, additional in vivo animal models are needed to elucidate the 

cellular and molecular mechanisms of a disease and to test potential new therapies 3,4. To 

study the pathogenesis of COPD, our research group has developed a murine model of 

cigarette smoke exposure 5 (described in detail in 6.2.1 Protocol). Mice are relatively 

inexpensive and easy to breed. Moreover, their genome has been sequenced and transgenic 

mice, which overexpress or lack the gene of interest, are available 4,6,7. Although the 

physiology, anatomy and inflammatory pattern are different between mice and humans, mice 

remain the model of interest for COPD research  6,8. Several experimental models of COPD 

exist 6. The tracheal instillation of elastase or other proteases induces enlargement of the 

airspaces and serves as a model to study emphysema 9,10. A major drawback of this model is 

that the lung injury is caused by a single insult, instead of a continuous exposure as seen in 

humans 6. Another murine model is the LPS (lipopolysaccharide)  model 11. Mice chronically 

exposed to LPS develop similar pathological changes as observed in patients with COPD 

(emphysema, lymphoid aggregates, pulmonary inflammation, thickening of the airway walls) 

11. However, LPS is only one single component of tobacco, which can not mimic the complex 

mechanisms caused by cigarette smoke. Therefore, cigarette smoke exposure appears to be 

the best choice when examining inflammation, emphysema, airway remodeling and lymphoid 

neogenesis 12. 

 

6.2.1 Protocol 

Mice are put in a plexiglass chamber and exposed whole body to the smoke of 5 cigarettes 

(Kentucky Reference Cigarette 3R4F, without filters). A smoke:air ratio of 1:6 is obtained  

during the exposure. This procedure is repeated 4 times a day, 5 days a week. There is a 30 

minute smoke-free interval in between smoke exposures. 

Mice are exposed to cigarette smoke for 3 days (acute exposure), 4 weeks (subacute 

exposure) or 24 weeks (chronic exposure). After 3 days smoke exposure, mainly innate 

immune cells (macrophages, neutrophils) are present in the BAL fluid. After 4 weeks smoke 

exposure, also cells of the adaptive immune system appear in BAL fluid and lungs (CD4+ 



and CD8+ T-lymphocytes). Dendritic cells act as a link between the innate and adaptive 

immune system. Only after chronic smoke exposure (24 weeks), also other hallmarks of 

COPD are present: airway wall remodeling, emphysema and lymphoid follicles.  

 

6.2.2 Airway inflammation 

6.2.2.1 Bronchoalveolar lavage 

Bronchoalveolar lavage is performed to obtain inflammatory cells from the airways and 

alveolar spaces. Through a tracheal cannula, a salt solution (HBSS, free of Ca2+ and Mg2+ 

and supplemented with 1% BSA) is gently injected and subsequently withdrawn from the 

lungs. This is repeated a second time with another salt solution (HBSS supplemented with 

0.6 mM EDTA). The resulting 2 fractions are centrifuged and the cell-free supernatant of the 

first fraction is collected for analysis of proteins (e.g. by Enzyme-linked immunosorbent assay 

(ELISA)). The remaining cell pellets of the 2 fractions are used for total cell counting by using 

a Bürker chamber, for differential cell counting by means of cytospin, and for flow cytometry. 

Cytospins are stained with May-Grünwald (Sigma-Aldrich, Bornem, Belgium) and Giemsa 

(VWR, Leuven, Belgium). Cells are counted based on standard morphological criteria of the 

cells. Macrophages are large mononuclear cells with abundant cytoplasm and contain 

numerous cytoplasmic granules. Neutrophils have a multi-lobed nucleus, with a very faint 

stained cytoplasm. Lymphocytes are the smallest leucocytes with a big round-shaped 

nucleus and little cytoplasm (Figure 17). 

 



Figure 17: Cytospins of BAL fluid stained with May-Grünwald-Giemsa. BAL fluid of air-exposed mice 

mainly contains resident macrophages (M); BAL fluid of smoke-exposed mice contains macrophages 

(M), neutrophils (N) and lymphocytes (L). 

 

 

6.2.2.2 Lung single cell suspension 

After rinsing of pulmonary and systemic circulation, the right lung is clamped and removed 

for RNA extraction (small lobe) (6.2.3), Western Blot (middle lobe) (6.2.4.1) and preparation 

of single-cell suspensions for flow cytometry (largest lobe) (6.2.2.4). Briefly, the largest lobe 

of the right lung is thoroughly minced, digested with collagenase and DNAse, subjected to 

red blood cell lysis, passed through a 50-µm cell strainer and kept on ice until labelling. Cell 

counting occurs with a Z2 particle counter (Beckman-Coulter, Fullerton, CA, USA). 

 

6.2.2.3  Isolation of ganglia 

After removal of the skull and the brain, the trigeminal ganglia are dissected. By pulling the 

ear bone and the first vertebra apart, the nodose and jugular ganglia become visible and can 

be isolated. Next, the spine is isolated and cut transversally to isolate the dorsal root ganglia. 

The ganglia are stored in paraformaldehyde for histology, in RNA Stabilization Reagent for 

RNA extraction or in medium for functional analysis. 

 

6.2.2.4 Flow cytometry 

Flow cytometry is used to quantify the percentage of cells that is positive for certain antigens. 

Antibodies against these antigens are labeled with fluorochromes. The labeled BAL and lung 
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cells pass along an excitation source, where positive cells absorb the light and transmit a 

fluorescent signal, measured by the detectors.   

To reduce aspecific binding of the antibodies, the cell suspensions are pre-incubated with a 

FcR-blocking antibody. The main cell types that are studied in this dissertation are 

macrophages, neutrophils, dendritic cells and CD4+ and CD8+ T-lymphocytes. Macrophages 

are CD11c+ and high-autofluorescent cells, while dendritic cells are CD11c+, low-

autofluorescent and MHCII+. Inflammatory neutrophils are CD11c-, CD11b+, Ly6G+ and 

Ly6C+. CD3+ T-lymphocytes are further characterized as CD4+ (T-helper cells) or CD8+ 

(cytotoxic T cells) (Figure 18). To exclude dead cells, 7-aminoactinomycin D is incorporated 

in the analysis. 

 

Figure 18. Gating strategy for A.  macrophages (M), dendritic cells (DC), B. inflammatory neutrophils 

and C. CD4+ and CD8+ T-lymphocytes in bronchoalveolar lavage fluid. 
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6.2.3 mRNA expression 

Human or murine lung tissue, and murine trigeminal, nodose/jugular and dorsal root ganglia 

are isolated to perform RNA extraction and subsequent determination of mRNA levels of 

genes of interest by quantitative real-time PCR (qRT-PCR). Total lung mRNA from human or 

murine lung tissue or murine TG, NG and DRG is extracted using the miRNeasy Mini kit 

(Qiagen). The expression of target genes, relative to reference genes is measured by qRT-

PCR using custom designed primers (Sigma) or Taqman Gene Expression assays (Applied 

Biosystems), in a LightCycler®480 (Roche).  

 

6.2.4 Protein expression 

6.2.4.1 Western Blot 

Western Blot is an analytical technique to detect and quantify specific proteins of interest in a 

sample of tissue homogenate. In this dissertation, lung tissue homogenates are used. One 

ml of T-Per tissue protein extraction reagent and 10 µl Protease Inhibitor Cocktail Kit 

(Thermo Fisher Scientific, Waltham, MA) is added to the middle lobe of the murine right lung, 

or to the isolated part of the human lung. The lung tissue is minced mechanically 

(TissueRuptor, Qiagen). After centrifugation, the middle layer is transferred to a tube and the 

total protein concentration is defined using the Bradford protein assay (Bio-Rad Laboratories, 

Hercules, CA). 

The proteins are denaturated and protein disulfide bonds are reduced using NuPAGE® LDS 

Sample Buffer and Reducing Agent (Life Technologies) and by heating the samples for 10 

minutes at 70°C. Next, the samples are loaded onto a pre-cast gel. The running buffer 

contains an antioxidant to maintain the proteins in a reduced state. After electrophoresis, a 

PVDF membrane is placed on the gel to transfer the proteins from the gel to the membrane. 

Next, a blocking solution (Life Technologies) is applied to the membrane before incubating 

the membrane with the primary antibody. After some washing steps, the alkaline 

phosphatase (AP)-conjugated secondary antibody is added. Visualization of the proteins 

occurs by using a Chemiluminescent Substrate (Life Technologies) and a film developer 



(Figure 19). The Western blot images are analyzed with the program Image J (Image J 

1.44P, National Institutes of Health, USA). The blots are scanned from the developed films 

and displayed as a 32-bit image in jpeg format. The bands of the gels are analyzed by 

generating lane profile plots, drawing lines to enclose peaks of interest, and finally measuring 

peak areas. Values obtained by densitometry for the proteins are normalized for actin 

(1µg/mL; Sigma).  

 

Figure 19: Overview of Western Blot analysis 

AP: alkaline phosphatase 

 

6.2.4.2 Immunohistochemical staining 

After fixation in 4% paraformaldehyde, the murine or human lung or murine ganglia are 

embedded in paraffin and cut into 3 µm transversal sections. Subsequently, 

immunohistochemical staining or histological staining (with haematoxylin/eosin for 

measurement of emphysema, see 6.2.5 Emphysema) is performed. First, tissue sections 

are incubated with Boehringer blocking agent with 0.3% triton and primary antibody or 

isotype control. Next, the slides are incubated with an enzyme-conjugated (AP or HRP) 

secondary antibody (Immunovision Technologies, Burlingame, CA, USA) and stained with 

the according substrate. Sections are counterstained with haematoxylin and mounted using 

mounting medium (Thermo Fisher Scientific).   
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The staining of the protein of interest is quantified in the murine airway epithelium, in a 

marked area between the airway lumen and the epithelial basement membrane using 

AxioVision software (Zeiss) (Figure 20). The area with positive protein staining is normalized 

to the length of the basement membrane (Pbm).  

 

Figure 20: Quantification of immunohistochemical staining. The airway lumen is marked in yellow, the 

epithelial basement membrane in green. The staining is quantified in the airway epithelium, between 

the 2 lines. 

 

6.2.5 Emphysema 

Chronic CS exposure causes a destruction of the alveolar walls and enlargement of the 

airspaces. To determine the degree of emphysema, photomicrographs of 

haematoxylin/eosin-stained parenchymal lung sections are used. To measure the destruction 

of the alveolar walls, the destructive index (DI) is determined 13, while the enlargement of 

the airspaces is quantified by the mean linear intercept (Lm) 5,14. 

For determination of the Lm, a 100x100 µm grid is placed over each image. The total length 

of each line of the grid is divided by the number of alveolar intercepts, giving the average 

distance between alveolated surfaces, or the Lm (Figure 21). 

The DI is measured by placing a grid on the image with 42 points that are at the center of 

hairline crosses. Alveolar and/or duct spaces lying under these points are classified as 

normal (N) or destroyed (D) (Figure 22). The DI is calculated from the formula: DI = D/(D+N) 

x100. 

 



 

Figure 21 : Quantification of emphysema in mice by mean linear intercept (Lm). 

The figure shows the lung parenchyma of a mouse after chronic (24 weeks) smoke exposure. The 

destruction of the alveolar walls induces an enlargement of the airspaces, resulting in a larger mean 

linear intercept. 

 

 

Figure 22: Quantification of emphysema in mice by destructive index (DI). The figure shows the lung 

parenchyma of a mouse after chronic (24 weeks) smoke exposure, with clear destruction of the 

alveolar walls and ducts. 
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6.2.6 Pulmonary function: bronchoconstriction 

The airway resistance is measured invasively in tracheostomized, anaesthetized mice using 

the FlexiVent System (SCIREQ, Montreal, QC, Canada). The mice are placed on a 37°C 

heated blanket and are ventilated by a computer-controlled small animal ventilator with a 

breathing frequency of 150 breaths/minute. A muscle relaxant (pancuronium bromide 

(1mg/kg i.v., Organon, Oss, The Netherlands)) is administered to the mice, to prevent 

autonomous breathing. During the entire lung function experiment, the arteria carotis is 

cannulated to monitor the blood pressure. 

To measure bronchial hyperresponsiveness, increasing doses of carbachol or serotonin (5-

HT) are administered to the mice (2 – 4 – 8 – 16 - 32 - 64 µg/kg), through a catheter in the 

vena jugularis. The resistance (R) of the whole respiratory system (airways, lungs and chest 

wall) is measured using a “snapshot” perturbation. For each concentration, 12 “snapshot” 

perturbations are performed. The percentage increase in airway resistance per mouse, 

relative to the baseline resistance, is plotted against the concentration of carbachol or 5-HT 

and the area under the curve (AUC) is calculated.  
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Chronic obstructive pulmonary disease (COPD) is mainly caused by smoking of cigarettes 

and is characterized by a chronic pulmonary inflammation. Several components of cigarette 

smoke (CS) are activators of TRPA1. Upon activation, TRPA1 can induce the release of 

neuropeptides from nerve terminals, leading to neurogenic inflammation. Therefore, we 

studied the potential role of TRPA1 in the pathogenesis of COPD and in CS-induced 

inflammation. 

  



(part on Transient Receptor Potential Channels has been removed from the electronic 

version of the dissertation) 
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According to Genome Wide Association studies, genetic variants in the gene encoding the 5-

hydroxytryptamine 4 receptor (5-HT4R) in humans are associated with lung function, airflow 

obstruction and COPD. However, the in vivo functional role of 5-HT4R in COPD has not yet 

been demonstrated. Therefore, we studied the potential role of 5-HT4R in bronchial 

responsiveness in CS-exposed mice.   
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Abstract 

Background: Chronic obstructive pulmonary disease (COPD) arises from an interaction 

between genetic host factors and environmental exposures (mainly cigarette smoke (CS)). 

Genome Wide Association studies have demonstrated that genetic variations in the gene 

encoding 5-hydroxytryptamine 4 receptors (5-HT4R), HTR4, were associated with measures 

of airway obstruction and with COPD. We hypothesised that 5-HT4 receptors, in addition to 5-

HT2AR and muscarinic receptors, contribute to the pathogenesis of COPD by facilitating 

cholinergic bronchoconstriction. 

Methods: The levels of pulmonary 5-HT4R mRNA were measured in CS-exposed mice by 

qRT-PCR. We investigated the effect of CS exposure on bronchial hyperresponsiveness 

(BHR) to 5-HT and evaluated the contribution of 5-HT2AR, muscarinic receptors and 5-HT4R 

in the response to 5-HT by using the corresponding antagonists and 5-HT4R knockout (KO) 

mice.  

Results: The 5-HT4R mRNA levels were significantly elevated upon acute (3 days), 

subacute (4 weeks) and chronic (24 weeks) CS exposure. Both acute and subacute CS 

exposure significantly increased BHR to 5-HT. Antagonism of 5-HT2AR abolished the CS-

induced BHR to 5-HT, and antagonism of muscarinic receptors significantly reduced the 

response to 5-HT. However, pre-treatment with GR113808, a specific 5-HT4R antagonist, did 

not alter the response to 5-HT in CS-exposed mice. Accordingly, the CS-induced BHR to 5-

HT was not different between wild-type and 5-HT4R KO mice.  

Conclusion: CS increased the levels of 5-HT4R mRNA in the lungs, concomitantly with 

bronchial responsiveness to 5-HT. Our in vivo data using pharmacologic and genetic 

approaches suggest that 5-HT4 receptors are not involved in the BHR to 5-HT in CS-exposed 

mice. 

Keywords: serotonin 4 receptors, cigarette smoke, murine model, COPD 

Chemical compounds studied in this article: Atropine  (PubChem CID: 64663); GR113808 

(PubChem CID: 119376); ketanserin (PubChem CID:  16219944); prucalopride (PubChem 

CID: 3052762); serotonin (PubChem CID: 5202) 



Background 

Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease, 

characterised by an abnormal inflammatory response of the lungs to harmful substances, 

leading to obstruction of small airways and destruction of lung parenchyma (emphysema) [1]. 

Both the narrowing of the small airways and the emphysematous lung destruction result in 

airflow limitation in COPD patients. This airflow limitation is expressed as the forced 

expiratory volume in one second (FEV1) and its ratio to the forced vital capacity (FVC), and is 

essential for the diagnosis of COPD. The prevalence and mortality of COPD are globally 

increasing with cigarette smoking as main risk factor [1, 2]. Importantly, only 20% of smokers 

develop COPD, indicating that genetic factors are also involved in the disease. Since COPD 

arises from an interaction between genetic predisposition and environmental exposures, the 

study of gene-environment interactions is essential to elucidate the pathogenesis of this 

disease.  

The CHARGE consortium has performed a Genome Wide Association study (GWAS) of lung 

function and identified eight genetic loci associated with the ratio of FEV1 to FVC [3]. The 

SpiroMeta consortium independently confirmed most of these genes, including the gene 

encoding the 5-hydroxytryptamine 4 receptor (5-HT4R), HTR4, in humans [4]. Moreover, 

meta-analyses of GWAS showed that genetic variants in HTR4 were associated with the 

development of airflow obstruction and with COPD, emphasising the clinical relevance of this 

locus [5, 6].  

Serotonin receptors exert a range of effects upon activation by their endogenous ligand, 

serotonin (5-hydroxytryptamine, 5-HT). Peripherally this amine, derived from tryptophan, is 

mainly produced in enterochromaffin cells of the intestine [7], but also in rodent mast cells [8] 

and pulmonary neuroendocrine cells [9].  After synthesis, 5-HT enters the blood stream 

where it is stored in blood platelets and is released during platelet aggregation. Elevated 

levels of 5-HT have been detected in the plasma of symptomatic asthma [10] and COPD 

patients [11], and in the platelets of smokers [12]. Importantly, 5-HT acts as a potent 

bronchoconstrictor. We have previously shown that, in rats, 5-HT has a direct effect on 



airway smooth muscle and an indirect effect through the activation of postganglionic 

cholinergic nerves, inducing the release of acetylcholine [13]. Both direct and indirect effects 

lead to bronchoconstriction [13]. According to an in vitro study on human airways, the indirect 

effect of 5-HT is partially mediated by 5-HT4R [14]. The 5-HT4 receptors belong to one of 

seven serotonin receptor classes, which are widely expressed throughout the body. The 

mRNA encoding 5-HT4Rs has previously been detected peripherally in human lung tissue [4], 

monocytes [15], mature dendritic cells [16], bronchial epithelial cells, airway smooth muscle 

cells and peripheral blood mononuclear cells [4].  

We hypothesised that 5-HT4 receptors contribute to the pathogenesis of COPD by facilitating 

the cholinergic contraction of the airways. We therefore investigated the role of 5-HT4R in the 

development of inflammation and altered lung function in a well-established murine model of 

cigarette smoke (CS) exposure [17, 18]. Firstly, the mRNA levels of 5-HT4R in lung tissue of 

mice was measured upon 3 days (acute), 4 weeks (subacute) and 24 weeks (chronic) 

exposure to air or CS. Secondly, the bronchial responsiveness to 5-HT was analysed upon 

acute and subacute CS exposure. Next, the effect of a 5-HT2AR antagonist, a muscarinic 

receptor antagonist and a 5-HT4R antagonist on bronchial responsiveness to 5-HT was 

analysed in CS-exposed mice (pharmacologic approach). Finally, the bronchial 

responsiveness to 5-HT was investigated in CS-exposed 5-HT4R knockout mice and their 

wild-type littermates (genetic approach). 

 



Methods 

Animals 

Male C57Bl/6 wild-type (WT) mice (8-9 weeks old) were obtained from The Jackson 

Laboratory. Male C57Bl/6 5-HT4R KO and control mice (WT) from C57Bl/6 heterozygous 

breeding were obtained from V. Compan. The 129Sv heterozygous mice [19] were first 

mated with C57Bl/6 WT female mice from The Jackson Laboratory, and heterozygous 

mutant mice were bred for more than ten generations of C57Bl/6 heterozygous mutant mice 

at the transgenic animal facility of the “Institut de Génomique Fonctionnelle”. All mice were 

housed in sterilised cages with filter tops and received food and water ad libitum. All in vivo 

manipulations were approved by the local Ethics Committee for animal experimentation of 

the Faculty of Medicine and Health Sciences (Ghent University). 

 

Smoke exposure 

Male mice were exposed to cigarette smoke (CS), as described previously [17]. Briefly, 

groups of mice were exposed whole body to the tobacco smoke of 5 cigarettes (Reference 

Cigarette 3R4F without filter, University of Kentucky, Lexington, KY), four times a day with 30 

minutes smoke-free intervals for 3 days (acute exposure), 4 weeks (subacute exposure) or 

24 weeks (chronic exposure). During the exposure, an optimal smoke:air ratio of 1:6 was 

obtained. The control groups were exposed to room air. Carboxyhemoglobin in serum of 

smoke-exposed mice reached a non-toxic level of 8.3 ± 1.4 % (compared to 1.0 ± 0.2 % in 

air-exposed mice), which is similar to carboxyhemoglobin blood concentrations of human 

smokers [20]. 

 

Acute effect after single dosing of a 5-HT4R antagonist, a 5-HT2AR antagonist or a muscarinic 

receptor antagonist  

C57Bl/6 WT mice were treated 15 minutes before the first lung function measurement with 

the muscarinic receptor antagonist atropine (6.95 mg/kg i.p.; Sigma-Aldrich, St Louis, MO, 

USA),  the 5-HT2AR antagonist ketanserin (12 mg/kg i.p.; Sigma-Aldrich) or the 5-HT4R 



antagonist GR113808 (10 mg/kg i.p.; Sigma-Aldrich), dissolved in physiological water. During 

this interval, mice were mechanically ventilated. Sham-treated mice were injected with 

physiological water. 

The most optimal dose of ketanserin, atropine and GR113808 was used according to 

literature [21-24]. 

 

Lung function measurements 

Twenty-four hours after the last CS exposure, mice were anesthetised with an injection of 

pentobarbital (100mg/kg i.p.; Sanofi, Libourne, France) and bronchial hyperresponsiveness 

to 5-HT was measured using a forced oscillation technique (FlexiVent, SCIREQ, Montreal, 

Canada). This procedure has previously been described by our research group [25]. The 

trachea was exposed and a 19-gauge metal needle was inserted into the trachea. Mice were 

ventilated by a computer-controlled small animal ventilator with a breathing frequency of 150 

breaths/minute. A muscle relaxant (pancuronium bromide (1mg/kg i.v., Organon, Oss, The 

Netherlands)) was administered to the mice, to prevent autonomous breathing. During the 

entire lung function experiment, the arteria carotis was cannulated to monitor the blood 

pressure.  

After measurement of the baseline resistance, each mouse was injected with increasing 

doses (2.0 – 4.0 – 8.0 – 16.0 – 32.0 – 64.0 µg/kg i.v.) of 5-HT (Sigma-Aldrich) or increasing 

doses (200 – 400 – 800 – 1600 – 3200 – 6400 µg/kg i.v.) of the 5-HT4R agonist prucalopride 

(provided by Shire-Movetis NV). The resistance (R) of the whole respiratory system (airways, 

lungs and chest wall) was measured using a “snapshot” perturbation. For each mouse, the 

percentage increase in airway resistance was plotted against 5-HT concentration and the 

area under the curve (AUC) was calculated.  

 

Bronchoalveolar lavage (BAL)  

After lung function measurements, the 19-gauge metal needle was replaced by a tracheal 

cannula to collect bronchoalveolar lavage (BAL) fluid as described previously [18, 26]. 



Briefly, lungs were lavaged by using first 3 x 300 µl HBSS, free of calcium and magnesium, 

but supplemented with 1% BSA, followed by 3 x 1 ml HBSS, supplemented with 0.6 mM 

EDTA. The 6 lavage fractions were pooled and centrifuged, and the cell pellet was finally 

resuspended in 200 µl buffer (PBS supplemented with 1% BSA, 5 mM EDTA and 0.1% 

sodium azide). The total cell count was performed in a Bürker chamber, and differential cell 

counts (on at least 400 cells) were performed on cytocentrifuge preparations after May-

Grünwald-Giemsa staining. Discrimination of macrophages and neutrophils were obtained 

based on standard morphologic criteria.  

 

Labelling of BAL cells for flow cytometry 

All labelling reactions were performed on ice in FACS-EDTA buffer, using monoclonal 

antibodies (mABs) from BD Pharmingen (San Diego, CA, USA). To reduce nonspecific 

binding, an FcR-blocking antibody was added to all cells (anti-CD16/CD32, clone 2.4G2; 

kindly provided by L. Boon, Bioceros Utrecht, The Netherlands). The following mAbs were 

used to identify mouse DC populations: APC-conjugated CD11c (HL3) and PE-conjugated 

anti-I-A[b] (AF6-120.1). We used the methodology described by Vermaelen and Pauwels [27] 

to discriminate between macrophages and DCs. Macrophages are identified as the CD11c-

bright, high autofluorescent population. DCs are identified as CD11c-bright, low 

autofluorescent cells, which strongly express MHC class II. Mouse T cell subpopulations 

were identified with the following mAbs : FITC-conjugated anti-CD4 (GK1.5), PE-conjugated 

anti-CD8 (53-6.7) and APC-conjugated anti-CD3 (145-2C11).  

Flow cytometry data acquisition was performed on a FACSCaliburTM running CellQuestTM 

software (BD Biosciences, San Diego, CA, USA). FlowJo software (Tree Star Inc., Ashland, 

OR, USA) was used for data analysis. 

 

qRT-PCR analysis 

qRT-PCR was performed on total lung tissue of untreated air-exposed and CS-exposed 

C57BL/6 mice (3 days, 4 weeks and 24 weeks CS exposure). Total lung RNA was extracted 



with the RNeasy Mini Kit (Qiagen, Hilden, Germany). qRT-PCR results were obtained via 

absolute quantification, relating the PCR signal to a standard curve. Levels of 5-HT4R mRNA 

(Taqman Gene Expression Assay Mm00434129_m1), relative to transferrin receptor (TFRC) 

and hypoxanthine guanine phosphoribosyltransferase (HPRT) mRNA, were analysed using 

Taqman Gene Expression Assays (Applied Biosystems, Forster City, CA, USA). qRT-PCR 

was performed on a LightCycler 480 Instrument (Roche Diagnostics, Basel, Switzerland) with 

murine leukaemia virus RTase (Applied Biosystems). Reverse transcription was performed at 

48°C for 30 min, followed by 10 min incubation at 95°C for denaturation of RNA-DNA 

heteroduplexes, and 45 cycles of 95°C for 10 sec and 60°C for 15 sec. Monitoring of the 

qRT-PCR occurred in real time using a FAM/TAMRA probe.  

 

Statistical analysis 

Reported values are expressed as mean ± SEM. Statistical analysis was performed with 

Sigma Stat software (SPSS 20.0, Chicago, IL, USA) using nonparametric tests (Kruskal-

Wallis; Mann-Whitney U). A p value < 0.05 was considered significant. 



Results 

Increased 5-HT4R mRNA levels in lung tissue upon cigarette smoke exposure 

To investigate whether CS exposure affects the mRNA levels of 5-HT4R, qRT-PCR analysis 

was performed on RNA extracted from total lung tissue of C57Bl/6 mice. This revealed a 

significant upregulation of 5-HT4R mRNA levels upon acute (3 days), subacute (4 weeks) 

and chronic (24 weeks) CS exposure, compared to air-exposed controls (Fig 1).  

 
Effect of cigarette smoke exposure on bronchial responsiveness to 5-HT 

Since CS exposure significantly increased the mRNA levels of 5-HT4R, the in vivo effect of 3 

days and 4 weeks CS exposure on the bronchial responsiveness to 5-HT was measured. 

Both acute (Fig 2 A-B) and subacute (Fig 2 E-F) CS exposure induced bronchial 

hyperresponsiveness (BHR) to 5-HT, shown by a significantly higher increase in airway 

resistance in comparison to air-exposed mice .  

Macrophages and neutrophils were significantly increased in the BAL fluid upon acute (Fig 2 

C-D) and subacute (Fig 2 G-H) CS exposure. 

 
Role of muscarinic receptors and 5-HT2AR in bronchial responsiveness to 5-HT in CS-

exposed mice 

CS-exposed mice were treated with the muscarinic receptor antagonist atropine to analyse 

the contribution of the indirect pathway, through cholinergic nerves, in the BHR to 5-HT. 

Atropine induced a significant decrease in BHR to 5-HT in CS-exposed mice (3 days), 

compared to sham-treated CS-exposed mice (Fig 3 A-B).  

In mice treated with ketanserin, an antagonist of 5-HT2A receptors (located on the airway 

smooth muscle), the increase in airway resistance to 5-HT was nearly abolished (Fig 3 A-B).  

BAL fluid inflammation in CS-exposed mice was similar between mice treated with atropine 

or ketanserin and sham-treated mice (Fig 3 C-D).  

 

 

 



Role of 5-HT4R in bronchial responsiveness to 5-HT in CS-exposed mice 

The potential role of 5-HT4R in the indirect pathway was further unravelled by using a 

selective 5-HT4R agonist, a selective 5-HT4R antagonist (pharmacologic approach) and 5-

HT4R KO mice (genetic approach). 

Pharmacologic approach 

The role of 5-HT4R in bronchial responsiveness to the 5-HT4R agonist prucalopride or to 5-

HT was examined in CS-exposed mice.  

In a first experiment, the BHR to the 5-HT4R agonist prucalopride was measured in air- and 

CS-exposed mice. Mice exposed to CS for 4 weeks showed no different response to 

prucalopride compared with air-exposed mice (data not shown). 

In a second experiment, subacutely CS-exposed mice received an intraperitoneal injection 

with the selective 5-HT4R antagonist GR113808 15 minutes before the lung function 

measurements.  The CS-exposed mice had no altered response to 5-HT compared to sham-

treated mice (Fig 4 A-B).  

Administration of GR113808 had no influence on the number of macrophages (CS sham: 

714946 ± 82403, CS GR113808: 756723 ± 118223; p = 0.968) and neutrophils (CS sham: 

138377 ± 28341, CS GR113808: 125543 ± 28497; p = 0.780)  in the BAL fluid as compared 

to sham-treated mice. 

Genetic approach 

5-HT4R KO mice and their wild-type littermates were exposed to CS for 4 weeks, and the 

bronchial responsiveness and inflammation were analysed. 5-HT4R deficiency had no effect 

on the bronchial responsiveness to 5-HT in CS-exposed mice (Fig 5 A-B).  

 

Role of 5-HT4R in CS-induced inflammation 

To elucidate the potential role of 5-HT4R in the CS-induced inflammation, the BAL fluid of 4 

weeks CS-exposed 5-HT4R WT and KO mice was analysed by cytospins and flow cytometry.   



No significant differences in number of inflammatory cells in the BAL fluid (macrophages, 

neutrophils, dendritic cells, CD4+ and CD8+ T-cells) were observed between 5-HT4R WT and 

KO mice (Fig 6 A-F). 

  



Discussion 

Since recent Genome Wide Association studies have shown that genetic polymorphisms in 

the gene for 5-HT4R, HTR4, were associated with pulmonary function and with COPD, we 

tested whether these receptors contribute to bronchial responsiveness to 5-HT in mice. 

Interestingly, 5-HT4R mRNA levels are significantly increased upon CS exposure. Therefore, 

the role of 5-HT4R was studied in CS-exposed mice. However, in this in vivo mouse model, 

antagonism of the 5-HT4 receptor does not decrease 5-HT-induced BHR in mice. This finding 

was confirmed using 5-HT4R WT and KO mice, which responded similarly to CS-induced 

BHR to 5-HT. Nevertheless, 5-HT2A receptors and muscarinic receptors are important in the 

BHR to 5-HT. No evidence was found for the involvement of 5-HT4R in the increased 

inflammation upon CS exposure. 

In this study, we demonstrate mRNA expression of 5-HT4R in murine lung tissue, similar to a 

study in human lung tissue [4]. The protein expression of 5-HT4R in human lung tissue is 

very low, according to a recent publication [28]. To our knowledge, it is not possible to verify 

the expression of 5-HT4R in mice at the protein level by immunohistochemistry or Western 

Blot, due to the lack of commercially available specific antibodies against this receptor. The 

levels of 5-HT4R mRNA are significantly amplified after smoke exposure in mice. This 

increase might be explained by the CS-induced inflammation, since 5-HT4R have been 

reported to be expressed on human monocytes and mature dendritic cells [15, 16]. Indeed, 

we have previously shown that dendritic cells are not only increased upon CS exposure, but 

they are also in an activated state and more mature, shown by an upregulation of MHCII and 

the co-stimulatory molecules CD40 and CD86 [17]. This is a possible explanation for the 

observed increase in 5-HT4R mRNA levels in CS-exposed mice. 

Parameters of spirometry such as FEV1/FVC, using forced expiratory maneuvers, are difficult 

to assess in animals. However, an association has been shown between airway 

hyperresponsiveness and airway calibre on the one hand and accelerated rates of decline in 

lung function on the other hand [29, 30]. Therefore, we use the forced oscillation technique, 



which is the golden standard for measuring airway resistance in response to different 

concentrations of a triggering agent. In this manner, we can link the spirometric measures in 

humans, used as phenotypic outcome in Genome Wide Association studies, and the 

measurement of BHR in a murine model of CS exposure. 

Previous publications have suggested a role for the serotonergic system in the pathogenesis 

of COPD. Nicotine, an important component of CS, has been reported to stimulate the 

release of 5-HT in vitro through platelet activation [31]. Correspondingly, plasma 5-HT levels 

are elevated in COPD patients, representing an important link between cigarette smoking 

and the presence of COPD [11]. We demonstrate that the intravenous administration of 

increasing doses of 5-HT, which is taken up by platelets and translocated to the lungs, 

causes a dose-dependent increase in airway resistance in air-exposed mice. The observed 

5-HT-induced airway smooth muscle contraction is potentially established through an indirect 

way as well as through a direct way, similar to the situation in humans, guinea pigs and rats 

[13, 14, 32]. In guinea pigs, 5-HT directly activates 5-HT2A receptors, located on airway 

smooth muscle cells, leading to bronchoconstriction. Indirectly, 5-HT stimulates the 5-HT4 

receptors present on cholinergic nerves. This causes the release of acetylcholine, which 

eventually results in bronchoconstriction by binding to muscarinic receptors on airway 

smooth muscle cells [32].  

There are several reports on the 5-HT-induced contraction in murine airways, but 5-HT4R 

have not been studied before in this aspect. Martin et al. have demonstrated that the 5-HT-

induced pulmonary obstruction in C57Bl/6 mice is predominantly due to the stimulation of 5-

HT2 receptors [33]. Other 5-HT receptors (5-HT1A, 5-HT1B, 5-HT1D and 5-HT3) were not 

involved in this response. In murine models of allergic asthma, antigen-induced airway 

constriction in sensitized mice was abolished after treatment with atropine or ketanserin [23]. 

Since the specific 5-HT2AR antagonist ketanserin almost abolishes the BHR to 5-HT in our 

murine model of CS exposure, the direct pathway seems to be the most important. 

Nevertheless, treatment with atropine significantly reduces the response to 5-HT, suggesting 

that also the indirect pathway plays a role. Similar to the in vivo results in mice, our lab has 



previously demonstrated that atropine reduces the in vitro contractile response to 5-HT in 

murine tracheas. Moreover, tetrodotoxin, a neurotoxin, has an analogous effect as atropine 

on the 5-HT-induced contraction [34]. These results provide support for 5-HT inducing the 

release of acetylcholine from cholinergic nerve endings in mice. To study the role of 5-HT4R 

in this indirect pathway, the specific 5-HT4R antagonist GR113808 was administered to CS-

exposed mice. However, in this in vivo mouse model, antagonism of the 5-HT4 receptors 

does not decrease the response to 5-HT, implicating that 5-HT4R do not play a role in CS-

induced BHR in mice. This finding is confirmed using 5-HT4R WT and KO mice, which 

respond similarly to CS-induced BHR to 5-HT. The response to the 5-HT4R agonist 

prucalopride (instead of 5-HT) was also not different between air- and CS-exposed WT mice. 

Other 5-HT receptors located on cholinergic nerves could be more important in this 

phenomenon. 5-HT2 receptors have been described on parasympathetic cholinergic nerves 

[8] and ketanserin almost abolished the BHR to 5-HT, implicating that members of the 5-

HT2R family could be involved. An overview of the results of this paper can be found in 

Figure 7.  

In the current study, BHR was measured in mice exposed to CS for 3 days and 4 weeks. 

However, it would be interesting to analyse the BHR in a mouse model of chronic (24 weeks) 

CS exposure. In addition to an increased inflammatory response, chronic CS-exposed mice 

develop emphysema and airway remodelling. These important characteristics of COPD could 

have an effect on the BHR. 

Since the baseline inflammatory profile of the 5-HT4R KO mice has not been described 

previously, we analyzed the inflammation in the BAL fluid more thoroughly by flow cytometry. 

Using this technique, also dendritic cells and CD4+ and CD8+ T cells can be enumerated, in 

addition to macrophages and neutrophils counted by cytospins. However, no differences 

were observed between 5-HT4R WT and KO mice. The administration of GR113808 to WT 

mice also had no effect on the amount of macrophages or neutrophils in the BAL fluid, 

suggesting that 5-HT4R is not involved in the CS-induced inflammatory response. 



The finding that 5-HT4R does not seem to play a role in BHR to 5-HT is important, since 5-

HT4R agonists are on the market for treating diseases as diverse as Alzheimer disease [35] 

and gastro-intestinal motility disorders [7]. Our results suggest that the use of these drugs is 

unlikely to cause any clinical benefits in patients with COPD. Finally, a major asset of our 

study is that we used both pharmacologic (antagonists) and genetic (5-HT4R KO mice)  

approaches to investigate the role of 5-HT4R.  

 

Conclusions 

In conclusion, CS exposure increases pulmonary 5-HT4R mRNA levels, and induces BHR to 

5-HT in vivo. 5-HT4 receptors, shown by Genome Wide Association studies to be associated 

with pulmonary function and with COPD, do not seem to mediate the CS-induced BHR to 5-

HT. In contrast, 5-HT2A receptors and muscarinic receptors are important in the BHR to 5-HT 

in CS-exposed mice. No evidence is found for the involvement of 5-HT4R in the increased 

inflammation upon CS exposure. 
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Figure legends 

Figure 1: Effect of exposure to air or CS on the mRNA levels of 5-HT4R in total lung tissue. 

mRNA levels of 5-HT4R in total lung tissue upon acute (3 days), subacute (4 weeks) and 

chronic (24 weeks) CS exposure. Results are expressed as a ratio with hprt1 and tfrc mRNA 

(mean ± SEM; n = 5 per group). * p<0.05, **p<0.01 

 

Figure 2: Effect of acute and subacute cigarette smoke exposure on bronchial 

responsiveness to serotonin in mice. 

(A) Concentration-response curves for 5-HT in air- and CS-exposed mice upon acute (3 

days) CS exposure (n = 8 per group), (B) Area under the curve (AUC) of the airway 

resistance of the groups depicted in (A), (C) BAL macrophages, (D) BAL neutrophils, 

(E) Concentration-response curves for 5-HT in air- and CS-exposed mice upon subacute (4 

weeks) CS exposure (n = 9-10 per group), (F) Area under the curve (AUC) of the airway 

resistance of the groups depicted in (E), (G) BAL macrophages, (H) BAL neutrophils. Mean 

values per group ± SEM. *p<0.05, **p<0.01, ***p<0.001. Data are representative of two 

independent experiments. 

 

Figure 3: Effect of atropine and ketanserin on bronchial hyperresponsiveness to serotonin in 

acute and subacute CS-exposed mice. 

(A) Concentration-response curves for 5-HT in acute (3 days) CS-exposed mice, sham-

treated, treated with the 5-HT2AR antagonist ketanserin or with atropine, (B) Area under the 

curve (AUC) of the airway resistance of the groups depicted in (A). (C) BAL macrophages, 

(D) BAL neutrophils. Mean values per group ± SEM (n = 9-10 per group). *p<0.05, **p<0.01, 

***p<0.001 compared with CS+sham mice.  

 

Figure 4: Effect of the 5-HT4R antagonist GR113808 on bronchial responsiveness to 

serotonin in subacute CS-exposed mice. 



(A) Concentration-response curves for 5-HT in subacute (4 weeks) CS-exposed mice, sham-

treated or treated with the 5-HT4R antagonist GR113808, (B) Area under the curve (AUC) of 

the airway resistance of the groups depicted in (A). Mean values per group ± SEM (n = 7-9 

per group).  

 

Figure 5: Effect of 5-HT4R deficiency on bronchial responsiveness to serotonin in subacute 

CS-exposed mice. 

(A) Concentration-response curves for 5-HT in subacute (4 weeks) CS-exposed 5-HT4R WT 

or KO mice, (B) Area under the curve (AUC) of the airway resistance of the groups depicted 

in (A). Mean values per group ± SEM (n = 8 per group). 

 

Figure 6: Effect of 5-HT4R deficiency on subacute CS-induced inflammation. 

(A) Total BAL cells, (B) BAL macrophages, (C) BAL neutrophils, (D) BAL dendritic cells, (E) 

BAL CD4+ T-cells, (F) BAL CD8+ T-cells. Mean values per group ± SEM (n = 8 per group). 

 

Figure 7: In CS-exposed mice, the bronchoconstricting effect of 5-HT mainly acts through the 

direct pathway, since the antagonism of 5-HT2A receptors on the airway smooth muscle by 

ketanserin, nearly abolished the BHR to 5-HT. However, also the indirect pathway is 

important, as treatment with atropine significantly decreased the BHR in CS-exposed mice. 

These data suggest that 5-HT indirectly favours the release of acetylcholine from nerve 

endings, probably by activating 5-HT receptors on these nerves. The 5-HT receptors 

involved are not 5-HT4 receptors, but could potentially be members of the 5-HT2R family.  
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Given the elevated airway smooth muscle tone in patients with COPD and the 

bronchodilating effect of the NO/sGC/cGMP pathway, we analyzed the expression of sGC 

both in CS-exposed mice and in human patients with COPD. We investigated the functional 

role of sGC in CS-exposed mice using an sGC activator on the one hand and sGCα1 KO 

mice on the other hand. 
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At A Glance Commentary 

 

Scientific Knowledge on the Subject 

In Chronic Obstructive Pulmonary Disease (COPD), irreversible airflow limitation is 

progressive, despite ample amounts of the major smooth muscle relaxation factor, nitric 

oxide (NO). The role of the principal NO receptor, namely soluble guanylyl cyclase (sGC), in 

COPD is unknown.  

What This Study Adds to the Field 

The expression of soluble guanylyl cyclase is reduced in smokers and in patients with COPD 

and correlates with disease severity. In a murine model, cigarette smoke exposure induces 

downregulation of soluble guanylyl cyclase. Pharmacological activation of the guanylyl 

cyclase pathway provides a potential therapeutic strategy in COPD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Abstract  

Rationale: Soluble guanylyl cyclase (sGC), a cyclic guanosine 5´-monophosphate (cGMP) 

generating enzyme, regulates smooth muscle tone and exerts anti-inflammatory effects in 

animal models of asthma and acute lung injury. In Chronic Obstructive Pulmonary Disease 

(COPD), primarily caused by cigarette smoke (CS), lung inflammation persists and smooth 

muscle tone remains elevated, despite ample amounts of nitric oxide (NO) that could activate 

sGC. Objective: To determine the expression and function of sGC in patients with COPD 

and in a murine model of COPD. Methods: Expression of sGCα1, α2 and β1 subunits was 

examined in lungs of never smokers, smokers without airflow limitation and patients with 

COPD; and in C57BL/6 mice after 3 days, 4 and 24 weeks of CS exposure. The functional 

role of sGC was investigated in vivo by measuring bronchial responsiveness to serotonin (5-

HT) in mice using genetic and pharmacological approaches. Measurements and Main 

Results: Pulmonary expression of sGC, both at mRNA and protein level, was decreased in 

smokers without airflow limitation and in patients with COPD, and correlated with disease 

severity (FEV1%). In mice, exposure to CS reduced sGC, cGMP levels and protein kinase G 

activity. sGCα1-/- mice exposed to CS exhibited bronchial hyperresponsiveness (BHR) to 

serotonin. Activation of sGC by BAY 58-2667 restored the sGC signaling and attenuated 

BHR in CS-exposed mice. Conclusions: Downregulation of soluble guanylyl cyclase due to 

cigarette smoke exposure might contribute to airflow limitation in COPD.  
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INTRODUCTION 

Chronic Obstructive Pulmonary Disease (COPD), is the fourth leading cause of death 

worldwide (1). COPD is mainly attributed to excessive oxidative stress and innate immune 

dysregulation (2), that interrelate and amplify lung inflammation, primarily induced by 

cigarette smoking (3). The chronic and exaggerated pulmonary inflammation leads to a 

progressive and largely irreversible airflow limitation and alveolar cell death (4). In addition to 

mucus hypersecretion, inflammation, and loss of alveolar attachments to peripheral airways, 

smooth muscle area and tone are important determinants for airflow limitation (5). However, 

the mechanistic concepts involved in airway muscle tone, including signaling pathways 

through cyclic nucleotides, are relatively unknown.  

Nitric oxide (NO) synthesis and secondary signaling through activation of its “receptor”, 

soluble guanylyl cyclase (sGC), represents a major pathway for smooth muscle relaxation. 

sGC is an obligate heterodimer, composed of α and β subunits (6). Although sGCα1β1 is the 

most prevailing heterodimeric enzyme in most tissues, with decisive influence in smooth 

muscle relaxation (7), sGCα2β1 can also partially mediate the effect of NO on smooth 

muscle tone in the vasculature (8,9). Activation of sGC is followed by generation of cyclic 

guanosine monophosphate (cGMP), protein kinase G (PKG) phosphorylation (10) and 

changes in activity of other effector proteins, including phosphodiesterases, ion channels and 

ion pumps (11). 

In COPD, despite ample amounts of NO (12) in the lung, airway smooth muscle tone is 

elevated, implicating suboptimal NO bioactivity (11). Increased expression of neuronal (13) 

and inducible (14) NO synthases (NOS), has been correlated with airflow limitation and 

disease severity in COPD patients. Although sGC is a key component of NO signaling, its 

expression and activity in COPD remain unknown. Inflammatory stimuli such as endotoxin, 

interleukin-1-beta (15), uncontrolled production of NO (16) and reactive oxygen species 

(ROS) (17) have been shown to downregulate the expression of sGC in vitro and in vivo in 

animal models of asthma (18) and lung injury (19,20). Since cytokines, NO and ROS are 

upregulated in the lung in COPD (2,4), we hypothesize a downregulation of sGC in COPD, 



secondary to exposure to cigarette smoke. In addition, ROS can increase the removal of the 

sGC protein (21), by shifting the equilibrium from the NO-sensitive reduced state of sGC to 

the NO-insensitive oxidized state (22). In our study we examined the expression of sGC at 

mRNA and protein level in smokers and in patients with COPD. Moreover, we investigated 

the functional role of sGC in a well-established cigarette smoke-exposed murine model of 

COPD (23).   

 

 

  



MATERIALS & METHODS  

Methodological details are available in the online data supplement. 

Human Subjects: Specimens of lung tissue were obtained from 64 human subjects, 

undergoing lung resection surgery in Ghent University Hospital. Human subjects were 

classified into 3 groups:(i) 11 never smokers (NS), (ii) 24 cigarette smokers, (iii) 29 patients 

with COPD stage II, according to the Global Initiative for COPD (GOLD) scale (24). All 

subjects provided written informed consent, according to protocols approved by the medical 

ethical committee of the Ghent University Hospital. 

Animals: Eight-to-twelve-week-old male C57BL/6 mice were purchased from The Jackson 

Laboratory (Bar Harbor, USA). sGC α1-/- mice were provided by the SPF facility of the 

Department of Molecular Biomedical Research, VIB, Ghent, Belgium (25,26). All procedures 

were approved by the local Ethics Committee for animal experimentation of the Faculty of 

Medicine and Health Sciences, Ghent University. 

Cigarette smoke (CS) exposure: Groups of 8 mice received mainstream CS of 5 reference 

cigarettes (3R4F University of Kentucky, USA) 4 times a day with 30-minute smoke-free 

intervals and were exposed for 3 days (acute), 4 weeks (subacute) and 24 weeks (chronic). 

The control groups were exposed to room air (23). 

BAY 58-2667 treatment: In a pharmacological experiment of acute (3 days) CS exposure, 

C57BL/6 mice were treated with the sGC activator BAY 58-2667 (10μg/kg, i.p.) or vehicle 

(DMSO 10%, i.p.) one hour before lung function measurements. 

Lung function measurements: Twenty-four hours after the last CS exposure, mouse lung 

function was measured at baseline and after serotonin (5-HT) challenge, using a forced 

oscillation technique (FlexiVent, SCIREQ, Canada) (27).  

Bronchoalveolar lavage (BAL): Bronchoalveolar lavage was performed and total and 

differential cell counts were obtained (28). Flow cytometric analysis of BAL cells was 

performed to enumerate dendritic cells (DCs) and CD4+ and CD8+ T-lymphocytes. 



Labeling of BAL cells for flow cytometry: The labeling reactions were performed to 

discriminate among DCs, macrophages and T-lymphocytes, according to Vermaelen and 

Pauwels’ methodology (29).  

RNA preparation and real-time RT-PCR of sGC subunits:  Total RNA was extracted from 

lung (RNeasy Mini kit; Qiagen, Germany) and cDNA was synthesized (Transcriptor First 

Strand cDNA synthesis Kit; Roche, Switzerland). Target and reference genes were 

measured by real-time PCR using custom designed primers, in mice, or TaqMan Gene 

Expression assays (Applied Biosystems, USA), in humans, in a LightCycler®480 (Roche, 

Germany). 

Immunoblot analysis of sGC subunits:  Lung homogenates of human or murine samples 

were subjected to SDS-PAGE and Western blotting as previously described (18,20,30). 

cGMP measurements: BAL cGMP levels were measured using a commercially available 

enzyme immunoassay kit (Direct cGMP Elisa Kit; Enzo Life Sciences). 

Immunohistochemistry of sGC subunits: The left lung was fixed by infusion of 

paraformaldehyde (4%) through the tracheal cannula (23). To locate the sGC subunits 

expression in lung tissue, sections were stained using anti-sGCα1 or β1 antibody (Cayman 

chemicals) and isotype rabbit IgG (Abcam, UK). 

Quantification of immunohistochemical staining: sGCα1 or sGCβ1 staining was 

quantified in the murine airway epithelium, in a marked area between the airway lumen and 

the basement membrane, using AxioVision software (Zeiss, Oberkochen, Germany) as 

previously described (31).   

Measurement of emphysema: Quantification of emphysema in chronic (24 weeks) CS-

exposed mice was determined by the mean linear intercept (Lm) and the destructive index 

(DI), as previously described (23,28,32). 

Statistical analysis: Statistical analysis using nonparametric tests, was performed with 

Sigma Stat software (SPSS 20.0, Chicago, IL, USA). Correlation coefficients were calculated 

using Spearman’s rank method. The association between FEV1% and sGC mRNA and 

protein levels was further analyzed by linear regression analysis. Demographic and clinical 



characteristics of the study population are expressed as mean ± SD. Reported values are 

expressed as mean ± SEM. P <.05 was considered significant.  

 

 

  



RESULTS 

I. Translational research into the role of soluble guanylyl cyclase: human subjects. 

Subject demographics. The demographic and clinical characteristics of the 64 patients are 

summarized in Table 1.  

sGC mRNA expression is decreased in smokers and patients with COPD. To evaluate 

the effect of cigarette smoking on the expression of sGC, we determined mRNA levels of 

sGCα1, α2 and β1 subunits in lung tissue of never smokers (n = 11), smokers (n = 24) and 

patients with COPD (n = 29). There was a significant reduction of sGCα1 mRNA levels in 

patients with COPD (p = 0.002) compared to never smokers (Figure 1A). mRNA levels of the 

sGCα2 subunit were significantly decreased both in smokers (p = 0.002) and patients with 

COPD (p = 0.002) compared to never smokers (Figure 1C). Similarly, mRNA levels of the 

sGCβ1 subunit were significantly decreased both in smokers (p = 0.014) and patients with 

COPD (p = 0.004) compared to never smokers (Figure 1E).   

mRNA expression of sGC subunits correlates with lung function in smokers and 

patients with COPD. sGCα1 mRNA levels were positively correlated with post-

bronchodilator FEV1 (% predicted): rs = 0.366, p = 0.004 (Figure 1B). mRNA levels of sGCα2 

subunit were also positively correlated with FEV1:  rs = 0.299, p = 0.025 (Figure 1D). In a 

similar way, sGCβ1 mRNA levels revealed a significant correlation with FEV1: rs = 0.293, p = 

0.025 (Figure 1F). Linear regression analysis was performed to adjust for possible 

confounders (age, gender, pack-years, FEV1 and drug treatment). Importantly, the 

association between sGCα1 and FEV1, and between sGCα2 and FEV1 remained significant, 

even after adjustment for these confounders (Table E2). Positive correlations were found 

between α1, α2 and β1 subunits and FEV1/FVC ratio or carbon monoxide diffusing capacity 

(DLCO), but not with the corresponding Kco (see online supplement results and Figure E 1).    

sGC protein expression is decreased in smokers and patients with COPD. Protein 

expression of the sGC subunits in the lung were measured by Western blotting, in smokers 

(n = 9) and patients with COPD (n = 15) compared to never smokers (n = 9). The 



demographic and clinical characteristics of this subpopulation of 33 subjects are summarized 

in Table E1 (online supplement). More specifically, protein levels of the α1 subunit of patients 

with COPD were significantly reduced (p = 0.017) compared to never smokers (Figure 2A, 

C). Moreover, protein levels of the β1 subunit were reduced among smokers (p = 0.027) and 

patients with COPD (p = 0.006) compared to never smokers (Figure 2B, D).  

sGCα1 and sGCβ1 protein levels were positively correlated with FEV1. The association 

between sGCα1 protein levels and FEV1 remained significant after adjustment for possible 

confounders (Table E2). 

Immunohistochemical localization of sGC expression in human lung tissues. To 

evaluate the cellular type where sGC is downregulated, we performed immunohistochemical 

staining in peripheral lung sections of smokers and patients with COPD. In lung section of 

never smokers, sGCα1 and β1 subunits were present at high levels in bronchial and alveolar 

epithelial cells and in airway smooth muscle cells (Figure 3A, B). In agreement with our 

results from Western blotting experiments, staining of both sGCα1 and β1 subunits was 

reduced in lung sections of smokers (Figure 3C, D) and patients with COPD (Figure 3E, F) in 

bronchial and alveolar epithelial cells and in airway smooth muscle cells.  

 

II. Translational research into the role of soluble guanylyl cyclase: murine model.  

sGC expression is decreased in mice after CS exposure. The expression of sGC subunit 

mRNA and protein was determined in the lungs of mice upon CS exposure, compared to air-

exposed mice. mRNA levels of the sGC α1 subunit were significantly reduced after subacute 

and chronic CS exposure (Figure 4A), while mRNA levels of the sGC β1 subunit were 

reduced upon acute, subacute and chronic CS exposure (Figure 4B). At the protein level, the 

expression of α1 subunit was significantly reduced upon acute, subacute and chronic CS 

exposure (Figure 4C, E). In addition, a significant reduction of β1 subunit was detected upon 

subacute and chronic CS exposure (Figure 4D, F). Interestingly, there was a significant 

reduction of the expression of sGCα2 at mRNA and protein level in mice, reinforcing our 



notion of sGC downregulation upon acute CS exposure (Figure E2). Chronic CS exposure 

induced emphysema, as shown by a significantly increased mean linear intercept (Lm: air: 

39.2 ± 0.8 µm vs. CS: 42.9 ± 1.1 µm; p< 0.05) and destructive index (DI: air: 18.82 ± 1.08 vs. 

CS: 41.12 ± 2.08; p<0.01) (Figure E3). 

Immunohistochemical detection of sGC subunit expression in lung tissue after CS 

exposure. To evaluate the cellular type and distribution of sGC downregulation, we 

performed IHC staining of murine lung sections. Both α1 and β1 subunit staining was 

detected in bronchial and alveolar epithelial cells and in airway smooth muscle cells. In 

control lungs, α1 and β1 subunits were present at high levels after 3 days (Figure 5A, C), 4 

(Figure 5E, G) and 24 weeks (Figure 5I, K) of air exposure. Using imaging software, we 

quantified the sGCα1 or sGCβ1 positive staining in the airway epithelium. CS exposure did 

not change the amount of sGCβ1 staining in the airway epithelium (Figure 6B, D and F). 

However, sGCα1 protein was significantly decreased within the epithelium after 3 days, 4 

weeks and 24 weeks of CS exposure, which is in agreement with the results from Western 

blotting experiments on total lung tissue (Figure 6A, C and E).  

sGC α1 deficiency in mice aggravates airway hyperresponsiveness upon acute CS 

exposure. To decipher the role of sGC downregulation in lung inflammation and respiratory 

system mechanics, we compared  sGCα1-/- and WT mice after 3 days (acute) of CS 

exposure. sGC α1-/- mice subjected to acute CS exposure exhibited higher airway resistance 

(R) to increasing 5-HT doses, compared to acute CS exposed WT mice (Figure 7A, B). Acute 

CS exposure significantly increased the absolute numbers of total BAL cells, alveolar 

macrophages, neutrophils, DCs, CD4+ and CD8+ T lymphocytes. However, the level of 

increase in BAL cellularity and differentiation did not differ between the two mouse strains 

(Figure E4).  

BAY 58-2667 administration attenuates airway hyperresponsiveness upon acute CS 

exposure. Acute CS exposure displayed increasing R values in a 5-HT dose-dependent 

manner. BAY 58-2667 attenuated airway resistance, in the CS group (Figure 8A, B). Acute 

CS exposure significantly increased the absolute numbers of total BAL cells, alveolar 



macrophages, neutrophils, DCs, CD4+ and CD8+ T lymphocytes. However, administration of 

BAY 58-2667 did not affect acute CS-induced lung inflammation (Figure E5). 

BAY 58-2667  administration restores the NO/sGC/cGMP pathway upon acute CS 

exposure. The levels of sGCα1 and sGCβ1 protein upon acute CS exposure were analyzed 

by Western Blot in BAY 58-2667 treated mice. CS exposure reduced the sGCα1 protein 

levels in sham-treated mice, while the levels remained similar between air- and CS-exposed 

mice after BAY 58-2667 treatment (data not shown). There were no differences for sGCβ1 

protein levels upon acute CS exposure (data not shown). To determine the effect of CS 

exposure on sGC activity, we measured cGMP levels in BAL fluid in mice. Acute CS 

exposure resulted in significant reduction of cGMP levels (pmol/mg of protein) compared to 

controls. Administration of BAY 58-2667 (i.p.) in mice after acute CS exposure restored BAL 

cGMP levels (Figure 9A) and increased phosphorylation of VASP, a marker of PKG activity 

(Figure 9B). To elucidate the effect of CS exposure in cGMP signaling we determined PDE5 

protein levels. Acute CS exposure significantly increased the PDE5 lung protein levels 

compared to the air-exposed group, whereas BAY 58-2667 given i.p. after acute CS 

exposure attenuated PDE5 almost to the control levels (Figure 9C).    

 

 

  



DISCUSSION  

The major findings of our study are: i) Expression of sGC is decreased in smokers and in 

patients with COPD; ii) in mice, acute, subacute and chronic CS exposure reduces 

expression of sGC; iii) genetic downregulation of sGC signaling aggravates bronchial 

hyperresponsiveness (BHR) to serotonin upon CS exposure; and iv) pharmacological 

activation of sGC attenuates CS-induced BHR to serotonin.  

 

The expression of sGC was significantly reduced in peripheral lung tissue of smokers without 

airflow limitation and patients with COPD, compared to never smokers. The expression of the 

sGCα1 subunit was decreased in patients with COPD, while the expression of α2 and β1 

subunits was reduced in smokers with or without COPD. This is the first time that the 

presence and regulation of the α2 subunit has been shown in relation to human respiratory 

disease. To determine the cell types in which the reduction of sGC expression was more 

pronounced, we stained human lung sections with antibodies against the most prevailing 

sGCα1 and β1 subunits. We observed a positive staining of both sGCα1 and β1 subunits in 

bronchial and alveolar epithelial cells and in airway smooth muscle cells in the lung sections 

of never smokers, smokers without COPD and patients with COPD. In our study, we did not 

evaluate the expression of the sGCα2 subunit by Western blot analysis or by 

immunohistochemistry. Since sGC is an obligatory heterodimer (33), the reduction of sGCβ1 

subunit expression suffices for  the decline in sGC activity irrespective of any changes in the 

α subunits.  

To investigate if the downregulation of sGC was related to lung function, we examined the 

expression of sGC in correlation with the corresponding spirometric parameters. 

Remarkably, expression of the sGCα1, α2 and β1 subunits significantly correlated with 

disease severity, as measured by the percentage of predicted FEV1. The association of 

sGCα1 mRNA levels, sGCα2 mRNA levels and sGCα1 protein levels with FEV1 remained 

significant after adjustment for possible confounders. To our knowledge, this is the first time 



that downregulation of sGC has been shown to occur in relation to smoking and disease 

severity in patients with COPD.  

To investigate the in vivo functional role of sGC, we examined the expression and function of 

sGC in a well-established murine model of COPD (23). The expression of sGC was reduced 

in mice upon acute, subacute or chronic CS exposure, both on the mRNA and the protein 

level. These findings are in accordance with our results in smokers and patients with COPD, 

and implicate a direct effect of CS on the expression of sGC. Several in vitro (15,17,34-36) 

and in vivo (18-20) studies have indicated that inflammatory stimuli, such as cytokines, may 

be involved in the attenuation of sGC mRNA stability or sGC protein expression. By 

performing immunohistochemistry on lung tissue of air- and CS-exposed mice, we 

demonstrated that sGC was mainly expressed in airway smooth muscle cells, which are 

relevant to airway hyperresponsiveness, and in airway and alveolar epithelial cells, conform 

with the human data. The decreased expression of sGCα1 in the epithelium implicates a 

direct effect of environmental noxious stimuli in murine lungs. The protein expression of 

sGCβ1 in the airway epithelium was not changed upon CS exposure, while it was decreased 

in total lung tissue. Consequently, CS exposure may affect other sGCβ1-expressing cells in 

the lung, such as airway smooth muscle cells.  

Inflammatory stimuli and oxidative stress could impair sGC signaling and promote the 

elevation of smooth muscle tone in CS-exposed mice. Reduced expression of sGC in the 

airway epithelial and smooth muscle cells has also been identified in the murine asthma 

model (18). In this model, oxidation of sGC and further attenuation of the enzyme activity by 

an sGC inhibitor, ODQ (1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one), was accompanied by 

more pronounced BHR to methacholine (18). Because available sGC inhibitors are neither 

enzyme- nor isoform-specific (37-39), we evaluated the role of sGC in respiratory system 

mechanics and lung inflammation upon acute CS exposure, using sGCα1 knockout mice 

(25).  

CS exposure induced BHR to serotonin in wild type mice, which was aggravated when 

sGC/cGMP signaling was impaired, in sGCα1 knockout mice. Interestingly, the increased 



bronchoconstriction in sGCα1 knockout mice was not accompanied by an exaggerated  

inflammatory response, highlighting the importance of sGCα1β1-derived cGMP in the 

regulation of  the airway smooth muscle tone upon CS exposure. In air-exposed mice, no 

difference in airway responsiveness was observed between wild type mice and sGCα1 

knockout mice. Also in a murine model of hypertension, sGCα1 knockout mice do not have a 

hypertensive phenotype on a C57Bl/6 background (40). Seemingly, sGCα2 is able to provide 

sufficient cGMP in basal conditions. Consequently, it is probable that in the present study, 

sGC might be more important in COPD than in basal conditions. 

To further unravel the potentially protective role of sGC, wild type mice were treated with the 

sGC activator BAY 58-2667. BAY 58-2667 has been shown to preferentially protect against 

diseases where sGC is downregulated due to oxidation, such as pulmonary hypertension or 

cardiovascular diseases (41,42). BAY 58-2667 activates the NO-insensitive form of sGC 

(after heme removal following its oxidation) and restores cGMP signaling (42). Indeed, in 

BAY-treated CS-exposed mice, we observed an attenuated BHR to serotonin and restored 

levels of sGCα1 protein and of cGMP. This cGMP is exported out of airway epithelial cells 

(43) by cGMP transporters (44). Therefore, the cGMP that we detect in the BAL fluid, 

probably originates mainly from the airway epithelium. Moreover, phosphorylation of 

Vasodilator-stimulated Phosphoprotein (VASP), a marker of protein kinase G activity, was 

increased in BAY-treated CS-exposed mice compared to vehicle-treated mice. 

Phosphodiesterase (PDE)-5, which hydrolyses cGMP to GMP, was increased upon smoke 

exposure. Our findings suggest that both downregulation of sGC and increased expression 

of PDE-5, affect CS-induced BHR. Remarkably, in CS-exposed mice administration of BAY 

58-2667 attenuated PDE-5 almost to control levels, implicating a negative feedback 

regulation. Such negative feedback regulation has also been shown to occur at the 

posttranscriptional level, as increased cGMP signaling leads to PKG-mediated 

phosphorylation on Ser-92 and inactivation of PDE-5 (45). These findings place PKG activity 

as an important junction in the regulation of smooth muscle tone. Our finding, concerning the 

bronchodilating role of sGC signaling, is consistent with several studies in isolated trachea 



strips or animal models of asthma (46). In vascular diseases, potential therapeutic strategies 

which enhance sGC signaling have been shown to diminish oxidative stress in smooth 

muscle cells. Stimulation of sGC diminished production of ROS by NADPH oxidase in an 

ischemia/reperfusion model of acute lung injury (19). Moreover, neutrophil rolling and 

adhesion, which was increased in the pulmonary capillaries of eNOS -/- mice, was 

significantly reduced by activation of sGC (47). In general, the effects of the sGC/cGMP/PKG 

pathway could interactively mediate a protective role in CS-induced BHR (Figure 10).   

There are some limitations to this study that should be addressed. The  gender ratio in the 

human study population is unbalanced, since the majority of never smokers is female, while 

all patients with COPD are male. This unbalanced gender ratio could influence sGC levels. 

However, gender was incorporated into a linear regression model, taking into account this 

possible confounding effect. 

Another limitation is the relatively short exposure time to cigarette smoke of the experiment 

with BAY 58-2667 and with the sGCα1 knockout mice. In this study, reduction of sGC levels 

was mainly a smoking effect. However, sGCα1 mRNA and protein levels were significantly 

associated with FEV1 after adjusting for possible confounders, suggesting that there is also a 

disease effect. To further address the role of sGC in the pathogenesis of COPD, chronic (24 

weeks) CS-exposed sGCα1-/- mice or wild type mice treated with BAY 58-2667 should be 

investigated. 

In conclusion, we demonstrate that sGC is downregulated due to CS exposure in humans 

and mice, leading to BHR. Genetic ablation of sGC aggravates CS-induced BHR, whereas 

pharmacological activation of sGC by BAY 58-2667 has a protective effect. Our translational 

findings may offer a novel mechanistic concept in COPD and a new therapeutic approach. 
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Definition of abbreviations: na = not applicable; F= female; M= male; FEV1: Forced 

Expiratory Volume in one second; FVC: Forced Vital Capacity; DLco= carbon monoxide 

diffusing capacity; Kco= carbon monoxide gas transfer corrected for alveolar volume; pack-

year= number of packs of cigarettes smoked per day, multiplied by the number of years of 

smoking. Values are expressed as means ± SD; *: p<0.05 Vs never smokers #: p<0.05 Vs 

smokers. 

 

 

  

Table 1. SUBJECT CHARACTERISTICS  

Characteristics Never smokers 

n=11 

Smokers  

n=24 

COPD   

n=29 

Age, years 59 ± 14.04 62 ± 9.4 65 ±  7.5 

Gender : M/F 3/8 18/6 29/0 

Smoking, pack-year 

Smoking status: current/ex smokers 

0 

0 

31.95 ± 20.6 

12/12 

53.36 ± 26*,# 

17/12 

COPD GOLD stage  na na II 

FEV1 % of predicted 104.2 ± 13.4 101.6 ± 17 67.3 ± 8*,# 

FEV1/FVC ratio 77.9 ± 4.3 76.2 ± 4.3 55.2 ± 7.4 *,# 

DLco 93.1±15.3 89.3±17.6 72.9±20*,# 

KCO % of predicted  104. 6 ± 18 95.6 ± 14.4 90.7 ± 23.5 

Oral corticosteroids 0 1 4 

Inhaled corticosteroids  0 0 12 

Long acting beta-agonists 0 1 15 

Tiotropium 0 2 13 

Statins 0 3 4 



FIGURE LEGENDS 

Figure 1: sGC mRNA expression in human lungs of never smokers, smokers and 

patients with COPD and correlation with COPD severity. A. sGC α1mRNA levels are 

decreased in (n=29). C. sGCα2 mRNA levels are decreased in smokers (n=24) and patients 

with COPD (n=29), compared to never smokers (NS) (n=11). E. sGC β1 mRNA levels are 

decreased in smokers (n=24) and patients with COPD (n=29), compared to never smokers 

(NS) (n=11). Three reference genes (GADPH, HPRT1, PPIA) were used for normalization. 

Values are expressed as mean ± SEM; *p< 0.05 from NS. B. D and F. sGC mRNA levels of 

α1 (B), α2 (D) and β1 (F) subunit of human lung tissues were correlated with FEV1% (% of 

predicted). Spearman correlation coefficient (rs) and P value are shown. 

Figure 2: sGC protein expression in human lung tissues of never smokers, smokers 

and patients with COPD. Western blot was performed on a total of 33 patients (9 never 

smokers, 9 smokers and 15 patients with COPD) A. Example of Western blot for sGC α1 B. 

Example of Western blot for sGC β1. Blots were quantified by densitometry for sGC α1(C) 

and sGC β1(D). Expression for each subunit normalized for β-actin was set at 100% for 

never smokers (NS). Values are expressed as mean ± SEM; *p< 0.05 **p< 0.01  from NS. 

Figure 3: Immunohistochemical localization of sGC expression in human lung tissues 

of never smokers, smokers and patients with COPD. Representative photomicrographs 

of lung sections show small airways from a never smoker (NS) (A and B), a smoker with 

normal lung function (C and D)  and a patient with COPD stage II (E and F), immunostained 

for identification of α1 and β1 subunits respectively. sGC subunits were visualized with 3,3-

diaminobenzidine, which produces a dark brown color. Lung section of a never smoker was 

used for isotype control staining (G and H). (magnification x 200).  

Figure 4: Effect of CS exposure on sGC expression in mice: mRNA levels of sGC α1 

and β1 subunits. A and B. mRNA levels of sGC α1 (A) and β1 (B) upon acute (3 days), 

subacute (4 weeks) and chronic (24 weeks) CS exposure. cDNA samples from total RNA, 

extracted by homogenized mice lung, were used and PCR amplifications were performed in 

triplicate. To calculate the relative quantity of the respective subunit, the CT method was 



used; GAPDH was used for normalization. C and D. Protein levels of sGC α1 or sGC β1 

upon acute (3 days), subacute (4 weeks) and chronic (24 weeks) CS exposure. C. Example 

of Western blot for sGC α1, D. Example of Western blot for sGC β1. Western blot was 

performed on 8 mice per group. E and F. Blots were quantified by densitometry. Expression 

for each subunit normalized for β-actin was set at 100% for air-exposed mice. Values are 

expressed as mean ± SEM; n=8/group; *p< 0.05 **p< 0.01 ***p< 0.001 from air-exposed 

mice. 

Figure 5: Immunohistochemical localization of sGC expression in mice after 3 days, 4 

and 24 weeks of CS exposure. Representative photomicrographs of lung sections show 

airway and alveolar epithelium and airway smooth muscle after staining for α1 or β1 subunits 

upon acute (3 days; A,B and C,D), subacute (4 weeks; E,F and G,H) and chronic (24 weeks; 

I,J and K,L) air or CS exposure. Lung sections are immunostained for identification of sGC 

subunits and visualized with 3,3-diaminobenzidine, which produces a dark brown color . 

Lung section from 3-days air-exposed mice was used for isotype control staining (M,  N). 

(magnification x 400).   

Figure 6: Quantification of sGCα1 and sGCβ1 staining in airway epithelium in mice 

after 3 days, 4 and 24 weeks of CS exposure. Quantification of sGCβ1 staining in the 

airway epithelium upon 3 days (B), 4 weeks (D) or 24 weeks (F) of CS exposure. 

Quantification of sGCα1 staining in the epithelium after 3 days (A), 4 weeks (C) and 24 

weeks (E) of CS exposure. Values are expressed as mean ± SEM; n=8/group; *p< 0.05 **p< 

0.01 from air-exposed mice. 

Figure 7: sGC α1 deficiency in mice aggravates airway hyperresponsiveness upon 

acute CS exposure. A. Effect of CS on airway resistance (R) percent increase of baseline in 

a dose response to serotonin (5-HT) challenge in sGC α1-/- and WT mice. B. Area under 

curve for airway resistance. Values are expressed as mean ± SEM; n=8/group; *p< 0.05 from 

air-exposed groups and # p< 0.05 from CS-exposed group of WT mice. 

Figure 8: BAY 58-2667 administration in acute cigarette smoke-exposed mice, 

ameliorates bronchoconstriction. A. Effect of BAY 58-2667 on airway resistance (R) 



percent increase in a dose response to serotonin (5-HT) challenge. and B. Area under curve 

for airway resistance. Values are expressed as mean ± SEM; n=8/group; *p< 0.05 from air-

exposed group and # p< 0.05 from CS + BAY 58-2667 group. 

Figure 9: BAY 58-2667 administration restores sGC signaling. A. cGMP levels in BAL. 

Administration of BAY 58-2667 in mice after CS exposure restored cGMP levels in the BAL 

to the control levels. B. Acute CS exposure reduced lung phosphorylated ser239 VASP 

protein levels. Administration of BAY 58-2667 in CS-exposed mice increased the levels of 

ser239 VASP compared to the air group. Representative Western blots for ser239 VASP and 

total VASP are shown. Western blot was performed on 8 mice per group. Expression for 

ser239 VASP was normalized for total VASP and set at 100% for air-exposed mice. C. PDE5 

protein levels were increased upon acute CS exposure. Administration of BAY 58-2667 

attenuated PDE5 levels. Blots were quantified by densitometry. Representative Western 

blots for PDE5 and actin are shown. Western blot was performed on 8 mice per group. 

Expression for PDE5 was normalized for β-actin and set at 100% for air-exposed mice. 

Values are expressed as mean ± SEM; n=8/group; *p< 0.05 from air-exposed group.  

Figure 10: The  proposed pathway for cigarette smoke-induced bronchoconstriction involves 

reduced expression (↓) of soluble guanylyl cyclase  (sGC) and impaired activation of oxidized 

heme-free enzyme state, followed by reduced (↓) cyclic guanosine monophosphate (cGMP) 

generation and reduced cGMP-dependent protein kinase (PKG) phosphorylation as reflected 

by attenuated  phosphorylation of VASP. The cGMP signal is mainly determined by 

phosphodiesterases (PDE) in a negative feed-back regulation. The impaired 

sGC/cGMP/PKG signaling contributes to elevated smooth muscle tone and 

bronchoconstriction. 
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In this review we discuss the involvement of nitric oxide, nitric oxide synthases, guanylyl 

cyclases, cGMP and phophodiesterase-5 in asthma and COPD and potential therapeutic 

approaches to modulate this pathway.  
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Abstract 

Nitric oxide (NO) is a gaseotransmitter, which is involved in many signalling processes in 

health and disease. Three enzymes generate NO from L-arginine, with citrulline formed as a 

by-product: neuronal NO synthase (nNOS or NOS1), endothelial NOS (eNOS or NOS3) and 

inducible NOS (iNOS or NOS2). NO is a ligand of soluble guanylyl cyclase (sGC), an 

intracellular heterodimer enzyme that catalyzes the conversion of guanosine triphosphate 

(GTP) to cyclic GMP (cGMP). cGMP further activates protein kinase G that eventually 

reduces the smooth muscle tone in bronchi or vessels. Phosphodiesterase 5 (PDE5) 

degrades cGMP to GMP. However, NO reacts with superoxide anion (O2
-), leading to 

formation of the proinflammatory molecule peroxynitrite. 

Under physiological conditions, NO plays a homeostatic bronchoprotective role in healthy 

subjects. 

In obstructive airway diseases, NO can be beneficial by its bronchodilating effect, but could 

also be detrimental by the formation of peroxynitrite. Since asthma and COPD are 

associated with increased levels of exhaled NO, chronic inflammation and increased airway 

smooth muscle tone, the NO/sGC/cGMP pathway could be involved in these highly prevalent 

obstructive airway diseases. Here we review the involvement of NO, NO synthases, guanylyl 

cyclases, cGMP and phophodiesterase-5 in asthma and COPD and potential therapeutic 

approaches to modulate this pathway. 

 

 

 

 

 

  



1. Nitric oxide (NO) and NO synthases  

1.1 Introduction 

Nitric oxide (NO) is the first identified gaseotransmitter, which is involved in many diverse 

signaling processes including inflammation, smooth muscle tone and neurotransmission [1, 

2]. Within the respiratory tract, the main sources of NO are airway epithelial cells and 

endothelial cells [3, 4]. Under physiological conditions, NO is present in the exhaled breath 

[5]. 

The synthesis of NO is catalyzed by 3 NO synthase (NOS) isoforms. Neuronal NOS (nNOS 

or NOS1) and endothelial NOS (eNOS or NOS3) are constitutively expressed and their 

activity is regulated by intracellular calcium concentrations and calmodulin [6, 7]. Inducible 

NOS (iNOS or NOS2) is independent of calcium and is regulated by cytokines and 

proinflammatory stimuli [8]. However, this distinction is not that strict, since the activity of 

nNOS and eNOS, also referred to as “constitutive NOS (cNOS)”, can be induced by several 

cytokines (IL-1β, IFN-γ, TNF-α) [9, 10]; while iNOS may be constitutively expressed at certain 

sites including the airway epithelium [11].  

An overview of the expression of the 3 isoforms of NO synthase in human and murine lung 

tissue is shown in Table 1. 

 

1.2 Chronic obstructive pulmonary disease 

Chronic obstructive pulmonary disease (COPD) is mainly caused by smoking cigarettes, 

which are an exogenous source of NO. Ansarin et al. [12] have analyzed the exhaled nitric 

oxide (eNO) levels in patients with COPD, patients with asthma and healthy controls. 

Patients with COPD had higher eNO levels than healthy controls, but lower levels than 

patients with asthma. Lung function parameters such as forced expiratory volume in 1 

second (FEV1) and carbon monoxide diffusing capacity (DLCO) were inversely correlated with 

eNO levels in patients with COPD. In contrast to patients with asthma, the use of inhaled 

corticosteroids had no significant influence on eNO levels in patients with COPD [12]. 

Brindicci et al. measured eNO at multiple expired flows to make a distinction between 



alveolar and bronchial NO and found that COPD is associated with elevated alveolar NO 

[13].  

In  peripheral lung tissue and bronchial submucosa of patients with COPD, iNOS expression 

was significantly increased, irrespective of the GOLD stage [9, 14]. Patients with severe 

COPD had increased iNOS+ cells in the alveolar wall and most of these cells were type II 

pneumocytes [15]. These results are in agreement with the observed increased alveolar NO 

in patients with COPD [13]. In bronchial submucosa, there was also an effect of smoking, 

since smokers without airflow limitation had increased iNOS levels [14]. The expression of 

iNOS was increased in bronchial smooth muscle cells of patients with COPD and was 

correlated with the degree of airflow limitation [16]. 

The expression levels of eNOS showed a discrepancy between the two localizations. In 

peripheral lung tissue, eNOS protein levels were similar between nonsmokers, smokers 

without airflow limitation and patients with COPD GOLD 1, 2 and 3. Remarkably, eNOS 

levels were significantly decreased in patients with severe COPD GOLD 4, probably caused 

by the destruction of the alveolar walls [9, 17]. The levels of eNOS behaved similar to iNOS 

in bronchial submucosa [14].  

The levels of nNOS were increased in peripheral lung tissue of patients with COPD GOLD 

stages 2, 3 and 4 compared with nonsmokers. Moreover, nNOS protein expression and 

disease severity (measured by FEV1% and FEV1/FVC) were significantly correlated [9].  

Similar to the results in human peripheral lung tissue [9], the levels of iNOS in murine lung 

homogenate were increased after 8 months cigarette smoke (CS) exposure, while the levels 

of eNOS were decreased [17]. In contrast to eNOS knockout mice, iNOS knockout mice 

were protected against the development of CS-induced emphysema. Treating wild-type mice 

with an iNOS inhibitor after 8 months CS exposure even reversed the lung damage and 

significantly downregulated the amount of granulocytes, macrophages and T-lymphocytes in 

the lung [17].  

A chronic, iNOS-related inflammation, hypertrophy and hyperplasia of alveolar type II cells 

and several abnormalities in pulmonary structure and function develop in mice deficient in 



Surfactant Protein D (SP-D) [18]. SP-D and iNOS double knockout mice (DiNOS) maintained 

hyperplasia of alveolar type II cells, but they had a reduced inflammation, correction of the 

alveolar structural abnormalities and a restored lung function, compared with SP-D single KO 

mice. So by producing NO under pathological conditions, iNOS is involved in inflammation, 

development of structural abnormalities and lung function [18]. These findings and the 

observed increased iNOS expression in patients with COPD suggest that the inhibition of 

iNOS may be a potential therapy for patients with COPD [17, 18]. However, in a murine 

model of elastase-induced emphysema [19], with increased expression of iNOS and eNOS, 

inhibition of iNOS decreased the amount of protein nitration, but had no effect on 

inflammation or development of emphysema. Inhibition of eNOS had overall no effect [19].  

 

Table 1. Lung expression of the 3 isoforms of NO synthase (nNOS, iNOS and eNOS) in 

human subjects and murine models. 

patients/model tissue nNOS iNOS eNOS reference 

HUMAN 

 

patients with 

COPD / smokers / 

nonsmokers 

 

 

peripheral lung 

tissue 

 

 

↑ GOLD 2,3,4 

(M+P) 

 

 

↑ GOLD 2,3,4 (M) 

↑ GOLD 1, 2,3,4 (P) 

 

 

↓ GOLD 3, 4 (M) 

↓ GOLD 4 (P) 

 

 

 

[9] 

 

patients with 

COPD / smokers / 

nonsmokers 

 

bronchial 

submucosa 

 

ND 

 

↑ smokers, COPD (P) 

 

 

↑ smokers, 

COPD (P) 

 

 

[14] 

 

patients with 

severe COPD / 

smokers  

 

alveolar wall 

 

ND 

 

↑ severe COPD (P) 

(mainly type II 

pneumocytes) 

 

 

ND 

 

[15] 

MICE 

after 8 months CS 

 

lung 

homogenate 

 

 

ND 

 

 

↑ (P) 

 

 

↓ (P) 

 

 

[17] 

 

elastase-induced 

emphysema 

 

lung 

homogenate 

day 1-3-7-20 

 

↓ at d1 and d7 

(M) 

 

 

↑ (M+P) 

 

↑ (M+P) 

 

[19] 

      

ND = not determined, M: mRNA, P:protein, CS: cigarette smoke 

 

  



1.3 Asthma 

In patients with asthma, especially in allergic asthmatics with eosinophilic airway 

inflammation, the levels of nitric oxide in exhaled air are significantly elevated compared with 

healthy subjects [20-22]. Moreover, lung function parameters such as FEV1 and DLCO were 

inversely correlated with exhaled NO levels [12]. This increased flux of NO from the airways 

was significantly decreased after inhalation of aminoguanidine, a relatively selective iNOS 

inhibitor [23]. The expression of iNOS was increased in airway epithelial cells and 

inflammatory cells from patients with asthma compared with healthy subjects, suggesting 

that this enzyme plays an important role in the production of NO in pathological conditions 

[24, 25]. Increased FeNO levels are a predictor of response to inhaled corticosteroids in 

patients with asthma [26]. iNOS levels in corticosteroid-treated asthmatics were significantly 

decreased compared to non-corticosteroid treated asthmatics [27]. Treatment of asthma 

patients with a selective iNOS inhibitor, GW274150, significantly reduced FeNO levels. 

However, this reduction in FeNO levels did not lead to a change in early or late responses to 

allergen challenge, or to a change in numbers of inflammatory cells in bronchoalveolar 

lavage (BAL) [28]. This suggests that therapeutic treatment with an iNOS inhibitor would not 

be beneficial in patients with asthma.  

 

In a murine model of allergic asthma, the pharmacological inhibition of iNOS by L-NAME or 

aminoguanidine significantly decreased the number of eosinophils and lymphocytes in BAL 

fluid in OVA-challenged mice compared with non-treated mice [29]. Also airway 

hyperreactivity (AHR) and mucus secretion were significantly decreased in OVA-challenged 

mice after treatment with an iNOS inhibitor. In the same study, number of BAL cells, AHR 

and mucus secretion were not different between iNOS knockout and wild-type mice, 

suggesting that the lack of iNOS in these constitutive knockout animals is probably 

compensated by other mechanisms. In another study using the OVA model of allergic 

asthma, no differences in AHR were observed in iNOS knockout mice compared with wild-

type mice. Although iNOS knockout mice developed a similar degree of inflammation as the 



wild-type controls, the deficiency of iNOS resulted in reduced eosinophils in BAL and in 

peripheral blood [30].  

 

2. Oxidative/nitrative stress in obstructive airway diseases 

Reactive oxygen species (ROS) are unstable molecules with an unpaired electron that can 

be generated endogenously by mitochondrial electron transport during respiration or during 

activation of inflammatory cells, and exogenously by cigarette smoke or air pollutants. These 

small reactive signaling molecules can oxidize proteins, lipids or DNA, leading to cell 

dysfunction and cell death. Also reactive nitrogen species (RNS), such as the highly 

proinflammatory molecule peroxynitrite, can cause tissue injury in various organs. Normally, 

they are counterbalanced by antioxidants and rapidly removed from the body. An imbalance 

between ROS/RNS and antioxidants leads to oxidative/nitrative stress [31-33]. Both oxidative 

and nitrative stress have been linked with inflammatory, obstructive airway diseases, 

including asthma and COPD  [34, 35]. 

Activated inflammatory cells such as macrophages and neutrophils produce increased levels 

of NO and ROS (superoxide (O2
•-) and hydrogen radical (HO•)) (Figure 1). NO rapidly reacts 

with O2
•- to form the proinflammatory molecule peroxynitrite. Peroxynitrite alters the function 

of proteins by nitration of tyrosine residues. Currently, 3-nitrotyrosine is measured as a 

footprint of peroxynitrite release. Using a new noninvasive technique, Osoata et al. were able 

to measure peroxynitrite in exhaled breath condensate [36]. The levels of peroxynitrite were 

significantly higher in patients with COPD compared with smokers and healthy controls [36]. 

 

3. Soluble guanylyl cyclase 

Guanylyl cyclases (GCs), members of the family of nucleotide cyclizing enzymes, are widely 

distributed signal-transduction enzymes that catalyze the conversion of GTP to cGMP. 

Both transmembrane and soluble forms of guanylyl cyclases exist. The transmembrane, 

particulate GC (pGC) acts as a receptor for hormones such as atrial, brain (B-type) and C-



type natriuretic peptides. For further information on this transmembrane form of GC, we refer 

the reader to an excellent review [37]. 

 

 

Soluble GC (sGC) is an intracellular receptor for gaseous ligands (NO and CO) and is able to 

associate with the plasma membrane through protein-protein interactions in a Ca2+-

dependent manner [38]. sGC is a heterodimer, consisting of an α-subunit and a β-subunit. 

There are 2 forms of the α-subunit (α1 and α2) and of the β-subunit (β1 and  β2). α1β1 and 

α2β1 are equally present in the brain, while α1β1 is the most prevalent form in other tissues 

such as the lung [39]. Both forms have a similar catalytic rate and sensitivity towards NO. 

The C-terminal catalytic domains of both isoforms are required to form a catalytic active 

centre. The β-subunit has an amino-terminal haem-binding domain. A haem moiety that 

interacts with the haem-binding domain, is essential for the sensing of NO, increasing the 

cGMP production from GTP [40]. The haem moiety is a large heterocyclic organic ring with a 

central metal ion (Fe). sGC is activated by nanomolar concentrations of NO in the presence 

of the reduced Fe2+ (ferrous) haem moiety, while oxidized, Fe3+ (ferric) haem is insensitive to 

NO (Figure 2). Moreover, the oxidized haem is more prone to ubiquitination, leading to loss 

of the haem-group. Similar to oxidized haem, haem-deficient sGC is unresponsive to NO. 

Oxidation is induced by exogenous molecules, such as ODQ (1H-[1,2,4]oxadiazolo-[4, 3-

a]quinoxalin-1-one), and by endogenous molecules, including reactive oxygen species 

(ROS) and reactive nitrogen species (RNS) [38].  

 

Activation of sGC induces the generation of cyclic guanosine monophosphate (cGMP), 

phosphorylation of protein kinase G (PKG) and changes in activity of effector proteins such 

as phosphodiesterases (PDE), ion channels and ion pumps [41]. This pathway eventually 

leads to dilation of bronchi (bronchodilation) or vessels (vasodilation). 

In patients with asthma, bronchodilation is impaired, despite the presence of large amounts 

of NO in the airways that could activate sGC and cause relaxation of the smooth muscle. In a 



murine model of allergic asthma, the levels of sGC α1, α2 and β1 were reduced in the lungs, 

both on mRNA and protein level [42]. Mice treated with the selective sGC inhibitor ODQ had 

increased airway reactivity to methacholine compared with sham-treated mice [42]. This 

finding suggests that sGC could be inhibited in patients with asthma, leading to the observed 

airway hyperresponsiveness. Also in patients with COPD, the lungs contain ample amounts 

of NO, but the airway tone remains elevated [12]. Patients with COPD have decreased 

pulmonary mRNA and protein levels of sGC which are correlated with disease severity [43]. 

The levels of sGC are also decreased in CS-exposed mice [43]. CS-exposed mice deficient 

for the sGC α1 subunit had a significantly higher airway resistance compared with CS-

exposed wild-type mice  (Figure 1). These results indicate that sGC downregulation due to 

CS exposure in humans and mice, emerges as an alternative pathophysiological mechanism 

of the airway hyperresponsiveness.  

 

4. Phosphodiesterase 5 (PDE5) 

Phosphodiesterase 5 (PDE5) degrades cGMP to GMP; thereby impairing the downstream 

effects of cGMP (Figure 1). Sildenafil, a short-acting inhibitor of PDE5, is already on the 

market for erectile dysfunction and induces smooth muscle relaxation. Tadalafil is a long-

acting inhibitor of PDE5. The effect of PDE5 inhibition was analyzed in guinea pigs exposed to 

lipopolysaccharide (LPS) and in sensitized guinea pigs exposed to ovalbumin [44]. 

Pretreatment with sildenafil inhibited the LPS-induced airway hyperreactivity, influx of 

leukocytes and generation of NO. Exposure to ovalbumin caused early- and late-phase 

asthma responses which were not affected by sildenafil. However, AHR to histamine, 

leukocyte influx in BAL and increased NO metabolites in BAL were significantly attenuated in 

OVA-exposed mice after treatment with sildenafil [44].  

 

In a rat model of acrolein (a component of cigarette smoke) exposure, sildenafil suppressed 

the acrolein-induced airway inflammation and mucus production [45]. CS-exposed mice have 

increased PDE5 protein levels in the lung compared with air-exposed mice [43]. These 



results suggest that PDE5 inhibitors have a therapeutic potential in airway diseases such as 

asthma and COPD. However, in contrast to OVA-challenged guinea pigs [44], OVA-

challenged mice treated with sildenafil did not affect airway inflammation [46].   

PDE5 inhibitors have not yet been tested in asthma or COPD for its anti-inflammatory 

properties. In contrast, PDE5 inhibitors have been investigated in patients with COPD and 

(concomitant) pulmonary hypertension. Treating patients with COPD-associated pulmonary 

hypertension with sildenafil or tadalafil did not improve exercise capacity or quality of life [47, 

48].  

 

5. Therapy 

Potential therapeutic approaches to modulate the NO/sGC/cGMP pathway are activation of 

sGC by NO donors, sGC stimulators and sGC activators; or inhibition of the inflammation-

induced formation of NO by iNOS inhibitors.  

 

5.1 Nitric oxide donors 

A reduced bioavailability and/or responsiveness to endogenously produced NO contributes 

to the development of several pathologies, including pulmonary diseases.  

NO-donors, such as organic nitrates, release NO by spontaneous decomposition or 

bioconversion, thereby activating the enzyme sGC. However, the use of NO-donors is limited 

because of the potential lack of response, the development of tolerance and the non-specific 

interactions of NO with biomolecules (such as superoxide, leading to formation of 

peroxynitrite) [38]. Moreover, in the airways of patients with COPD or asthma, there are 

already large amounts of NO present that could activate sGC and induce smooth muscle 

relaxation.  

 

5.2 Inducible NO synthase inhibitors 

The research on the role of iNOS using animal models has given conflicting results. Given 

the species differences in the expression and regulation of iNOS , translational research is 



required to fully elucidate the function of iNOS in obstructive airway diseases. Treating 

asthma patients with the selective iNOS inhibitor GW274150 did not lead to a change in early 

or late responses to allergen challenge, or to a change in numbers of inflammatory cells in 

BAL [28].  

 

In healthy subjects, physiological levels of NO are produced by eNOS and nNOS. In 

inflammatory conditions, NO levels increase mainly due to increased iNOS activity. By 

inhibiting iNOS, both the beneficial effects of NO through sGC and the pro-inflammatory 

effect of NO through formation of peroxynitrite are inhibited. The iNOS inhibitor can reduce 

the levels of NO, but ROS such as superoxide remain elevated. These ROS can react with 

the ‘constitutively’ produced NO, leading to the observed unchanged 3-nitrotyrosine (3-NT) 

levels in patients with asthma [28]. Indeed, an in vitro study using human alveolar epithelial 

cells of patients with severe asthma, has shown that not only nitrite, produced by iNOS, but 

also H2O2, produced by dual oxidases, are important in the formation of 3-NT [49].  

 

Activation of the sGC/cGMP pathway on the one hand, and/or inhibition of the NO-induced 

formation of pro-inflammatory molecules on the other hand could be more beneficial. 

 

5.3 Soluble guanylyl cyclase activators and stimulators 

In several pathologies, including asthma and COPD, the NO/sGC/cGMP pathway can be 

compromised by the oxidized state of sGC, making it unresponsive to both endogenous and 

exogenous NO. Therefore, an NO-independent treatment could be recommended in these 

diseases [38]. Both sGC stimulators and sGC activators are potential therapies. sGC 

stimulators stimulate sGC directly and enhance the sensitivity of the reduced enzyme to low 

levels of bioavailable NO (Figure 2). While sGC stimulators are haem-dependent, sGC 

activators activate the NO-unresponsive, haem-oxidized or haem-free enzyme (Figure 2). 

The efficacy of the sGC stimulator riociguat has already been shown in patients with 

pulmonary arterial hypertension [50]. In the same line, a recent study demonstrated that 



treatment of two different CS-exposed animal models with sGC stimulators riociguat (BAY 

63-2521) or BAY 41-2272 prevent CS-induced pulmonary hypertension and emphysema 

[51]. 

BAY58-2667 (or cinaciguat) is a potent NO-independent sGC activator, replacing the weakly 

bound oxidized haem of sGC, leading to activation of the enzyme; while reduced haem is 

unresponsive to BAY58-2667 [38]. Treating CS-exposed mice with BAY58-2667 restored the 

sGC/cGMP pathway and significantly attenuated the CS-induced AHR compared with sham-

treated mice [43], denoting sGC as a promising pharmaceutical target of obstructive airway 

diseases (Figure 2). 

 

6. Concluding remarks 

The use of NO donors and iNOS inhibitors as a treatment in obstructive airway diseases has 

not been successful. The specific activation of the sGC/cGMP pathway by treating patients 

with an sGC activator or stimulator may be a new therapeutic approach in obstructive lung 

diseases. The results of using sGC activators and sGC stimulators in animal models of 

asthma and COPD are promising, however further research is needed. Treatment by the 

inhaled route should be investigated to limit potential side-effects of systemic drug 

administration. 
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Figure legends 

 

Figure 1: The NO/sGC/cGMP signaling pathway in obstructive airway diseases. Bronchial 

and alveolar epithelial cells produce NO, which activates sGC under normal conditions. 

However, decreased sGC levels in COPD and asthma lead to an impaired downstream 

pathway; while upregulated PDE5 levels further decrease cGMP levels. Activated 

inflammatory cells such as macrophages and neutrophils also release NO and reactive 

oxygen species such as O2
-. NO and O2

- form ONOO-, leading to protein nitration. 

NO: nitric oxide, sGC: soluble guanylyl cyclase, GTP: guanosine triphosphate, cGMP: cyclic 

guanosine monophosphate, PDE5: phosphodiesterase 5, PKG: protein kinase G, O2
-: 

superoxide, ONOO-: peroxynitrite. 

 

Figure 2: Soluble guanylyl cyclase (sGC). Under physiological conditions, there is a balance 

between the reduced, NO-sensitive sGC and the oxidized, NO-insensitive sGC. Oxidative 

stress and reactive oxygen species shift the balance to the oxidized form, resulting in an 

impaired sGC/cGMP pathway. The enzyme can even lose the haem group (haem-free sGC). 

sGC stimulators enhance the sensitivity of the reduced enzyme to low levels of bioavailable 

NO, while sGC activators activate the NO-unresponsive, haem-oxidized or haem-free 

enzyme. Treating smoke-exposed mice with the sGC activator BAY58-2667 reactivates the 

sGC/cGMP pathway, demonstrated by increased cGMP and PKG levels, and decreased 

PDE-5 levels; leading to a normalized smooth muscle tone [43].  
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 Chapter 11. Discussion and future perspectives 

 

Chronic obstructive pulmonary disease (COPD) is mainly caused by smoking of cigarettes. 

Cigarette smoke (CS) contains more than 4500 components, including reactive oxygen 

species, nicotine, acrolein and endotoxin (lipopolysaccharide (LPS)) 1,2. Several of these 

compounds bind to pattern recognition receptors (PRR) expressed on alveolar macrophages, 

dendritic cells and epithelial cells, leading to the release of proinflammatory cytokines and 

chemokines and further attracting inflammatory cells to the lungs 1. This ‘inflammatory 

pathway’ has already been thoroughly investigated and described by our and other research 

groups 1,3. 

 

11.1 Transient Receptor Potential channels  

(part on Transient Receptor Potential Channels has been removed from the electronic 

version of the dissertation) 

 

11.2 Serotonin receptor 4 (5-HT4R) 

Since genetic polymorphisms in the gene for 5-HT4R were associated with pulmonary 

function and with COPD 20,21; and postganglionic 5-HT receptors have been shown to be 

implicated in the release of acetylcholine 22, we hypothesized that 5-HT4 receptors contribute 

to the pathogenesis of COPD by facilitating the cholinergic contraction of the airways. In lung 

tissue of CS-exposed mice (3 days, 4 weeks and 24 weeks CS exposure), mRNA levels of 5-

HT4R were significantly elevated compared to air-exposed mice. The administration of 

increasing doses of 5-HT caused a dose-dependent increase in airway resistance in air-

exposed mice and CS exposure further increased this response. We have shown that this 5-

HT-induced airway smooth muscle contraction is established through a direct way, since 

inhibition of 5-HT2AR located on airway smooth muscle cells almost abolished the bronchial 

hyperresponsiveness (BHR) to 5-HT; and through an indirect way by stimulation of receptors 

on nerve endings, since inhibition of muscarinic receptors by atropine reduces the response 



to 5-HT. To elucidate the role of 5-HT4 receptors in this response, mice were treated with 

GR113808, a 5-HT4R specific antagonist. However, antagonism of the 5-HT4R did not 

decrease the response to 5-HT, implicating that 5-HT4 receptors are not involved in the CS-

induced BHR to 5-HT. We also examined CS-exposed 5-HT4R WT and KO mice. Both 

genotypes had a similar BHR to 5-HT, confirming our pharmacological findings. Inhibition of 

5-HT4R in WT mice or deficiency of 5-HT4R had no effect on inflammatory cells in BAL fluid. 

Although 5-HT4R mRNA levels were significantly increased after CS exposure, these 

receptors do not seem to play a role in CS-induced inflammation or BHR to 5-HT. The 

observed increase in pulmonary 5-HT4R mRNA levels might be explained by an increase in 

5-HT4R-positive inflammatory cells, such as monocytes 23 and mature dendritic cells24. We 

previously demonstrated that CS exposure induces the activation and maturation of dendritic 

cells, shown by an upregulation of MHCII and the co-stimulatory molecules CD40 and CD86 

25,26.  

5-HT receptors, other than 5-HT4R and 5-HT2AR, could also mediate the BHR. Segura et al. 

found that activation of 5-HT4R and 5-HT7 receptors in guinea pig tracheas increased the 

contractile cholinergic responses to electrical field stimulation 27. In human airways, the 5-HT-

induced facilitation of cholinergic contraction was significantly inhibited by both 5-HT3 and 5-

HT4R antagonists; while high concentrations of selective 5-HT3 and 5-HT4R agonists 

mimicked the effect of 5-HT on cholinergic contraction 28. In our in vivo murine model of CS 

exposure, inhibition (or genetic deficiency) of 5-HT4R did not affect the BHR to 5-HT. Other 

5-HT receptors, such as 5-HT3 or 5-HT7 could be implicated in this response. Therefore, the 

experiments should be repeated using antagonists against a broader scale of 5-HT 

receptors. 

Raemdonck et al. demonstrated that the neural response was abolished in rats after 

ketamine and xylazine anesthesia 29. However, another study in anesthetized mice, showed 

that dissection of the vagal nerve abolished the 5-HT-induced increase in airway resistance. 

This finding indicates that the neural response is still present after anesthesia in our study, 



and is able to release acetylcholine. It is possible that acetylcholine is not only released from 

nerve endings, but also from bronchial epithelial cells or inflammatory cells 30 .  

We have analyzed the potential role of 5-HT4 receptors in acute (3 days) and subacute (4 

weeks) smoke-exposed mice. However, it would be interesting to investigate 5-HT4 receptors 

in mice after chronic (24 weeks) smoke exposure, since mice then also develop emphysema 

and airway remodeling, in addition to an increased inflammatory response. These 

characteristics of COPD could have an effect on the BHR.  

Agonists of 5-HT4R are currently on the market for the treatment of Alzheimer disease and 

gastrointestinal motility disorders. Our results suggest that the use of these drugs is not likely 

to cause clinical benefits in patients with COPD.  

 

11.3 Soluble guanylyl cyclase (sGC) 

Impairment of the NO/sGC/cGMP pathway is also implicated in bronchoconstriction (Figure 

23). In patients with COPD, elevated levels of NO are present in the exhaled breath. Under 

physiological conditions, sGC catalyzes the enzymatic conversion of GTP to cGMP, which 

activates protein kinase G, eventually leading to bronchodilation. However, patients with 

COPD have impaired bronchodilation, although there are ample amounts of NO present that 

could activate sGC. We have shown that in patients with COPD, mRNA and protein levels of 

sGC were decreased compared to healthy controls. Moreover, sGC levels were correlated 

with the severity of COPD (measured by FEV1%).  

In our murine model of CS exposure, sGC levels were also decreased after acute, subacute 

and chronic smoke exposure. In murine models of OVA-induced allergic asthma and of acute 

lung injury, a similar decrease of sGC levels was observed 31,32. Inflammatory stimuli, such as 

cytokines, may be involved in the attenuation of sGC mRNA stability or sGC protein 

expression, as shown by several in vitro studies 33-36. Smoke exposure led to an increased 

airway resistance to serotonin compared to air-exposed mice. Mice deficient in the sGCα1 

subunit had higher responsiveness to serotonin after CS exposure compared to WT mice. 

Treating CS-exposed WT mice with the sGC activator BAY58-2667 (cinaciguat) restored the 



sGC/cGMP pathway and significantly decreased the CS-induced BHR compared with 

untreated mice, making this compound a promising drug target for the treatment of COPD. 

BAY58-2667 is a potent NO-independent sGC activator, which replaces the weakly bound 

oxidized haem of sGC, leading to activation of the enzyme; in contrast, reduced haem is 

unresponsive to BAY58-2667 37. 

The decreased levels of sGC in humans in our study were mainly an effect of smoking, 

although sGCα1 mRNA and protein levels were significantly associated with FEV1. To further 

investigate the function of sGC in the pathogenesis of COPD, WT mice treated with the sGC 

activator; or sGCα1-/- mice should be exposed to CS for 6 months. Our in vivo results are 

obtained in mice exposed to 3 days CS, while our chronic model develops more COPD-like 

pathologies such as emphysema, airway remodeling and lymphoid neogenesis. 

Recently, another research group analyzed the role of the sGC-cGMP pathway in lung 

emphysema using the sGC stimulator riociguat 38. Similar to our results, they observed a 

downregulation of sGCβ1 subunit in patients with COPD, and in guinea pigs and mice after 

chronic CS exposure. Mice developed emphysema after 6 months CS exposure, which was 

prevented by treating the mice with the sGC stimulator riociguat. These findings highlight the 

therapeutic potential of the sGC-cGMP pathway for treatment of COPD, as we already 

suggested.  

NO can be beneficial by its bronchodilating effect, but could also be detrimental by the 

formation of peroxynitrite. Activated inflammatory cells such as macrophages and neutrophils 

produce increased levels of NO and reactive oxygen species (superoxide (O2
•-) and 

hydrogen radical (HO•)). NO rapidly reacts with O2
•- to form the proinflammatory molecule 

peroxynitrite, which alters the function of proteins by nitration of tyrosine residues. The levels 

of peroxynitrite were significantly higher in exhaled breath condensate of patients with COPD 

compared with smokers and healthy controls 39. Activation of the sGC/cGMP pathway on the 

one hand, and/or inhibition of the NO-induced formation of pro-inflammatory molecules on 

the other hand could be more beneficial, and should be further investigated in patients with 

COPD.  



Phosphodiesterase 5 (PDE5) degrades cGMP to GMP; thereby impairing the downstream 

effects of cGMP. Sildenafil, which is already on the market for erectile dysfunction and 

pulmonary arterial hypertension, is an inhibitor of PDE5 and induces smooth muscle 

relaxation. The effect of PDE5 inhibition was analyzed in a rat model of acrolein (a 

component of cigarette smoke) exposure. Sildenafil suppressed the acrolein-induced airway 

inflammation and mucus production 40. In our murine model of smoke exposure, PDE5 levels 

are increased in CS-exposed mice. These results suggest that PDE5 inhibitors could have a 

therapeutic potential in airway diseases such as COPD. However, in contrast to OVA-

challenged guinea pigs 41, OVA-challenged mice treated with sildenafil did not show reduced 

airway inflammation 42. Testing PDE5 inhibitors in COPD for its anti-inflammatory properties 

may be of interest. In contrast, PDE5 inhibitors have been investigated in patients with COPD 

and (concomitant) pulmonary hypertension. Treating patients with COPD-associated 

pulmonary hypertension with the short-acting PDE5 inhibitor sildenafil or the long-acting 

tadalafil did not improve exercise capacity or quality of life 43,44.  

 

General conclusion 

The expression of TRPA1 channels is increased in nodose/jugular and trigeminal ganglia 

after CS exposure, while TRPA1 expression in airway non-neuronal cells is not affected by 

CS. The functional role of TRPA1 will be further unraveled using TRPA1 KO mice. 

CS exposure induces bronchial hyperresponsiveness to serotonin (5-HT). Although 

pulmonary 5-HT4R mRNA levels are increased in CS-exposed mice, 5-HT4R does not seem 

to play a role in the CS-induced BHR to 5-HT. Importantly, soluble guanylyl cyclase, which is 

downregulated in CS-exposed mice, in smokers and patients with COPD, is involved in BHR 

and is a promising drug target for the treatment of COPD. Local delivery of sGC 

activators/stimulators via the inhaled route should be envisaged in COPD to limit potential 

systemic side-effects.  

  



 

 

 

 

Figure 23. Schematic overview of our work. (1) (part on Transient Receptor Potential Channels has 

been removed from the electronic version of the dissertation) (2) Efferent fibers, initiating in the brain 

or spinal cord, send the appropriate reaction back to the airways, also via ganglia. Postganglionic 

cholinergic nerves release acetylcholine (Ach), which binds to muscarinic receptors on airway smooth 

muscle, causing contraction and subsequent bronchoconstriction. We have shown that 5-

hydroxytryptamine (5-HT) 4 receptors (5-HT4R) do not seem to play a role in the 5-HT-induced 

bronchial responsiveness. (3) Both in CS-exposed mice, smokers without airflow limitation and 

patients with COPD, the levels of soluble guanylyl cyclase (sGC) are decreased, leading to an 

impaired bronchodilation. Down-regulation of sGC, induced by CS exposure, might contribute to 

airflow limitation in patients with COPD. NO: nitric oxide; GTP: guanosine triphosphate; cGMP; cyclic 

guanosine monophosphate; Psy: parasympathetic. 
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