
Starting from Scratch: Experimenting with Computer
Science in Flemish Secondary Education

Francis wyffels
Electronics and Information

Systems,
Ghent University

Francis.wyffels@UGent.be

Bern Martens
Secondary School Teacher

Education,
Leuven University and

Leuven University College
Bern.Martens@cs.kuleuven.be

Stefan Lemmens
Secondary School Teacher

Education,
Leuven University College

ABSTRACT
In the Flemish secondary education curriculum, as in many
countries and regions, computer science currently only gets
an extremely limited coverage. Recently, in Flanders (and
elsewhere), it has been proposed to change this, and try-outs
are undertaken, both in and outside of schools. In this pa-
per, we discuss some of those efforts, and in particular take
a closer look at the preliminary results of one experiment
involving different approaches to programming in grade 8.
These experiments indicate that many students from sec-
ondary schools would welcome a more extensive treatment of
computer science. Planning and implementing such a treat-
ment, however, raises a number of issues, from which in this
paper, we formulate a handful as calls for action for the com-
puter science education research community.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and In-
formation Science Education—computer science education,
curriculum

General Terms
Human Factors, Experimentation

Keywords
Computer science education, flemish secondary education

1. INTRODUCTION
Over the last century, there has been a shift from an indus-

try driven to an information driven society, processing ever
increasing amounts of information. Therefore, people that
are able to come up with processes to acquire, compute, store
and transmit all this information in an automated way are in
great demand. In Europe, the Information and Communi-
cation Technology (ICT) business currently generates 3.4%

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WiPSCE ’14, November 05 - 07 2014, Berlin, Germany
Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-4503-3250-7/14/11 ...$15.00
http://dx.doi.org/10.1145/2670757.2670763.

of the jobs and features 274, 000 open positions, possibly
icreasing to a million by 2020 [4].

Additionally, computers and other electronic devices are
increasingly being part of every citizen’s life. Despite this,
only a limited amount of people seem to have even a ba-
sic understanding of the principles behind this technology.
Moreover, as fun videos like “Teens react”1 illustrate, this is
not limited to “older” people. We believe that a lack of basic
computer science (CS) knowledge results in limited use of the
capabilities of computers, smart phones and other electronic
(information processing) devices.

Another benefit of mastering computer science, is that
with limited investments one can start a business. New de-
vices such as smartphones are continuously in need for ap-
plications and with just a computer one can easily sell own
coded applications worldwide. This already boosted the lives
of many people, as initiatives such as Coders 4 Africa2 illus-
trate.

Currently, Flemish K-12 computing education focuses al-
most exclusively on digital literacy [7]. Consequently, a vast
majority of Flemish K-12 students gets very little exposure
to computer science. However, some Flemish schools do ex-
periment with CS education.

In this paper, we discuss some of those experiments briefly
and one of them more extensively, and formulate some pre-
liminary conclusions. Next, from these experiments, as well
as from contexts such as the recent European Digital Skills
framework [2], we formulate a number of issues in CS edu-
cation that we believe to be in need of further research.

2. CS FOR FLEMISH STUDENTS
As discussed in [7], the exposure to CS in school for most

Flemish students is currently limited to less than 20 hours of
class in grades 9 and/or 10, and moreover suffers from many
problems such as a lack of curricular ambition, sufficiently
skilled teachers and suitable teaching materials. In this sec-
tion, we present (Flemish) examples showing that one can
do better than this.

2.1 Extracurricular CS activities
While CS education in Flemish schools is barely imple-

mented, outside schools there are some opportunities for
children and teenagers to get proficient. One example is

1Teens React to the 90s internet: what is a modem? (visited
in June 2014)
2coders4africa.org (visited in June 2014)

http://dx.doi.org/10.1145/2670757.2670763
http://youtu.be/d0mg9DxvfZE?t=6m16s
http://www.coders4africa.org

CoderDojo Belgium3 which, in line with the international
Coderdojo movement offers to children between 6 and 18
years old the opportunity to learn coding (and much more).

Another example is RoboCup Junior4 which aims to pro-
mote STEM by means of an annual open robot competition
for children between 8 and 18. Unlike CoderDojo, they do
not offer any workshops for the children themselves. Instead,
RoboCup Junior facilitates workshops for coaches. This ap-
proach is similar to that of Dwengo5, a non-profit organisa-
tion that promotes CS (and STEM) through open software,
hardware and educational packages. By means of local as
well as international projects with teenagers and teachers,
CS education is offered in an integrated context6.

While these and other extracurricular activities present a
partial remedy for the lack of CS education in schools, they
fail to act as a full substitute for it. Firstly, most of the ex-
tracurricular activities are fully booked and cannot cope with
the high demand. Consequently, most students are left out.
Secondly, these initiatives rely mostly on the alertness of the
parent (or teacher) to send the children. Therefore, various
minorities and/or socially disadvantaged groups are clearly
underrepresented. Thirdly, most of the initiatives only cover
a part of CS (in most cases only coding). Consequently, since
CS is much more than coding (see [1] for a review and [8] for
an example implementation), the participants do not get to
appreciate CS in its full breath.

These disadvantages of extracurricular initiatives can only
be repaired through the incorporation of CS in the regular
educational curriculum.

2.2 Exceptional schools
Despite the lack of CS in most official curricula, quite a few

Flemish schools do implement more extensive CS education
in various ways. Some schools are inspired by extracurricular
approaches and organise e.g. a technical club during lunch
breaks. Other schools use the curricular freedom Flemish
education provides for two hours a week in grades 11 and 12
of general education to give an introduction to programming,
do a robotics course, learn to make websites, etc.

There are also schools with mainly technically oriented
study programmes which integrate substantially more pro-
gramming and CS in their programme for grades 11 and 12
than the official curricula require. Interestingly, some schools
experiment with older students (grades 11 and 12) tutoring
younger students (grades 6 to 9) in (experimental) CS classes
at their level.

So, quite a few schools use their creativity and curricular
latitude to implement CS education to some extent. How-
ever, most of their efforts are limited to programming in
grades 11 and 12.

Also, they rely heavily on the enthusiasm and expertise of
individual teachers. In some cases where the former is much
larger than the latter, this entails problems with the level
of the content. Worse, the lack of any structural context
for these efforts implies that they depend heavily on the
availability of particular individuals in a school: if they leave,
their course leaves with them.

Finally, in most initiatives known to us, participation by

3coderdojobelgium.be (visited in June 2014)
4robocupjunior.be (visited in June 2014)
5dwengo.org (visited in June 2014)
6See for example the CErrobotics project in Argentina (vis-
ited in June 2014)

students is optional. As a consequence, they suffer from
some of the same drawbacks as the extracurricular activities.
This is illustrated by the fact that participation of female
students is often low. Questioned on this point by one of the
authors, the female students participating in the technical
club mentioned above replied that they found the technical
club interesting and enjoyed it a lot, but did not know why
their female colleagues did not want to join.

Very recently, since September 2013, a few schools offer
substantial CS courses in grade 7 and plan to structurally
embed and extend this all the way up to grade 12. For
the schools who started this already, this is part of a new
study profile putting more emphasis on the T of Technology
and the E of Engineering in STEM education (in general
education). These initiatives have attracted quite a bit of
attention in the Flemish secondary school “landscape” and
inspired other schools to embark on similar endeavours. It
is one of those schools that we discuss in the next section.

2.3 CS in the classroom: a coding experiment
From April to June 2014, we carried out an experiment

in a Flemish school. Over a period of 6 weeks, 6 groups of
students (131 in total of which 60% boys and 40% girls) in
grade 8 (typical 13 years old) were taught 4 (consecutive) 100
minute classes on “An introduction to programming”. The
study profiles of the students involved were situated in gen-
eral education focusing on mathematics, modern languages,
classical languages and/or science.

After a joint unplugged introduction to the concepts of
algorithms and programming, and a warming up exercise
doing the problems on code.org7, two groups continued with
the graphical block based programming environment Scratch8,
two groups worked with Java using the (graphical) Green-
foot IDE9, and the final two groups learned how to program
a Dwengo robot using the Dwengo Blocks [10]10 program-
ming language. To the best of our knowledge, it is the first
time that an experiment like this was undertaken on this
scale with students in this age group in Flemish education.

2.3.1 Some results from the teacher’s point of view
The introductory class went well with all groups. The stu-

dents enthusiastically “programmed” their teacher to make
a jam sandwich (inspired by the British CAS example11),
and quickly grasped some crucial lessons about the impor-
tance of sequence and precision in formulating an algorithm.
Also the students liked the elementary coding exercises at
code.org featuring e.g. Angry Birds.

The classes that continued with Scratch first had to im-
plement a simple car racing game, and subsequently were
invited to design and implement their own computer game,
presenting it to the whole class group at the end of the fourth
class. In general, this went well: most students were inter-
ested and motivated and many achieved nice results. One
specific issue lies in the choice between a more directed and
a more open approach. Scratch, with its low threshold, but
ample advanced extension features, turned out to be very
well suited for the latter approach. It did have the drawback
however that the attention of the less motivated students

7code.org (visited in June 2014)
8scratch.mit.edu (visited in June 2014)
9greenfoot.org (visited in June 2014)

10blocks.dwengo.org (visited in June 2014)
11Program your teacher (visited in June 2014)

http://www.coderdojobelgium.be
http://www.robocupjunior.be
http://www.dwengo.org
http://youtu.be/jP-G1OrR5Ng
http://www.code.org
http://scratch.mit.edu
http://www.greenfoot.org/door
http://blocks.dwengo.org
http://youtu.be/leBEFaVHllE

tended to wander away from Scratch and programming.
Since programming in a textual programming language

is often perceived as something difficult, continuing with
Greenfoot (in grade 8!) after the first class was considered as
a rather risky experiment. We were, however, amazed at the
success of this approach! Most students remained interested
and motivated throughout and achieved impressive results
(again coding a game of their own design after completing an
introductory challenge offered by the teacher). Boys tended
on average to be initially more excited (and relaxed) with
the prospect of directly learning to code in a ”real” program-
ming language, but there was no significant difference in the
average level of competence and quality of result achieved
by boys and girls at the end of the four classes. Interest-
ingly, one aspect did prove very difficult: in both Greenfoot
groups the teacher tried to bring home the importance of
code refactoring. This however proved to be beyond the in-
tellectual capabilities of almost all students involved. Also,
less motivated students tended to give up on the Greenfoot
approach, more than with the other approaches.

The third approach was based on programming a robot
to do stuff in the physical world, such as flashing lights in a
particular pattern and following a prescribed course in the
classroom. It turns out that learning to master a robot is
perceived as highly motivating by the students (consistently
more so than programming games with Scratch or Green-
foot). On the other hand, working with hardware moving
about in the real world, introduces additional concerns for
the (CS) teacher, such as the availability of sufficient copies
of the hardware, and the effort to familiarize oneself with
the electronics and robotics involved. With only two robots
available for 20 students, both factors proved to be cumber-
some in our experiment.

Interestingly, in none of the groups over the course of the
entire experiment, any significant systematic differences in
motivation or competence were noticed between boys and
girls. However, in the game programming classes, most girls
aimed for a game with a story (see e.g. also [6]), while most
boys designed games with racing, shooting, etc. This was
nicely illustrated by one girl who wanted to know whether
in the introductory Scratch programming exercise, she was
allowed to put a monkey on the race course rather than a car.
We feel this aspect should be taken more fully into account
in preparing teaching materials and textbooks.

2.3.2 Some results from the students’ point of view
The participating students filled out a questionnaire at

the start of the first and the third class, and at the end
of the fourth class. About 16% of the students claimed to
have some prior experience with programming. Surprisingly,
32% indicated having some experience with at least one in
a given list of programming tools (Scratch 11%, Lego Mind-
storms 14%). In other words, the prior use of some of these
programming tools was not interpreted as “programming”.
Finally, programming was generally perceived as rather dif-
ficult: only 14% believed that they would be (or were) good
at programming.

At the time the second questionnaire was filled out, differ-
ences between the three approaches became apparent (see
Figure 1). While Scratch was perceived as fun and inter-
esting, the textual programming approach of Greenfout was
marked as difficult and challenging.

This was confirmed by the third questionnaire in which

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0.35	

Fu
n	

Int
ere
s0
ng
	

Diffi
cu
lt	

Ea
sy	

Ch
all
en
gin
g	

Ch
ild
ish
	

Ot
he
r	

Fr
ac
%o

n	
of
	 st
ud

en
ts
	

Scratch	

Greenfoot	

Robot	

Figure 1: Results of questionnaire 2: students indi-
cate their (per group) main feeling while program-
ming.

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0.35	

0.4	

0.45	

0.5	

No	 Equal	 Yes	

Fr
ac
%o

n	
of
	 st
ud

en
ts
	

Scratch	

Greenfoot	

Robot	

Figure 2: Results of questionnaire 3: students
(per group) answer the question: “Is programming
harder than expected?”.

students had to indicate if they found programming harder
than expected. As can be observed in Figure 2, almost half
of the Greenfoot students thought so. In this group (not
illustrated) 20% of the students found programming less fun
than expected. However, also 17% of the Scratch group in-
dicated that they experienced less fun than expected. Only
9% of the students working with the robot answered to have
less fun, suggesting that working with a robot might be more
generally appealing.

Finally, students were invited to indicate whether they
would like to have a full programming course as a separate
topic during the entire year. In all groups, such a course
got the acclaim of about 40% of the students, and was re-
jected by about 30%. The school where the experiment was
run has meanwhile decided to start with such a full pro-
gramming course in grade 7. Moreover, they plan to develop
computer science over the full six years of their curriculum.
Our experiment was limited to programming, but one of the
challenges in such an endeavour will of course be to broaden
the scope to other aspects of computer science.

3. CALL FOR ACTION
Above, we discussed some Flemish initiatives and exper-

iments with CS (programming) education. They show CS
and CS education can get both teachers and students going,
even while policy makers drag their feet. However, they also
leave us with some questions. While we realize that Flanders
is currently not among the world leaders in K-12 CS educa-
tion, we feel that the full answers to these questions are not
yet available, even in countries which are. In this section, we
therefore formulate four calls for (research) action, address-

ing issues that we believe to be important for the further
development of CS as part of the core K-12 curriculum.

3.1 Classifying and measuring computer sci-
ence skills

The digital competence of the European population is clas-
sified by the EU into five different competence areas: infor-
mation, communication, content creation, safety, and prob-
lem solving [2]. While the area “problem solving” suggests
CS, the available indicators (finding a job online, internet
banking, connecting and installing new devices,...) show
that it only covers digital literacy. In fact, only one indi-
cator, “writing a computer program using a specialised pro-
gramming language”, targets one aspect of CS. If we want to
improve the treatment of CS in education, and clarify how it
relates to digital literacy, we need sufficiently precise metrics
for identifying core CS skills and competences.

3.2 How to teach computer science
Perhaps more than in many other topics, students of all

ages bring very diverse levels of competence in CS to the
classroom. Currently, in Flemish secondary schools, one can
find students in grade 7 with multiple years of programming
experience while others (in fact most) have no CS related
competences at all. While there is already some research on
how to approach heterogeneous groups, we believe that more
extensive research is necessary, especially with respect to CS
education.

Over the last few years, multiple didactic CS tools have
been developed. This includes hardware such as robot plat-
forms [9], coding environments, and various educational games
that may improve the learning experience and effectiveness
in CS classes. Consequently, we now have a wide choice
of tools and approaches, but no “best ones” have currently
emerged. More research such as [5] should therefore be per-
formed. Our own experiment described in Section 2.3 also
provides a contribution.

3.3 When to start computer science education
In [3] six arguments for teaching science to young chil-

dren are given. But what about CS? In the information age,
information processing is all around us and part of nearly ev-
eryone’s life at an early age. Does this imply that computer
science education should also start as early as possible? And
if so, how can this be further developed and implemented?

3.4 Evaluating the long-term effects of com-
puter science education

Often it is claimed that more and better CS education will
improve problem solving skills, lead to less unfilled positions
in ICT, result in more and more diverse ICT professionals
(e.g. more females and a better cultural mix), and help peo-
ple to use computers and other information processing de-
vices better and more safely. However, such claims remain
vacuous without (more) research to corroborate them.

4. CONCLUSIONS
Computer science is currently largely lacking from the of-

ficial Flemish education curricula. Nevertheless, inspired by

extracurricular projects and increased public demand, some
schools have started to implement CS education. In this
paper, we discussed some of these experiments and derived
some calls for research that would support the further devel-
opment of K-12 CS education.

5. ACKNOWLEDGMENTS
The authors thank Ben Alen and Bart Demoen for their

advice, feedback and support.

6. REFERENCES
[1] P. J. Denning. Great principles of computing.

Communications of the ACM, 46(11):15–20, 2003.

[2] DG-CONNECT-F4. Measuring digital skills across the
EU: EU wide indicators of digital competence.
Technical report, European Commission, 2014.
http://ec.europa.eu/digital-agenda/en/news/

measuring-digital-skills-across-eu-eu-wide-

indicators-digital-competence.

[3] H. Eshach and M. N. Fried. Should science be taught
in early childhood? Journal of Science Education and
Technology, 14(3):315–336, 2005.

[4] K. Gareis, T. Hüsing, S. Birov, I. Bludova, C. Schulz,
and W. Korte. E-skills for jobs in Europe: Measuring
progress and moving ahead. Technical report,
European Commission, 2014.
http://ec.europa.eu/DocsRoom/documents/4398/

attachments/1/translations/en/renditions/pdf.

[5] B. Gibson and T. Bell. Evaluation of games for
teaching computer science. In Proceedings of the 8th
Workshop in Primary and Secondary Computing
Education. ACM, 2013.

[6] C. Kelleher, R. Pausch, and S. Kiesler. Storytelling
Alice motivates middle school girls to learn computer
programming. In Proceedings of the SIGCHI
conference on Human factors in computing systems,
CHI ’07, pages 1455–1464. ACM, 2007.

[7] B. Martens and T. Hofkens. Positioning computer
science in Flemish K-12 education: a reflection. In
Proceedings of the 8th Workshop in Primary and
Secondary Computing Education. ACM, 2013.

[8] A. Tucker, D. McCowan, F. Deek, C. Stephenson,
J. Jones, and A. Verno. A model curriculum for K-12
computer science: Report of the ACM K-12 task force
computer science curriculum committee. Technical
report (revised edition), ACM, 2011.
http://www.csta.acm.org/Curriculum/sub/

CurrFiles/K-12ModelCurr2ndEd.pdf.

[9] C. Vandevelde, J. Saldien, C. Ciocci, and
B. Vanderborght. Overview of technologies for
building robots in the classroom. In International
Conference on Robotics in Education, Proceedings,
pages 122–130. Lodz University of Technology, 2013.

[10] F. wyffels, K. Bruneel, P. Bertels, M. D’Haene,
W. Heirman, and T. Waegeman. A human-friendly
way of programming robots. In 5th International
Workshop on Human-Friendly Robotics, Abstracts.
IEEE, 2012.

http://ec.europa.eu/digital-agenda/en/news/measuring-digital-skills-across-eu-eu-wide-indicators-digital-competence
http://ec.europa.eu/digital-agenda/en/news/measuring-digital-skills-across-eu-eu-wide-indicators-digital-competence
http://ec.europa.eu/digital-agenda/en/news/measuring-digital-skills-across-eu-eu-wide-indicators-digital-competence
http://ec.europa.eu/DocsRoom/documents/4398/attachments/1/translations/en/renditions/pdf
http://ec.europa.eu/DocsRoom/documents/4398/attachments/1/translations/en/renditions/pdf
http://www.csta.acm.org/Curriculum/sub/CurrFiles/K-12ModelCurr2ndEd.pdf
http://www.csta.acm.org/Curriculum/sub/CurrFiles/K-12ModelCurr2ndEd.pdf

	Introduction
	CS for Flemish students
	Extracurricular CS activities
	Exceptional schools
	CS in the classroom: a coding experiment
	Some results from the teacher's point of view
	Some results from the students' point of view

	Call for action
	Classifying and measuring computer science skills
	How to teach computer science
	When to start computer science education
	Evaluating the long-term effects of computer science education

	Conclusions
	Acknowledgments
	References

