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This letter presents an enhanced parametric macromodeling scheme for
linear high-frequency systems based on the use of multiple frequency
scaling coefficients and a sequential sampling algorithm to fully automate
the entire modeling process. The proposed method is applied on a ring
resonator bandpass filter example and compared with another state-of-
the-art macromodeling method to show its improved modeling capability
and reduced setup time.

Introduction: Design activities of electromagnetic (EM) systems such
as design space exploration, optimization, sensitivity analysis, etc.,
often require a substantial number of computationally expensive EM
simulations. The development of parametric macromodels acting as
accurate and efficient surrogate models for complex EM systems is
an active field of research [1, 2, 3, 4]. These models tend to be
good approximations of the EM system behavior, characterized by
frequency and additional design parameters (such as geometrical or
substrate features) and can be used to speed-up the design process.
Robust interpolation-based parametric macromodeling methods have been
proposed over the recent years, based on the parameterization of a set
of frequency-dependent rational models called root macromodels [1], [4].
In [4], interpolation of root macromodels at the input-output level, based
on two scaling coefficients was presented : one of the coefficients is a
multiplicative factor at the input/output level of the system (amplitude
scaling) and the other coefficient is a compression or expansion term for
the Laplace variable s (frequency scaling). The approach of [4] results in
high modeling capability and robustness.

In this letter, the parametric macromodeling method proposed in [4] is
generalized by using multiple frequency scaling coefficients for all partial
fractions of the root macromodels. This allows to model the behavior
of the partial fractions of the root macromodels independently, in order
to achieve a more flexible modeling capability. The proposed method
is compared with the approach described in [4] to show its enhanced
modeling capability and reduced CPU setup time.

Proposed Parametric Macromodeling Method: The proposed parametric
macromodeling scheme starts from a set of multivariate data samples
{(sn, %), H(sn,gx)},n=1,...,Ns, k=1,..., K** which depend on
the complex frequency s = jw and additionally N design variables in a
vector form §= (g(1), ..., g(N)). The design space Q(g) consists of N-
dimensional hyper-rectangular (N-box) regions Q;, l =1,..., L such that
Q(§) = U Q. Each of these ©; is defined by 2V corner root macromodels,
identified from the data samples H(s, giQ‘) using the well known Vector
Fitting (VF) technique [5] in pole-residue form:
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Here matrices C ’Z represent the residues, aQ’i are the poles and D
are constant matrlces In the next step each of these N-box regions Ql
is parameterized. For clarity, let us consider a two variable (N = 2) design

space region §2; defined by four corners glﬂl = (g}, 93), G, - =(g%,93),
Ql =( 2), and §, Q _
91792 and g,

= (g%, ¢2) as in Fig. 1 with associated corner
root macromodels R (s,§;), i=1,...,4. It should be noted however
that this approach is not restricted to N =2, but can be applied for any
dimension N. Also, for simplicity, we omit the superscript 2; for further
discussions in this section. In [4], the amplitude scaling and frequency
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Fig. 1. A two dimensional design space with four root macromodels.
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scaling coefficients (a1, ) are calculated using the optimization

arg min [Err( R;(s,§i), H($,§j))]~ 2

(a1,ij,a2,ij

In (2), f{j (s,di) = a1,ijR(saz,5,7;), is the modified response of
R(s, g;) to match H(s, g;) and Err(-) is a suitable error measure [4].

In this letter, the frequency scaling coefficients a2 ;; are further refined
and improved by defining a separate frequency scaling coefficient 3, ;; for
every term p in the rational model in a pole-residue form (1). The modified
R (s, g;) is given by:
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The optimal 8, ;;, p=1, ..., P; are found by performing an optimization
step similar to (2) with a;i J from (2) as initial value for all 3, ;;. For
complex-conjugate pole pairs (p1, p2) the same coefficient 8, ij = Bp,,ij
is used for both poles to preserve symmetry, which reduces the overall
number of coefficients to be optimized. The evaluation of the model at a
generic point g, in the design space (Fig. 1) is done similarly to [4] as:

i For each corner root macromodel of the cell containing gy, R(s, g;), i =
1,...,2N, the amplitude scaling coefficient a1 ;; and frequency scaling
coefficients 8,5, p=1,..., P; are interpolated using a multilinear
interpolation [6] over g at the point g, to find oy ;4 and By iq, P=
1,2,...P;. This results in the modified root macromodels, Rq(s, §;) =
a1 Zqu 1 m—i—D at gy,

ii Then, Ryg(s,d:), are further interpolated using the multilinear

interpolation [6] over g to get the final model at the points gq, R(s, gy)-

This parametric macromodeling approach is performed for each region ,
to cover the complete design space.

Sequential Sampling Algorithm: A sequential sampling scheme can be
used to automatically build parametric macromodels using the parametric
macromodeling method discussed above. In this letter, the grid-based
sequential sampling algorithm [7] is used to adaptively sample the design
space. The sampling scheme consists of the following steps:

I Define the initial N-box region of the design space €2;, (initially [ =
L =1) with N design variables 5= (¢(V,..., g(™)),
II construct the parametric macromodel R (s, §) for ©; with the 2V
corner points using the approach described above,
III for each N-box region £2;, ! =1,..., L, check the error threshold A at
the center of the maximum dynamic edge (find as in [7]) by comparing
the macromodel evaluation with the actual EM simulation,

i. IF: (Errq, edge > A), Divide €; into two subregions along the
maximum dynamic edge, update L = L + 1,/ =1+ 1 and go to Step
II.

ii. ELSEIF: (Errg, edge <= A), check also the error at the geometric
center of €; and if Errq, center > A, divide into two subregions
along the maximum dynamic edge, update L=L + 1,/ =1+ 1 and
go to Step 11

iii. ELSE IF: (Errq, cdge <= A and Errq, center <= A), increment
l=1+1.IF (< L): Not all regions €; are checked for the error
criteria, go to Step III; ELSE: Termination

Numerical Example: The scattering parameter response of a ring resonator
bandpass filter (see Fig. 2) has been modeled. ADS Momentum! has been
used as EM solver. The substrate has a relative permittivity e, =4.32, a
loss tangent § = 0.002 and a thickness equal to 1.52 mm. The lengths L; €
[20.0,23.0] mm, Lo € [20.0,23.0] mm and the spacing S; € [0.05, 0.3]
mm (see Fig. 2) are chosen as three design variables in addition to
frequency € [1.0, 3.0] GHz. The parametric behavior of the filter is shown
in Fig. 3. For the sequential sampling algorithm the Mean Absolute Error
(MAE) measure per port is used to assess the accuracy of the parametric
macromodel in every N-box region of the design space:
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where the EM simulation response H. (s, §) is compared with the
parametric macromodel response R (s, §), and P;,, and Py are the

! Momentum EEsof EDA, Agilent Technologies, Santa Rosa, CA.
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Fig. 3. Magnitude of S21 and S1; as a function of S and Lo.

number of input and output ports, respectively. The new parametric
macromodeling method as well as the recent method in [4] have been
used along with the grid-based sequential sampling algorithm [7] to build
accurate parametric macromodels. The MAE measure (4) was kept at
a target accuracy of A= —40 dB for the sequential sampling. Some
comparison results are shown in Table 1. The total number of generation
(Gen.) and validation (Val.) points are shown in the table. As it can be seen,
the new method needs significantly less data samples for the same accuracy
target, proving its improved modeling capability. The overall CPU time to
build the corresponding model is consequently reduced.

Table 1: Comparison: proposed method versus the method of [4]

Method # Samples CPU Time Accuracy
Gen. | Val. | Modeling Data Gen. [dB]
proposed 32 18 6 m56s 36 m4ls —40.4
[4] 116 86 22m30s | 2h31m29s —40.1

Fig. 4 shows the distribution of design space points selected using
the two parametric macromodeling methods. The method [4] finds more
difficult to model the filter behavior with respect to the design parameters
and needs significantly larger number of points along every design space
dimension. Fig. 5 compares the magnitude of S2; between the EM solver
and the proposed parametric macromodel for three random validation
points. The different responses show a very good agreement.

Conclusion: We have presented an enhanced parametric macromodeling
method for linear high-frequency systems. It is combined with a sequential
sampling scheme is able to generate accurate parametric macromodels in
an efficient and fully automated way. A comparison is made with state-of-
the-art modeling approach on a pertinent numerical example to show the
improved modeling capability and efficiency of the new method.
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Fig. 5. Magnitude of So; at three random validation points.
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