Occurrence and molecular characterization of *Giardia duodenalis* and *Cryptosporidium* spp. in sheep and goats reared under dairy husbandry systems in Greece

Nikolaos Tzanidakis, Smaragda Sotiraki, [..], and Thomas Geurden

Abstract

Giardia duodenalis and *Cryptosporidium* spp. are gastro-intestinal protozoa known to infect small ruminants. Both protozoa are also considered as a potential public health concern. The objective of this study was to determine their prevalence in lambs and goat kids kept under common Mediterranean dairy husbandry systems and to identify the species and genotypes infecting these small ruminants. In total, 684 faecal samples (429 from lambs and 255 from goat kids) were collected on 21 farms in Greece and examined using a quantitative immunofluorescence assay. *G. duodenalis* was detected in 37.3% of the lambs and 40.4% of the goat kids. On all but one of the farms *G. duodenalis* was detected. Most samples were typed as a mono-infection with *G. duodenalis* assemblage E, both on the β-giardin gene and the triose phosphate isomerase gene. Only 10% of samples were typed as mixed assemblage A and E infections. The prevalence of *Cryptosporidium* spp. was 5.1% in lambs and 7.1% in goat kids. In total, 8 out of the 14 farms with a sheep flock and 7 out of the 14 farms with a goat flock were positive. *Cryptosporidium parvum* (subtype IId), *C. ubiquitum* and *C. xiaoi* were identified, the latter especially in goat kids. In conclusion, the results of the present study illustrate that *G. duodenalis* and *Cryptosporidium* spp. occur frequently on both sheep and goats farms. The prevalence of zoonotic genotypes or species was low, indicating a limited but existing risk for zoonotic infections.

Keywords: Giardia, Cryptosporidium, Goat, Sheep, Dairy, Prevalence, Genotyping

Introduction

Giardia duodenalis and *Cryptosporidium* spp. are gastro-intestinal protozoa that affect a wide range of mammals. Both parasites have a direct life cycle and are known to cause enteritis. In small ruminants, mainly young lambs and goat kids are infected. The prevalence of both parasites in small ruminants varies considerably between studies worldwide [13]. The most common clinical symptoms associated with *G. duodenalis* are the excretion of malodorous, loose to diarrhoeic faeces and impaired weight gain, whereas *Cryptosporidium* spp. infection can lead to severe diarrhoea, depression, anorexia and weight loss [1, 12]. Mortality has been associated with cryptosporidiosis, especially in animals with concurrent infections.

The aim of this study was to estimate the prevalence of *G. duodenalis* and *Cryptosporidium* spp. infection in sheep and goat dairy farms in Greece. The small ruminant sector is very important in the Mediterranean basin from an economic, social and ecological point of view [5], especially in Greece with approximately 15 million sheep and goats which are kept traditionally for milk under low-input systems [20]. The most commonly applied farming systems practised in Greece can be categorized as extensive farming [43], and there is limited information on prevalence and especially molecular characterization of both parasites in these systems. The prevalence rates reported range from 33.3% to 49.6% for *G. duodenalis* and from 4.4% to 55% for *Cryptosporidium* spp. in sheep and goats [21, 32].

Materials and methods

Study design

The study was designed as a cross-sectional study in a high sheep and goat density area in Greece (i.e. the island of Crete where more than 1.5 million animals are kept). The farms enrolled in this survey were selected according to the following criteria: (a) type of animal
on the farm (sheep, goats, or mixed sheep and goats), and (b) management practices applied (“intensive management system” where
stocking rates are high and the young animals are reared indoors until weaning (30–40 days), and “extensive management system”
where stocking rates are lower and young animals are reared with their mothers mostly on pasture). Each farm was visited on a single
occasion in a 6-month period, and only animals between the age of 1 day and 10 weeks were considered for inclusion in the study.
Sample size was calculated based on the number of expected births as an indicator of the number of animals on the farms: of the lambs,
5% of the expected births on each farm were sampled and of the goat kids, 10% of the expected births were sampled. Data on the type
of water supply for the animals (public network supply, a private drill hole or natural well), the age of lambs or goat kids and the
presence of diarrhoea were recorded.

Parasitological examination

The faecal samples were examined in the laboratory using a quantitative immunofluorescence assay (IFA; Merifluor
Cryptosporidium/Giardia kit; Meridian Diagnostics Inc.), as follows: 1 g of faeces was suspended in tap water and sieved three times
through a layer of surgical gauze to withhold large debris. Sedimentation for at least 30 min was followed by discarding the supernatant.
The remaining sediment was centrifuged at 3000 rpm for 5 min. The sediment was re-suspended in 1 mL of tap water. After thorough
vortexing, an aliquot of 20 µL was applied onto an IFA slide. The samples, including a negative and positive control sample, were left to
dry completely. After staining and incubating slides in a dark humidified chamber (for 30 min at room temperature), the entire slide was
examined at 400× magnification under a fluorescence microscope. A sample was considered positive if at least one, clearly recognizable
Cryptosporidium oocyst or Giardia cyst was identified. The number of (oo)cysts per gram of faeces was obtained by multiplying the
total number of (oo)cyts on the slide by 50.

Molecular characterization

Positive isolates for both parasites were selected for DNA extraction, using the QIAamp Stool Mini Kit (Qiagen), according to the
manufacturer’s instructions, incorporating an extended initial step of five freeze-thaw cycles (freezing in liquid nitrogen for 5 min and
heating at 95 °C for 5 min) in the protocol to maximize (oo)cyst lesion. The selection of the positive isolates aimed to include at least
one positive sample per farm.

For the amplification of the Cryptosporidium spp., the 18S ribosomal DNA (18S rDNA) gene PCR protocol was used (previously
described in [40]), as well as a PCR targeting the 70 kDa heat shock protein (HSP70, described in [28]). Subgenotyping of the C.
parvum positive samples was performed using the 60 kDa glycoprotein (gp60) gene [34]. G. duodenalis positive samples were
characterized using the β-giardin gene [24], and the triose phosphate isomerase (TPI) gene [11]. Amplification products were visualized
on 1.5% agarose gels with ethidium bromide. A positive and negative (PCR water) control sample was included in each PCR. PCR
products were purified using the Qiaquick purification kit (Qiagen) and fully sequenced using the BigDye Terminator V3.1 Cycle
Sequencing Kit (Applied Biosystems). Sequencing reactions were analysed on a 3100 Genetic Analyzer (Applied Biosystems) and
assembled with Seqman II (DNASTAR, Madison, WI, USA). Sequencing reactions were compared with known sequences by BLAST-analysis
against the NCBI database.

Results

A total of 21 farms with either a sheep (n = 7) or goat (n = 7) flock, or a mixed sheep and goat flock (n = 7) were visited. On the
majority of the farms (14/21) animals were reared under the intensive management system, whereas on 7 farms, goats and sheep were
reared under the extensive management system (Table 1). In total, 684 faecal samples were examined, of which 429 samples were from
lambs and 255 from goat kids. Mean lamb age was 5 weeks (range 4–8 weeks) and mean goat kid age was 6 weeks (range 4–9 weeks).

<table>
<thead>
<tr>
<th>Farm</th>
<th>Sheep</th>
<th>Goats</th>
<th>Mixed Sheep and Goats</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 7</td>
<td>n = 7</td>
<td>n = 7</td>
<td>n = 7</td>
</tr>
</tbody>
</table>

The prevalence of G. duodenalis was 37.3% (n = 160/429) in lambs and 40.4% (n = 103/255) in goat kids. In total, 13 out of the 14
farms (92.9%) with a sheep flock, and 14 out of the 14 farms (100%) with a goat flock, were positive for G. duodenalis with a minimum
of 4 positive samples on each positive farm. The prevalence of Cryptosporidium spp. oocysts was 5.1% (n = 22/429) in lambs and 7.1%
(n = 18/255) in goat kids. In total, 8 out of the 14 farms (57.1%) with a sheep flock, and 7 out of the 14 farms (50.0%) with a goat flock, were positive with a minimum of 1 positive sample on each positive farm.

Intensity of *G. duodenalis* cyst excretion ranged from 50 to 800,000 cysts per gram (cpg) of faeces in lambs with an average of 48,989 cpg, and from 50 to 900,000 cpg for goat kids with an average of 94,053 cpg. The excretion level for *Cryptosporidium* oocysts was low in lambs with an average of 9143 oocysts per gram of faeces (range 200–31,900 opg), yet it was high in goat kids with an average excretion of 47,744 opg (range 200–551,000 opg).

A minimum of 1 positive sample was selected for DNA extraction per farm for *G. duodenalis* and *Cryptosporidium* spp., respectively. In total, 71 samples yielded a positive amplicon for *G. duodenalis* (Table 2). The majority of the samples were typed as a mono-infection with the ruminant-specific assemblage E, both on the β-giardin gene and the TPI gene. Only a limited number of samples were typed as mixed assemblage A and E infections, both in lambs and in goat kids. For *Cryptosporidium*, 24 samples yielded a positive amplicon (Table 3). Three different *Cryptosporidium* species (*C. parvum*, *C. ubiquitum* and *C. xiaoii*) were identified, although *C. xiaoii* was not identified in lambs. The *C. parvum* positive samples were typed as subtype IId on the gp60 gene (IIdA4G2T14 and IIdA4G3T13).

Table 2.

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Assemblage</th>
<th>Allele</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goat kids</td>
<td>A</td>
<td>T12</td>
<td>N/A</td>
</tr>
<tr>
<td>Lambs</td>
<td>A</td>
<td>T14</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 3.

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Assemblage</th>
<th>Allele</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goat kids</td>
<td>A</td>
<td>T12</td>
<td>N/A</td>
</tr>
<tr>
<td>Lambs</td>
<td>A</td>
<td>T14</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Discussion

The present study illustrates that *G. duodenalis* is highly prevalent in both lambs and goat kids, as the parasite was detected in all but one of the sheep flocks and in all goat flocks. The high farm and animal prevalence is in line with previous studies in small ruminants in Europe [4, 13, 18]. The high *G. duodenalis* prevalence and the potential association with production losses [31, 44] require an appropriate level of awareness of this infection on those farms in terms of disease management and prevention of infection. In contrast to *G. duodenalis*, the prevalence of *Cryptosporidium* was lower than anticipated in both lambs and goat kids, probably due to the age range of the animals included in the present study. Nevertheless, the farm prevalence on the sheep (57.1%) and goat (50.0%) farms does suggest that *Cryptosporidium* is widespread and is a potential threat to the small ruminant population. In previous studies in Greece, *Cryptosporidium* has been associated with large outbreaks of diarrhoea in both sheep and goat flocks [14, 15, 37], similar to other major small ruminant rearing countries [6, 33].

Both for *G. duodenalis* and for *Cryptosporidium* spp., a potential public health threat has been suspected, based on the high prevalence of these parasites in small ruminants and on extrapolation of molecular insights from other animal species, such as cattle or companion animals. However, recent molecular data seem to suggest that small ruminants are mostly infected with non-zoonotic genotypes of *G. duodenalis* [12, 18, 38, 46, 47] and *Cryptosporidium* spp. [38]. On the other hand, potentially zoonotic genotypes or species such as *G. duodenalis* assemblage A and B [1, 2, 12, 19, 26, 30, 41], *C. parvum* [3, 6, 12, 22, 46], *C. hominis* [17], *C. meleagridis* [42] and *C. ubiquitum* [10, 12, 45] have been reported in small ruminants. Furthermore, the identification of potentially zoonotic genotypes does not necessarily imply that transmission occurs. Recently, host-associated populations of *C. parvum* have been described using a multi-locus genotyping (MLG) approach, and *C. parvum* populations found in goats were even found to differ from bovine and sheep MLGs [7]. Whether this is a true host-specific phenomenon or just a matter of the level of isolation and opportunities for out-crossing is still to be discussed. Nevertheless, the contradicting molecular findings illustrate the difficulty of evaluating a potential public health threat based solely on genetic data without considering the epidemiological background and transmission of infection. Direct transmission of *Cryptosporidium* infection through bottle feeding or petting of animals on educational farms has been described before [38], but is probably an occasional route of infection. Although there is no direct evidence of transmission of *Cryptosporidium* and *G. duodenalis* infections from small ruminants to the human population via contaminated water, it is considered a threat. Furthermore, the detection of both parasites in outbreaks and in water screening is not routine practice in most countries, and large waterborne outbreaks might go...
unnoticed. In a recent study in Spain, the prevalence of Cryptosporidium and Giardia in water was significantly higher in the inland area, with higher concentration of livestock and fewer water treatment plants [4], illustrating that a variety of factors define the odds for infection. In the specific study area on the island of Crete, only a limited number of water basins are used over the island to produce drinking water for the local population and for the tourist population in the summer. The pastures surrounding the drinking water basins are all grazed by small ruminants. Whether these conditions lead to a substantial public health threat will need to be evaluated further in a longitudinal study, including sampling of water.

In goats, a large proportion of the Cryptosporidium positive samples were typed as C. xiaoi, both on 18S and HSP-70. This is in agreement with previous studies in Spain [6] and France [36], yet contradicts the initial claim that C. xiaoi infections are largely restricted to sheep [9]. In the current study, C. xiaoi was found in goats from three different farms, of which 2 farms maintained a goat-only flock and 1 farm managed a mixed flock. This illustrates that, although the introduction in the goat flocks might be due to contact with infected sheep, a C. xiaoi infection is easily maintained in goats. As advocated by Fayer and Santin [9], further epidemiological data will be needed to confirm whether the reports of C. xiaoi in goats are incidental or a regularly observed finding.

In conclusion, a high animal and farm prevalence of G. duodenalis, and a high farm prevalence of Cryptosporidium spp. were detected in both lambs and goat kids. Although mainly non-zoonotic species were identified in the present study, the frequent contact and proximity of grazing grounds to the natural water sources used to produce drinking water in the study area warrant further investigation of the public health relevance of these infections.

Acknowledgments

The authors would like to thank the farmers and research staff who participated in this study, with special thanks to Dr. Alexandros Stefanakis. The study was conducted within the framework of the COST Action FA0805 CAPARA. “Goat-parasite interactions: from knowledge to control”.

Notes

Footnotes

* Novel Approaches to the Control of Parasites in Goats and Sheep.
Invited editors: Hervé Hoste, Smaragda Sotiraki, and Michel Alvinerie

Article information

Parasite. 2014; 21: 45. Published online Sep 5, 2014. doi: 10.1051/parasite/2014048

Nikolaos Tzanidakis,1 Smaragda Sotiraki,1 Edwin Claerebout,2 Amimul Ehsan,2 Nikolaos Voutzourakis,1 Despoina Kostopoulou,1 Casaert Stijn,2 Jozef Vercruysse,2 and Thomas Geurden2

1 Veterinary Research Institute – Hellenic Agricultural Organization Demeter 57001 Thermi, Thessaloniki Greece
2 Laboratory for Parasitology, Faculty of Veterinary Medicine, Ghent University Salisburylaan 133 9820 Merelbeke Belgium
*Corresponding author: Email: thomasgeurden@yahoo.com

Received December 29, 2013; Accepted August 25, 2014.

Copyright © N. Tzanidakis et al., published by EDP Sciences, 2014
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Articles from Parasite are provided here courtesy of EDP Sciences
References

27. McLauchlin J, Amar C, Pedroza-Diaz S, Nichols GL. 2000. Molecular epidemiological analysis of Cryptosporidium spp. in the United Kingdom: Results of genotyping Cryptosporidium spp. in 1,705 faecal samples from humans and 105 faecal samples from livestock animals. Journal of Clinical Microbiology, 38, 3984–3990 [PMC free article] [PubMed]

41. Santin M, Trout JM, Fayer R. 2007. Prevalence and molecular characterization of Cryptosporidium and Giardia species and genotypes in sheep in

...

