Error estimates for the full discretization of a nonlocal parabolic model for type-I superconductors

K. Van Bockstal*, M. Slodička

Research Group NaM², Department of Mathematical Analysis, Ghent University, Galglaan 2, 9000 Ghent, Belgium

Abstract

A vectorial nonlocal linear parabolic problem in terms of the magnetic field for superconductors of type-I is considered. This problem is obtained from the quasi-static Maxwell equations, the two-fluid model of London and London, and the nonlocal representation of the superconductive current by Eringen (space convolution). In this contribution, a linear fully discrete approximation scheme is proposed to solve this problem. The convergence of the scheme is proved and the corresponding error estimates are derived under appropriate assumptions. It is also shown how to improve the error estimates under higher regularity.

Keywords: Maxwell equations, nonlocal superconductors, singular convolution kernel, full discretization, error estimates

2010 MSC: 35Q61, 65M20, 82D55

1. Introduction

In this contribution, a superconductive material of type-I occupies a bounded polyhedral Lipschitz continuous domain \(\Omega \subset \mathbb{R}^3 \), with boundary \(\partial \Omega \). The symbol \(\nu \) denotes the outward unit normal vector on \(\partial \Omega \). In [1], the authors proposed the following model in terms of the magnetic field \(H \) for type-I superconductors:

\[
\partial_t H + \nabla \times \nabla \times H + \nabla \times (K_0 \ast H) = f. \tag{1}
\]

This equation is obtained from the quasi-static Maxwell equations, the two-fluid model of London and London, and the nonlocal representation of the superconductive current by Eringen [2, 3, 4]. In the two-fluid model, the current density \(J \) is supposed to be the sum of a normal \(J_n \) and a superconducting part \(J_s \). The normal density current \(J_n \) is satisfying Ohm’s law. For the superconductive part of the current \(J_s \), the nonlocal representation of the superconductive current by Eringen is considered [4]. This representation identifies the state of the superconductor at time \(t \) with the field \(H(\cdot, t) \) and is given by the linear functional

\[
J_s(x, t) = \int_{\Omega} \sigma_0(|x - x'|) (x - x') \times H(x', t) \, dx' = - (K_0 \ast H)(x, t), \quad (x, t) \in \Omega \times (0, T),
\]

where the singular kernel \(\sigma_0 : (0, \infty) \to \mathbb{R} \) is defined by

\[
\sigma_0(s) = \begin{cases} \frac{\tilde{C}}{2s} \exp \left(-\frac{s}{r_0}\right), & s < r_0; \\ 0, & s \geq r_0,
\end{cases}
\]

with \(\tilde{C} := \frac{3}{2\pi \xi_0^2} > 0 \). The length \(\xi_0 \) is called the coherence length of the material and \(\Lambda = \frac{m_e}{ne^2} \), with \(n_s \) the number of superelectrons per unit volume, \(m_e \) and \(-e \) the mass and the electric charge of an electron respectively. The points

*Corresponding author

Email addresses: Karel.VanBockstal@UGent.be (K. Van Bockstal), Marian.Slodicka@UGent.be (M. Slodička)

Preprint submitted to JCAM January 31, 2014
which contribute to the integral are separated by distances of order r_0 or less, where $r_0 = \frac{C_l}{\varepsilon}$, with l the mean free path of the electrons in the material.

In [1], only the well-posedness of problem (1) is shown under low regularity assumptions. Also error estimates are derived for different time-discrete schemes. The aim of this paper is to design a fully discrete finite element scheme to approximate the solution of the following vectorial nonlocal linear parabolic problem

$$\begin{aligned}
\partial_t H + \nabla \cdot \nabla H + \nabla \times (K_0 \star H) &= f & \text{in } Q_T := \Omega \times (0, T); \\
H \times \nu &= 0 & \text{on } \partial \Omega \times (0, T); \\
H(x, 0) &= H_0; & \nabla \cdot H_0 &= 0 & \text{in } \Omega.
\end{aligned}$$

(2)

The outline of this paper is as follows. In Section 2, the mathematical tools are summarized. A time-discrete scheme is described in Section 3. In Section 4, a fully discrete finite element scheme is proposed to approximate the solution to problem (2). Moreover, the error estimates for the full discretization are derived. Under higher regularity assumptions, better error estimates are derived in Section 5.

2. Functional setting

In this section, some standard notations are introduced. The Euclidian norm of a vector v in \mathbb{R}^3 is expressed by $|v|$. The Lebesgue spaces of vector-valued functions with componentwise p-th power integrable functions are denoted by $L^p(\Omega)$ with the usual norm $||.||_p$. For instance, in the special case $p = 2$, the $L^2(\Omega)$ scalar product is denoted by $(u, v) = \int_\Omega u \cdot v \, dx$ and the corresponding norm is $||v|| = \sqrt{(v, v)}$. The following spaces are used in our analysis: $H^1(\Omega)$, $H^2(\Omega)$, $H(curl, \Omega)$, and the fractional Sobolev spaces $H^s(\Omega)$ and $H^s(curl, \Omega)$ – see [5]. The Hilbert space $H^1(\Omega)$ is endowed with the norm $||\phi||_{H^1(\Omega)}^2 = ||\phi||^2 + ||\nabla \phi||^2$. The space $H(curl, \Omega)$ is a Banach space with respect to the graph norm $||\phi||_{H(curl, \Omega)}^2 = ||\phi||^2 + ||\nabla \times \phi||^2$. The spaces $H^s(\Omega)$ and $H^s(curl, \Omega)$ inherit the norm $||\phi||_{H^s(\Omega)}$ and $||\phi||_{H^s(curl, \Omega)}$, respectively. The space of Lipschitz continuous functions $\mathcal{L}: [0, T] \to L^2(\Omega)$ is denoted by $\mathcal{L}(\Omega)$.

The values C, ε and C_ε are generic and positive constants independent of the discretization parameters τ and h. The value ε is small and $C_\varepsilon = C(\varepsilon^{-1})$. To reduce the number of arbitrary constants, the notation $a \lesssim b$ is used if there exists a constant C such that $a \leq C b$.

2.1. Useful estimates

In this subsection, some useful estimates that are crucial in the calculations are derived. Using spherical coordinates one can deduce that $\sigma_0(|x|)x$ belongs to $L^p(\Omega)$ for $1 \leq p < 3$. Hence, the following estimates on J_3 can be obtained

$$|J_3(x, t)| = |(K_0 \star H)(x, t)| \leq C(q) ||H(t)||_q, \quad q > \frac{3}{2}, \quad \forall x \in \Omega.$$

(3)

Therefore, using Young’s inequality, it is for instance true that

$$(K_0 \star h_1, \nabla \times h_2) \leq C_\varepsilon ||h_1||^2 + \varepsilon ||\nabla \times h_2||^2, \quad \forall h_1 \in L^2(\Omega), h_2 \in H_0(curl, \Omega).$$

(4)

3. Time discretization

Applying the semidiscretization in time, the existence of a solution to (2) is proved in [1]. This discretization is based on backward Euler (Rothe’s) method [6]. The interval $[0, T]$ is divided into n equidistant subintervals $[t_{i-1}, t_i]$ with time step $\tau = \frac{T}{n} < 1$, thus $t_i = i\tau, i = 0, \ldots, n$. The following standard notations for the discretized fields are introduced: $h_i \approx H(t_i)$ and $\delta h_i = \frac{h_i - h_{i-1}}{\tau}$. The variational formulation of (2) reads as

$$\begin{aligned}
(\delta h_i, \varphi) + (\nabla \cdot h_i, \nabla \times \varphi) + (K_0 \star h_i, \nabla \times \varphi) = (f, \varphi), & \quad \forall \varphi \in H_0(curl, \Omega).
\end{aligned}$$

(5)

The following linear recurrent scheme is proposed in [1] to approximate this problem

$$\begin{aligned}
(\delta h_i, \varphi) + (\nabla \cdot h_i, \nabla \times \varphi) + (K_0 \star h_i, \nabla \times \varphi) = (f_i, \varphi), & \quad \forall \varphi \in H_0(curl, \Omega); \\
\delta h_i \equiv H_0.
\end{aligned}$$

(6)
The vector fields h_n and \overline{h}_n are defined
\begin{align*}
h_n(0) &= H_0; \\
\overline{h}_n(0) &= H_0,
\end{align*}
for $t \in (t_{i-1}, t_i]$, $i = 1, \ldots, n$;
\begin{align*}
h_n(t_i) &= h_{i-1} + (t - t_{i-1})\delta h_i \\
\overline{h}_n(t_i) &= h_i,
\end{align*}
for $t \in (t_{i-1}, t_i]$, $i = 1, \ldots, n$.

Similarly, the vector field \overline{f}_n is defined. Using this notations, the variational formulation (6) can be rewritten as
\begin{equation}
\langle \partial_t h_n(t), \varphi \rangle + \langle \nabla \times \overline{h}_n(t), \nabla \times \varphi \rangle + \langle \mathcal{K}_0 \ast \overline{h}_n(t), \nabla \times \varphi \rangle = \langle \overline{f}_n(t), \varphi \rangle.
\end{equation}

The convergence of the proposed approximation scheme is shown in [1] and also error estimates for the time discretization are derived. The most important results are summarized in the following theorem.

Theorem 1 (Existence and uniqueness).

- Let $H_0 \in L^2(\Omega)$ and $f \in L^2((0, T), L^2(\Omega))$. Assume that $\nabla \cdot H_0 = 0 = \nabla \cdot f(t)$ for any time $t \in [0, T]$. Then there exists a unique solution $H \in C([0, T], L^2(\Omega)) \cap L^2((0, T), H^1(\Omega))$ with $\partial_t H \in L^2((0, T), H^{-1}(\text{curl}, \Omega))$.

which solves (5). If $H_0 \in H_0(\text{curl}, \Omega)$, then $\partial_t H \in L^2((0, T), L^2(\Omega))$.

- Suppose that $f \in \text{Lip}(0, T), L^2(\Omega))$.

(i) If $H_0 \in H_0(\text{curl}, \Omega)$ then
\begin{equation}
\max_{t \in [0, T]} \|h_n(t) - H(t)\|^2 + \int_0^T \|\nabla \times [h_n - H]\|^2 \leq C r^2.
\end{equation}

(ii) If $\nabla \times (\mathcal{K}_0 \ast H_0) \in L^2(\Omega)$, $H_0 \in H_0(\text{curl}, \Omega)$ and $\nabla \times \nabla \times H_0 \in L^2(\Omega)$ then
\begin{equation}
\max_{t \in [0, T]} \|h_n(t) - H(t)\|^2 + \int_0^T \|\nabla \times [h_n - H]\|^2 \leq C r^2.
\end{equation}

Please note that the positive constant C in this estimates is of the form $Ce^{C'T}$.

4. A fully discrete finite element scheme

In this section, a linear numerical scheme discretized in time and space for finding an approximation of the solution to problem (2) is suggested. The purpose of the finite element method is to approximate the solution of a problem in a finite dimensional space. The first step is to generate a finite element mesh that covers the domain Ω. The domain Ω can be subdivided into a finite set of distinct tetrahedra $\mathcal{T} = \{K\}$ such that $\cup_{K \in \mathcal{T}} K = \overline{\Omega}$, see [7]. In our analysis, it is assumed that there is a regular family of meshes or triangulations $\{T_h : h > 0\}$, where h denotes the mesh parameter.

The purpose of this paper is to analyze the error as h decreases. The second step is the consideration of a finite element subspace V_h of $H(\text{curl}, \Omega)$. In order to take the boundary condition $H \times \nu = 0$ into account, the finite dimensional subspace $V_h^0 = \{\psi_h \in V_h : \psi_h \times \nu = 0 \text{ on } \partial \Omega\}$ of $H_0(\text{curl}, \Omega)$ is considered. Let $P_h : L^2(\Omega) \rightarrow V_h^0$ the orthogonal projection operator such that if $u \in L^2(\Omega)$ then $P_h u \in V_h^0$ satisfies
\begin{equation}
(u, v_h) = (P_h u, v_h), \quad \forall v_h \in V_h^0.
\end{equation}

Analogously, let $\overline{P}_h : H_0(\text{curl}, \Omega) \rightarrow V_h^0$ the orthogonal projection operator such that if $u \in H_0(\text{curl}, \Omega)$ then $\overline{P}_h u \in V_h^0$ satisfies
\begin{equation}
(u, v_h) + (\nabla \times u, \nabla \times v_h) = \langle \overline{P}_h u, v_h \rangle + \langle \nabla \times \overline{P}_h u, \nabla \times v_h \rangle, \quad \forall v_h \in V_h^0.
\end{equation}

Choosing $v_h = P_h u$ in (8) and $v_h = \overline{P}_h u$ in (9), it is easy to prove that P_h and \overline{P}_h are linear bounded operators.
At this point, a fully discrete scheme can be defined. After time and space discretization, the following approximation of our problem can be obtained: find \(h_h^i \in V_h^i \) such that

\[
\begin{align*}
\left\{ \begin{array}{ll}
(\delta h_h^i, \varphi^i) + (\nabla \times h_h^i, \nabla \times \varphi^i) + (\mathcal{K}_0 \ast h_h^i, \nabla \varphi^i) = (f_h^i, \varphi^i) ; \\
\hat{h}_h^0 = P_h H_0,
\end{array} \right.
\end{align*}
\]

is satisfied for all \(\varphi^i \in V_h^i \). This problem is equivalent with solving \(a^h(h_h^i, \varphi^i) = f^h(\varphi^i) \) for all \(\varphi^i \in V_h^i \), where \(a^h : V_0^h \times V_h^i \rightarrow \mathbb{R} \) and \(f^h : V_h^i \rightarrow \mathbb{R} \) are defined by

\[
a^h(h_h^i, \varphi^i) = \frac{h_h^i}{\tau} + (\nabla \times h_h^i, \nabla \times \varphi^i) + (\mathcal{K}_0 \ast h_h^i, \nabla \varphi^i) \quad \text{and} \quad f^h(\varphi^i) = (f, \varphi^i) + \left(\frac{h_h^{i-1}}{\tau} \right) \varphi^i.
\]

Remark that \(h_h^i \) denotes the finite element solution at time \(t = t_i \).

Theorem 2. Suppose that \(H_0 \in \mathbf{H}_0(\text{curl}, \Omega) \). Then the variational problem (10) admits a unique solution \(h_h^i \in V_h^i \) for any \(i = 1, \ldots, n \) if \(\tau < \tau_0 \).

Proof. This is an easy application of the Lax-Milgram lemma for any \(i = 1, \ldots, n \). It holds that

\[
a^h(\varphi^i, \varphi^i) \geq \frac{1}{\tau} \| \varphi^i \|^2 + \| \nabla \times \varphi^i \|^2 - (\mathcal{K}_0 \ast \varphi^i, \nabla \varphi^i) \geq \left(\frac{1}{\tau} - C_2 \right) \| \varphi^i \|^2 + (1 - \varepsilon) \| \nabla \times \varphi^i \|^2.
\]

Fixing \(\varepsilon < 1 \), proofs that the bilinear form \(a^h(\cdot, \cdot) \) is elliptic in the Hilbert space \(V_h^i \) for \(\tau < \tau_0 \). Moreover, \(a^h \) is continuous in \(V_h^i \). If \(H_0 \in \mathbf{H}_0(\text{curl}, \Omega) \), then the functional \(f^h(\cdot) \) is linear and bounded in \(V_h^i \). \(\square \)

A stability analysis is needed to derive the error estimates for the full discretization.

Lemma 1 (Stability analysis). Suppose that \(f \in L^2((0, T), L^2(\Omega)) \).

(i) Let \(H_0 \in \mathbf{H}_0(\text{curl}, \Omega) \). Then, there exists a positive constant \(C \) such that for all \(\tau < \tau_0 \)

\[
\max_{1 \leq i \leq n} \left\{ \frac{\| h_h^i \|^2}{\tau} + \sum_{i=1}^{n} \| h_h^i - h_h^i \| \right\} \geq \frac{\| f(0) \|^2}{\tau} \geq C.
\]

(ii) If \(H_0 \in \mathbf{H}_0(\text{curl}, \Omega) \) for all \(\tau < \tau_0 \)

\[
\max_{1 \leq i \leq n} \left\{ \frac{\| \nabla \times h_h^i \|^2}{\tau} + \sum_{i=1}^{n} \| \nabla \times h_h^i - \nabla \times h_h^i \| \right\} \leq C.
\]

(iii) If \(f(0) \in L^2(\Omega), \partial_t f \in L^2((0, T), L^2(\Omega)) \), \(\nabla \times (K_0 \ast H_0) \in L^2(\Omega), H_0 \in \mathbf{H}_0(\text{curl}, \Omega) \) and \(\nabla \times \nabla \times H_0 \in L^2(\Omega) \) then for all \(\tau < \tau_0 \)

\[
\max_{1 \leq i \leq n} \left\{ \frac{\| \delta h_h^i \|^2}{\tau} + \sum_{i=1}^{n} \| \delta h_h^i - \delta h_h^i \| \right\} \leq C.
\]

Proof. (i) First, we set \(\varphi^i = h_h^i \) in (10). Then, we multiply the result by \(\tau \) and sum up for \(i = 1, \ldots, j \) to arrive at

\[
\sum_{i=1}^{j} (\delta h_h^i, h_h^i) \tau + \sum_{i=1}^{j} \| \nabla \times h_h^i \| \tau + \sum_{i=1}^{j} (\mathcal{K}_0 \ast h_h^i, \nabla \times h_h^i) \tau = \sum_{i=1}^{j} (f, h_h^i) \tau.
\]

For the first term on the left-hand side (LHS), we use Abel’s summation rule

\[
2 \sum_{i=1}^{j} (\delta h_h^i, h_h^i) \tau = \| h_h^j \|^2 - \| P_h H_0 \|^2 + \sum_{i=1}^{j} \| h_h^i - h_h^{i-1} \|^2.
\]
For the third term on the LHS, we have using (4) that
\[
\left| \sum_{i=1}^{j} (\mathcal{K}_0 \ast h^i, \nabla \times h^i) \tau \right| \leq \varepsilon \sum_{i=1}^{j} \left\| \nabla \times h^i \right\|^2 \tau + C \varepsilon \sum_{i=1}^{j} \left\| h^i \right\|^2 \tau.
\]

For the RHS, we apply the Cauchy and Young inequalities. Fixing ε sufficiently small and applying the Grönwall argument gives the proof.

(ii) Now, we put $\varphi^h = \delta h^i_0$ in (10). Again, we multiply by τ and sum up for $i = 1, \ldots, j$
\[
\sum_{i=1}^{j} \left\| \delta h^i_0 \right\|^2 \tau + \sum_{i=1}^{j} \left(\nabla \times h^i_0, \nabla \times h^i_0 - \nabla \times h^i_{0-1} \right) + \sum_{i=1}^{j} (\mathcal{K}_0 \ast h^i_0, \nabla \times \delta h^i_0) \tau = \sum_{i=1}^{j} (f_i, \delta h^i_0) \tau.
\]

Abel’s summation rule gives
\[
2 \sum_{i=1}^{j} \left(\nabla \times h^i_0, \nabla \times h^i_0 - \nabla \times h^i_{0-1} \right) = \left\| \nabla \times h^i_0 \right\|^2 - \left\| \nabla \times P_h H_0 \right\|^2 + \sum_{i=1}^{j} \left\| \nabla \times h^i_0 - \nabla \times h^i_{0-1} \right\|^2
\]
and
\[
\sum_{i=1}^{j} (\mathcal{K}_0 \ast h^i_0, \nabla \times \delta h^i_0) \tau = (\mathcal{K}_0 \ast h^i_0, \nabla \times h^i_0) - (\mathcal{K}_0 \ast P_h H_0, \nabla \times P_h H_0) - \sum_{i=1}^{j} (\mathcal{K}_0 \ast \delta h^i_0, \nabla \times h^i_{0-1}) \tau.
\]

Hence, using (i) and (4), we obtain
\[
\left| \sum_{i=1}^{j} (\mathcal{K}_0 \ast h^i_0, \nabla \times \delta h^i_0) \tau \right| \leq C \varepsilon \left\| \nabla \times h^i_0 \right\|^2 + \varepsilon \sum_{i=1}^{j} \left\| \delta h^i_0 \right\|^2 \tau.
\]

Combining all the estimates and fixing a sufficiently small positive ε conclude the proof.

(iii) We define the following compatibility condition
\[
\delta h^i_0 := P_h f(0) - P_h (\nabla \times H_0) - P_h (\mathcal{K}_0 \ast H_0).
\]
We subtract (10) for $i = i - 1$ from (10), then we set $\varphi^h = \delta h^i_0$ and we sum the result for $i = 1, \ldots, j$ with $1 \leq j \leq n$ to get
\[
\sum_{i=1}^{j} \left(\delta h^i_0 \right) \tau + \sum_{i=1}^{j} \left\| \nabla \times \delta h^i_0 \right\|^2 \tau + \sum_{i=1}^{j} (\mathcal{K}_0 \ast \delta h^i_0, \nabla \times \delta h^i_0) \tau = \sum_{i=1}^{j} (f_i, \delta h^i_0) \tau.
\]

Further, we follow the same lines as in (i) when considering δh^i_0 instead of h^i_0.

Now, the following piecewise linear in time vector fields h^i_h and the piecewise constant in time fields h^i_h are defined
\[
\begin{align*}
h^i_h(0) &= \overline{P}_h H_0, & h^i_h(t) &= h^i_h(t-1) + (t-t_{i-1}) \delta h^i_0 & \text{for } t \in (t_{i-1}, t_i], \quad i = 1, \ldots, n \\
\overline{h}^i_h(0) &= \overline{P}_h H_0, & \overline{h}^i_h(t) &= h^i_h(t) & \text{for } t \in (t_{i-1}, t_i], \quad i = 1, \ldots, n.
\end{align*}
\]

The full discretized system (10) can be rewritten by Rothe’s notation as follows
\[
\begin{cases}
\left(\partial_t h^i_h(t), \varphi^h \right) + \left(\nabla \times \overline{h}^i_h(t), \nabla \times \varphi^h \right) + (\mathcal{K}_0 \ast \overline{h}^i_h(t), \nabla \times \varphi^h) = \left(\overline{J}_h(t), \varphi^h \right), & \forall \varphi^h \in V^h_0; \\
h^i_h(0) &= \overline{P}_h H_0.
\end{cases}
\]

The next theorem summarizes the error estimate for the full discretization.

Theorem 3. Suppose that $f \in \text{Lip}([0, T], L^2(\Omega))$.

\[
\]
Proof. (i) Let the weak solution H of (2) at time t and the initial condition H_0 satisfy $H(t), H_0 \in H_0(\text{curl}, \Omega)$. Then for any $\tau < \tau_0$, there exists a constant C such that

$$
\|H(\tau) - h^\omega(\tau)\|^2 + \int_0^\tau \|\nabla \times (H - \bar{T}_0)\|^2 \leq C \left(\tau + \|H_0 - \bar{P}_0 H_0\|^2 + \int_0^\tau \|H - \bar{P}_0 H\|^2 \right),
$$

is valid for any $\eta \in (0, T)$;

(ii) Let the weak solution H of (2) at time t and the initial condition H_0 satisfy $H(t), \partial_t H(t), H_0 \in H_0(\text{curl}, \Omega)$. Then for any $\tau < \tau_0$, there exists a constant C such that

$$
\|H(\tau) - h^\omega(\tau)\|^2 + \int_0^\tau \|\nabla \times (H - \bar{T}^0)\|^2 \leq C \left(\tau + \|H_0 - \bar{P}_0 H_0\|^2 + \|H(\eta) - \bar{P}_0 H(\eta)\|^2 \right) + \int_0^\tau \|\partial_t (H - \bar{P}_0 H)\|^2 + \int_0^\tau \|\nabla \times (H - \bar{P}_0 H)\|^2,
$$

is valid for any $\eta \in (0, T)$;

(iii) If the initial condition satisfies $\nabla \times H_0$ and $\mathcal{K}_0 \ast H_0 \in H_0(\text{curl}, \Omega)$, then the estimates in (i) and (ii) are satisfied with τ^2 instead of τ.

Please note that the positive constant C in this estimates is of the form $Ce^{\tau T}$.

Proof. (i) We subtract (11) from (5) for $\varphi = \varphi^\omega$. We set $\varphi^\omega = \bar{P}_0 H(t) - h^\omega(t)$ and integrate in time over $(0, \eta)$ for $\eta \in [0, T]$ to get

$$
\int_0^\eta (\partial_t H - \partial_t h^\omega, \bar{P}_0 H - h^\omega) + \int_0^\eta (\nabla \times (H - \bar{T}^0), \nabla \times (\bar{P}_0 H - h^\omega)) + \int_0^\eta (\mathcal{K}_0 \ast (H - \bar{T}^0), \nabla \times (\bar{P}_0 H - h^\omega)) = \int_0^\eta (f - \bar{f}, \bar{P}_0 H - h^\omega).
$$

We rearrange the terms by adding $\pm H$ and $\pm \bar{T}_0$ to obtain

$$
\frac{1}{2} \left(\|H(\eta) - h^\omega(\eta)\|^2 - \|H_0 - \bar{P}_0 H_0\|^2 + \int_0^\eta \nabla \times (H - \bar{T}_0) \right) = \int_0^\eta (\partial_t H - \partial_t h^\omega, H - \bar{T}_0) + \int_0^\eta (\nabla \times (H - \bar{T}_0), \nabla \times (\bar{P}_0 H - h^\omega)) + \int_0^\eta (\mathcal{K}_0 \ast (H - \bar{T}_0), \nabla \times (\bar{P}_0 H - h^\omega)) + \int_0^\eta (\mathcal{K}_0 \ast (H - \bar{T}_0), \nabla \times (h^\omega - \bar{T}_0)) + \int_0^\eta (f - \bar{f}, \bar{P}_0 H - H) + \int_0^\eta (f - \bar{f}, H - h^\omega) =: \sum_{i=1}^8 S_i.
$$

The following inequality is useful during the term by term estimation of the previous equality

$$
\|h^\omega(t) - \bar{T}_0(t)\| \leq \tau \|\partial_t h^\omega(t)\| \quad \text{for } t \in [0, T].
$$

Using H"older's inequality, Theorem 1 and Lemma 1(ii) give that

$$
S_1 \leq \sqrt{\int_0^\eta \|\partial_t H - \partial_t h^\omega\|^2} \sqrt{\int_0^\eta \|H - \bar{P}_0 H\|^2} \leq \sqrt{\int_0^\eta \|H - \bar{P}_0 H\|^2}.
$$
Again using Young’s inequality gives
\[S_2 \leq \varepsilon \int_0^\tau \left\| \nabla \times (H - \overline{P}_n H) \right\|^2 + C_\varepsilon \int_0^\tau \left\| \nabla \times (H - \overline{P}_n H) \right\|^2. \]

Using Lemma 1(ii) gives
\[S_3 \leq \varepsilon \int_0^\tau \left\| \nabla \times (H - \overline{h}_n^a) \right\|^2 + C_\varepsilon \int_0^\tau \left\| \nabla \times (h_n^a - \overline{h}_n^a) \right\|^2 \leq \varepsilon \int_0^\tau \left\| \nabla \times (H - \overline{h}_n^a) \right\|^2 + C_\varepsilon \tau. \]

For the term \(S_4 \), we get
\[S_4 \overset{(4)}{\leq} \int_0^\tau \left\| H - \overline{h}_n^a \right\|^2 + \int_0^\tau \left\| \nabla \times (H - \overline{P}_n H) \right\|^2. \]

Adding \(\pm h_n^a \) in the first term of the RHS of the inequality and employing Lemma 1(ii) gives
\[S_4 \overset{(4)}{\leq} \tau^2 + \int_0^\tau \left\| H - h_n^a \right\|^2 + \int_0^\tau \left\| \nabla \times (H - \overline{P}_n H) \right\|^2. \]

In the same way as for the term \(S_4 \), we get thanks to Lemma 1(ii) that
\[S_5 \leq C_\varepsilon \int_0^\tau \left\| H - \overline{h}_n^a \right\|^2 + \varepsilon \int_0^\tau \left\| \nabla \times (H - \overline{h}_n^a) \right\|^2 \leq C_\varepsilon \tau^2 + C_\varepsilon \int_0^\tau \left\| H - h_n^a \right\|^2 + \varepsilon \int_0^\tau \left\| \nabla \times (H - \overline{h}_n^a) \right\|^2. \]

and
\[S_6 \overset{(4)}{\leq} \int_0^\tau \left\| H - \overline{h}_n^a \right\|^2 + \int_0^\tau \left\| \nabla \times (h_n^a - \overline{h}_n^a) \right\|^2 \leq \tau^2 + \int_0^\tau \left\| H - h_n^a \right\|^2 + \tau \leq \tau + \int_0^\tau \left\| H - h_n^a \right\|^2. \]

The terms \(S_7 \) and \(S_8 \) can be estimated due to the Lipschitz continuity of \(f \) by
\[S_7 \overset{(4)}{\leq} \int_0^\tau \left\| f - \overline{f}_n \right\|^2 + \int_0^\tau \left\| \overline{P}_n H - H \right\|^2 \leq \tau^2 + \int_0^\tau \left\| H - \overline{P}_n H \right\|^2 \]

and
\[S_8 \overset{(4)}{\leq} \int_0^\tau \left\| H - h_n^a \right\|^2. \]

Fixing a sufficiently small \(\varepsilon > 0 \), an application of the Grönwall argument concludes the proof.

(ii) The only difference with part (i) of the proof is the handling of the term \(S_1 \).

Integration by parts gives
\[S_1 = \left(H(t) - h_n^a(t), H(t) - \overline{P}_n H(t) \right)_{0}^{\tau} - \int_0^\tau \left(H(t) - h_n^a(t), \partial_t \left(H(t) - \overline{P}_n H(t) \right) \right) \]
\[\leq \varepsilon \left\| H(t) - h_n^a(t) \right\|^2 + C_\varepsilon \left\| H(t) - \overline{P}_n H(t) \right\|^2 + \left\| H_0 - \overline{P}_n H_0 \right\|^2 + C \int_0^\tau \left\| H - h_n^a \right\|^2 + C \int_0^\tau \left\| \partial_t \left(H - \overline{P}_n H \right) \right\|^2. \]

The rest of the proof follows closely the lines of (i).

(iii) The term \(\tau^2 \) can be obtained by an application of Lemma 1(iii) instead of Lemma 1(ii) on the terms \(S_3 \) and \(S_6 \).

4.1. Example: Nédélec’s first family of curl-conforming finite elements of first order

Due to there practical importance, in the first example the lowest order Nédélec edge elements are considered [8].

The finite element space \(V_0^1 \) is then given by
\[V_0^1 = \{ v^1 \in \text{curl}_t \Omega : v^1|_K(x) = a_K + b_K \times x, \forall K \in T^h \}, \]

where \(a_K \) and \(b_K \) are constants in \(\mathbb{R}^3 \). The components of \(a_K \) and \(b_K \) are determined by the degrees of freedom \(\int v^1 \cdot \hat{r} \) on the six edges of a tetrahedron \(K \) with \(\hat{r} \) a unit vector along the edge \(e \) of \(K \). Let us denote by \(r_0 \) the interpolation
operator valued in V_0^h, defined element by element using $r_h u|_K = r_K u$ for all $K \in \mathcal{T}^h$, with r_K the element-wise interpolant given by
\[\int_e (u - r_K u) \cdot \hat{e} = 0, \quad \text{for all edges } e \text{ of } K. \]

Unfortunately, the integrals appearing in this definition are not well defined for functions from $H(\text{curl}, \Omega)$. The interpolation operator r_h is defined in $H'(\text{curl}, \Omega)$ for any $s > \frac{1}{2}$ [9, Lemma 5.1]. Moreover, there exists a constant $C > 0$, independent of h such that [9, Proposition 5.6]
\[\|H - r_h H\| + \|\nabla \times (H - r_h H)\| \leq C h^s \left(\|H\|_{H^s(\Omega)} + \|\nabla \times H\|_{L^2(\Omega)} \right), \]
for each $H \in H'(\text{curl}, \Omega)$ with $s \in \left(\frac{1}{2}, 1 \right]$. Cea’s lemma [10] implies that the projection operator \tilde{P}_h defined in Section 4 for any $s \in \left(\frac{1}{2}, 1 \right]$ has the property
\[\|u - \tilde{P}_h u\|_{H^s(\text{curl}, \Omega)} \leq \|u - r_h u\|_{H^s(\text{curl}, \Omega)} \lesssim h^s \|u\|_{H^s(\text{curl}, \Omega)}, \quad \forall u \in H_0(\text{curl}, \Omega) \cap H'(\text{curl}, \Omega). \]

Now, the following corollary of Theorem 3 can be stated without proof.

Corollary 1. Take $s \in \left(\frac{1}{2}, 1 \right]$. Let $f \in \text{Lip}([0, T], L^2(\Omega))$.

(i) Suppose that $H_0 \in H_0(\text{curl}, \Omega) \cap H'(\text{curl}, \Omega)$ and that the weak solution H of (2) satisfies
\[H \in L^2((0, T), H_0(\text{curl}, \Omega) \cap H'(\text{curl}, \Omega)). \]
Then there exists a constant C independent of both the time step τ and the mesh size h such that
\[\|H(\eta) - h^\eta_0(\eta)\|^2 + \int_0^\tau \|\nabla \times (H - \tilde{H}_h^\eta)\|^2 \leq C (\tau + h^s) \]
is valid for any $\eta \in (0, T)$.

(ii) Suppose that $H_0 \in H_0(\text{curl}, \Omega) \cap H'(\text{curl}, \Omega)$ and that the weak solution H of (2) satisfies
\[H \in H^1((0, T), H_0(\text{curl}, \Omega) \cap H'(\text{curl}, \Omega)). \]
Then there exists a constant C independent of both the time step τ and the mesh size h such that
\[\|H(\eta) - h^\eta_0(\eta)\|^2 + \int_0^\tau \|\nabla \times (H - \tilde{H}_h^\eta)\|^2 \leq C (\tau + h^{2s}) \]
is valid for any $\eta \in (0, T)$.

(iii) If the initial condition satisfies $\nabla \times H_0 \in H_0(\text{curl}, \Omega) \cap H'(\text{curl}, \Omega)$ and $K_0 \ast H_0 \in H_0(\text{curl}, \Omega) \cap H'(\text{curl}, \Omega)$,
then the estimates in (i) and (ii) are satisfied with τ^2 instead of τ.

Please note that the positive constant C in this estimates is of the form $C e^{CT}$.

Thus, if $\tau \to 0$ and $h \to 0$, the convergence of the Rothe sequence h^η_0 to the unique weak solution H of problem (2) in $C([0, T], L^2(\Omega))$ is proved.
5. Higher regularity

The error estimates in the previous section have been obtained using a priori estimates, which were based on Grönwall’s argument. The convergence rates are of order $O(\tau, h) = e^{C\tau}(\tau + h)$ in the space $C\left([0, T], L^2(\Omega)\right)$ under appropriate conditions. To get rid of the exponential character of this constant, the use of Grönwall’s lemma should be avoided. This can be done by incorporation of the curl operator $\nabla \times J$, into a convolution kernel K, see [1, Lemma 3], more specific

$$
\nabla \times J_s(x, t) = - \int_{\Omega} K(x, x') H(x', t) \, dx' =: - (K \ast H)(x, t)
$$

when H is divergence free and $H \cdot v = 0$ on $\partial\Omega$ (see also [3, §11.7] and [4]), where the kernel K is defined by

$$
K : \Omega \times \Omega \to \mathbb{R} : (x, x') \mapsto \kappa(\|x - x'\|), \text{ with } \kappa : (0, \infty) \to \mathbb{R} : s \mapsto \begin{cases} \frac{C}{s^2} \left(1 - \frac{s}{r_0}\right) \exp\left(-\frac{s}{r_0}\right) & s < r_0; \\
0 & s \geq r_0.
\end{cases}
$$

Using the vector identity $-\Delta H = \nabla \times (\nabla \times H) - \nabla(\nabla \cdot H)$, the solution of problem (2) satisfies also

$$
\begin{cases}
\partial_t H - \Delta H + K \ast H = f & \text{in } Q_T; \\
H = 0 & \text{on } \partial\Omega \times (0, T); \\
H(x, 0) = H_0, & \nabla \cdot H_0 = 0 & \text{in } \Omega.
\end{cases}
$$

Therefore, under the additional assumption that $H \cdot v = 0$ on $\partial\Omega$, the solution to problem (2) obeys

$$(\partial_t H, \varphi) + (\nabla H, \nabla \varphi) + (K \ast H, \varphi) = (f, \varphi), \quad \forall \varphi \in H^1_0(\Omega). \quad (12)$$

One major advantage of this formulation is the positive definiteness of the kernel K [1, Lemma 5]. It’s this property, that makes it possible to avoid the use of Grönwall’s lemma. Note also the following important estimates:

$$
K(x, \cdot) \in L_p(\Omega) \text{ if } 1 \leq p < \frac{3}{2}, \forall x \in \Omega.
$$

and

$$
|\nabla \times J_s(x, t)| = |(K \ast H)(x, t)| = \left|\int_{\Omega} K(x, x') H(x', t) \, dx'\right| \leq C(q) \|H(t)\|_q, \quad \forall q > 3, \quad \forall x \in \Omega. \quad (13)
$$

Thanks to the Sobolev embeddings theorem in \mathbb{R}^3 holds that $H^1_0(\Omega) \hookrightarrow L^q(\Omega)$ [5, Thm. 3.6]. Employing this, together with the positive definiteness of K and Friedrichs inequality, gives for all $h_1 \in H^1_0(\Omega)$ and $h_2 \in L^2(\Omega)$ that

$$
(K \ast h_1, h_2) \leq C \|h_1\|_{H^1(\Omega)} \|h_2\|_{L^2(\Omega)} \leq C \|\nabla h_1\|^2 + \|h_2\|^2 \quad \text{and} \quad (K \ast h_1, h_1) \geq 0. \quad (14)
$$

Again, a numerical scheme based on Backward Euler can be developed wherein the convolution is taken from the actual time step. The following results are obtained in [1]. The constants C are smaller in comparison with the constants appearing in Theorem 1 because Grönwall’s argument is avoided.

Theorem 4 (Existence and uniqueness).

- Let $H_0 \in L^2(\Omega)$ and $f \in L^2\left([0, T], L^2(\Omega)\right)$. Assume that $\nabla \cdot H_0 = 0 = \nabla \cdot f(t)$ for any time $t \in [0, T]$.

 If $H \cdot v = 0$ on $\partial\Omega$, then the solution to problem (2) belongs to $C\left([0, T], L^2(\Omega)\right) \cap L^2\left([0, T], H^1_0(\Omega)\right)$ with $\partial_t H \in L^2\left([0, T], H^{-1}(\Omega)\right)$.

- Moreover, assume that $f \in \text{Lip}\left([0, T], L^2(\Omega)\right)$.

 (i) If $H_0 \in H^1_0(\Omega)$ then

 $$
 \max_{t \in [0, T]} \|h_n(t) - H(t)\|^2 + \int_0^T \|\nabla [h_n - H]\|^2 \leq C \tau.
 $$

 (ii) If $H_0 \in H^1_0(\Omega) \cap H^2(\Omega)$ then

 $$
 \max_{t \in [0, T]} \|h_n(t) - H(t)\|^2 + \int_0^T \|\nabla [h_n - H]\|^2 \leq C \tau^2.
 $$
5.1. A fully discrete finite element scheme

Now, V_0^h is a finite dimensional subspace of $H^1_0(\Omega)$. The linear bounded operator $\overline{P}_h : H^1_0(\Omega) \to V_0^h$ is defined such that if $u \in H^1_0(\Omega)$, then $\overline{P}_h u \in V_0^h$ satisfies $(u, v_h) + (\nabla u, \nabla v_h) = \overline{P}_h u, v_h$ for all $v_h \in V_0^h$. The following fully discrete linear recurrent scheme is proposed: find $h^h_0 \in V_0^h$ such that

$$\left\{ \begin{array}{l}
(\delta h^h_i, \varphi^h) + (\nabla h^h_i, \nabla \varphi^h) + (\mathcal{K} \ast h^h_i, \varphi^h) = (P_i f, \varphi^h), \\
h^h_0 = \overline{P}_h H_0,
\end{array} \right. \quad (15)$$

is satisfied for all $\varphi^h \in V_0^h$. Due to the positive definiteness of \mathcal{K}, an application of the Lax-Milgram lemma gives the existence of a unique solution in V_0^h of (15) for any $i = 1, \ldots, n$ and any $\tau > 0$ if $H_0 \in H^1_0(\Omega)$.

The same stability results are obtained as in Lemma 1, where the curl-spaces are replaced by analogous $H^2(\Omega)$-spaces. Now, the use of Grönwall’s argument is avoided.

Lemma 2 (Enhanced stability). Assume that $f \in L^2 \left((0, T), L^2(\Omega) \right)$, $\nabla \cdot H_0 = 0 = \nabla \cdot f(t)$ for any time $t \in [0, T]$ and $H \cdot \nu = 0$ on $\partial \Omega$.

(i) Let $H_0 \in H^1_0(\Omega)$. Then, there exists a positive constant C such that for all $\tau > 0$

$$\max_{1 \leq i \leq n} \| h^h_i \|^2 + \sum_{i=1}^n \| h^h_i - h^h_{i-1} \|^2 + \sum_{i=1}^n \| \nabla h^h_i \|^2 \tau \leq C.$$

(ii) If $H_0 \in H^1_0(\Omega)$, then for all $\tau > 0$

$$\max_{1 \leq i \leq n} \| \nabla h^h_i \|^2 + \sum_{i=1}^n \| \nabla h^h_i - \nabla h^h_{i-1} \|^2 + \sum_{i=1}^n \| \delta h^h_i \|^2 \tau \leq C.$$

(iii) If $f(0) \in L^2(\Omega)$, $\partial, f \in L^2 \left((0, T), L^2(\Omega) \right)$ and $H_0 \in H^1_0(\Omega) \cap H^2(\Omega)$ then for all $\tau > 0$

$$\max_{1 \leq i \leq n} \| \delta h^h_i \|^2 + \sum_{i=1}^n \| \delta h^h_i - \delta h^h_{i-1} \|^2 + \sum_{i=1}^n \| \nabla \delta h^h_i \|^2 \tau \leq C.$$

Proof. (i) Set $\varphi^h = h^h_i$ in (15). Multiply the result by τ and sum up for $i = 1, \ldots, j$ to get

$$\sum_{j=1}^j (\delta h^h_i, h^h_i) \tau + \sum_{j=1}^j (\nabla h^h_i, \nabla h^h_i) \tau + \sum_{j=1}^j (\mathcal{K} \ast h^h_i, h^h_i) \tau = \sum_{j=1}^j (f, h^h_i) \tau.$$

The use of Grönwall’s argument can be avoided by employing the positive definiteness of \mathcal{K} and Friedrichs inequality. Indeed, it holds that $\sum_{j=1}^j (\mathcal{K} \ast h^h_i, h^h_i) \tau \geq 0$ and

$$\left| \sum_{j=1}^j (f, h^h_i) \tau \right| \leq C_\varepsilon \sum_{j=1}^j \| f \|^2 \tau + \varepsilon \sum_{j=1}^j \| h^h_i \|^2 \tau \leq C_\varepsilon \sum_{j=1}^j \| f \|^2 \tau + \varepsilon \sum_{j=1}^j \| \nabla h^h_i \|^2 \tau.$$

Fixing ε sufficiently small gives the proof.

(ii) We put $\varphi^h = \delta h^h_i$ in (15). Again, we multiply by τ and sum up for $i = 1, \ldots, j$

$$\sum_{j=1}^j (\delta h^h_i, \delta h^h_i) \tau + \sum_{j=1}^j (\nabla h^h_i, \nabla h^h_i - \nabla h^h_{i-1}) + \sum_{j=1}^j (\mathcal{K} \ast h^h_i, \delta h^h_i) \tau = \sum_{j=1}^j (f, \delta h^h_i) \tau.$$

Using (i), we obtain

$$\sum_{j=1}^j (\mathcal{K} \ast h^h_i, \delta h^h_i) \tau \leq C_\varepsilon \sum_{j=1}^j \| \nabla h^h_i \|^2 \tau + \varepsilon \sum_{j=1}^j \| \delta h^h_i \|^2 \tau \leq C_\varepsilon + \varepsilon \sum_{j=1}^j \| \delta h^h_i \|^2 \tau.$$
Proof. The proof is the same as in Lemma 1(iii). Now, the following compatibility condition is needed
\[\delta h^h_0 := P_h f(0) - P_h (\Delta H_0) - P_h (K \ast H_0). \]

Using the Rothe’s functions, the variational formulation (15) can be rewritten as
\[\left(\partial_t h^h_n(t), \varphi^h \right) + \left(\nabla \bar{\nabla}^2 h^h_n(t), \nabla \varphi^h \right) + \left(K \ast \bar{\nabla}^2 h^h_n(t), \varphi^h \right) = \left(\bar{f}_n(t), \varphi^h \right), \quad \varphi^h \in V^h_0. \]

The following error estimates have smaller constant \(C \) in comparison with the constants appearing in Theorem 3 because Grönwall’s argument is avoided thanks to the positive definiteness of \(K \).

Theorem 5. Suppose that \(f \in \text{Lip}([0, T], L^2(\Omega)) \), \(\nabla \cdot H_0 = 0 = \nabla \cdot f(t) \) for any time \(t \in [0, T] \) and \(H \cdot \nu = 0 \) on \(\partial \Omega \).

(i) Let the weak solution \(H \) of (2) at time \(t \) and the initial condition \(H_0 \) satisfy \(H(t), H_0 \in H^1_0(\Omega) \). Then for any \(\tau < \tau_0 \), there exists a constant \(C \) independent of both the time step \(\tau \) and the mesh size \(h \), such that
\[
\begin{align*}
\| H(\eta) - h^h_0(\eta) \|^2 + 2 \int_0^\eta \| \nabla (H - \bar{H}_h) \|^2 \, dt & \leq C \left(\tau + \| H_0 - \bar{P}_h H_0 \|^2 + \int_0^\eta \| H - \bar{P}_h H \|^2 \, dt \right), \\
& \quad + \int_0^\eta \| \bar{P}_h H \|^2 + \int_0^\eta \| \partial_t (H - \bar{P}_h H) \|^2 + \int_0^\eta \| \nabla (H - \bar{P}_h H) \|^2,
\end{align*}
\]
is valid for any \(\eta \in (0, T) \);

(ii) Let the weak solution \(H \) of (2) at time \(t \) and the initial condition \(H_0 \) satisfy \(H(t), \partial H(t), H_0 \in H^1_0(\Omega) \). Then for any \(\tau < \tau_0 \), there exists a constant \(C \) independent of both the time step \(\tau \) and the mesh size \(h \), such that
\[
\begin{align*}
\| H(\eta) - h^h_0(\eta) \|^2 + 2 \int_0^\eta \| \nabla (H - \bar{H}_h) \|^2 \, dt & \leq C \left(\tau + \| H_0 - \bar{P}_h H_0 \|^2 + \int_0^\eta \| H - \bar{P}_h H \|^2 \, dt \right), \\
& \quad + \int_0^\eta \| \bar{P}_h H \|^2 + \int_0^\eta \| \partial_t (H - \bar{P}_h H) \|^2 + \int_0^\eta \| \nabla (H - \bar{P}_h H) \|^2,
\end{align*}
\]
is valid for any \(\eta \in (0, T) \);

(iii) If the initial condition satisfies \(H_0 \in H^2_0(\Omega) \cap H^2(\Omega) \), then the estimates in (i) and (ii) are satisfied with \(\tau^2 \) instead of \(\tau \).

Proof. (i) We subtract (16) from (12) for \(\varphi = \varphi^h \). We set \(\varphi^h = \bar{P}_h H(t) - h^h_0(t) \) and integrate in time over \((0, \eta)\) for \(\eta \in [0, T] \) and rearrange the terms to obtain
\[
\begin{align*}
\frac{1}{2} \| H(\eta) - h^h_0(\eta) \|^2 - \frac{1}{2} \| H_0 - \bar{P}_h H_0 \|^2 & = \int_0^\eta \left(\partial_t H - \partial_t h^h_0, H - \bar{P}_h H \right) + \int_0^\eta \left(\nabla (H - \bar{H}_h), \nabla (H - \bar{P}_h H) \right) + \int_0^\eta \left(\nabla (H - \bar{H}_h), \nabla (H - \bar{P}_h H) \right) \\
& \quad + \int_0^\eta \left(K \ast (H - \bar{H}_h), H - \bar{P}_h H \right) + \int_0^\eta \left(K \ast (H - \bar{H}_h), H - \bar{P}_h H \right) + \int_0^\eta \left(K \ast (H - \bar{H}_h), h^h_0 - \bar{H}_h \right) \\
& \quad + \int_0^\eta \left(f - \bar{f}_n, \bar{P}_h H - H \right) + \int_0^\eta \left(f - \bar{f}_n, H - h^h_0 \right),
\end{align*}
\]
The terms \(S_1, S_2, S_3, S_6 \) and \(S_7 \) can be handled in the same way as in Theorem 3. For the others terms, we get that
\[
S_4 \leq C \int_0^\eta \| \nabla (H - \bar{H}_h) \|^2 + C \int_0^\eta \| H - \bar{P}_h H \|^2.
\]
and
\[S_5 \leq \varepsilon \int_0^T \left(\| \nabla (H - \bar{H}_n) \|^2 + C_\varepsilon \int_0^T \| h_n - H_n \|^2 \right) + C_\varepsilon + C_\varepsilon. \]

Fixing a sufficiently small \(\varepsilon > 0 \) concludes the proof.

(ii) and (iii) The proof follows the same lines as in Theorem 3(ii) and (iii).

5.2. Example: Lagrangian finite elements

In this example, the first-order Lagrange finite elements for the space discretization are considered. The finite element space \(V_h \) is now given by \(V_h = \{ v^h \in H^1(\Omega) : v^h|_K \in P_1(K), \forall K \in T^h \} \), with \(P_1(K) \) the space of componentwise first-order polynomials. The coefficients of this polynomials are determined by the degrees of freedom \(v^h(a_i) \) with \(a_i, i = 1, \ldots, 4 \), the vertices of \(K \). Note that \(V_h = [v^h \in V_0 : v^h = 0 \text{ on } \partial\Omega] \). The corresponding interpolation operator is denoted by \(\pi_h \). The Sobolev Embedding theorem in \(\mathbb{R}^3 \) [11, Theorem 7.57] implies that \(H^1(\Omega) \subset C(\bar{\Omega}) \) if \(s \geq \frac{3}{2} \). Thus \(\pi_h : H^1(\Omega) \rightarrow V_0, s > \frac{3}{2} \), to ensure that the vertex values are well defined. Then, [5, Theorem 5.48] gives that there exists a constant \(C > 0 \) independent of \(h \) such that
\[\| u - \pi_h u \|_{H^1(\Omega)} \leq C h^{s-1} \| u \|_{H^s(\Omega)}, \]
for each \(u \in H^1(\Omega) \) with \(\frac{3}{2} < s \leq 2 \). The paper finishes with the following corollary.

Corollary 2. Take \(s \in \left(\frac{3}{2}, 2 \right] \). Let \(f \in \text{Lip} \left([0, T], L^2(\Omega) \right) \), \(\nabla \cdot \mathbf{H}_0 = 0 = \nabla \cdot f(t) \) for any time \(t \in [0, T] \) and \(H \cdot \nu = 0 \) on \(\partial\Omega \).

(i) Suppose that \(\mathbf{H}_0 \in H^1_0(\Omega) \cap H^1(\Omega) \) and that the weak solution \(H \) of (2) satisfies
\[H \in L^2 \left([0, T], H^1_0(\Omega) \cap H^1(\Omega) \right). \]

Then the error estimate
\[\| H(\eta) - h^h(\eta) \|^2 + \int_0^T \left(\| H - \bar{H}_n \|^2 + \int_0^\tau \| \mathbf{H} - \mathbf{h}_n \|^2 \right) \lesssim \tau + h^{s-1}, \]
is valid for any \(\eta \in (0, T) \).

(ii) Suppose that \(\mathbf{H}_0 \in H^1_0(\Omega) \cap H^1(\Omega) \) and that the weak solution \(H \) of (2) satisfies
\[H \in H^1 \left([0, T], H^1_0(\Omega) \cap H^1(\Omega) \right). \]

Then the error estimate
\[\| H(\eta) - h^h(\eta) \|^2 + \int_0^T \left(\| H - \bar{H}_n \|^2 + \int_0^\tau \| \mathbf{H} - \mathbf{h}_n \|^2 \right) \lesssim \tau + h^{2(s-1)}, \]
is valid for any \(\eta \in (0, T) \).

(iii) If the initial condition satisfies \(\nabla \times \mathbf{H}_0 \in H^1_0(\Omega) \cap H^1(\Omega) \) and \(\mathcal{K}_0 \ast \mathbf{H}_0 \in H^1_0(\Omega) \cap H^1(\Omega) \), then the estimates in (i) and (ii) are satisfied with \(\tau^2 \) instead of \(\tau \).

6. Conclusion

In this contribution, the convergence of a fully discrete finite element scheme (10) to the solution of problem (2) is shown. Moreover, it is demonstrated how to improve the error estimates under higher regularity.

Acknowledgement. The authors are supported by the IAP P7/02-project of the Belgian Science Policy.
References

