Silicon-induced resistance in rice (Oryza sativa L.) against the brown spot pathogen Cochliobolus miyabeanus
Silicon-induced resistance in rice
(Oryza sativa L.) against the brown spot pathogen Cochliobolus miyabeanus

Jonas VAN BOCKHAVEN

Thesis submitted in fulfillment of the requirements for the degree of Doctor (PhD) in Applied Biological Sciences: Agricultural Sciences
"We are all in the gutter, but some of us are looking at the stars"

Oscar Wilde
Promotor: Prof. Dr. ir. Monica Höfte
Co-promotor: Dr. ir. David De Vleesschauwer
Laboratory of Phytopathology
Department of Crop Protection
Ghent University

Dean: Prof. Dr. Ir. Guido Van Huylenbroeck

Rector: Prof. Dr. Anne De Paepe
Dutch translation of the title: Silicium-geïnduceerde resistentie tegen *Cochliobolus miyabeanus* in rijst (*Oryza sativa* L.)

Cover illustration:
The cover picture is made by John Vink (www.johnvink.com/JohnVinkSite), a Belgian photographer who is a member of the renowned photographic cooperative Magnum Photos. He took the cover picture in Myanmar showing rice fields and an elderly Palaung woman carrying rice stems to her house, some 3 kilometers away. I cropped the picture to make it fit the cover, the original picture is displayed below. There are several reasons why I chose this picture. First of all, I think this image is beautiful and one can not overestimate the importance of aesthetics. Second and more importantly, this picture represents the main motivations for starting my PhD project. Even though my research is quite fundamental, the potential social and environmental implications of it have always been more important to me than impact factors and amount of citations.

![Cover Picture](https://www.johnvink.com/JohnVinkSite/)

Cite as: Van Bockhaven J (2014) Silicon-induced resistance in rice (*Oryza sativa* L.) against the brown spot pathogen *Cochliobolus miyabeanus*. PhD thesis, Ghent University, Belgium

ISBN number: 978-90-5989-721-2

The author and the promotor give the authorization to consult and to copy parts of this work for personal use only. Every other use is subject to the copyright laws. Permission to reproduce any material contained in this work should be obtained from the author.
Members of the jury

Prof. dr. ir. Monica Hœfte (Promotor)
Department of Crop Protection
Ghent University

Dr. ir. David De Vleesschauwer (Co-promoter)
Department of Crop Protection
Ghent University

Prof. dr. Els Van Damme (Chairman)
Department of Molecular Biotechnology
Ghent University

Dr. ir. Kris Audenaert (Secretary)
Department of Applied Biosciences
Ghent University

Dr. ir. Simona M. Cristescu
Department of Molecular and Laser Physics
Radboud University Nijmegen, NL

Prof. dr. Sofie Goormachtig
Department of Plant Systems Biology
VIB, Gent, Belgium

Prof. dr. ir. Anne Legrève
Applied Microbiology (ELIM)
Université catholique de Louvain

Prof. Luis Mur
Institute of Biological, Environmental and Rural Sciences
Aberystwyth University, UK
A PhD is many things, both good and bad, but most of all it is teamwork. I would not have survived the five years of research alone. Therefore, I would like to thank the people who played a significant role during my research.

First of all, my jury members. Up to now, I never realized how much time and effort a jury member invests in a PhD. Your useful comments greatly helped to improve this manuscript. Especially the chairman of the jury, Els Van Damme deserves a special mention. I know I gave you a hard time with all sorts of last minute problems and administrative changes. Thank you very much for your time and effort.

My promoter, Monica, deserves a special thanks, first of all for giving me the opportunity to start my PhD research at this lab. I can imagine I was not the easiest PhD student to supervise, but I really enjoyed brainstorming with you and I have learned a great deal from you during these five years of research.

David, the period during which I was applying for my scholarship was very difficult for me. I am very grateful you were there to help me, because otherwise I would never have made it. During My PhD as well, you were always there for me. Even though we have different styles of working, I really enjoyed our collaboration. Thanks for everything.

I would also like to thank the people we collaborated with and who greatly contributed to my PhD research.

Simona, I have great memories of my stay in Nijmegen. Not only did we generate a lot of essential data on short time with the help of Denys and Holger, I also enjoyed the brainstorm sessions via Skype to discuss the results and new experiments. The role of microbial ET in plant-pathogen interactions appears to be an interesting topic and I hope that our collaboration will guide novel research.

Kathy Steppe and Ingvar Bauweraerts, I really enjoyed collaborating on the leaf gas exchange measurements. I am sure that there are more of interesting links between plant metabolism and disease resistance. Hopefully this will not be the last collaboration between our labs.

Shoshi Kikuchi and Takayuki Asano from NIAS in Japan, thanks for having me at your lab and for all the help with the microarray experiment. Big thanks to Tim De Meyer for the help with the processing and statistical analysis of the microarray data. Bernd Mueller-Roeber and Salma Balazadeh from the Max Planck institute Molecu-
lar Plant Physiology for the performance for the high-throughput transcription factor expression analysis.

Lukáš Spíchal, Ondřej Novák and Miroslav Strnad from Palacký university, Czech Republic for the help on the cytokinin story.

Of course I should not forget my lovely **(ex-)colleagues** who made my PhD research so much more than conducting experiments and working in the lab. I appreciated your critical thinking, useful comments and of course the many nice moments we spent together.

A special thanks for my office co-workers and the members of the rice team.

Ilse, I don’t know what I would have done without you. Not only did you often save the day with a smart-ass solution, what I appreciated the most were the lunch and coffee breaks. I often passed by to ask random stuff just so I could just have a 5 min chat or persuade you to have a short coffee break.

Last but not least, I would like to thank my two thesis students **Dieneke** and **Lien**. I am really happy with your results and I hope you’ll be glad to see that your work was not in vain and really contributed to my PhD.

Ik zou hier al mijn **vrienden** willen opsommen, maar uit vrees iemand te vergeten zal ik het algemeen houden. Ik wil niet te melig worden, maar ik weet niet wat ik zou doen zonder jullie. Bedankt om er te zijn.

Vooral de mensen waarmee ik heb samengewoond verdienen een speciale vermelding: **Antigone, Astrid, Céline, Jasmien, Louise, Reyes, Rob, Sofie en Thomas**. Jullie kregen toch net iets meer geklaag over jullie wanneer het niet iets minder ging, of net een heel lange uitleg over waarom een bepaald experiment toch zo interessant was. Daarvoor alleen al verdienen jullie een medaille, of iets dergelijks.

De grootste fan van mijn onderzoek, **Milene**, de enige persoon die al 5 jaar kan onthouden
dat ik werk rond ‘brown spot disease’.

Lien, samen uit, samen thuis. Je was een zeer gewaardeerde collega en je hulp, vooral met LaTeX, was dikwijls van onschatbare waarde. Na de trappist die we dronken op een terras in Brussel vlak na het indienen van ons IWT projectvoorstel, wist ik dat we vrienden gingen worden. En kijk.

Jasmien, de ideale doctoraatspauze. Wat hebben we gelachen tijdens die lunchpauzes bij Annick, ergens ten velde of gewoon tijdens het passeren in de gang. Ik zie het niet direct stoppen en dat is maar goed ook.

Rob, waarschijnlijk de persoon die mijn doctoraat het meest verwenst heeft. Je hebt het mooi opgelost door op de momenten dat de werkdruk piekte, te vertrekken naar Afrika om daar de wereld te gaan redden. Ondanks je milde aversie jegens mijn project, vooral in het weekend, stond je toch altijd klaar, waarvoor bedankt.

Er zijn ook twee personen die ik er enorm graag bij had willen hebben op mijn verdediging, maar waar het lot anders over heeft beslist.

Katelijne, ik heb je pas onlangs leren kennen, maar het klikte meteen. Ik denk graag aan jou in je gouden rok die zich een weg danst door het leven. Dan denk ik ”Life is gold!” en plotsklaps smelten de problemen als sneeuw voor de zon.

An, mijn doctoraat kon niet slechter starten, ik kan me nog herinneren dat ik op weg was naar Monica om te praten over mijn projectvoorstel wanneer Ellen en Jasmien mij het trieste nieuws kwamen brengen. Ik denk dikwijls aan hoe we ooit, iets lacherig, in groep beslist hadden om van ”Carpe diem” onze leuze te maken. Nu zijn we vijf jaar verder en ik probeer nog altijd elke dag te plukken voor jou.
Contents

List of Tables xi

List of Figures xiii

List of Abbreviations xv

1 Problem statement and research outline 1

2 Introduction 7

2.1 Rice 8

2.1.1 Taxonomy, characteristics and production 8

2.2 Plant immune system 9

2.2.1 Molecular plant immunity 9

2.2.2 Main mechanisms of induced resistance 11

2.2.3 Plant defense signaling: phytohormones 12

2.3 Plant pathogenic virulence factors 13

2.4 Cochliobolus miyabeanus 14

2.4.1 Taxonomy, characteristics and life cycle 14

2.4.2 Molecular aspects of the rice-brown spot pathosystem 16

2.4.3 Disease management 17

2.5 Si: broad-spectrum inducer of resistance against biotic and abiotic stress 18

2.5.1 Background 18

2.5.2 Si uptake in plants 19

2.5.3 The importance of resistance trade-offs in rice production systems 21

2.5.4 Si-induced broad spectrum resistance in rice 25

2.6 Mechanisms of Si action 27

2.6.1 Si-induced priming for enhanced defense 28
Contents

2.6.2 Si-hormone interactions .. 29
2.6.3 Targeted alterations in iron homeostasis: an alternative mechanism for Si-induced disease resistance? 30
2.6.4 Linking Si-driven photorespiration to plant immunity ... 31
2.6.5 Interaction of Si with plant molecules .. 32
2.6.6 Interaction of Si with xenobiotics ... 33
2.7 Conclusion .. 34

3 Transcriptome analysis of Si-induced brown spot resistance in rice ... 37
3.1 Introduction .. 39
3.2 Results .. 41
 3.2.1 Effect of Si on rice growth and yield .. 41
 3.2.2 Si-induced brown spot resistance .. 43
 3.2.3 High-throughput expression profiling of rice transcription factors 44
 3.2.4 Microarray experiment .. 46
3.3 Discussion .. 57
 3.3.1 Effect of Si application on rice plants .. 57
 3.3.2 Influence of *C. miyabeanus* on rice metabolism .. 58
 3.3.3 Influence of Si on rice resistance against *C. miyabeanus* .. 59
 3.3.4 Si-induced broad spectrum disease .. 61
3.4 Conclusion .. 62
3.5 Material and methods ... 62
 3.5.1 Plant material and growth conditions .. 62
 3.5.2 Leaf gas exchange and fluorescence measurements .. 62
 3.5.3 Pathogen inoculation and disease rating .. 63
 3.5.4 RNA extraction and quantitative RT-PCR .. 63
 3.5.5 Expression profiling of rice TFs and *in silico* promoter analysis 64
 3.5.6 Microarray analysis and data processing .. 64
 3.5.7 Validation of microarray results .. 65

4 ET production by *Cochliobolus miyabeanus* ... 67
4.1 Introduction .. 69
4.2 Results .. 71
 4.2.1 *C. miyabeanus* infection promotes ET emission in rice leaves 71
 4.2.2 *C. miyabeanus* produces ET *in vitro* via the 2-oxoglutarate pathway 74
4.2.3 *C. miyabeianus*-produced ET boosts rice ET synthesis and acts as a virulence factor ... 77
4.2.4 Rice ET signaling but not ET biosynthesis is essential for brown spot development .. 79
4.2.5 ET signaling compromises phenylpropanoid-driven defenses against *C. miyabeianus* .. 80
4.2.6 *C. miyabeianus* isolates differ in virulence and ET production ... 82
4.3 Discussion ... 85
4.4 Conclusion ... 89
4.5 Addendum: Microbial 2-oxoglutarate-dependent ET biosynthesis in plant-pathogen interactions ... 91
 4.5.1 Role of 2-oxoglutarate-dependent ET biosynthesis during plant-microbe interactions 95
 4.5.2 Role of microbial ET biosynthesis for beneficial soil microorganisms .. 96
 4.5.3 A broad mode of action for microbial 2-oxoglutarate dependent ET biosynthesis? .. 97
4.6 Materials and methods .. 98
 4.6.1 Plant material and growth conditions .. 98
 4.6.2 Pathogen inoculation and disease rating .. 98
 4.6.3 Microscopic analysis ... 98
 4.6.4 Pharmacological Experiments 99
 4.6.5 Quantification of ET accumulation 99
 4.6.6 Quantification of soluble phenolics and enzymatic assays 100
 4.6.7 RNA extraction and quantitative RT-PCR .. 100
 4.6.8 Identification of EFE homologs in different microorganisms 101
 4.6.9 Accession numbers .. 101
 4.6.10 Acknowledgements .. 101
4.7 Supplemental data .. 102

5 Si-induced brown spot resistance by inhibiting fungal ET ... 107
 5.1 Introduction .. 109
 5.2 Results ... 111
 5.2.1 Exogenously administered ET weakens Si-inducible brown spot resistance 111
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.2 Si-induced resistance to C. miyabeanus is independent of cytokinin signaling</td>
<td>112</td>
</tr>
<tr>
<td>5.2.3 ET but not SA, JA or ABA is a key player in Si-induced brown spot resistance</td>
<td>115</td>
</tr>
<tr>
<td>5.2.4 Si prevents C. miyabeanus from hijacking the rice ET pathway</td>
<td>117</td>
</tr>
<tr>
<td>5.2.5 Blocking fungal ET production mimics Si-inducible brown spot resistance</td>
<td>119</td>
</tr>
<tr>
<td>5.2.6 Si-induced resistance against C. miyabeanus is based on restriction of fungal progression in the mesophyll and involves priming for enhanced deposition of phenolic compounds</td>
<td>120</td>
</tr>
<tr>
<td>5.3 Discussion</td>
<td>121</td>
</tr>
<tr>
<td>5.3.1 Priming of plant hormone pathways is an important facet of Si-triggered immunity</td>
<td>122</td>
</tr>
<tr>
<td>5.3.2 Si antagonizes C. miyabeanus-produced ET</td>
<td>124</td>
</tr>
<tr>
<td>5.4 Conclusions</td>
<td>125</td>
</tr>
<tr>
<td>5.5 Material and methods</td>
<td>125</td>
</tr>
<tr>
<td>5.5.1 Plant material and growth conditions</td>
<td>125</td>
</tr>
<tr>
<td>5.5.2 Pathogen inoculation and disease rating</td>
<td>126</td>
</tr>
<tr>
<td>5.5.3 Pharmacological Experiments</td>
<td>126</td>
</tr>
<tr>
<td>5.5.4 Microscopic analysis</td>
<td>127</td>
</tr>
<tr>
<td>5.5.5 Quantification of ET accumulation</td>
<td>127</td>
</tr>
<tr>
<td>5.5.6 RNA extraction and quantitative RT-PCR</td>
<td>128</td>
</tr>
<tr>
<td>6 General conclusions and future perspectives</td>
<td>129</td>
</tr>
<tr>
<td>6.1 General conclusions</td>
<td>130</td>
</tr>
<tr>
<td>6.1.1 Rice-Cochliobolus miyabeanus pathosystem</td>
<td>130</td>
</tr>
<tr>
<td>6.1.2 Effect of Si on rice plants</td>
<td>132</td>
</tr>
<tr>
<td>6.1.3 Si-induced brown spot resistance</td>
<td>132</td>
</tr>
<tr>
<td>6.1.4 Si-induced defense mechanisms</td>
<td>133</td>
</tr>
<tr>
<td>6.1.5 Mechanisms of Si-induced broad spectrum resistance</td>
<td>136</td>
</tr>
<tr>
<td>6.2 Future perspectives</td>
<td>138</td>
</tr>
<tr>
<td>6.2.1 Microbial ethylene production by C. miyabeanus</td>
<td>138</td>
</tr>
<tr>
<td>6.2.2 Microbial ethylene as a common virulence factor for necrotrophic fungi related to the Cochliobolus genus</td>
<td>139</td>
</tr>
</tbody>
</table>
Contents

6.2.3 The role of photorespiration in Si-induced brown spot resistance . 139
6.2.4 Mechanisms of Si-induced broad-spectrum disease resistance . . . 140

Summary 143
Samenvatting 147
Bibliography 151
Curriculum vitae 185
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Taxonomy of Cochliobolus miyabeanus</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Effect of plant activators on the defence response of rice against its major fungal and bacterial pathogens.</td>
<td>24</td>
</tr>
<tr>
<td>3.1</td>
<td>List of transcription factors</td>
<td>45</td>
</tr>
<tr>
<td>3.2</td>
<td>List of overrepresented cis-elements</td>
<td>45</td>
</tr>
<tr>
<td>3.3</td>
<td>Primers for microarray validation</td>
<td>65</td>
</tr>
<tr>
<td>4.1</td>
<td>List of microorganisms that produce ET in a 2-oxoglutarate-dependent manner</td>
<td>91</td>
</tr>
<tr>
<td>4.2</td>
<td>Selection of microorganisms that contain a putative EFE-homolog with accession numbers from GenBank</td>
<td>93</td>
</tr>
<tr>
<td>S5.1</td>
<td>Primers for expression analysis</td>
<td>102</td>
</tr>
<tr>
<td>5.1</td>
<td>Concentration of cytokinin forms in control and Si-treated rice leaves at different time points after inoculation</td>
<td>114</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Rice fields</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Molecular mechanisms of the plant immune system according to the "zigzag" model</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Life cycle of Cochliobolus miyabeianus</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>A and B) Rice infected with Cochliobolus miyabeianus</td>
<td>16</td>
</tr>
<tr>
<td>2.5</td>
<td>General uptake of Si in rice plants from root to shoot.</td>
<td>20</td>
</tr>
<tr>
<td>3.1</td>
<td>Effect of Si on rice growth and yield</td>
<td>42</td>
</tr>
<tr>
<td>3.2</td>
<td>Si-induced brown spot resistance</td>
<td>44</td>
</tr>
<tr>
<td>3.3</td>
<td>Volcano plots of the microarray data</td>
<td>47</td>
</tr>
<tr>
<td>3.4</td>
<td>Overview microarray data</td>
<td>48</td>
</tr>
<tr>
<td>3.5</td>
<td>Gene ontology enrichment analysis: primary metabolism</td>
<td>51</td>
</tr>
<tr>
<td>3.6</td>
<td>Gene ontology enrichment analysis: plant defense responses</td>
<td>52</td>
</tr>
<tr>
<td>3.7</td>
<td>Detailed analysis of the influence of C. miyabeianus and Si on the microarray expression of central metabolic genes</td>
<td>56</td>
</tr>
<tr>
<td>3.8</td>
<td>Volcano plot</td>
<td>65</td>
</tr>
<tr>
<td>4.1</td>
<td>C. miyabeianus infection promotes ET emission in rice leaves</td>
<td>73</td>
</tr>
<tr>
<td>4.2</td>
<td>C. miyabeianus produces ET in vitro via the 2-oxoglutarate pathway</td>
<td>76</td>
</tr>
<tr>
<td>4.3</td>
<td>C. miyabeianus-produced ET boosts rice ET synthesis and acts as a virulence factor</td>
<td>78</td>
</tr>
<tr>
<td>4.4</td>
<td>Rice ET signaling but not ET biosynthesis is essential for brown spot development</td>
<td>80</td>
</tr>
<tr>
<td>4.5</td>
<td>ET signaling compromises phenylpropanoid-driven defenses against C. miyabeianus</td>
<td>82</td>
</tr>
<tr>
<td>4.6</td>
<td>C. miyabeianus isolates differ in virulence and ET production</td>
<td>84</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>4.7</td>
<td>Hypothetical model illustrating the role of plant and fungal ET in triggering susceptibility against C. miyabeanus in rice</td>
<td>90</td>
</tr>
<tr>
<td>4.8</td>
<td>Phylogenetic study of Ethylene-Forming Enzyme (EFE) and EFE-homologous sequences</td>
<td>94</td>
</tr>
<tr>
<td>S5.1</td>
<td>Volcano plot</td>
<td>102</td>
</tr>
<tr>
<td>S5.2</td>
<td>Conserved domains in CmEFE protein</td>
<td>102</td>
</tr>
<tr>
<td>S5.3</td>
<td>Alignment of annotated microbial oxoglutarate-dependent ethylene forming enzymes (EFE)</td>
<td>104</td>
</tr>
<tr>
<td>S5.4</td>
<td>Effect of ET on leaf senescence</td>
<td>105</td>
</tr>
<tr>
<td>S5.5</td>
<td>Effect of exogenous phenolic compounds on brown spot resistance</td>
<td>105</td>
</tr>
<tr>
<td>S5.6</td>
<td>Influence of exogenous ET on brown spot resistance</td>
<td>106</td>
</tr>
<tr>
<td>5.1</td>
<td>Influence of exogenous hormones on Si-induced brown spot resistance</td>
<td>112</td>
</tr>
<tr>
<td>5.2</td>
<td>Si-induced brown spot resistance is independent of cytokinin signaling</td>
<td>115</td>
</tr>
<tr>
<td>5.3</td>
<td>ET but not SA, JA or ABA is a key player in Si-induced brown spot resistance</td>
<td>116</td>
</tr>
<tr>
<td>5.4</td>
<td>Si prevents C. miyabeanus from hijacking the rice ET pathway</td>
<td>118</td>
</tr>
<tr>
<td>5.5</td>
<td>Blocking fungal ET production mimics Si-inducible brown spot resistance</td>
<td>120</td>
</tr>
<tr>
<td>5.6</td>
<td>Si-induced brown spot resistance is based on restriction of fungal progression in the mesophyll</td>
<td>121</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>2,2-BP</td>
<td>2,2-bipyridyl</td>
<td></td>
</tr>
<tr>
<td>ABA</td>
<td>abscisic acid</td>
<td></td>
</tr>
<tr>
<td>ABF</td>
<td>abscisic acid-responsive element binding transcription factor</td>
<td></td>
</tr>
<tr>
<td>ACC</td>
<td>1-aminocyclopropane-1-carboxylic acid</td>
<td></td>
</tr>
<tr>
<td>AMT</td>
<td>ammonium transporter</td>
<td></td>
</tr>
<tr>
<td>AOA</td>
<td>aminooxyacetic acid</td>
<td></td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
<td></td>
</tr>
<tr>
<td>AUX</td>
<td>auxin</td>
<td></td>
</tr>
<tr>
<td>Avr</td>
<td>avirulence</td>
<td></td>
</tr>
<tr>
<td>BR</td>
<td>brassinosteroid</td>
<td></td>
</tr>
<tr>
<td>BTH</td>
<td>benzothiadiazole</td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>calcium</td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>cadmium</td>
<td></td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
<td></td>
</tr>
<tr>
<td>CERK1</td>
<td>elicitor receptor kinase 1</td>
<td></td>
</tr>
<tr>
<td>CK</td>
<td>cytokinins</td>
<td></td>
</tr>
<tr>
<td>CLC</td>
<td>chloride chanel protein</td>
<td></td>
</tr>
<tr>
<td>CLC1</td>
<td>nitrate transporting chloride chanel protein</td>
<td></td>
</tr>
<tr>
<td>cv.</td>
<td>cultivar</td>
<td></td>
</tr>
<tr>
<td>DAB</td>
<td>3,3′-diaminobenzidine</td>
<td></td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
<td></td>
</tr>
<tr>
<td>dpi</td>
<td>days post inoculation</td>
<td></td>
</tr>
<tr>
<td>DREB</td>
<td>dehydration-responsive element-binding transcription factor</td>
<td></td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
<td></td>
</tr>
<tr>
<td>EFE</td>
<td>ethylene forming enzyme</td>
<td></td>
</tr>
<tr>
<td>EFR</td>
<td>EF-Tu receptor</td>
<td></td>
</tr>
<tr>
<td>EIN2</td>
<td>ethylene insensitive 2 protein</td>
<td></td>
</tr>
<tr>
<td>ERF</td>
<td>ethylene responsive transcription factor</td>
<td></td>
</tr>
<tr>
<td>ET</td>
<td>ethylene</td>
<td></td>
</tr>
<tr>
<td>ETI</td>
<td>effector-triggered immunity</td>
<td></td>
</tr>
<tr>
<td>FLS2</td>
<td>flagellin sensing 2</td>
<td></td>
</tr>
<tr>
<td>FAO</td>
<td>food and agriculture organization of the united nations</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>iron</td>
<td></td>
</tr>
<tr>
<td>FW</td>
<td>fresh weight</td>
<td></td>
</tr>
<tr>
<td>FWO</td>
<td>fonds wetenschappelijk onderzoek - Vlaanderen</td>
<td></td>
</tr>
</tbody>
</table>
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDC</td>
<td>glycine dehydrogenase</td>
</tr>
<tr>
<td>GA</td>
<td>gibberellin</td>
</tr>
<tr>
<td>GAMYB</td>
<td>gibberellin-responsive MYB transcription factor</td>
</tr>
<tr>
<td>GDH</td>
<td>glutamate dehydrogenase</td>
</tr>
<tr>
<td>GGAT</td>
<td>glutamate:glyoxylate aminotransferase</td>
</tr>
<tr>
<td>GO</td>
<td>gene ontology</td>
</tr>
<tr>
<td>GOGAT</td>
<td>glutamate synthase</td>
</tr>
<tr>
<td>GOX</td>
<td>glycolate oxidase</td>
</tr>
<tr>
<td>GS</td>
<td>glutamine synthetase</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>hydrogen peroxide</td>
</tr>
<tr>
<td>hpi</td>
<td>hours post inoculation</td>
</tr>
<tr>
<td>HPR</td>
<td>hydroxypyruvate reductase</td>
</tr>
<tr>
<td>HR</td>
<td>hypersensitive response</td>
</tr>
<tr>
<td>IAA</td>
<td>indole-3-acetic acid</td>
</tr>
<tr>
<td>IRRI</td>
<td>international rice research institute</td>
</tr>
<tr>
<td>ISR</td>
<td>induced systemic resistance</td>
</tr>
<tr>
<td>IWT</td>
<td>agentschap voor innovatie door wetenschap en technologie</td>
</tr>
<tr>
<td>JA</td>
<td>jasmonic acid</td>
</tr>
<tr>
<td>K</td>
<td>potassium</td>
</tr>
<tr>
<td>Lsi</td>
<td>silicic acid transporter</td>
</tr>
<tr>
<td>MADS</td>
<td>MCM1-AGAMOUS-DEFICIENS-SRF-like transcription factor</td>
</tr>
<tr>
<td>MAPK</td>
<td>mitogen-activated protein kinase</td>
</tr>
<tr>
<td>Mn</td>
<td>manganese</td>
</tr>
<tr>
<td>MYB</td>
<td>myeloblastosis proto-oncogene-like transcription factor</td>
</tr>
<tr>
<td>N</td>
<td>nitrogen</td>
</tr>
<tr>
<td>NahG</td>
<td>salicylate hydroxylase</td>
</tr>
<tr>
<td>NPR1</td>
<td>non-expressor of PR genes 1 protein</td>
</tr>
<tr>
<td>NRT</td>
<td>nitrate transporter</td>
</tr>
<tr>
<td>P</td>
<td>phosphorus</td>
</tr>
<tr>
<td>PAL</td>
<td>phenylalanine ammonia lyase</td>
</tr>
<tr>
<td>PAMP</td>
<td>pathogen-associated molecular pattern</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PDA</td>
<td>potato dextrose agar</td>
</tr>
<tr>
<td>PGK</td>
<td>phosphoglycerate kinase</td>
</tr>
<tr>
<td>PGLP</td>
<td>phosphoglycolate phosphatase</td>
</tr>
<tr>
<td>PPO</td>
<td>polyphenol oxidase</td>
</tr>
<tr>
<td>PRK</td>
<td>phosphoribulokinase</td>
</tr>
<tr>
<td>PRR</td>
<td>plant pattern recognition receptor</td>
</tr>
<tr>
<td>PTI</td>
<td>PAMP-triggered immunity</td>
</tr>
<tr>
<td>QTL</td>
<td>quantitative trait loci</td>
</tr>
<tr>
<td>RNAi</td>
<td>RNA interference</td>
</tr>
<tr>
<td>ROS</td>
<td>reactive oxygen species</td>
</tr>
<tr>
<td>RPI</td>
<td>ribose-5-phosphate isomerase</td>
</tr>
<tr>
<td>Rubisco</td>
<td>ribulose-1</td>
</tr>
<tr>
<td>Si</td>
<td>silicon</td>
</tr>
<tr>
<td>SA</td>
<td>salicylic acid</td>
</tr>
<tr>
<td>SAR</td>
<td>systemic acquired resistance</td>
</tr>
<tr>
<td>SGAT</td>
<td>serine:glyoxylate aminotransferase</td>
</tr>
<tr>
<td>SHMT</td>
<td>serine hydroxymethyltransferase</td>
</tr>
<tr>
<td>STS</td>
<td>silver thiosulfate</td>
</tr>
<tr>
<td>TF</td>
<td>transcription factor</td>
</tr>
<tr>
<td>TGA</td>
<td>TGACG-motif binding transcription factor</td>
</tr>
<tr>
<td>WT</td>
<td>wild type</td>
</tr>
</tbody>
</table>
1

Problem statement and research outline
Since the 1940s, intensification of agricultural production via modern high-yielding varieties, adequate irrigation, use of fertilizers and other complementary inputs, led to a substantial increase in food production, which is referred to as the green revolution. In recent years however, agricultural growth (especially cereal yields) has slowed down (FAO, 2009; Ray et al., 2013). The combination of a growing population and a finite planet puts the global food production under pressure, which led to the so-called ‘world food crisis’ in 2007-2008. This crisis resulted in worldwide social upheaval due to skyrocketing prices of many staple foods, especially wheat and rice (McMichael, 2009). Rice provides the majority of the caloric intake worldwide and is a staple food for more than half of the global population living mainly in tropical and subtropical Asia and Africa (FAO, 2009; Matsumura et al., 2009). The increasing demand for rice due to the growing population and urbanization together with the fact that many people in Asia and Africa live in poverty and are extremely vulnerable to fluctuating rice prices highlight the need for an adequate rice production in the future (Savary et al., 2011; Seck et al., 2012). Predictions of the changing climate also show that Africa and Asia will suffer more extreme weather conditions in the future. Recent estimations have calculated that the current increases in rice production will not be sufficient to ensure food security in Asia and particularly in Africa in 2050 (Ray et al., 2013).

The solutions for ensuring global food security lie in establishing a sustainable production and consumption and in the reduction of global poverty (De Schutter, 2014). Sustainable rice production can be ensured by continued and improved research efforts to close yield gaps by improving rice production methods and preventing post-harvest yield losses and yield declines in the field due to abiotic stress and pathogens (Seck et al., 2012). Pests and diseases form a continuous threat to the global food production (Flood, 2010; Schut et al., 2014). A striking example is the great Bengal rice famine of 1942-43 caused by the necrotrophic rice leaf fungus *Cochliobolus miyabeanus*, which led to the death of approximately 2 million people (Lenné, 2000). In rice fields, yield losses can average up to 20-30%, indicating the potential contribution of crop protection in increasing global rice production (Mew et al., 2004; Savary et al., 2012; Seck et al., 2012). Up to date, research on crop protection has focused on the development, transfer and adoption of unilateral technologies such as new resistant varieties or agrochemicals (Kropff et al., 2001; Schut et al., 2014). Although these protection strategies have proven to be effective in the field, they are also associated with some typical disadvantages. Excessive pesticide usage leads to environmental and human safety issues, whereas the lack of alternated agrochemical usage promotes pesticide resistance in different plant pathogen species. Resistant cultivars, on the other hand, often cannot withstand the high degree of variability
in the plant pathogen population and their level of resistance in the field quickly deteriorates over time. Moreover, the use of resistant cultivars and agrochemicals are usually not affordable for the majority of rice growing farmers in developing countries. A more holistic approach in crop protection research has emerged which promotes the use of sustainable, affordable and broad spectrum protection strategies to safeguard future food production (FAO 2009; Seck et al. 2012; Schut et al. 2014). The application of silicon (Si) emerges as an interesting protection strategy that is both safe for the environment as for human consumption and offers protection against a wide range of both abiotic and biotic stresses. Moreover, Si application is generally associated with growth promotion in the field (see section 2.5).

The main objective of this dissertation was to elucidate the mechanisms that underlie Si-induced broad spectrum resistance, by using the rice-C. miyabeanus interaction as a model pathosystem. More specifically, we sought to:

1. shed further light onto the molecular underpinnings of resistance and susceptibility in the rice-C. miyabeanus pathosystem
2. to decipher the impact of Si on the physiology and transcriptome of healthy and pathogen-infected crop plants
3. to gain insight into the tapestry of signal transduction pathways governing Si-induced disease resistance and delineate the type of immune responses modulated by Si
4. to advance our molecular understanding of how Si is able to elicit resistance against pathogens with different lifestyles and infection strategies

The introductory Chapter 2 gives a concise overview of our current knowledge on rice production, the basic mechanisms and regulation of plant innate immunity and pathogen’s virulence strategies. Since this dissertation focusses on Cochliobolus miyabeanus, a summary of the taxonomy and epidemiology of this fungus is provided as well as the main molecular aspects of the rice-brown spot pathosystem and methods of disease management. The last part of the introduction is dedicated to the the uptake of silicon (Si) and its ability to protect plants against a broad spectrum of pathogens. Although several initiators of induced resistance have been described, Si application is one of the few disease control strategies that is able to induce broad spectrum disease resistance by boosting the plant’s basal defense mechanisms. The prophylactic effect of Si is considered to be the result of both passive and active defenses. Although the phenomenon has been known for decades, the molecular basis of Si-induced disease control remains largely unknown. By
Chapter 1. Problem statement and research outline

Combining knowledge on how Si interacts with cell metabolism in diatoms and plants, this chapter describes Si-induced regulatory mechanisms that might account for broad-spectrum disease resistance in plants. Priming of plant immune responses, alterations in phytohormone homeostasis, regulation of iron homeostasis, Si-driven photorespiration and interaction with defense signaling components are all potential mechanisms involved in regulating Si-triggered resistance responses. Further elucidating how Si exerts its beneficial properties may create new avenues for developing plants that are better able to cope with multiple stresses.

Even though the positive effect of Si on disease resistance has been known for decades, the underlying mechanisms remain unclear. Chapter 3 starts with the analysis of available transcriptome and proteome analyses on Si-treated plants which demonstrated two different hypotheses.

First, Si-induced broad spectrum disease resistance is generally attributed to Si-mediated priming which is generally associated to the accumulation of inactive signaling components such as transcription factors (TFs). A multiparallel quantitative RT-PCR based transcriptional analysis on the influence of silicon on the expression of all rice TF genes was performed to test whether Si might induce priming due to a differential expression of TFs. This analysis showed that Si has an apparent influence on the expression of TFs, which could explain the earlier flower induction and increased plant growth observed in Si-treated plants. However, no major modulator of Si could be characterized, but the list of differentially expressed TFs might provide an interesting dataset for future research on the potential role of Si on defense priming.

Second, to investigate the influence of Si on the rice metabolism during infection, a microarray analysis was performed on brown spot-infected and/or Si-treated rice leaves. Based on this transcriptome analysis, several potential mechanisms underlying *C. miyabeanus*-induced senescence and Si-induced brown spot resistance were hypothesized. *C. miyabeanus* seems to couple photosynthesis from photo harvesting and the subsequent photo-oxidative damage is likely responsible for the induction of senescence. Application of Si on the other hand, impeded pathogen-induced photooxidative damage and alleviated premature senescence by enhancing photorespiration activity. Together these findings support a scenario whereby the plant’s central metabolism plays a pivotal role in the rice-*C. miyabeanus* pathosystem, leading to either susceptibility via pathogen-induced senescence or resistance through Si-induced prevention of senescence due to photorespiration. Moreover, in common with earlier microarray studies, our results suggest that Si nullifies the impact of pathogen inoculation on the plant’s transcriptome, rather than
creating resistance where is none by directing massive transcriptional reprogramming of defense-related genes.

In rice leaves, ethylene (ET) is known to play a negative role in mediating defense responses against the necrotrophic fungus *Cochliobolus miyabeanus*, the causal agent of brown spot disease. *C. miyabeanus* has been hypothesized to exploit the rice ET signaling pathway in order to suppress plant defense responses. Chapter 4 elaborates on this hypothesis in an attempt to unravel the role of ET in the rice-*C. miyabeanus* pathosystem. We found that *C. miyabeanus* produces ET via a pathway that is distinct from plant ET biosynthesis, a process that requires 2-oxoglutarate and arginine and is catalyzed by a fungal ethylene forming enzyme (EFE). Several plant-pathogens have been reported to produce ET following the 2-oxoglutarate dependent pathway. Due to the availability of a fast growing assembly of microbial genome and proteome sequences, many EFEs have been identified and annotated based on the homology with characterized EFEs. These findings led to the assumption that microbial 2-oxoglutarate dependent ET biosynthesis might play a significant role for many plant pathogens and even outside the field of plant-pathogen interactions. Fungal ET produced by *C. miyabeanus*, both directly and indirectly via the activation of plant ET biosynthesis, induces ET signaling in rice. The pathogen-mediated onset of ET signaling impairs plant defense responses via the induction of senescence and inhibition of phenylpropanoid-driven defense responses against *C. miyabeanus*. Moreover, we also show that the virulence of *C. miyabeanus* isolates is at least partly correlated with their ET producing abilities. While providing novel insights into the multifaceted role of ET in the plant’s defense signaling network, this chapter underscores the importance of microbial ET in modulating plant immunity.

Chapter 5 investigates the importance and function of hormone signaling in Si-induced brown spot resistance. Exogenous application of a range of known defense hormones along with screening of transgenic and mutant rice lines impaired in different hormone biosynthesis or signaling pathways showed that ethylene (ET) is the main modulator of basal and Si-induced brown spot resistance in rice. Blocking the ET signaling pathway in rice mimics Si-induced brown spot resistance, producing a resistance phenotype hallmarked by small necrotic lesions due to the accumulation of fungitoxic phenolic compounds at the site of infection. Chapter 4 has shown that *C. miyabeanus* produces ET as a virulence factor and the data presented in this chapter suggest that Si confers brown spot resistance by preventing fungal ET biosynthesis. In conclusion, these observations not only reaffirm the significance of fungal ET biosynthesis as an important virulence factor
for *C. miyabeanus*, but also coincide with earlier findings that Si application induces brown spot resistance by disarming fungal virulence factors.

Finally, in Chapter 6 we summarize the main findings and discuss the practical implications and future prospects of the research conducted.
Introduction
Chapter 2. Introduction

2.1 Rice

2.1.1 Taxonomy, characteristics and production

Rice is an extremely versatile crop that is grown in both dry and wetland conditions at both low and high altitudes. The genus *Oryza* is a member of the grass family (*Poaceae*) and contains species distributed across the tropical, sub-tropical and temperate regions of Asia, Africa, central and south America and Australia (Lu 1999; Vaughan et al. 2008). Only two species are cultivated, *Oryza glaberrima* (Steudel) and *Oryza sativa* (L.). *O. glaberrima* is indigenous to Africa, while *O. sativa* has its origin in Asia. *O. sativa* comprises two subspecies, *indica* and *japonica*. *Indica* rice is prevalent in tropical regions, whereas *japonica* rice occurs mainly in the subtropical and temperate regions of East Asia.

A typical rice field consists of a specific soil system that is formed after long and extensive muddling, hereby creating an impermeable layer that prevents the water from leaching (Lu 1999; Vaughan et al. 2008) (Fig 2.1). In Asia, rice is mainly grown in fields that are permanently inundated, mostly by irrigation. Irrigated rice fields are responsible for 75% of the global rice production. When irrigation is not feasible, rainfall can provide sufficient water. These rainfed rice fields occur mainly in Africa and account for 20% of the global rice production. Due to fluctuations in rainfall, rainfed rice fields are more prone to drought stress. Other rice production systems, such as rice grown in very deep paddy fields (deepwater rice) or rice grown in non-irrigated fields (aerobic rice) only account for a small portion of the global rice production. For growing under submerged conditions, the rice roots have developed specific structures called aerenchyma. A root aerenchyma consists of cortical root tissue that is interlaced with internal air spaces, allowing oxygen to diffuse from the leaf stomata to the meristematic tissue in the roots (Webster and Gunnell 1992).

Rice is a C3 plant which means that the first product of photosynthetic CO$_2$ assimilation is the 3-carbon compound 3-phosphoglycerate as opposed to C4 plants, where the carboxylation results in the 4-carbon compound oxaloacetate (Siedow and Day 2000; Foyer et al. 2009). Carbon fixation in rice, barley, Arabidopsis and other C3 plants is restricted by a process called photorespiration. This metabolic bypass occurs under conditions that prevent photosynthesis during the daytime, often due to stress-induced stomatal closure (Foyer et al. 2009; Bauwe et al. 2010). By incorporating O$_2$ instead of CO$_2$, photorespiration prevents overreduction of the electron transfer pathway and subsequent photooxidative damage in the chloroplast. Photorespiration is commonly thought of as a wasteful and obsolete process in C3 plants (Foyer et al. 2009; Bauwe et al. 2010).
However, recent publications suggest a novel role for photorespiration as a plant defense mechanism (Wingler et al. 2000; Kangasjärvi et al. 2012; Sørhagen et al. 2013). C4 plants, like maize, sugarcane and sorghum, on the other hand do not suffer from impeded carbon fixation and are therefore more productive under extreme environmental conditions. From an evolutionary point of view, C3 plants predate C4 plants; however, C3 plants still represent the majority of the earth’s plant biomass (Ehleringer and Cerling 2002).

In 2010, global rice consumption was 439 million tons and the demand is increasing each year (Seck et al. 2012). The current increases in rice yield are not sufficient to meet the predicted demand for rice of 450 million tons in 2020 (Timmer et al. 2011). One of the great challenges that lie ahead is the sustainable increase in rice production and a solution can be found in the reduction of yield losses (see Chapter 1 FAO 2009; Seck et al. 2012). Therefore one of the main goals for global rice production is ensuring sustainable crop protection that reduces rice yield losses due to abiotic stress and pathogens.

![Figure 2.1: Rice plants in an irrigated paddy field A) after planting and B) during grain ripening stage (IRRI)](image)

2.2 Plant immune system

2.2.1 Molecular plant immunity

Plants are frequently challenged by a wide variety of microbial pathogens. Due to an intricate network of plant defense mechanisms that can be either constitutively expressed or induced upon pathogen attack, plant disease is an exception rather than a rule (Thordal-Christensen 2003; Glazebrook 2005; Boyd et al. 2013). Defense mechanisms often demand substantial amounts of the plant’s energy and it is generally assumed that inducible defense mechanisms have evolved in order to save energy under stress-free
conditions, thus reducing defense-related fitness costs (Walters and Heil 2007; Denancé et al. 2013). The so-called ‘zigzag’ model depicts the different stages of plant-pathogen interactions as seen from an evolutionary perspective (Fig. 2.2; Jones and Dangl 2006).

Figure 2.2: Molecular mechanisms of the plant immune system according to the ‘zigzag’ model, adapted from (Jones and Dangl 2006). First, plants detect microbial/pathogen-associated molecular patterns (PAMPs) via plant pattern recognition receptors (PRR) which triggers PAMP-triggered immunity (PTI). Successful pathogens secrete effectors that abolish PTI, or otherwise enable pathogen nutrition and dispersal, resulting in susceptibility. Pathogen effectors can be recognized by a specific plant receptor often referred to as resistance (R) proteins activating effector-triggered immunity (ETI). ETI is an amplified version of PTI that is often more effective in fending off pathogen invasion. Natural selection and horizontal gene transfer reshape the pathogen population, favoring isolates that secrete effectors which cannot be recognize by the plant and can suppress ETI.

The first step is the recognition of conserved microbial signatures, also called pathogen-associated molecular patterns (PAMPs). PAMPs include a long list of common microbial molecules, among which the intensively studied bacterial flagellin, bacterial Elongation Factor-Tu (EF-Tu) and fungal chitin (Zhang et al. 2010). Pathogen-derived elicitors are recognized by highly specific plant pattern recognition receptors (PRR) which are often receptor-like kinases, such as FLAGELLIN SENSING 2 (FLS2), EF-Tu RECEPTOR (EFR) and ELICITOR RECEPTOR KINASE 1 (CERK1) (Boyd et al. 2013). Elicitor recognition by PRRs initiates the first line of inducible defense called PAMP-triggered immunity (PTI). Depending on the pathosystem, PTI can be sufficient to fend off pathogen invasion (Katagiri and Tsuda 2010). In turn, pathogens can deregulate or suppress components of PTI with effectors that are secreted inside the host plant. Effectors can be proteins or host-specific toxins that not only suppress PTI but often also alter the cell’s metabolism in order to create an environment in which the pathogen can grow and reproduce (Friesen et al. 2008; Grant et al. 2013; Vleeshouwers and Oliver 2014). The list of identified effectors has rapidly expanded in recent years due the growing
availability of genome sequences of a plethora of pathogens (Alfano, 2009). A second line of inducible plant defense responses consists of the recognition of pathogen’s effectors by plant receptors, encoded by so-called resistance (R) genes. The collection of known R genes is continuously expanding and this knowledge is vital for breeding resistant varieties both via classical breeding and genetic engineering (Vleeshouwers and Oliver, 2014). Although the presence of R proteins results in a clearly resistant phenotype due to effector-triggered immunity (ETI), this type of resistance is not always durable. Effectors are under selection to evade detection by plant R proteins, whilst maintaining their virulence activities. A combination of mutation, horizontal gene transfer and natural selection leads to a shift in pathogen population which favors pathogens with effectors that are not recognized by the plant’s R genes and that are able to abolish ETI. In turn, plant R proteins adapt and evolve to acquire and maintain effector recognition (Ma and Yamaji, 2008). The fascinating evolutionary battle between pathogens and plants during which selection enables pathogens to abolish ETI, whereas breeders attempt to obtain resistant cultivars by incorporating other R genes is hallmarkd by a continuous pattern of susceptibility and resistance towards the pathogen, hence the term ‘zigzag’ model. The widespread implementation of monoculture and the genetic narrowing of the grown crops hasten the breakdown of resistant cultivars. Moreover, monoculture with densely planted, homogenous fields of host plants facilitate the spread of diseases (Zhu et al., 2000).

2.2.2 Main mechanisms of induced resistance

The emerging need for a stable food production in the future partly calls for a sustainable and durable crop protection against a broad range of pathogens (FAO, 2009). Multiple articles report broad spectrum disease resistance due to a genetically modified increase in defense signaling (Gómez-Ariza et al., 2007; Wally et al., 2009; Shi et al., 2010), priming (Gómez-Ariza et al., 2007; Ahmad et al., 2010) or systemic resistance induced by previous infections (systemic acquired resistance or SAR) (Colebrook et al., 2012; Fu and Dong, 2013) or beneficial soil microorganisms (De Vleesschauwer and Höfte, 2009). Systemic acquired resistance (SAR) is an induced defense mechanism that is activated by previous infection with an avirulent pathogen. SAR is typically associated with increased levels of salicylic acid, leading to a protected state of the plant (Vlot et al., 2009; Fu and Dong, 2013). Induced systemic resistance (ISR) develops in response to colonization of plant roots by certain non-pathogenic rhizosphere micro-organisms (De Vleesschauwer and Höfte, 2009; Shoresh et al., 2010). Beneficial bacteria like Pseudomonas fluorescens and Serratia spp. and fungi such as Trichoderma spp. have been reported to cause ISR in various host plants (De Vleesschauwer et al., 2008; De Vleesschauwer and Höfte, 2009; De...
Chapter 2. Introduction

Vleesschauwer et al. (2009) and Shoresh et al. (2010). The perception of these beneficial microorganisms or their influence on the rhizosphere confers resistance to a wide range of plant pathogens. Priming refers to the pre-conditioning of the plant’s immune system either by perception of pathogenic or beneficial soil organisms or by natural or synthetic compounds and wounding (Conrath et al. 2006; Conrath 2011; Pieterse et al. 2012). Although the molecular aspects of priming are still poorly understood, the process is known to be associated with altered levels of inactive signaling components such as mitogen-activated protein (MAP) kinases and transcription factors (Conrath 2011). Plants in a primed state are believed to be in a higher 'state of alertness' which allows them to adapt to different types of stress leading to a less costly and more broad-spectrum resistance (van Hulten et al. 2006; Van der Ent et al. 2009).

2.2.3 Plant defense signaling: phytohormones

The activation of defense responses during PTI and ETI is governed by a complex network of signaling components that defines the outcome of the plant-pathogen interaction and in which plant hormones play pivotal roles (Pieterse et al. 2009; Grant and Jones 2009; Robert-Seilaniantz et al. 2011). The most widely accepted model in Arabidopsis states that salicylic acid (SA) confers resistance towards biotrophic pathogens, whereas jasmonic acid (JA) and ethylene (ET) activate defense responses against pathogens with a necrotrophic lifestyle. Biotrophic pathogens derive nutrients from living host tissues, whereas necrotrophs extract nutrients from dead or dying cells (Glazebrook 2005). Distinct differences between defense responses against necrotrophic and biotrophic pathogens often lead to -offs. The occurrence of trade-offs implies that induction of biotrophic resistance often leads to increased susceptibility towards necrotrophic pathogens and vice versa (Spoel et al. 2007; Mengiste 2012). Hormone crosstalk is one of the main modulators of trade-offs and the antagonism between different hormone pathways explains the distinct roles of SA and JA/ET in mediating respectively biotrophic and necrotrophic resistance (Spoel and Dong 2008; Denancé et al. 2013). In other plant species the role of the SA-JA/ET model is not that apparent. For instance, in the model organism rice (Oryza sativa L.) the role of SA, JA and ET appears pathogen-dependent rather than merely linked to the pathogen’s lifestyle (De Vleesschauwer et al. 2013). Aside from the typical defense hormones SA, JA and ET, other hormones including abscisic acid (ABA), gibberellins (GA), auxins, cytokinins and brassinosteroids have emerged as important defense regulators as well. Given the complexity of the plant hormone signaling network, a more holistic approach seems more appropriate. Depending on the pathosystem, a specific blend of signaling components, the so-called signal signature, shapes the outcome.
Chapter 2. Introduction

of the plant-pathogen interaction (De Vos et al., 2005). Despite the significant progress in recent years, more research is necessary to improve our current understanding of the role of hormones in mediating plant defense responses.

2.3 Plant pathogenic virulence factors

Pathogens have evolved a range of strategies that interfere with their host’s metabolism, among which the secretion of effector proteins, phytotoxins and phytohormones (Arshad and Frankenberger, 1991; Jones and Dangl, 2006; Friesen et al., 2008; Sacristan and Garcia-Arenal, 2008; Dou and Zhou, 2012; Seifi et al., 2013). These virulence factors generally aim at impeding plant defense mechanisms and ensuring sufficient nutrient supply for the pathogen (Wolpert et al., 2002; Sacristan and Garcia-Arenal, 2008; Rico et al., 2011; Vleeshouwers and Oliver, 2014).

One of the most-studied plant pathogens, Pseudomonas syringae, deploys a wide variety of virulence factors that show a specific mode of action (Rico et al., 2011; Ichinose et al., 2013). Bacterial effector proteins are generally injected in host cells via the type 3 secretion system (T3SS), in order to suppress defense responses (Grant and Lamb, 2006; Guo et al., 2009). P. syringae secretes a plethora of different effectors, the most typical examples are AvrPto, a protein kinase inhibitor and AvrPtoB, an E3 ubiquitin ligase which prevent the perception of PAMPs by either inhibiting or degrading plant PAMP receptor kinases, such as flagellin receptor kinase FLS2 or chitin receptor kinase CERK1 (Block and Alfano, 2011). Effector proteins do not necessarily target defense mechanism, HrpZ(Psph) for instance, binds to the lipid bilayers of plant cells forming a nutrient-conducting pore that enables nutrient release from the plant thus ensuring nutrient supply for P. syringae (Lee et al., 2001; Ichinose et al., 2013). P. syringae also produces various phytotoxins, among which phaseolotoxin, tabtoxin and coronatine (Bender et al., 1999). Phaseolotoxin and tabtoxin are inhibitors of central metabolic plant enzymes, respectively ornithine carbamoyl transferase and glutamine synthetase, leading to chlorosis and cell death (Bender et al., 1999; Kimura et al., 2001). Coronatine on the other hand not only facilitates the infection process by inhibiting stomatal closure allowing P. syringae to invade leaf tissue (Melotto et al., 2006), it also interferes with plant defense mechanisms. The chemical structure of coronatine mimics JA and once inside plant cells, coronatine hyperactivates JA signaling and abolishes effective SA-dependent defenses in the plant (Brooks et al., 2005; Cui et al., 2005; Melotto et al., 2006). P. syringae is even known to produce the plant auxin indole acetic acid (IAA) which induces susceptibility in Arabidopsis thaliana in a SA-independent manner (Mutka et al., 2013).
2.4 Cochliobolus miyabeanus

2.4.1 Taxonomy, characteristics and life cycle

The ascomycete fungus *C. miyabeanus* (anamorph: *Bipolaris oryzae*) is one of the most devastating and prevalent rice pathogens (Ou, 1985; Ahn et al., 2005) (Table 2.1). *C. miyabeanus* is a necrotrophic fungus that quickly induces cell death in the invaded rice leaves. In temperate regions, *C. miyabeanus* survives mainly in seeds. In tropical regions, the inoculum is present year-round in seeds and overlapping rice crops (Teng et al., 1994; Castilla and Savary 2010; Barnwal et al., 2013). The primary source of inoculum mainly are infected seeds, while secondary infections are the result of wind-borne asexual conidiospores (Ou, 1985; Sato et al., 2008; Barnwal et al., 2013). The pale brown, spindle-like conidiospores germinate at both ends and form specific structures called stromae that penetrate epidermal leaf cells (Fig 2.3 and 2.4 B). Once the rice leaf is penetrated, the mycelial hyphae invade the apoplastic mesophyll. Inside the mesophyll, *C. miyabeanus* induces cell death whereafter the fungus can use the cell contents as a source of nutrients. The pathogen-induced leaf cell death results in the typical brown spots surrounded by a chlorotic halo (Fig 2.4 A and B). The massive occurrence of brown spot lesions and chlorosis causes leaf wilting and premature senescence eventually leading to losses in both rice yield and quality. When the conditions are favorable, new conidiospores develop in the brown spot lesions, forming a new source of airborne inoculum. The incubation period of brown spot infection via conidia is short (<24h), disease symptoms develop within 3-4 days and sporulation on infected leaves peaks around 6 days after infection (Ou, 1985; Teng et al., 1994; Barnwal et al., 2013).

Suboptimal conditions caused by water, nutrient and/or temperature stress sensitize rice plants to infection with *C. miyabeanus* (Ou, 1985; Barnwal et al., 2013). Especially abnormalities in the soil nutrient composition seems to increase the brown spot disease development in rice fields. Deficiencies in N, K, Mn, Mg, Fe and Ca are known to increase brown spot incidence in the field (Ou, 1985; Carvalho et al., 2010). This explains the prevalence of this fungus in extensively managed rice fields in developing countries throughout Asia and Africa (Savary et al., 2005; Yaqoob et al., 2011).

Like many other members of the *Cochliobolus* genus, *C. miyabeanus* is known to produce a variety of toxins which have antibiotic and phytotoxic properties (Kim et al., 1999; Krizsán et al., 2010; Condon et al., 2013; Ahn et al., 2005). The majority of toxins produced by *Cochliobolus* species are members of the ophiobolin group, ophiobolin A and B being the best-characterized toxins in *C. miyabeanus* (Au et al., 2000). Both toxins inhibit K⁺ uptake and H⁺ extrusion by maize roots and leaves, which leads to depolarization
and disorganization of the plasma membrane, likely due to direct inhibition of plant calmodulin by ophiobolin A (Gianani et al., 1979; Cocucci et al., 1983; Leung et al., 1985; Krizsán et al., 2010). The resulting disruption of the plasma membrane (Chattopadhyay and Samaddar, 1976; Tipton et al., 1977) is probably responsible for ophiobolin A-mediated impairment of many metabolic processes such as photosynthesis, respiration and protein and nucleic acid synthesis eventually leading to cell death (Chattopadhyay and Samaddar, 1980; Kim and Hyeon, 1984; Yun et al., 1988; Krizsán et al., 2010). These phytotoxins facilitate the induction of cell death in the host plant (Xiao et al., 1991; Condon et al., 2013).

Table 2.1: Taxonomy of *Cochliobolus miyabeanus*

<table>
<thead>
<tr>
<th>Taxonomy</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>kingdom</td>
<td>Fungi</td>
</tr>
<tr>
<td>phylum</td>
<td>Ascomycota</td>
</tr>
<tr>
<td>order</td>
<td>Pleosporales</td>
</tr>
<tr>
<td>family</td>
<td>Pleosporaceae</td>
</tr>
<tr>
<td>genus</td>
<td>Cochliobolus</td>
</tr>
<tr>
<td>teleomorph species</td>
<td>Cochliobolus miyabeanus</td>
</tr>
<tr>
<td>anamorph species</td>
<td>Bipolaris oryzae</td>
</tr>
</tbody>
</table>

Figure 2.3: Life cycle of *Cochliobolus miyabeanus* (adapted from Thines et al. (2004))
2.4.2 Molecular aspects of the rice-brown spot pathosystem

Even though *C. miyabeanus* is a major rice pathogen, the molecular mechanisms that mediate the rice-*C. miyabeanus* interaction have been largely neglected (Ahn et al., 2005). Cytological and microscopic analyses on the effect of inhibitors of the fungal calcium signaling pathway demonstrated the importance of calcium/calmodulin singalling for the induction of prepenetration morphogenesis of *C. miyabeanus* conidia during infection (Ahn et al., 2007). Moreover, deletion of the nonribosomal peptide synthetase *CmNPS6* gene results in a substantial reduction of *C. miyabeanus’ virulence and hypersensitivity of the fungus towards plant H$_2$O$_2$ (Oide et al., 2006). NPS6 acts as an extracellular siderophore to ensure iron availability for the fungus, which hallmarks the dependency of *C. miyabeanus* on iron during infection.

In rice plants, *C. miyabeanus* generally induces premature senescence in rice plants by downregulating photosynthesis and causing membrane damage and electrolyte leakage in brown spot-infected rice leaves (Dallagnol et al., 2011a). On the other hand, brown spot resistance is commonly associated with the accumulation of antifungal phenolic components like serotonin, hydroxycinnamic acid and lignin and increased activities of the defense-related enzymes chitinase, peroxidase, polyphenoloxidase (PPO) and phenylalanine ammonia lyase (PAL) (Vidhyasekaran et al., 1992; Dallagnol et al., 2011a,b; Ishihara et al., 2011). Chitinases are enzymes that degrade fungal chitin, whereas peroxidase scavenge oxygen radicals that promote HR-like responses and cell death (De Vleesschauwer and Höfte, 2009). PAL and PPO are key enzymes in the phenylpropanoid pathway, an important plant defense pathway that is responsible for the production of phenolic com-
pounds (Dixon et al., 2002).

C. miyabeanus is a known producer of various phytotoxins, which play an essential role in initiating pathogen-induced senescence and cell death (Xiao et al., 1991; Ahn et al., 2005). Several C. miyabeanus toxins have been identified such as ophiobolin A, B and I (Kim et al., 1999). Apart from the fact that ophiobolins are toxic to plants, other microbes and even mammals, the mode of action of ophiobolins is still unknown (Au et al., 2000). However, Vidhyasekaran et al. (1992) demonstrated that a crude phytotoxin extract suppressed plant phenol production. The accumulation of fungitoxic phenolic compounds is one of the main defense responses against C. miyabeanus (Shabana et al., 2008; Ishihara et al., 2011). These findings demonstrate the importance of toxin secretion as a virulence factor for C. miyabeanus.

The activation of plant defense mechanisms against C. miyabeanus is modulated by a complex plant signaling network. Ahn et al. (2005) found that the SA-analog BTH and JA do not seem to play a role during brown spot infection. ABA on the other hand, is proven to be an important modulator of brown spot resistance as exogenously administered ABA substantially increases resistance against C. miyabeanus (De Vleesschauwer et al., 2010). The driving force behind ABA-induced brown spot resistance is the ABA-responsive MAP kinase, OsMPK6, which inhibits the expression of the ET signaling protein EIN2. ET renders rice hyper-susceptible to brown spot infection, whereas reduction of ethylene perception by the application of silver ions or disruption of ET signaling in EIN2a antisense plants resulted in a substantial reduction in disease severity (De Vleesschauwer et al., 2010). Moreover, gene expression experiments revealed a strong activation of ET signaling in susceptible but not in resistant rice plants, raising the hypothesis that C. miyabeanus exploits ET as a virulence factor and co-opts the rice ET signaling route to suppress other effectual defense pathways. However, how the pathogen is able to tap into the rice ET machinery and how increased ET signaling favors disease development remained unclear.

2.4.3 Disease management

Since C. miyabeanus thrives on rice plants grown under suboptimal conditions, the first step in preventing yield losses due to brown spot disease is the maintenance of good agricultural practices. Ensuring sufficient nutrient and water and preventing abiotic stresses as much as possible reduces the risk of brown spot epidemics (Webster and Gunnell, 1992; Barnwal et al., 2013). Up to now no reports on ISR against C. miyabeanus are available. On the contrary, De Vleesschauwer and Höfte (2009) showed that even though root colonization by Serratia plymuthica IC1270 induced resistance against M.
oryzae, it renders rice plants hypersusceptible towards *C. miyabeanus*. Two conventionally used practices offer protection against *C. miyabeanus*. Firstly, the use of resistant cultivars offers the most consistent protection against the pathogen in the field. Although several resistant and partial-resistant cultivars are available, the search for sources of resistance against *C. miyabeanus* has been a difficult endeavor (Barnwal et al., 2013). Three quantitative trait loci (QTL) for disease resistance have been identified (Hossain et al., 2004; Sato et al., 2008), but up to date no real resistance genes have been identified. On the other hand, fungicides like iprodione, propiconazole, azoxystrobin, trifloxystrobin, and carbendazim are also effective in controlling brown spot in the field (Castilla and Savary, 2010). Even though resistant cultivars and agrochemicals are highly effective in reducing brown spot disease severity, there are some major drawbacks (see Chapter 1). The use of resistant cultivars leads to natural selection of pathogen isolates that can break through the plant’s defense mechanisms, which reduces the level of resistance of these cultivars (see section 2.2.2). Furthermore, excessive and non-regulated pesticide usage poses risks on environmental and human health. Moreover, *C. miyabeanus* mainly occurs in suboptimal rice production systems where farmers often cannot afford resistant seeds and/or agrochemicals. Other protection strategies exist that are more economical, durable and/or sustainable (Barnwal et al., 2013). First, since seeds are often infected with *C. miyabeanus*, seed treatments with hot water (53-55 °C, Mew and Gonzales, 2002) or a small amount of fungicide can reduce the introduction of *C. miyabeanus* to the field (Teng et al., 1994). Second, several reports also show the potential of biocontrol agents in protecting plants from *C. miyabeanus* either via direct antagonism or via the induction of ISR (Singh et al., 2005; see Chapter 2.2.2). Finally, another known method to manage brown spot disease in a sustainable and durable manner is the application of Si which will be discussed in chapter 3.

2.5 Si: broad-spectrum inducer of resistance against biotic and abiotic stress

2.5.1 Background

The second most abundant element in the Earth’s crust, silicon (Si) can comprise up to 70% of the soil mass in the form of silicate minerals and water-soluble orthosilicic acid [Si(OH)₄] (Epstein, 1994; Savant et al., 1997; Ma and Yamaji, 2006). The concentration of orthosilicic acid in the soil solution averages over 0.1 to 0.6 mM and is affected by its dissolution from soil minerals and its adsorption or resorption by the soil
Extreme conditions including high temperatures and rainfall increase the release of orthosilicic acid, explaining why most weathered soils in the tropics are Si-deficient (Savant et al., 1997; Richmond and Sussman, 2003). Orthosilicic acid \([\text{Si(OH)}_4]\) is taken up by plant roots and constantly polymerized into insoluble silica \([\text{SiO}_2.n\text{H}_2\text{O}]\) in cell walls, intercellular spaces and in a subcuticular layer in the leaves (Ma et al., 2011; Sangster and Hodson, 2001). Si is known to increase the tolerance against both abiotic and biotic stresses in many plant species and it is the only nutrient which is not detrimental when collected in excess (Epstein, 1994; Fauteux et al., 2005; Ma and Yamaji, 2006). According to the universally excepted criteria for the essentiality of a nutrient published by Arnon and Stout (1939), Si is not essential for plants. An important criterion herewith is the intrinsic occurrence of Si in the structure or metabolism of the plants, which to date has not been confirmed. Yet, a more recent definition of essential nutrients by Epstein and Bloom (2005) defines Si as essential because Si-deficient plants exhibit abnormalities in growth, development and reproduction. Amidst the ongoing debate on the essentiality of Si, most authors refer to Si as a ‘semi-essential’ nutrient (Epstein, 1999; Ma and Yamaji, 2006; Liang et al., 2007).

2.5.2 Si uptake in plants

Si is readily absorbed by plant roots in the form of noncharged monosilicic acid \([\text{Si(OH)}_4]\) (Ma et al., 2006). Various plant species, especially monocots, are known to actively absorb Si (Liang et al., 2005a). Since rice is a well-known Si accumulator and an important scientific model organism, the Si uptake mechanism has been most intensively studied in this plant species. In rice roots two Si transporters with a different mode of action are responsible for the transport of silicic acid past the casparian strips in exo- and endodermis cells (Figure 2.5). The influx transporter Lsi1 is located on the plasma membrane at the distal side of exo- and endodermis cells. Silicic acid is transported out of the exo- and endodermis cells through the Lsi2 transporters at the proximal side of these cells (Ma et al., 2006, 2007, 2011). The uptake of silicic acid by Lsi1 is a passive process, while the transport via the Lsi2 transporters is actively driven by an ATP-consuming \(\text{H}^+\)-pump. Once taken up by Lsi1 in the exodermis and released by Lsi2, silicic acid diffuses through the apoplast of the aerenchyma. Lsi1 transporters in endodermis cells take up the silicic acid from the aerenchyma and Lsi2 transporters load it into cortical cells. An unknown transporter is responsible for the xylem loading of silicic acid. Leaf cells take up silicic acid from the xylem by means of a Lsi1-like transporter, Lsi6. Inside the leaf cells, a natural polymerisation process takes place, transforming water soluble silicic acid into
insoluble silica (SiO$_2$.nH$_2$O$_x$) either inside the cell, as phytoliths and colloidal cytoplasmic silica or outside the cell, as a silica layer or silica bodies located just beneath the cuticle (Yamanaka et al. 2009; Ma et al. 2011).

In maize, barley, pumpkin and wheat, orthologues of rice Lsi1 and Lsi2 have been shown to be involved in Si absorption (Chiba et al. 2009; Mitani et al. 2009b,a, 2011; Montpetit et al. 2012). Although the Si transporters in different plant species are homologous to OsLsi1 and OsLsi2 in rice, the uptake of Si differs considerably between rice and other plant species due to differences in root architecture (Mitani et al. 2009b). In contrast with rice, the roots of most other plants lack both exodermal casparian strips and aerenchyma (Ma et al. 2011). The Lsi1 transporter in barley, maize and pumpkin occur at the distal side of all root cells between the epidermis and hypodermis, while Lsi2 is localized in endodermal cells without polarity. In the latter plant species Si appears to be taken up from the soil solution by Lsi1 outside the endodermis, while in rice Lsi1 transports Si exclusively at the exodermis (Mitani et al. 2009a,b; Bauer et al. 2011; Ma et al. 2011).

Figure 2.5: General uptake of Si in rice plants from root to shoot. From root epidermis cells silicic acid is transported through exodermis cells by the passive Lsi1 and the active Lsi2 Si transporters. In the aerenchyma silicic acid moves apoplastically until it reaches the endodermis where the Lsi1 and Lsi2 transporters load silicic acid in the cortical cells. An undefined transporter loads the silicic acid in the xylem. Via the xylem silicic acid arrives in the shoots, where the Lsi6 transporter unloads the silicic acid into the xylem parenchyma cells. An undefined protein transports the silicic acid in the leaf cells where it is polymerised either as silica in the cell or as a subcuticular silica layer outside the cell. Adapted from Ma and Yamaji (2006); Ma et al. (2011).
Chapter 2. Introduction

2.5.3 The importance of resistance trade-offs in rice production systems

Rice is the most important food crop of the developing world and the staple food of more than half of the world’s population. Diseases caused by microbial pathogens have always had a significant impact on rice production. Historically, severe epidemics have led to serious food shortages, claiming the lives of millions (Ou, 1985). Nowadays, diseases are still among the major constraints on high rice productivity. Fungal diseases such as rice blast (caused by *Magnaporthe oryzae*), sheath blight (*Rhizoctonia solani*), brown spot (*Cochliobolus miyabeanus* (sexual stage), also called *Bipolaris oryzae* (asexual stage)), and bacterial blight (*Xanthomonas oryzae pv. oryzae*) are the most serious constraints on high productivity (Webster and Gunnell, 1992). *R. solani* and *B. oryzae* are necrotrophic pathogens, *X. oryzae pv. oryzae* is considered to be a biotrophic pathogen while *M. oryzae* is hemi-biotrophic. Studies by Savary et al. (2000) demonstrate that among the many diseases occurring in rice fields, brown spot along with sheath blight, account for the highest yield losses across all production systems (5 and 6%, respectively). In comparison, estimated yield losses for rice blast and bacterial blight are 0.3-5% and less than 1%, respectively. These figures indicate that the sustained efforts of resistance breeding against blast and bacterial blight have paid off (Leung et al., 2003). Diseases such as sheath blight and brown spot have become more prominent due to either a lack of effective resistance in the germplasm or a lack of breeding effort. According to Leung et al. (2003) the challenge ahead is to develop broad-spectrum resistance and production systems that suppress multiple biotic stresses. Among these strategies, approaches based on the plant’s own defensive repertoire seem very promising for sustainable rice production (Song and Goodman, 2001).

Table 2.2 summarizes our current knowledge on the role of plant hormones and other selected plant activators on disease resistance in rice against its four major pathogens. Salicylic acid or compounds that act up- or downstream of SA in the SA-signaling pathway such as the plant activator probenazole or the SA analogues benzothiadiazole (BTH) and triadinil are effective against the rice blast fungus *M. oryzae* and the bacterial blight pathogen *X. oryzae pv. oryzae* but do not induce resistance to *C. miyabeanus* or *R. solani* (Iwai et al., 2006; De Vleesschauwer et al., 2010; Takatsuji et al., 2010; Shen et al., 2011). Jasmonate plays a positive role in the resistance to *M. oryzae*, *X. oryzae pv. oryzae* and *R. solani* (Taheri and Tarighi, 2010), but is ineffective against *C. miyabeanus*. Application of ABA enhances susceptibility to rice blast (Koga et al., 2004; Jiang et al., 2010) and bacterial blight (Xu et al., unpublished), has no effect on *R. solani*, but induces
resistance to the brown spot fungus *C. miyabeanus* [De Vleesschauwer et al., 2010]. ET is involved in rice blast resistance and it was shown that ET biosynthesis, but not ET itself is necessary for resistance to rice blast in young rice plants [Iwai et al., 2006]. A recent study by Shen et al. (2011) suggests, however, that ET has a negative role on resistance to bacterial blight. De Vleesschauwer et al. (2010) have likewise demonstrated that ET is involved in susceptibility to brown spot and that ABA-induced suppression of the ET response is involved in induced resistance to brown spot. The plant hormone auxin also plays contrasting roles in the interaction of rice with blast and bacterial blight on one hand, and brown spot on the other hand. Exogenous application of the auxin indole-3-acetic acid (IAA) increased susceptibility to bacterial blight [Ding et al., 2008] and blast [Fu et al., 2011], while it increased resistance to brown spot [Fonteyne, 2011]. A rice line overexpressing OsGH3.1, a gene encoding an IAA amido synthetase that inactivates IAA by conjugating it to amino acids, was more resistant to *M. oryzae* [Domingo et al., 2009], but Fonteyne (2011) revealed that this line is very susceptible to *C. miyabeanus*. These data clearly show that rice requires distinct signal transduction pathways to defend itself to its major pathogens and that trade-offs are especially apparent between pathogens with a contrasting life style such as *M. oryzae* and *C. miyabeanus*. Although both *R. solani* and *C. miyabeanus* are necrotrophic fungal pathogens, accumulating evidence suggests that also against the latter pathogens distinct resistance mechanisms are operative. Exogenous ABA, although highly effective against *C. miyabeanus*, failed to reduce sheath blight severity, whereas application of riboflavin, a water-soluble B vitamin thought to function via activation of JA-dependent defenses [Taheri and Tarighi, 2010], induces resistance to *R. solani* while increasing susceptibility to *C. miyabeanus* (De Vleesschauwer et al., unpublished).

A similar picture emerges from our studies on rhizobacteria-mediated resistance in rice. The root-colonizing *Pseudomonas aeruginosa* strain 7NSK2 was found to activate ISR against *M. oryzae* and the blue phenazine pigment pyocyanin appeared to be an essential determinant of 7NSK2-mediated ISR. However, pyocyanin acts as a two-faced ISR elicitor, positively modulating protection against *M. oryzae*, but repressing *R. solani* resistance. Transient generation of low-level micro-oxidative bursts by redox-active pyocyanin in planta most likely accounts for the dual role of this compound in 7NSK2-ISR as exogenous application of H$_2$O$_2$-quenching sodium ascorbate alleviated the contrasting effects of pyocyanin on *R. solani* and *M. oryzae* pathogenicity [De Vleesschauwer et al., 2006]. Later it was shown that topical application of pyocyanin also triggers susceptibility to *C. miyabeanus* [De Vleesschauwer et al., 2009]. Similar findings were obtained in response to root treatment with *Serratia plymuthica* strain IC1270. Although highly effective
against *M. oryzae*, arresting the pathogen in its biotrophic phase by boosting infection-induced H$_2$O$_2$ accumulation in the epidermis, IC1270 colonization resulted in enhanced tissue colonization by both *R. solani* and *C. miyabeanus* (De Vleesschauwer et al., 2009). The effect of reactive oxygen species-fueled hypersensitive response (HR) like cell death thus clearly varies according to the mode of infection of the invading pathogen. In this context, it can be hypothesized that the widespread circulation of high-yielding, semi-dwarf varieties carrying multiple blast resistance genes might be an important factor driving the overall increase in sheath blight incidence that is typically observed in intensified rice production systems (Mew et al., 2004). In this respect we have observed that pre-inoculation with an avirulent HR-triggering *M. oryzae* isolate favours subsequent infection with *R. solani* (De Vleesschauwer et al, unpublished).

Table 2.2 reveals that there is not one a single hormone, plant activator or resistance elicitor that is active against all four major rice pathogens. Moreover, in many cases, resistance to one pathogen is coupled to enhanced susceptibility against others, clearly demonstrating the occurrence of resistance trade-offs. The notable exception, however, is Si, which triggers broad-spectrum resistance against all four pathogens.
Table 2.2: Effect of plant activators on the defence response of rice against its major fungal and bacterial pathogens.

<table>
<thead>
<tr>
<th>Plant activators</th>
<th>Magnaporthe oryzae</th>
<th>Xanthomonas oryzae pv. oryzae</th>
<th>Cochliobolus miyabeanus</th>
<th>Rhizoctonia solani</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probenazole</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Riboflavin</td>
<td>+</td>
<td>NT</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Silicon</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Bacterial elicitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudobactin</td>
<td>+</td>
<td>NT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pyocyanin</td>
<td>+</td>
<td>NT</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Plant activators</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auxin</td>
<td>NT</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Abscisic acid</td>
<td>0</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Jasmonic acid</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ethylene</td>
<td>NT</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

References

- Probenazole: Takatsuji et al. (2010); Watanabe (1977)
- Riboflavin: Aver'yanov et al. (2000); Taheri and Tarighi (2010)
- Silicon: Chang et al. (2002); Dallagnol et al. (2011b); Rodrigues et al. (2003, 2004)
- Pseudobactin, Pyocyanin: De Vleesschauwer et al. (2008)
- Auxin: Ahn et al. (2005); Babu et al. (2003); Takatsuji et al. (2010); Mei et al. (2006); Schweizer et al. (1998); Taheri and Tarighi (2010); Tao et al. (2009)
- Abscisic acid: Jiang et al. (2010); De Vleesschauwer et al. (2010)

Table 2.2: Effect of plant activators on the defence response of rice against its major fungal and bacterial pathogens.
2.5.4 Si-induced broad spectrum resistance in rice

Si application is known to induce broad spectrum stress tolerance in many plant species without the occurrence of resistance trade-offs and/or growth and yield penalties (Epstein, 1999; Fauteux et al., 2005; Ma and Yamaji, 2006; Currie and Perry, 2007; Epstein, 2009; Tripathi et al., 2014). As such, addition of Si is one of the only plant protection strategies that enable plants to maximize efficiency in responding to the exact set of environmental conditions encountered, at the same time as conserving resources for growth and development. These traits make Si nutrition one of the most promising approaches for sustainable, environmentally sound and broad-spectrum disease control in various agricultural contexts.

Originally, the prophylactic role of Si treatment was attributed to the deposition of silica in the leaves, which was believed to act as a physical barrier (Jones and Handreck, 1967). Though important, accumulating evidence indicates that this passive role of Si is not solely determinant for the Si-elicited stress protection. Indeed, analyses of different plant species showed that Si nutrition can boost the expression of a large spectrum of inducible defense responses dependent on the type of stress.

Many articles report the positive influence of Si on rice plants during drought, radiation, salt, cold and heavy metal stress (Chen et al., 2011; Fang et al., 2011; Fu et al., 2012; Ming et al., 2012; Chalmardi et al., 2013; Shi et al., 2013; Tripathi et al., 2013; Kim et al., 2014; Tripathi et al., 2014). In most of these reports, Si is believed to confer stress tolerance by preventing stress-induced premature senescence and cell death due to impairment of the photosynthesis machinery. Si also protects rice plants against herbivore attacks (Reynolds et al., 2009) presumably due to priming of JA-mediated defense responses (Ye et al., 2013).

Furthermore, Si increases the level of resistance against many plant pathogens. For instance, in cucumber roots, Si treatment ensures an enhanced activity of chitinases, peroxidases, polyphenol oxidases and flavonoid phytoalexins after infection with Pythium spp. (Chérif et al., 1994), while in leaves an increased concentration of antifungal components protects the plant against the powdery mildew pathogen Podosphaera xanthii and the necrotrophic fungus Colletotrichum lagenarium (Fawe et al., 1998; Liang et al., 2005b). In cucumber leaves, a strongly cationic protein reinforces the cell wall at the site of attempted pathogen ingress by enhancing silica deposition, thus preventing infection by C. lagenarium (Kauss et al., 2003). Similarly, recent research on the beneficial effect of Si in roses clearly shows that the heightened resistance against Podosphaera pannosa is the result of an increased formation of papillae and deposition of callose and H$_2$O$_2$, along with an upregulation of the phenylpropanoid pathway producing antimicrobial
phenolic compounds and flavonoids (Shetty et al., 2011, 2012). Si-treatment also protects *Arabidopsis* from powdery mildew (*Erysiphe cichoracearum*), due to the accumulation of fungitoxic phenolic compounds and silica depositions at the site of infection (Ghanmi et al., 2004; Fauteux et al., 2005). In wheat, Si-induced resistance against *Blumeria graminis* f. sp. tritici is associated with increased papillae formation and accumulation of callose, fungitoxic phenolic compounds and methylated forms of trans-aconitate (Bélanger et al., 2003; Rémus-Borel et al., 2005, 2009).

However, the mode of action of Si against different pathogens is best-described for rice. Against the necrotrophic sheath blight fungus *Rhizoctonia solani*, Si application increases the activity of the defense-related enzymes polyphenoloxidase (PPO) and phenylalanine ammonialyase (PAL) (Zhang et al., 2013). The resulting accumulation of phenolic compounds is a well-described defense response (Benhamou and Nicole, 1999; Cheynier et al., 2013) which explains the positive influence of Si on rice resistance against *R. solani* (Zhang et al., 2013). Furthermore, application of Si significantly increases resistance against the necrotrophic fungus, *Cochliobolus miyabeanus* (Dallagnol et al., 2009). Si-induced brown spot resistance is hallmarked by increased photosynthesis, chitinase activity and the accumulation of fungitoxic phenolic compounds (Dallagnol et al., 2011a, 2013). The prophylactic effect of Si is best characterized for rice leaves infected with rice blast, caused by the hemibiotrophic fungus, *Magnaporthe oryzae*. The defense response in resistant cultivars is commonly associated with the induction of rapid cell death around the site of infection preventing fungal invasion of rice leaves, also referred to as a hypersensitive response (HR). However, Si application seems to prevent both HR-mediated cell death in both susceptible and resistant cultivars as well as *M. oryzae*-induced senescence and subsequent cell death (Rodrigues et al., 2005). Si-induced rice blast resistance is characterized by an increase in photosynthetic abilities, augmented activity of PPO and PAL and the accumulation of fungitoxic phytoalexins and phenolic compounds at the site of infection (Rodrigues et al., 2003, 2004; Gao et al., 2011). Elaborate microscopic analysis showed that in Si-treated rice leaves infected with *M. oryzae*, fungal hyphae were embedded in an amorphous matrix containing silica and aromatic phenolic components which restricted fungal growth (Kim et al., 2002; Rodrigues et al., 2003; Cai et al., 2008).

In an attempt to unravel the mechanisms of Si-induced resistance against *M. oryzae*, a transcriptional analysis on the effect of Si and rice blast infection on rice leaves was performed (Brunings et al., 2009). In this study, Si application alone led to the up- and downregulation of 105 and 116 genes respectively, among which metal transporters, transcription factors, peroxidases and defense-related proteins. Interestingly, Si also dictated transcriptional reprogramming of extensive gene sets in blast-infected rice leaves,
Chapter 2. Introduction

triggering the up- and downregulation of 272 and 26 genes respectively, including ethylene signaling genes, chitinases, a thaumatin/pathogenesis-related protein, a class III peroxidase and a number of transcription factors and protein kinases.

Although the significance and causal roles of many of these responses remain to be resolved, the wide variety of immune responses influenced by Si amendment clearly demonstrates its potential to act as a biological inducer of plant innate defense responses. Moreover, the observation that all prophylactic effects are lost within a short period of time after Si feeding is interrupted, clearly suggests that the role of Si as a modulator of basal defense responses is dominant over its function as a mechanical barrier (Samuels et al., 1991; Fawe et al., 1998; Fauteux et al., 2005, 2006; Chain et al., 2009; Zargar et al., 2010; Ghareeb et al., 2011). Despite the fact that many of the previous mentioned articles provide a first insight into the myriad cellular processes targeted by Si and identifying numerous Si-responsive transcripts in both healthy and infected rice plants, these studies have only scratched the surface and much remains to be discovered about the precise mechanisms underpinning Si-induced disease resistance.

2.6 Mechanisms of Si action

Although the beneficial effects of Si on disease resistance in plants have been known for years, few reports in the literature have focused on understanding the mechanistic basis and regulation of this response. Here we aim to propose several potential mechanisms that can explain the prophylactic role of Si by approaching this enigma from two different sides, i.e. from a diatom and plant point of view.

Even though the essentiality of Si in plant biology is still heavily debated (see above), in a few primitive life forms, such as diatoms, Si is required for growth and development (Martin-jézéquel et al., 2000; Kinrade et al., 2002). Diatoms are encased with a silica-containing cell wall, called a frustule and the polymerisation of Si to a viable frustule is an energy-consuming process that depends on photorespiration (Martin-jézéquel et al., 2000). However, diatoms also depend heavily on Si for many non-cell wall related processes, including protein phosphorylation, DNA replication and DNA-protein interactions (Sullivan and Volcani, 1973; Okita and Volcani, 1978; Reeves and Volcani, 1984). Like plants, diatoms contain several Si transporters, often arranged in gene families, but these transporters are different in both their structures and functions from their plant counterparts (Hildebrand et al., 1998; Ma et al., 2004). Most tellingly, ectopic expression of a Si transporter gene from diatoms in transgenic tobacco had no significant impact on Si uptake, indicating fundamental differences in Si absorption between plants and diatoms.
These differences notwithstanding, insights into the significance and regulation of Si-mediated processes in diatoms may potentially shed new light on the poorly understood role of Si in plant stress responses. In the subsequent parts of this review, we therefore aim to uncover Si-mediated regulatory mechanisms in diatoms that also may apply to higher plants and evaluate whether these processes can contribute to broad spectrum disease resistance (Raven 2003; Thamatrakoln et al. 2006; Currie and Perry 2007; Pondaven et al. 2007). Moreover, building upon recent progress in identifying and characterizing the genes and molecular pathways that are involved in regulating Si-induced plant defense, we propose five hypothetical mechanisms that may explain how Si elicits broad spectrum disease resistance.

2.6.1 Si-induced priming for enhanced defense

Over the past decade, a number of transcriptomic and proteomic studies have been performed to explain the protective role of Si in various pathosystems (Watanabe et al. 2004; Fauteux et al. 2006; Chain et al. 2009; Zargar et al. 2010; Ghareeb et al. 2011; Nwugo and Huerta 2011). One of the most salient results of these studies is that Si has very little impact on the metabolism of non-stressed plants. In rice, for instance, Si treatment was found to alter the abundance of as few as 4 proteins in the absence of stress, as compared to 57 in plants responding to both Si and cadmium stress (Nwugo and Huerta 2011). Similar findings were obtained in several microarray studies on the effect of Si in rice, wheat, Arabidopsis and tomato (Watanabe et al. 2004; Fauteux et al. 2006; Chain et al. 2009; Ghareeb et al. 2011). Together with the ability of Si-treated plants to adapt to multiple types of stresses without the occurrence of resistance trade-offs, these data are compatible with the view that Si application does not directly induce immunity but rather primes plants for enhanced defense in response to pathogen attack.

One notable exception, however, is a study by Brunings et al. (2009) in which Si was shown to significantly alter the basal expression level of more than 220 rice genes. This result strikingly contrasts with previous work by Watanabe et al. (2004) who, using a similar hydroponic rice growing system, found approximately ten times less genes to be differentially expressed. Although differences in rice cultivars, microarray platforms and statistical settings used in both studies cannot be excluded, none of these factors justifies a ten-fold difference in the number of Si-responsive genes. Another confounding factor, however, involves the plant growth conditions. The literature is replete with reports that Si promotes plant growth and development especially when the plant is under some form of stress (Epstein 1999; Fauteux et al. 2005, 2006). In line with this, one could speculate that Si-treated plants display very little differential gene expression when grown...
under optimal conditions, whereas short and/or moderate stress episodes that may go unnoticed at the phenotypic level potentially amplify the influence of Si on the plant’s basal transcriptome.

Because priming initiates a state of readiness that does not confer resistance per se, but allows for accelerated induced resistance once an attack occurs, one presumed benefit of priming is that it entails less fitness costs than direct activation of defense (van Hulten et al., 2006). Moreover, priming is thought to confer flexibility to adapt the defense response to a specific challenge, leading to a less costly and broad-spectrum resistance (Van der Ent et al., 2008; Conrath, 2011). Although the molecular aspects of priming are still poorly understood, the induction of priming is increasingly associated with a subtle increase in the level of inactive signaling components such as MAP kinases and transcription factors (Conrath, 2011). After perception of a second, pathogen-derived signal, the enhanced signaling capacity in primed plants would facilitate a faster and stronger immune response. Consistent with available articles on Si, it is not inconceivable that the broad spectrum disease resistance in Si-treated rice is at least in part the result of priming.

2.6.2 Si-hormone interactions

An additional mechanism by which Si may impact pathological outcomes is by influencing endogenous hormone balances. Corroborating this concept, mounting evidence suggests that Si is intimately associated with plant hormone signaling. In soybean, for instance, Si treatment reportedly induces synthesis of gibberellic acid, while Si-treated rice accumulates slightly higher levels of gibberellin and jasmonic acid and lower levels of ethylene (Lee et al., 2010; Hwang et al., 2007).

However, consistent with its putative role as a biological priming agent (see above), major effects of Si on plant hormone responses are only seen upon pathogen attack. In one of the first microarray studies on Si-treated plants, Fauteux et al. (2006) demonstrated the stimulating effect of Si on the biosynthesis of the stress hormones salicylic acid, jasmonic acid and ethylene in leaves challenged with the powdery mildew pathogen *Erysiphe cichoracearum*. Similarly, microarray analysis of rice infected with *Magnaporthe oryzae* showed that Si triggers activation of the ethylene signaling pathway, the role of which in resistance to blast is well established (Iwai et al., 2006; De Vleesschauwer et al., 2008; Brunings et al., 2009). Furthermore, in Si treated tomato plants infected with *Ralstonia solanacearum* both jasmonic acid and ethylene signaling pathways were found to be induced, leading to increased resistance (Zhang et al., 2004; Chen et al., 2009).
Although the underlying molecular mechanisms remain poorly understood, these data clearly demonstrate the potential of Si to interfere at multiple levels with hormone biosynthesis and response pathways. Moreover, these findings suggest that Si does not impose continuous changes in phytohormone homeostasis, but rather primes hormone biosynthesis and signaling processes, creating a flexible signaling network that allows the plant to finely tune its defense response to the invaders encountered. Verifying whether the versatile role of Si may indeed be attributed to high-dimensional interactions with the plant’s hormone signaling network is an important challenge ahead.

2.6.3 Targeted alterations in iron homeostasis: an alternative mechanism for Si-induced disease resistance?

Iron (Fe) is a ubiquitous redox-active element and an essential micronutrient for plants and associated microorganisms. Despite its paramount importance for plant growth and reproduction, iron has only recently been identified as a central factor regulating plant pathogen defenses. Consistent with disease-related alterations in iron homeostasis in animals (Rouault, 2006; Liu and Mehdy, 2007; Brissot et al., 2011; Abed-Ashtiani et al., 2012) proposed a model whereby pathogen attack elicits the targeted redistribution of Fe to the apoplast, leading to Fe depletion in the cytosol of attacked cells and resultant activation of redox-dependent defense gene expression. Interestingly, plant Fe titers have also been shown to be a central factor in the induction of systemic resistance by beneficial rhizobacteria (De Vleesschauwer et al., 2008; Van der Ent et al., 2008). Many rhizobacteria competitively acquire ferric iron by producing large amounts of low-molecular-weight compounds or siderophores, called pyoverdins or pseudobactins. Given the scarcity of bio-available iron and the high affinity of pseudobactins for this ferric iron, pseudobactin-producing rhizobacteria are thought to interfere with the iron acquisition of other soil organisms, including the host plant. Accordingly, we recently showed a strict correlation between the resistance-inducing potential of bacterial pseudobactins and their ability to deprive young rice seedlings from iron (De Vleesschauwer and Höfte, 2009).

Considering that the total iron content of Si-treated plants is reduced by on average 20% (Islam and Saha, 1969; Ma and Takahashi, 1990), it is tempting to speculate that Si may likewise induce disease resistance by perturbing iron homeostasis. In favour of this assumption, transcriptome analysis of Si-treated rice leaves revealed transcriptional reprogramming of several genes implicated in regulating intracellular iron homeostasis (Brunings et al., 2009). Moreover, the expression patterns of these genes
mirrors those observed in iron-deficient rice leaves, further supporting our hypothesis (Gross et al., 2003; Kobayashi et al., 2005; dos Santos and de Oliveira, 2007; Walker and Connolly, 2008). It is important to note, however, that Si amendment does not impose severe levels of iron stress as evidenced by its growth-promoting abilities. Rather, Si application may trigger dynamic yet subtle changes in plant Fe status, thereby preconditioning naive tissues to respond faster and stronger upon subsequent pathogen attack.

Several mechanisms can explain Si-induced alterations in iron homeostasis. First, Si-application is well known to protect plants from iron toxicity by enhancing the oxidizing power of root tissues, which leads to increased oxidation of iron into iron oxides (Savant et al., 1997; Fleck et al., 2011). Being water-insoluble, these oxides cannot be absorbed by the roots and thereby lower the total amount of bio-available iron in the rhizosphere, potentially resulting in intracellular iron depletion (Okuda and Takahashi, 1964). Secondly, Si and iron are able to interact and many iron molecules can be co-precipitated in silica. There are, for instance, reports of Fe$^{2+}$ binding directly to silica and also Fe$^{3+}$-chelating siderophores can bind Si (Perry and Keeling-Tucker, 1998; Saeki, 2004; Liang et al., 2007; Schmiederer et al., 2011). Finally and as indicated by aforementioned microarray data (Brunings et al., 2009), Si may impinge on the plant’s Fe status by interfering either directly or indirectly with specific components of the iron uptake and signaling machinery.

2.6.4 Linking Si-driven photorespiration to plant immunity

The polymerisation of Si in diatoms is essential for the formation of cell walls and is therefore determining for the growth and viability of diatoms. The driving force behind Si polymerisation is respiration rather than photosynthesis. Especially photorespiration is essential in providing ATP, serine and glycine, all of which are necessary for the polymerisation of silicic acid in diatoms (Martin-Jézéquel, 1998; Martin-jézéquel et al., 2000). Photorespiration is generally considered a wasteful process that occurs in C3-plants under specific conditions. Mounting evidence, however, suggests that photorespiration might also be an important mechanism for many C3-plants to cope with abiotic and biotic stress by maintaining electron flow to prevent photoinhibition. Many processes are involved in photorespiration-mediated stress defense, including the production of oxygen radicals, increased assimilation of ammonium and replenishment of mitochondrial respiration. The outcome of these processes are extremely diverse, ranging from rapid cell death to increased longevity of the plants (Wingler et al., 2000; Foyer et al., 2009; Guan and Gu, 2009; Kangasjärvi et al., 2012). Whereas induced cell death is often effective against biotrophic pathogens, an increase in cell viability generally leads to an
increased resistance against necrotrophic pathogens (Glazebrook 2005). Accordingly, recent advances have brought several exciting new molecular links to support a central role of photorespiration in biotic and abiotic stress-response signaling. For instance, transgenic rice lines with increased chloroplastic glutamine synthetase activities were recently shown to be more resistant towards salt stress, an effect which the authors attributed to the increased photorespiration capacity associated with the transgenic phenotype (Hoshida et al. 2000; Cai et al. 2009). Similarly, expression of the photorespiratory enzymes, formate-tetrahydrofolate ligase and hydroxypyruvate kinase was found to be increased under cadmium stress in Arabidopsis cells and pea plants (Romero-Puertas et al. 2007; Sarry et al. 2006). In a different example, overexpression of three key photorespiratory genes encoding glycolate oxidase, serine:glyoxylate aminotransferase and glutamate:glyoxylate aminotransferase increased resistance in melon and Arabidopsis against the (hemi)biotrophs Pseudoperonospora cubensis and Pseudomonas syringae, respectively (Kenigsbuch and Cohen 1992; Taler et al. 2004; Rojas et al. 2012). In accordance with this, loss-of-function mutations in another important photorespiratory enzyme, serine hydroxymethyltransferase, resulted in broad spectrum susceptibility of Arabidopsis against the biotroph P. syringae pv. tomato DC3000 and the necrotrophic fungi Alternaria brassicicola and Botrytis cinerea (Moreno et al. 2005).

Evidence connecting photorespiration to Si-afforded stress tolerance comes from Nwugo and Huerta (2011), who reported that the beneficial effect of Si in protecting rice from cadmium stress is associated with enhanced accumulation of the photorespiratory enzymes phosphoglycolate phosphatase and glycine dehydrogenase. Furthermore, intensive screening of the photosynthetic capacities in Si-treated rice plants revealed significant increases in photorespiratory ability due to Si treatment (Van Bockhaven et al., unpublished). Additional evidence supporting a role of photorespiration in Si’s mechanism(s) of action is currently missing; however, given the fact that photorespiration is important for disease resistance against various pathogens (see above), it is not unlikely that Si-driven photorespiration may be an important mechanism leading to broad-spectrum disease resistance.

2.6.5 Interaction of Si with plant molecules

Although complex formation of orthosilicic acid by certain sugars and hydroxyl-amino acids has been demonstrated in vitro (Jugdaohsingh 2007), there is no definitive evidence yet that Si binds to proteins or has direct biochemical functions at physiological pH. Nevertheless, consistent with the emerging role of Si as a biologically active element capable of inducing plant defense responses, Si is increasingly being associated with
modulation of primary signal transduction. Fauteux et al. (2005) hypothesized that Si’s mode of action in signaling events could result from interactions with phosphorus and/or cationic metals such as Mn and Fe, which act as cofactors for many enzymes. Alternatively, though less parsimoniously, it was suggested that Si may impinge on protein activity and/or conformation by binding hydroxyl groups on amino acid residues, thereby interfering with the phosphorylation status of these signaling proteins (Fauteux et al., 2005). As for other molecular interactions, complex formation and/or interaction of cellular components and silicic acid may alter the location, activity, transport and/or selectivity of the complexed molecules. In this scenario, Si could influence the plant’s defense responses at the post-translational stage, providing yet another mechanistic framework for how Si improves disease resistance without inducing major changes in the transcriptome and proteome of non-stressed plants. Additional research is essential in exploring this train of thought, but more advanced proteomics analyses on Si-treated plants might shed more light on the potential roles of Si as a post-translational modifier of plant defense signaling.

2.6.6 Interaction of Si with xenobiotics

Echoing the interaction between Si and plant molecules, Si might possibly interact with xenobiotics, such as excessive concentrations of metal ions, pathogen effectors and phyto-toxins in a similar manner. Even though, there is no evidence for this hypothesis, inhibiting the negative effect of xenobiotics due to adsorption by Si might explain why pathogens often fail to cause damage to Si-treated plants (see Section 2.5.4). For instance, Si application is known to prevent the toxic effects of excessive uptake of metal ions by adsorption of the ions on silica outside the cell (Wu et al., 2013). X-ray analysis of Si-treated pumpkin under Mn stress (Rogalla and Römheld, 2002) and rice plants under Cd and Zn stress (Shi et al., 2005; Gu et al., 2011; Song et al., 2011) showed a significant increase in deposition of a subcuticular silica layer (Shi et al., 2005). Moreover, the silica layer in rice plants under Cd and Zn stress contained higher amounts of these metals (Zhang et al., 2008). These findings indicate that the co-precipitation of Si and excessive metal ions might be responsible for the increase in tolerance towards metal toxicity in Si-treated plants. Since the export of xenobiotics towards the apoplast is a common defense strategy in plants (Horst et al., 2010; Seth, 2012), it is possible that metal ions, effectors and phyto-toxins are exported to the plant’s apoplast, adsorbed and embedded in the subcuticular silica layer which probably prevents their negative influence on plant metabolism.

An alternative mechanism is based on the assumption that Si itself might be 'harmful'
for plants. Si uptake results in the continuous deposition of a subcuticular layer, which might be necessary to ensure normal functioning of plants (Ma and Yamaji 2006). The importance of exporting Si outside plant cells is demonstrated by Montpetit et al. (2012). Constitutively expressing the rice and wheat Si influx transporters OsLsi1 and TaLsi1 in Arabidopsis which is characterized by a low Si uptake demonstrated that Arabidopsis can not cope with a massive intake of Si in the cytosol of leaf cells. Due to Arabidopis’ inability to export large quantities of silicic acid outside leaf cells, a silica layer is deposited inside the cell which inhibits all transport in- and outside the cell, leading to cell death and necrosis (Montpetit et al. 2012). The fact that the efflux of Si from plant leaves is essential, led to several hypotheses on the physical effect of Si in plant cells. First, it is possible that both plant molecules and/or xenobiotics that are adsorbed to Si inside the cytosol might be exported outside the cell along with the continuous efflux of Si towards the subcuticular silica layer where they are embedded and immobilized. Second, the constant efflux of Si is hypothesized to activate other transport systems in order to maintain the membrane pH gradient, cytosolic osmotic potential, ion concentration etc. thus transporting other components, such as xenobiotics, outside the cell ass well, where they might possibly be adsorbed by Si outside the cell, thus inhibiting their negative effects on the plant metabolism.

2.7 Conclusion

Although many treatments are reported to induce resistance against plant pathogens, there are very little strategies that induce broad spectrum disease resistance without trade-offs. Si is one of the only exceptions, rendering plants more resistant towards a wide range of abiotic and biotic stresses. The prophylactic role of Si is the result of both passive and active effects. Many studies on Si-induced broad spectrum resistance report that the active effect is prevalent. However, the molecular underpinnings of Si-mediated broad spectrum disease resistance are still poorly understood. By combining knowledge on Si metabolism in diatoms and higher plants, we propose five potential mechanisms that may explain how Si activates plant innate immune responses. First, evidence is accumulating that Si induces resistance against a wide range of stress factors by modifying the intensity and/or timing of basal defense responses. The differential expression of several transcription factors in Si-treated rice plants strengthens the hypothesis that Si primes the plant’s own defensive repertoire, resulting in rapid deployment of natural defense mechanisms upon pathogen attack. In a similar vein, Si application may induce disease resistance by affecting plant hormone homeostasis, the role of which in shaping the outcome of plant-pathogen interactions is well established (Robert-Seilaniantz et al.)
Third, the diverse beneficial role of photorespiration in plants under biotic stress, the dependency of Si polymerisation on photorespiration in diatoms and the accumulation of photorespiratory enzymes in Si-treated plants following stress treatment, argues that photorespiration may be an important factor in Si-induced disease resistance. Another putative mechanism involves the role of Si in maintaining and adjusting cellular iron homeostasis. Si treatment seems to be accompanied by subtle yet dynamic changes in iron homeostasis, a phenomenon which shows strong commonalities to the mechanism of action of several resistance-inducing rhizobacteria. Finally, Si may interact either directly or indirectly with various signal transduction components, resulting in enhanced signaling capacity in Si-treated plants and fortified defense responses. Hypothetical in nature, each of these mechanisms requires extensive experimental validation, but may serve as a primer for future research aimed at delineating the molecular basis and regulation of Si-afforded disease control.

Given the huge potential and value of Si nutrition in stress management, the application of a range of biotechnological strategies based on the modulation of Si content and its signaling effects could provide a unique tool for the genetic improvement of crop productivity in a sustainable manner. Classic genetic approaches and genome-wide transcriptional analyses are now beginning to unveil large numbers of Si targets, shedding light on the complexity and diverse activity of Si in plants. An important challenge in the coming years, however, will be unraveling the exact mechanisms of Si-induced pathogen defenses in a systems biology-based manner. This is especially important as studying how Si is able to induce plant broad-spectrum disease resistance without inducing resistance trade-offs and appreciable fitness penalties will require profound knowledge of both the transcriptional and post-transcriptional fate of the target response. Special efforts should also be paid to uncovering the crosstalk mechanisms between Si and other plant growth regulators. At the same time, controlled field experiments will be critical in understanding the physiological behavior of Si-induced plants under various stress conditions. By combining all of abovementioned approaches, we may finally make sense of Si-induced disease control.
Transcriptome analysis of Si-induced brown spot resistance in rice

Authors
Jonas Van Bockhaven1, Salma Balazadeh2, Bernd Müller-Röber2, 3, Kathy Steppe4, Ingvar Bauweraerts4, Shoshi Kikuchi5, Takayuki Asano5, Monica Höfte1 and David De Vleeschauwer1

Affiliations
1Laboratory of Phytopathology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
2Institute of Biochemistry and Biology, Potsdam University, Potsdam-Golm, Germany
3Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
4Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
5Plant Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Japan
Abstract
In face of the ever-increasing loss of arable land, shrinking fresh water resources and global climate change, feeding the world’s burgeoning population in coming decades will be a daunting task. One of the solutions to safeguard global food security is to minimize yield losses caused by biotic and abiotic stresses. Over the past decades, application of silicon (Si) has emerged as a promising disease control strategy that is able to protect plants against a broad range of microbial pathogens, among which the necrotrophic rice brown spot fungus Cochliobolus miyabeanus. However, despite this huge potential, relatively little is known about the precise mechanisms by which Si induces broad-spectrum disease resistance. In an attempt to unveil the molecular underpinnings of Si-induced disease resistance, we studied the transcriptome of control and Si-treated rice plants subjected to C. miyabeanus infection using Agilent 44K oligo DNA arrays. The data obtained were analysed using a variety of bioinformatic approaches suitable for rice functional genomics. Brown spot development is hallmarked by the formation of necrotic disease lesions surrounded by extensive chlorosis. Interestingly, analysis of brown-spot infected plants suggested that C. miyabeanus actively represses photosynthetic processes in order to trigger premature senescence and, hence, inflict disease. In Si-treated plants, however, this pathogen-induced suppression of photosynthesis was strongly impaired, suggesting that Si alleviates biotic stress imposed by the pathogen. Further analysis of the effect of Si in brown spot infected leaves demonstrated significantly increased levels of photorespiration in these plants. Even though photorespiration is often considered a wasteful process in C3 plants like rice, recent studies indicate that this metabolic bypass also indirectly enhances resistance during abiotic stress and pathogen attack by protecting the plant’s photosynthetic machinery. Taking these facts into account, our findings favor a scenario whereby Si enhances brown spot resistance at least in part by boosting photorespiration-associated metabolism, thereby counteracting C. miyabeanus-induced senescence and cell death. Moreover, our results shed light onto the mechanistic basis of Si-afforded disease control and support the view that in addition to activating plant immune responses, Si may also reduce disease severity by interfering with pathogen virulence strategies.
Chapter 3. Transcriptome analysis of Si-induced brown spot resistance in rice

3.1 Introduction

Silicon (Si), a commonly available element in many soils is absorbed by plant roots in the form of noncharged silicic acid [Si(OH)]$_4$ [Ma and Yamaji 2006]. A specific transporter system transports Si through the xylem into leaf cells (see Chapter 2.5). Over time, water-soluble silicic acid is deposited into an insoluble, subcuticular silica layer in the leaves, which renders Si-treated leaves more rigid. The application of Si has manifold effects of plants leading to an increased growth and yield and conferring resistance against a variety of biotic and abiotic stresses (Fauteux et al., 2005; Ma and Yamaji, 2006; Epstein, 2009; Guntzer et al., 2011). In order to disentangle the molecular underpinnings of Si-induced broad spectrum disease resistance, a series of transcriptional and proteome analyses in different plant species including rice, Arabidopsis, wheat and tomato have been performed (Fauteux et al., 2005; Brunings et al., 2009; Chain et al., 2009; Fleck et al., 2011; Ghareeb et al., 2011; Nwugo and Huerta, 2011).

Two different views emerge from theses studies, namely the hypothesis that Si-induced priming is responsible for broad spectrum resistance on one hand and the hypothesis that Si induces stress tolerance at least in part through its effects on the plant’s metabolism on the other hand.

Si-mediated priming is often suggested to be responsible for enabling faster and/or stronger activation of defense responses when necessary, which offers a more efficient disease protection at lower energy costs (Fauteux et al., 2005; Ghareeb et al., 2011; Ye et al., 2013; see section 2.6.1). The current understanding of the molecular mechanisms that govern priming is still in TFs) (Pastor et al., 2013). During pathogen infection post-translational activation of the signaling components subsequently leads to rapid recruitment of defense responses resulting in increased disease resistance (Conrath et al., 2006; Conrath, 2011). For instance, in Arabidopsis plants treated with the chemical priming agent benzothiadiazole (BTH) or in the constitutive priming mutant edr1, priming of defense responses is associated with accumulation of inactive MPK3 and MPK6 (Beckers et al., 2009). Subsequent infection with the pathogen *Pseudomonas syringae* pv. *tomato* (Pst) leads to a stronger accumulation of active MPK3 and MPK6 in the primed plants resulting in increased levels of resistance, whereas in mpk3 and mpk6 mutants BTH-mediated resistance against Pst is attenuated. Moreover, Arabidopsis root colonization with *Pseudomonas fluorescens* WCS417r is known to prime defense responses against Pst and the downy mildew pathogen *Hyaloperonospora arabidopsidis* (Pieterse et al., 1998; Pozo et al., 2008). The WCS417r-mediated priming process depends on the expression of both ET-inducible AP2/EREBP TFs and jasmonic acid (JA)-responsive MYC2 TF (Pozo et al.
In primed Arabidopsis plants, elevated MYC2 expression is responsible for priming the expression of JA-responsive genes during infection with *Pst*, ultimately leading to increased resistance. Moreover, in Arabidopsis mutants impaired in the MYC2 gene, WCS417r is unable to induce resistance against *Pst* and *H. arabioidatis* (Pozo et al., 2008). Furthermore, the increased resistance against *Pst* and *H. arabioidatis* in Arabidopsis plant treated with the chemical priming agent β-aminobutyric acid (BABA) appears to depend on the upregulation of several salicylic acid (SA)-responsive WRKY TFs (Van der Ent et al., 2009).

Another recurrent finding in the different transcriptional and proteome analyses that aimed to unravel Si-induced resistance (Fauteux et al., 2005; Brunings et al., 2009; Chain et al., 2009; Fleck et al., 2011; Ghareeb et al., 2011; Nwugo and Huerta, 2011) is that the broad spectrum mode of action of Si is often accompanied by alterations of primary metabolism generally due to increased levels of photosynthesis during abiotic stress (Nwugo and Huerta, 2008; Shen et al., 2010; Chen et al., 2011; Farooq et al., 2013) and during pathogen infection (Resende et al., 2012; Dallagnol et al., 2013; Perez et al., 2014). In plants, primary metabolic pathway consists of photosynthesis, gluconeogenesis and respiration that provide carbohydrates and energy, whereas nitrogen metabolism accounts for the incorporation of inorganic and organic nitrogen in amino acids (Rontein et al., 2002). Plant-pathogen interactions are generally determined by the pathogen’s need for carbohydrates and nutrients and the plant’s need for energy to fuel energy-demanding plant defense mechanisms (Berger et al., 2007; Bolton, 2009). Since the plant’s primary metabolism is at the crossroad of these contrasting interests, central metabolic processes often shape the outcome of pathogen infection, either leading to ‘evasion’ that promotes cell death or to ‘endurance’ which maintains cell viability during infection (Mur et al., 2013; Seifi et al., 2013). The evasion strategy often is effective against pathogens with a biotrophic lifestyle, whereas endurance generally confers resistance towards necrotrophic pathogens (Glazebrook, 2005; Seifi et al., 2013). In Arabidopsis, for instance, infection with an avirulent isolate of the (hemi)-biotrophic bacterium *Pseudomonas syringae* leads to a faster decrease in photosynthesis compared to infection with a virulent isolate (Bonfig et al., 2006). The resulting induction of rapid programmed cell death around the site of infection, often referred to as a HR, leads to resistance (Mur et al., 2008). On the other hand, rapid induction of cell death around the site of infection has the opposite effect against the necrotrophic pathogens *Botrytis cinerea* and *Sclerotinia sclerotiorum*. Moreover, these pathogens even induce a hypersensitive response to facilitate the infection process (Govrin and Levine, 2000).

The induction of senescence and cell death is often exploited as a virulence strategy by
several other necrotrophic pathogens (Glazebrook 2005), which also appears to be the case for the necrotrophic rice leaf fungus C. miyabeanus (see Chapter 4). This toxin-producing fungus also called Bipolaris oryzae (Breda de Haan) causes brown spot disease in rice (Xiao et al. 1991; Dela Paz et al. 2006). The link between senescence and brown spot severity explains why brown spot disease is prevalent in rainfed rice fields which are prone to premature senescence (Ou 1985; Leung et al. 2003; Zadoks 2003). Even though semi-resistant rice cultivars are available, brown spot disease is mainly managed by using fungicides (Castell-Miller and Samac 2012). In this light, application of Si emerges as a sustainable protection strategy against C. miyabeanus (Dallagnol et al. 2009, 2011a). Dallagnol et al. (2013) showed that Si impedes pathogen-induced inhibition of the photosynthesis apparatus resulting in increased photosynthetic activity of Si-treated rice leaves after brown spot infection.

In an attempt to shed more light on the rice - C. miyabeanus interaction and the beneficial effect of Si on brown spot resistance in rice, a microarray experiment was performed during early stages of infection (12hpi). Our data support a central role of nitrogen- and photosynthesis-related metabolic processes in shaping the outcome of rice-brown spot interactions. Moreover, we propose that Si protects rice from brown spot attack by preventing the pathogen from hijacking the plant’s primary metabolism for its own benefit.

3.2 Results

3.2.1 Effect of Si on rice growth and yield

The positive effect of Si on rice plants was studied in a hydroponic nutrient solution containing 0 or 2mM Si under the form of silicic acid, ensuring a continuous supply of Si to the rice roots. The application of Si increased plant height, biomass and yield due to a combination of increased tillering and ear filling (Fig 3.1 A and B). Si also shortened the time to flower initiation with on average 10 days (Fig 3.1 C). Furthermore, leaf gas exchange measurement on untreated and Si-treated rice plants (Fig 3.1 D) showed that even though the level of respiration (Rd) was similar for both treatments, Si application increased both net photosynthesis as well as the level of photorespiration. Si-treated plants demonstrated higher levels of photochemical quenching (qP) which is a non-linear measure for the proportion of open photosystem II (PSII) centers. Effective PSII quantum yield (ΦPSII) was also increased by Si, indicating that more photons were absorbed to drive the photochemical reactions. Si seemed to increase water-use efficiency since net photosynthesis was improved without altering the transpiration rate. The positive effect
of Si on photosynthesis was probably due to increased levels of chlorophyll (Fig 3.1 E) enabling Si-treated plants to use more light energy than untreated plants. Si-treated plants lost more energy to photorespiration, which could be explained by the deposition of a subcuticular silica layer which is thought to be driven by photorespiration (see Chapter 2.5). Despite the energy-losses due to enhanced photorespiration, net photosynthesis was still significantly higher in Si-treated plants compared to untreated plants.

Figure 3.1: A) Untreated (control) and Si-treated (Si) 3-weeks old rice plants. B) Yield characteristics of untreated (control) and Si-treated (Si) rice plants (n=26, parametric, α=0.05). C) Flowering time of untreated (control) and Si-treated (Si) rice plants in four biological repeats (n=48). D) Chlorophyll contents of untreated (control) and Si-treated (silicon) rice leaves in four biological repeats (n=36, parametric, α=0.05). E) Leaf gas exchange and chlorophyll a fluorescence measurements on untreated (control) and Si-treated (Si) rice plants in two biological repeats (n=24, parametric, α=0.05).
3.2.2 Si-induced brown spot resistance

Consistent with previous results (Dallagnol et al., 2009; Rezende et al., 2009; Silva et al., 2012; Dallagnol et al., 2013), the application of Si resulted in a reduction of brown spot disease severity (Fig 3.2 A, B and C). Si-treated rice leaves clearly showed smaller lesions and substantially less chlorosis and necrosis upon brown spot infection when Si was applied continuously. The prophylactic effect of Si on disease resistance is due to the combined effect of passive protection offered by the hard, subcuticular silica layer and active Si-mediated recruitment of defense responses. In an attempt to investigate whether the active or passive effect of Si on brown spot resistance is prevalent and the time span during which Si is effective, the influence of different Si treatments on brown spot resistance was investigated (Fig 3.2 D). All Si treatments are compared to control plants that were grown in the absence of Si (Si-/Si-). The first treatment existed of Si-treated plants that had been deprived of Si three days before inoculation (Si+/Si-). Another treatment consisted of plants that only had been treated with Si for three days before inoculation (Si-/Si+). The final group comprised plants that had continuously been treated with Si (Si+/Si+). This experiment showed that short term Si deprivation significantly tackled the level of brown spot resistance (Si+/Si-). The deposition of silica in rice plants leads to harder leaves due to the accumulation of a subcuticular silica layer and to the silification of the trichomes on the leaf surface. The level of silica deposition in the leaves was assessed based on these phenotypical characteristics. After three days of Si deprivation, the active effect of Si on disease resistance appeared to be already abolished, while the subcuticular silica layer still appeared intact and might still have offered some degree of protection against C. miyabeanus compared to control plants (Si-/Si-). Short term Si application (Si-/Si+), on the other hand, induced the same level of resistance as continuously Si-treated rice plants (Si+/Si+). The seemingly absence of a silica layer suggested that the active induction of brown spot resistance is predominant in the outcome of Si-induced brown spot resistance.
Chapter 3. Transcriptome analysis of Si-induced brown spot resistance in rice

Figure 3.2: Si-induced brown spot resistance in rice three days after A) spray-infection or B) infection with 4 droplets (15µl) of spore solution (1 x 10⁴ conidia.ml⁻¹). C) Mean lesion area on untreated (control) and Si-treated leaves (silicon) 3 days after spray-inoculation (1 x 10⁴ conidia.ml⁻¹, non-parametric, α=0.05). D) Mean lesion area three days after spray-inoculation (1 x 10⁴ conidia.ml⁻¹) on leaves from untreated plants (Si- / Si-), Si-treated plants that have been deprived from Si for three days prior inoculation (Si+ / Si-), plants that have been treated with Si for three days prior inoculation (Si- / Si+) and plants that were treated with Si continuously (Si+ / Si+) in three biological repeats (Bonferoni, n=36, α=0.05). The experiment has been repeated at least three times.

3.2.3 High-throughput expression profiling of rice transcription factors

In a first attempt to elucidate whether Si-induced priming for enhanced defense responses might involve accumulation of inactive TFs, we assessed the influence of Si-treatment on the expression of all rice transcription factors using a quantitative RT PCR platform (Table 3.1).
Table 3.1: List of transcription factors that are significantly up- and downregulated by silicon application in uninfected rice plants (three biological repeats, n=12, paired t-test, (α = 0.05).

<table>
<thead>
<tr>
<th>TF type</th>
<th>Identifier</th>
<th>silicon vs. control (log2)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>bHLH</td>
<td>LOC_Os01g09900</td>
<td>2.15</td>
<td>0.008</td>
</tr>
<tr>
<td>MADS</td>
<td>LOC_Os01g67890</td>
<td>5.67</td>
<td>0.050</td>
</tr>
<tr>
<td>putative TF</td>
<td>LOC_Os04g51130</td>
<td>1.82</td>
<td>0.003</td>
</tr>
<tr>
<td>C3HC4</td>
<td>LOC_Os05g33830</td>
<td>3.37</td>
<td>0.041</td>
</tr>
<tr>
<td>RING-H2</td>
<td>LOC_Os06g16060</td>
<td>2.99</td>
<td>0.010</td>
</tr>
<tr>
<td>NAM</td>
<td>LOC_Os11g31360</td>
<td>2.66</td>
<td>0.016</td>
</tr>
<tr>
<td>MYB</td>
<td>LOC_Os12g07610</td>
<td>5.25</td>
<td>0.035</td>
</tr>
<tr>
<td>MYB</td>
<td>LOC_Os01g50110</td>
<td>-3.31</td>
<td>0.004</td>
</tr>
<tr>
<td>C2H2</td>
<td>LOC_Os01g62190</td>
<td>-3.10</td>
<td>0.004</td>
</tr>
<tr>
<td>C3HC4</td>
<td>LOC_Os12g62440</td>
<td>-2.28</td>
<td>0.006</td>
</tr>
<tr>
<td>TGA</td>
<td>LOC_Os02g16680</td>
<td>-1.73</td>
<td>0.008</td>
</tr>
<tr>
<td>F-box containing TF</td>
<td>LOC_Os03g28130</td>
<td>-2.00</td>
<td>0.005</td>
</tr>
<tr>
<td>AP2/EREBP</td>
<td>LOC_Os04g34970</td>
<td>-1.89</td>
<td>0.005</td>
</tr>
<tr>
<td>RAV</td>
<td>LOC_Os05g47650</td>
<td>-3.18</td>
<td>0.007</td>
</tr>
<tr>
<td>ERF</td>
<td>LOC_Os05g49700</td>
<td>-2.42</td>
<td>0.009</td>
</tr>
<tr>
<td>bZIP</td>
<td>LOC_Os06g41100</td>
<td>-1.70</td>
<td>0.001</td>
</tr>
<tr>
<td>MYB</td>
<td>LOC_Os06g45890</td>
<td>-3.26</td>
<td>0.006</td>
</tr>
<tr>
<td>bHLH</td>
<td>LOC_Os08g37730</td>
<td>-1.96</td>
<td>0.003</td>
</tr>
<tr>
<td>putative TF</td>
<td>LOC_Os09g31050</td>
<td>-1.72</td>
<td>0.004</td>
</tr>
<tr>
<td>NAC</td>
<td>LOC_Os09g33490</td>
<td>-1.81</td>
<td>0.003</td>
</tr>
<tr>
<td>AP2</td>
<td>LOC_Os11g03540</td>
<td>-2.18</td>
<td>0.004</td>
</tr>
<tr>
<td>MADS</td>
<td>LOC_Os12g21850</td>
<td>-1.71</td>
<td>0.005</td>
</tr>
</tbody>
</table>

The differentially expressed TFs might account for the positive influence of Si on plant growth (see Chapter 3.2.1) and more importantly on broad spectrum disease resistance. However, none of the differentially expressed TFs has been reported to play a significant role in rice defense responses. To identify potential key regulators that might mediate Si-induced broad spectrum resistance, binding sites enrichment analysis was performed on the promoters (1kb) of the differentially expressed TFs (Table 3.2). This analysis revealed an overrepresentation of binding sites for MYB, MADS and GAMYB TFs and TGA, ERF, ABF and DREB TFs in the promoters of TFs that are respectively up- and downregulated by Si-application (Table 3.2).

Table 3.2: Cis-elements that are overrepresented in the promoters of the up- (+) and downregulated (-) transcription factors from Table 3.1 using TRANSFAC [Matys et al., 2006].

<table>
<thead>
<tr>
<th>Cis-element</th>
<th>p-value</th>
<th>Sequence</th>
<th>Function</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ GAMYB</td>
<td>3.1E-04</td>
<td>YAACSGMC</td>
<td>GA-induced flower initiation</td>
<td>Kaneko et al. (2004)</td>
</tr>
<tr>
<td>+ MYB</td>
<td>5.4E-04</td>
<td>YAACNNNY</td>
<td>gametogenesis</td>
<td>Yang et al. (2001)</td>
</tr>
<tr>
<td>+ MADS</td>
<td>2.7E-03</td>
<td>AAAAATGG</td>
<td>flower initiation</td>
<td>Richtmann et al. (1996)</td>
</tr>
<tr>
<td>- TGA</td>
<td>1.6E-03</td>
<td>ACGT</td>
<td>abiotic stress response</td>
<td>Kesarwani et al. (2007)</td>
</tr>
<tr>
<td>- DREB</td>
<td>9.5E-04</td>
<td>CGCGAC</td>
<td>abiotic stress response</td>
<td>Srivasta et al. (2010)</td>
</tr>
<tr>
<td>- ABF</td>
<td>4.3E-03</td>
<td>CACGTG</td>
<td>SA-induced defense response</td>
<td>Roychoudhury et al. (2008)</td>
</tr>
<tr>
<td>- ERF</td>
<td>6.9E-05</td>
<td>CGCCGCC</td>
<td>ABA-signalling</td>
<td>Hao et al. (2002)</td>
</tr>
</tbody>
</table>
3.2.4 Microarray experiment

To shed further light on the molecular base underpinning Si-induced growth promotion and resistance against *C. miyabeanus*, a microarray experiment was performed in three biological repeats (2x2 factorial design: control and Si-treated, mock-treated and infected). This study revealed that of 43494 gene probes on the Agilent slides, 2906 were differentially expressed (FDR <0.01, -2 >log2 fold change >2) in the four comparisons (GEO accession GSE55330). The volcano plots show the distribution of the significance (-log p-value) over the expression (log2 fold change) of a given gene, represented as a dot (Fig 3.3). A schematic overview shows the amount of genes that are up- and downregulated (Fig 3.4 A). The application of Si largely had the same effect in both uninfected (si,m vs. co,m) and infected leaves (si,I vs. co,I) leading to the differential expression of a large dataset of genes, mostly downregulated. Brown spot infection resulted in a less pronounced transcriptional profile, both in control (co,I vs. co,m) and Si-treated leaves (si,I vs. si,m). A Venn diagram was constructed (Oliveros, 2007) to visualize specificity of the genes and the number of commonly regulated genes (Fig 3.4 B). Hierarchical clustering analysis (Fig 3.4 C) showed two clusters, one containing the comparisons Si, mock vs. control, mock (si,m vs. co,m) and Si, infected vs. control, infected (si,I vs. co,I), whereas the other cluster comprised the comparisons control, infected vs. control, mock (co,I vs. co,m) and Si, infected vs. Si, mock (si,I vs. si,m).

Surprisingly, the outcome of the high-throughput expression profiling of rice transcription factors (section 3.2.3) does not coincide with the results of the microarray experiment (si,m vs. co,m), which do not show a significant differential expression of rice *TFs*. The influence of Si on the expression of *TFs* (Table 3.1) is not very pronounced and these more subtle differences in expression are not detected in the microarray experiment, probably due to the lower levels of sensitivity compared to the quantitative RT-PCR platform used in section 3.2.3.
Figure 3.3: Volcano plots of the microarray data in different comparisons. The difference of expression levels of each array spot is represented by a dot. Statistical analysis (LIMMA) only retained the genes with p-value <0.01 or -log_{10}(p-value) >2 and a -2 <log_{2} fold induction <2 (GEO accession GSE55330).
Figure 3.4: A) Schematic overview of the number of differentially expressed genes for each comparison of the microarray experiment (2x2 factorial design) in three biological replicates after statistical analysis (LIMMA, FDR < 0.01, -2 > log2 fold change > 2, GEO accession GSE55330). B) Venn diagram (Oliveros, 2007) showing genes differentially expressed for each comparison and all possible combinations. C) Hierarchical clustering (Tamura et al., 2011) of the microarray data identified similar expression patterns in Si-treated vs. control rice leaves and in brown spot-infected vs. uninfected leaves.
Chapter 3. Transcriptome analysis of Si-induced brown spot resistance in rice

Gene ontology enrichment analysis of microarray data

Gene ontology (GO) enrichment analysis using MapMan software (Usadel et al., 2009) showed that mainly primary metabolic processes, including photosynthesis, glycolysis, amino acid metabolism and modulation of the nitrogen cycle (Fig 3.5) and defense response pathways among which defense hormone pathways, the modulation of cell wall and membrane components and the phenylpropanoid pathway (Fig 3.6) were influenced by brown spot infection and Si application. Of special interest are the ET pathway, because it is known to negatively influence brown spot resistance (De Vleesschauwer et al., 2010; see Chapter 4) and the phenylpropanoid pathway which plays an important role during infection with *C. miyabeanus* (Shabana et al. (2008); see Chapter 4).

Influence of Si on uninfected leaves (si,m vs. co,m)

Application of Si led to an increased expression of genes that mediate chlorophyll biosynthesis, light-dependent reactions and nitrate reduction. Genes involved in glycolysis, cell wall biosynthesis and degradation and nitrogen metabolism and transport were differentially expressed. Moreover, Si application downregulated amino acid metabolism-related and defense-associated genes involved in lipid desaturation, phenylpropanoid pathway, biotic stress response and in the metabolism of the defense hormones ethylene (ET), jasmonic (JA) and salicylic acid (SA).

Influence of *C. miyabeanus* (co,I vs. co,m)

One of the major influences of *C. miyabeanus* on primary metabolic processes was the downregulation of genes involved in photosynthesis like chlorophyll biosynthesis, light-dependent reactions, Calvin cycle and photorespiration. In addition, brown spot infection also slightly upregulated amino acid biosynthesis, while enzymes involved in nitrate reduction were downregulated.

Influence of Si on infected leaves (si,I vs. co,I)

Comparing the effect of Si in infected vs. uninfected leaves yielded very similar results (si,m vs. co,m) (si,I vs. co,I). The only notable difference was the higher number of DEGs associated with light-dependent reactions, the Calvin cycle, photorespiration and nitrate reduction in infected versus mock inoculated plants. Very little defense-related pathways were induced by Si in infected leaves.
Influence of *C. miyabeanus* on Si-treated leaves (si,I vs. si,m)

Interestingly, brown spot infection did not significantly affect the transcriptome of Si-treated leaves, except for a slight increase in the number of genes implicated in defense-related processes such as the phenylpropanoid pathway, biotic stress responses and cell wall biosynthesis.
Figure 3.5: Enrichment analyses of gene ontologies of primary metabolism on microarray data (LIMMA, FDR <0.01, GEO accession GSE55330) in four comparisons. For each gene ontology the amount of genes that are represented in the microarray experiment are shown. The colored bars indicate the relative portion of the gene ontology genes that show a substantial difference in expression for the four different comparisons (green bars = upregulation, log2 fold change >2 and red bars = downregulation log2 fold change <-2). The gene ontologies are derived from the MapMan database (Usadel et al., 2009).
Figure 3.6: Enrichment analyses of gene ontologies of plant defense responses on microarray data (LIMMA, FDR <0.01, GEO accession GSE55330) in four comparisons. For each gene ontology the amount of genes that are represented in the microarray experiment are shown. The colored bars indicate the relative portion of the gene ontology genes that show a substantial difference in expression for the four different comparisons (green bars = upregulation, log2 fold change >2 and red bars = downregulation log2 fold change < -2). The gene ontologies are derived from the MapMan database [Usadel et al., 2009].
Detailed analysis of the influence of \textit{C. miyabeanus} and Si on the microarray expression of central metabolic genes

Brown spot infected leaves are hallmarked by the typical necrotic lesions surrounded by a chlorotic halo, whereas Si-treated leaves demonstrated smaller lesions and less chlorosis (Fig 3.3 B). Linking these phenotypes to the results of the GO enrichment analysis (Fig 3.5 and 3.6) led to the hypothesis that central metabolism plays an essential role in shaping the outcome of rice-\textit{C. miyabeanus} interaction. To investigate the role of Si and/or \textit{C. miyabeanus} on the central metabolism, microarray data of a subset of primary metabolism genes was studied in more detail.

\textbf{Influence of Si (si,m vs. co,m) on central metabolism}

Si application increased the expression of photosynthetic genes that mediate light harvesting and the Calvin cycle (Fig 3.7 A), which coincides with the observed increase in photosynthesis in Si-treated plants (Fig 3.1 E). The enhanced photosynthetic abilities of Si-treated plants coincided with a decrease in the expression of genes that are responsible for mitochondrial ATP synthesis. Since Si-treated plants are more efficient in using photochemical energy (Fig 3.1 E), chloroplastic ATP synthesis might be enough to account for the majority of the plant’s ATP need resulting in a decreased mitochondrial ATP synthesis. Furthermore, Si led to an upregulated expression of \textit{nitrate} and \textit{nitrite reductases} and the nitrate transporters \textit{NRT1.1C, NRT1.4} and \textit{CLC1}. Since AtNRT1.1, the homolog of OsNRT1.1C, has been reported to act as a nitrate receptor/transporter (Gojon et al., 2011) and AtCLCa, the homolog of OsCLC1 accounts for the transport of nitrate from the vacuole to the cytosol (Geelen et al., 2000; De Angeli et al., 2006), these findings suggest an increased cytosolic nitrate concentration that fuels the predicted nitrate reduction in Si-treated leaves. Furthermore, the ammonium transporters \textit{AMT2.2} and \textit{AMT3.3} were downregulated by Si treatment in infected leaves. The localization of most ammonium and nitrate transporters in rice leaves remains to be elucidated (Suenaga et al., 2003; Martinoia et al., 2007; Gaur et al., 2012), but their differential expression suggests that Si induces a shift in nitrogen transport in Si-treated plants.

\textbf{Influence of \textit{C. miyabeanus} (co,I vs. co,m) on central metabolism}

The transcriptional changes in central metabolic genes after brown spot infection (co,I vs. co,m, Fig 3.7 B) indicated a downregulation of photosynthetic genes involved in light-dependent reactions and Calvin cycle (Table S2). Furthermore, GO analysis suggested that brown spot infection decreased photorespiration. Many orthologs of the photorespira-
tory enzyme Rubisco were downregulated in brown spot infected leaves. Even though Rubisco plays an essential role in carboxylation during photosynthesis, transient increases in the expression of Rubisco genes are often attributed to photorespiration during which Rubisco incorporates oxygen into the Calvin cycle in stead of carbon dioxide (Wang et al., 2012; Lakshmanan et al., 2013). Several photorespiratory marker genes characterized by Lakshmanan et al. (2013) were significantly downregulated although the level of downregulation was not very pronounced. The decrease in photosynthetic genes seemed to be accompanied by alterations in nitrogen metabolism. Brown spot infection led to a decreased expression of nitrate (NR) and nitrite reductases (NiR) and an upregulation of cytosolic glutamine synthetase 1.3 (GS1.3) which is associated with senescence-mediated nitrogen remobilization (Pageau et al., 2006; Tabuchi et al., 2007).

Influence of Si on infected leaves (si,I vs. co,I) on central metabolism

There are many similarities between the influence of Si in uninfected leaves and leaves inoculated with C. miyabeanus. First, the beneficial effect of Si on photosynthesis is also apparent after brown spot infection (Fig 3.5, Fig 3.7 c). These results can be linked to the fact that Si-treatment reduces the level of chlorosis in rice leaves infected with C. miyabeanus (Fig 3.2 A and B). Second, even though plant defense responses are energy-demanding (Bolton, 2009; Bauwe et al., 2012), mitochondrial ATP synthesis was significantly lower in Si-treated leaves after infection. Together with the fact that Si application did not seem to induce defense-related processes (Fig 3.6), these findings suggest that Si application might not confer brown spot resistance via the activation of typical defense responses. Finally, Si induced the expression of nitrate and nitrite reductases and nitrate transporters NRT1.1C, NRT1.4 and CLC1, whereas the ammonium transporters AMT2.2 and AMT3.3 were downregulated in Si-treated leaves infected with C. miyabeanus.

On the other hand, the microarray experiment also showed differential expression of genes that are specific for the influence of Si in rice leaves infected with C. miyabeanus and might play a significant role in conferring Si-induced brown spot resistance. These findings indicated that Si-induced photorespiration might lead to increased resistance towards C. miyabeanus. Photorespiration is a complex and energy-consuming interorganellar process that is usually initiated by stomatal closure that leads to low CO₂ and/or high O₂ levels in planta (Foyer et al., 2009; Bauwe et al., 2012). In C3-plants like rice, these conditions give rise to the incorporation of O₂ instead of CO₂ in the Calvin cycle by Rubisco. The resulting glycolate is conversed in the peroxisomes to glycine which is transported to the mitochondria where it is catalyzed, releasing CO₂ and NH₃ which are recycled...
in the chloroplasts. Photorespiratory CO\(_2\) feeds back into the Calvin cycle and excess \(\text{NH}_3\) is transported to the chloroplasts and reassimilated in the cellular nitrogen cycle \((\text{Wingler et al., 2000; Linka and Weber, 2005; Nunes-Nesi et al., 2010})\). Si-application led to an increased expression of several photorespiratory genes: \textit{Rubisco, ribose-5-phosphate isomerase (RPI), phosphoglycerate kinase (PGK) and glycine dehydrogenase (GDC)}. Accordingly, Si also up-regulated several photorespiratory marker genes including \textit{glutamate:glyoxylate aminotransferase (GGAT), phosphoglycolate phosphatase (PGLP), plastidic glycolate/glycerate translocator (PLGG), phosphoribulokinase (PRK), serine:glyoxylate aminotransferase (SGAT)}. Furthermore, Si application also seems to influence nitrogen metabolism in brown spot infected leaves. The Si-mediated upregulation of the ammonium transporter \textit{AMT1.3} is hypothesized to be responsible for transporting the considerable amounts of ammonium that are released during photorespiration \((\text{Tanaka et al., 2004; Foyer et al., 2009; Li et al., 2012})\). Microarray analysis showed that chloroplastic \textit{GS2} and \textit{Fd-GOGAT} are upregulated in Si-treated rice leaves infected with \textit{C. miyabeanus}. These findings suggest that the potential increases in nitrate reduction and photorespiratory ammonium transport increase the ammonium concentration in the chloroplast that in turn need to be re-assimilated by GS2 and Fd-GOGAT.
Figure 3.7: Influence of A) Si application on uninfected rice leaves (Si, mock vs. control, mock), B) Cochliobolus miyabeanus (control, infected vs. control, mock) and C) Si application on rice leaves infected with C. miyabeanus (Si, infected vs. control, infected) on the expression of genes involved in central metabolism. Arrows in red or green resp. indicate a down- or upregulation of gene expression (GEO accession GSE55330). Abbreviations: AMT, ammonium transporter, CLC1, nitrate transporter, NRT, nitrate transporter, GDC, glycine dehydrogenase, GGAT, glutamate:glyoxylate aminotransferase, NADH- or Fd-GOGAT, NADH- or Ferredoxin-dependent glutamate synthase, GOX, glycolate oxidase, GS, glutamine synthetase, NR, nitrate reductase, NiR, nitrite reductase, PGK, phosphoglycerate kinase, PGLP, phosphoglycolate phosphatase, PLGG, plastidic glycolate/glycerate translocator, PRK, phosphoribulokinase, RPI, ribose-5-phosphate isomerase, Rubisco, ribulose-1,5-bisphosphate carboxylase/oxygenase, SGAT, serine:glyoxylate aminotransferase, SHMT, serine hydroxymethyltransferase.
Chapter 3. Transcriptome analysis of Si-induced brown spot resistance in rice

3.3 Discussion

3.3.1 Effect of Si application on rice plants

The application of Si has a very diverse influence on plants, not only conferring broad spectrum disease resistance, but also increasing tillering, growth and yield. Microarray data revealed that Si enhances the expression of photosynthetic-related and nitrate reductive proteins.

Promoter analysis of the TFs that are differentially expressed due to Si-treatment (Table 3.2) showed that the promoters of the upregulated TFs were enriched in binding sites for MYB, MADS and GAMYB TFs. These binding sites are overrepresented in promoters of genes that play a role in gibberellin signaling and flower development (Riechmann et al., 1996; Gocal et al., 2001; Yang et al., 2001; Kaneko et al., 2004; Tsuji et al., 2006), which is in accordance with the fact that Si application has been reported to increase gibberellin synthesis in rice (Hwang et al., 2007). Given the link between gibberellins and flower development (Mutasa-Göttgens and Hedden, 2009), increased levels of gibberellins might explain the earlier induction of flower development in Si-treated rice plants (see Chapter 3.2.1). On the other hand, the promoters of downregulated TFs were enriched in TGA, ERF, ABF and DREB binding sites (Table 3.2). The TGA binding site normally occurs in the promoters of salicylic acid responsive genes whereas the ERF binding site are overrepresented in the promoters of ethylene sensitive genes (Hao et al., 2002; Kesarwani et al., 2007). Even though SA and ET are well-described stress hormones in rice (De Vleesschauwer et al., 2013), no convincing link between lower SA/ET signaling and broad spectrum disease resistance could be found. The abscisic acid responsive and drought responsive element binding sites ABF and DREB occurred more frequent in the promoters of downregulated TFs. These binding sites are associated with promoters of abiotic stress-responsive genes (Choi et al., 2000; Wickramasinghe and Rowell, 2005; Kesarwani et al., 2007; Roychoudhury et al., 2008; Srivasta et al., 2010). These findings suggest that Si-induced suppression of biotic and abiotic stress is responsible for the the promotion of plant growth in Si-treated plants.

In literature, a positive effect of Si on the growth of wheat, oats and rice has been described (Heinai et al., 2005; Toledo et al., 2012). Moreover, other reports clearly showed a growth-promoting effect of Si, even in the absence of stress (Tripathi et al., 2011; Detmann et al., 2012; Dallagnol et al., 2013). However, the growth promoting effect of Si is not always apparent. Several articles claim that Si has a positive effect on plant growth only during stress conditions (Agarie et al., 1992; Rodrigues, 2001; Hwang et al., 2007; Nwugo and Huerta, 2008; Sun et al., 2010; Nwugo and Huerta, 2011; Perez et al., 2014; Agarie et al., 2017).
(1992) found that under slightly suboptimal light conditions, Si treatment led to a higher growth increase than under optimal light conditions. In agreement with these findings, many transcriptional analyses on the effect of Si in rice, wheat, tomato and Arabidopsis show that Si only has very little impact on the metabolism of non-stressed plants (Fauteux et al., 2006; Brunings et al., 2009; Chain et al., 2009; Ghareeb et al., 2011). The apparent phenotypical difference between untreated and Si-treated rice plants used in this study therefore suggest that these plants have been grown under suboptimal conditions.

3.3.2 Influence of *C. miyabeanus* on rice metabolism

Brown spot infection in rice leaves is characterized by the occurrence of large necrotic lesions surrounded by chlorosis which cause premature senescence and cell death (Ahn et al., 2005; Dallagnol et al., 2011a). Microarray data suggests that *C. miyabeanus* actively inhibits the expression of photosynthetic genes at 12hpi when disease symptoms are not visible yet. These findings indicate that photosynthetic impairment might not be the consequence, but rather the cause of infection, as a strategy to induce premature senescence in rice leaves. There are two virulence factors of *C. miyabeanus* that might play a role in mediating pathogen mediated senescence. First, *C. miyabeanus* is known to produce the plant hormone ethylene (ET) which induces senescence in rice leaves and facilitates the infection process (see Chapter 4). Second, the manifold phytotoxins produced by *C. miyabeanus* are known to induce cell death and senescence (Xiao et al., 1991; Ahn et al., 2005). The complete array of toxins and their exact functions have not yet been characterized, but ophiobolins are the main group of toxins produced by Cochliobolus species (Au et al., 2000; Condon et al., 2013). The best-described toxins produced by *C. miyabeanus* are ophiobolin A and B which have been reported to disrupt the plasma membrane integrity (Chattopadhyay and Samaddar, 1976; Tipton et al., 1977) leading to the impairment of metabolic processes such as photosynthesis and protein and nucleic acid synthesis eventually leading to cell death (Chattopadhyay and Samaddar, 1980; Kim and Hyeon, 1984; Yun et al., 1988; Krizsán et al., 2010).

A similar role for the phytotoxins produced by *C. miyabeanus* is plausible, especially since these toxins are also known to induce senescence in rice leaves (Xiao et al., 1991; Ahn et al., 2005). The resulting pathogen-induced, premature senescence is likely responsible for causing the typical chlorotic lesions around the site of infection (Ahn et al., 2005). Three different roles were hypothesized for photosynthetic inhibition as a virulence strategy by *C. miyabeanus*. First, inhibiting photosynthesis might deprive invaded rice leaves from the energy necessary to fuel energy-demanding defense responses. Second, uncoupling the light reactions from the Calvin cycle leads to overreduction of the electron transfer...
and oxidative damage to chloroplast membranes and senescence which can promote disease incidence in some plant-pathogen interactions (Kangasjärvi et al., 2012). Finally, decreasing photosynthesis induces metabolic changes that might provide essential nutrients for the pathogen. In this light, the microarray data suggested a senescence linked remobilization of nitrogen in brown spot infected rice leaves. An upregulation of cytosolic glutamine synthetases (GS1.3) and downregulation of nitrate and nitrite reductases is commonly observed in senescent plant leaves (Masclaux et al., 2001; Pageau et al., 2006). C. miyabeanus is known to alter amino acid metabolism during infection, probably for utilization during infection (Chattopadhyay and Dickson, 1960). In view of these findings, it is tempting to speculate that C. miyabeanus triggers senescence and nitrogen remobilization in order to secure access to nutrients and facilitate the infection process.

3.3.3 Influence of Si on rice resistance against C. miyabeanus

The application of Si is a known strategy to protect rice plants against different pathogens, among which C. miyabeanus (Dallagnol et al., 2009, 2011b, 2013). Si-treated leaves infected with C. miyabeanus showed significantly smaller necrotic lesions and less chlorosis surrounding the site of infection (Fig 3.2 A and B). The protective effect of Si in plants is generally assumed to be the result of two different phenomena (see Chapter 2.5). The hard and insoluble subcuticular silica layer grants certain vigor to rice leaves which is often believed to passively prevent pathogen penetration. However, we observed that short-term Si application rendered rice plants as resistant as plants that had been continuously treated with Si (Fig 3.2 D). Moreover, Si-treated plants already showed reduced levels of resistance three days after Si deprivation. These findings not only suggest that Si has a rather short-term mode of action, but also demonstrates that the active effect of Si application is dominant over the passive effect.

The differential expression due to Si application on infected leaves (Si, infected vs. control, infected) indicated that Si does not have a major influence on defense-related signaling pathways, such as salicylic acid, jasmonic acid and ethylene pathway. It seems that in stead of inducing biotic stress responses like the activation of the phenylpropanoid pathway or cell wall modification (Fig 3.6), Si application had an apparent influence on the central metabolism. Where C. miyabeanus is hypothesized to induce premature senescence and cell death as a virulence strategy, Si seemed to prevent pathogen-induced senescence and subsequent brown spot susceptibility by redirecting primary metabolic processes. In accordance with the fact that C. miyabeanus had little effect on the expression profile of Si-treated plants (Si, infected vs. Si, mock), these microarray data suggested that Si application does not induce brown spot resistance as such but rather
prevents pathogen-induced susceptibility. Based on the more detailed analysis of the effect of Si on the central metabolism of brown spot infected rice leaves (Si, infected vs. control, infected), several mechanisms that might be responsible for preventing Si-mediated resistance were suggested. Si application seemed to reverse most metabolic processes that are associated with C. miyabeanus-induced senescence. First, the decreased expression of the cytosolic glutamine synthetase, GS1.3 and the upregulation of nitrate reduction suggests that Si prevents senescence-mediated nitrogen remobilization. The upregulated expression of the chloroplastic GS2 and Fd-GOGAT suggest an augmented incorporation of ammonium molecules in the chloroplast. Furthermore, Si treatment protected infected rice leaves from C. miyabeanus-mediated downregulation of photosynthetic genes. Safeguarding the photosynthesis machinery appears to be a common aspect of Si-induced broad spectrum stress tolerance, as many reports unanimously show that Si protects and promotes photosynthesis during stress-situations (Nwugo and Huerta, 2008; Chen et al., 2011; Nwugo and Huerta, 2011; Dallagnol et al., 2013; Perez et al., 2014). However, the mechanisms that govern the Si-mediated protection of the photosynthesis pathway during stress have not been described yet. Our findings suggest that one of the driving forces behind the protective role of Si on photosynthesis might be photorespiration. Although photorespiration consumes more energy than it produces, it also prevents overreduction of photosynthetic electron transport and subsequent damage to the photosynthesis apparatus during stress-situations (Bauwe et al., 2012). Interestingly, an increase in photorespiration might also explain the increased nitrate reduction (CLC1, NR, NiR), ammonium transport towards the chloroplast (AMT1.3) and chloroplastic ammonium reassimilation (GS2 and Fd-GOGAT) (Rachmilevitch et al., 2004; Naik, 2006; Foyer et al., 2009; Bloom et al., 2010). Mounting evidence indicates that photorespiration confers tolerance towards drought, salt, cadmium and chilling stress (Hoshida et al., 2000; Cheng et al., 2007; Rivero et al., 2009; Cai et al., 2011; Wang et al., 2012). In addition, photorespiration may also contribute to pathogen defense, an effect which is mostly linked to the occurrence of hypersensitive response due to accumulation of photorespiration-induced reactive oxygen species (Wingler et al., 2000; Kangasjärvi et al., 2012; Sørhagen et al., 2013; Rojas et al., 2014). Since reactive oxygen species and hypersensitive response are ineffective against C. miyabeanus (Ahn et al., 2005), it is likely that the potential role of photorespiration in Si-induced resistance against C. miyabeanus is due to the safeguarding of the photosynthesis apparatus.

The fact that brown spot infection downregulated the expression of photorespiratory genes, also led to the hypothesis that preventing photorespiration might be a virulence strategy of C. miyabeanus. In analogy with victorin, a toxin produced by Cochliobolus
Chapter 3. Transcriptome analysis of Si-induced brown spot resistance in rice

...victoriae, which inhibits the photorespiratory enzyme glycine decarboxylase (GDC) in oat plants as a strategy to induce susceptibility (Navarre and Wolpert, 1995, 1999; Tada et al., 2005), a similar role for C. miyabeanus toxins is proposed. Moreover, exogenous ET seems to induce stomatal opening (data not shown) which suggests that fungal ET by C. miyabeanus might play a role in preventing photorespiration. It might not be inconceivable that next to photosynthesis, photorespiration might be another target on the path of C. miyabeanus to infection.

3.3.4 Si-induced broad spectrum disease

In the past decade, a number of transcriptomic and proteomic studies have been conducted to explain the protective effects of Si in various pathosystems (Watanabe et al., 2004; Fauteux et al., 2006; Chain et al., 2009; Zargar et al., 2010; Ghareeb et al., 2011; Nwugo and Huerta, 2011). One of the most salient results of these studies is that Si negates many of the transcriptional changes induced by pathogen inoculation. For instance, in one of the first studies aimed at investigating the molecular basis of Si-induced plant resistance, (Fauteux et al., 2006) found that inoculation of Arabidopsis with the powdery mildew fungus Erysiphe cichoracearum resulted in transcriptional reprogramming of an extensive gene set of nearly 4,000 genes. Remarkably, comparing control and Si-treated plants, no major changes were found in either the number or expression level of up-regulated genes. In contrast, many of the down-regulated genes were less severely affected when plants were treated with Si, a clear indication of stress alleviation. Similar findings were obtained by (Chain et al., 2009) when studying the effect of Si application on the transcriptome of wheat plants inoculated with the biotrophic pathogen Blumeria graminis f. sp. tritici. In this case, Si-treated plants displayed an almost perfect mirror image of the expression changes seen in inoculated control plants. Moreover, contrary to the nearly 900 genes responding to Blumeria infection in control leaves, very few genes were regulated by the pathogen in Si-treated wheat plants, indicating that Si almost eradicated the stress imposed by the pathogen (Chain et al., 2009). In rice, the microarray study by (Brunings et al., 2009) and the microarray data presented in this thesis on the effect of Si on respectively rice blast and brown spot resistance, similarly show that the effect of infection on the transcriptome is diminished by Si treatment. Hence, instead of mounting resistance by directing massive transcriptional reprogramming of defense-related genes, Si appears to nullify the impact of pathogen inoculation on the plant’s transcriptome. In light of our results, a minimal transcriptomic response suggests that Si prevents the exploration of pathogen virulence factors. Whether such impairment of pathogen virulence is due to Si boosting the plant perception of and/or response to so-called pathogen-associated...
molecular patterns, or alternatively, results from inhibition of the production and/or delivery of specific virulence factors remains to be elucidated.

3.4 Conclusion

The beneficial effect of Si on both rice growth and resistance against *C. miyabeanus* is due to Si-induced broad spectrum stress tolerance. In order to unravel the molecular mechanisms responsible for the prophylactive effect of Si, a microarray experiment was conducted which revealed that *C. miyabeanus* might induce premature senescence in order to impose susceptibility in rice leaves. Si application, on the other hand, seemed to confer brown spot resistance by redirecting the central metabolism in a photorespiration-dependent manner. Together with other microarray studies on Si-induced disease resistance in different plant species, our data suggest that rather than acting as an initiator of induced defense responses, Si might confer disease resistance by preventing pathogen’s virulence strategies.

3.5 Material and methods

3.5.1 Plant material and growth conditions

All rice plants (*Oryza sativa* L.) were *japonica* cultivar Nipponbare. The rice seeds were surface sterilized with 70% ethanol for 1 min and 1% sodium hypochlorite solution for 10 min, rinsed three times with sterile distilled water and germinated at 28°C for five days on wet sterile filter paper in Petri dishes sealed with parafilm (≥ 92% relative humidity). The seedlings were transplanted on vermiculite in half-strength modified Hoagland solution ([Hewitt and Smith](#1975)). Five days later the plantlets are transferred to a hydroponic system in full strength modified Hoagland solution (pH 6.5). The Hoagland solution was replaced every 7 days. The rice plants were grown in a growth chamber (28°C, 12h/12h light regime) for five weeks until they reached the 7-leaf stage.

3.5.2 Leaf gas exchange and fluorescence measurements

Gas exchange and fluorescence parameters were measured concurrently with a portable photosynthesis system (LI-6400; LiCor Biosciences, Lincoln, NE, USA) fitted with a fluorescence head (6400-40 LCF; LiCor Biosciences) and a CO₂ mixer (6400-01; LiCor Biosciences). Net photosynthesis (A_{net}), stomatal conductance (g_s), leaf transpiration (E), intracellular CO₂ concentration (C_i) and fluorescence parameters were measured on 13 plants per treatment in two biological repeats. The temperature of the leaf cuvette was
set to match the temperature in each treatment chamber at the start of the measurements. The light source of the fluorescence head was maintained at 1500 μmol photons·m⁻²·s⁻¹ while [CO₂] in the cuvette was maintained at 380 μmol CO₂·l⁻¹. Fluorescence parameters quantum yield of photosystem II (PSII) (ΦPSII) and maximum quantum yield of light saturated PSII (Fᵥ'/Fₘ') were calculated as described in Valentini et al. (1995) and Maxwell and Johnson (2000).

3.5.3 Pathogen inoculation and disease rating

Cochliobolus miyabeanus isolate Cm988, kindly provided by IRRI, was grown on potato dextrose agar (PDA, Difco) at 28°C in darkness. After a week the mycelium was put under 12h/12h blue light (Philips TLD 18W/08 and Philips TLD 18W/33) until sporulation. Conidia were harvested as described by Thuan et al. (2006) and suspended in a 0.5% gelatine (type B from bovine skin; Sigma-Aldrich G-6650) in a concentration of 10⁴ conidia ml⁻¹. Plants in the 7-leaf stage (5 weeks old) were inoculated by spraying the conidial suspension on the leaves till run off (1ml per plant) using a compressor-powered airbrush gun. The plants were kept in a humid and warm infection chamber (28°C ± 4°C, 92% or greater relative humidity) to promote fungal penetration. After 18h the plants were transplanted to greenhouse conditions (28°C ± 4°C, 16h light/8h dark regime) for disease development. The symptoms were scored three days after inoculation using APS ASSESS 2.0 software (APS, St Paul, Minnesota, USA). All infection trials were repeated at least three times with similar results.

3.5.4 RNA extraction and quantitative RT-PCR

Total RNA was extracted from frozen leaf tissue using the spectrum plant total RNA kit (Sigma-Aldrich) and subsequently Turbo DNase treated according to the provided protocol (Ambion). First-strand cDNA was synthesized from 2 mg of total RNA using Multiscribe reverse transcriptase (Applied Biosystems) and random primers following the manufacturer’s instructions. Quantitative PCR amplifications were conducted in optical 96-well plates with the Mx3005P real-time PCR detection system (Stratagene), using Sybr Green master mix (Fermentas) to monitor dsDNA synthesis. The expression of each gene was assayed in duplicate in a total volume of 25μl including a passive reference dye (ROX) according to the manufacturer’s instructions (Fermentas). The thermal profile used consisted of an initial denaturation step at 95°C for 10 min, followed by 40 cycles of 95°C for 15 s, 57°C for 30 s, and 72°C for 30 s. To verify amplification of one specific target cDNA, a melting-curve analysis was included according to the thermal profile suggested by the manufacturer (Stratagene). The amount of plant RNA in each sample
was normalized using elongation factor eIFα (LO_Os03g08020) as internal control and mock treated samples were selected as calibrator. For analysis of the CmEFE (BK008840) expression in fungal and plant samples using the fungal ITS gene as normalizer. The data were analyzed using Stratagene’s Mx3005P software. Nucleotide sequences of all primers used are listed in Table 3.3.

3.5.5 Expression profiling of rice TFs and in silico promoter analysis

The high-throughput expression profiling of rice TFs was performed according to Caldana et al. (2007) in three biological repeats on pooled samples containing the two youngest fully developed leaves of 12 seven week-old plants per sample. The resulting gene expression data were statistically analyzed with a (α=0.01, parametric). The TF genes that were significantly up- or downregulated (paired t-test, Si- vs. control-treatment, α=0.01) showing a three fold change in expression (-1.58 >log2 fold change >1.58) were selected for in silico promoter analysis. The 1kb upstream promoter region of the selected TF genes (Kawahara et al., 2013) were analysed using TRANSFAC software (Matys et al., 2006; Guo et al., 2008; Park et al., 2010). Overrepresented TF binding site motifs (α = 0.05) that occur uniquely in 75% of the promoters of respectively up- or downregulated TFs were identified as overrepresented motifs. The motif sequences and their function were substracted from the TRANSAC and PLACE databases (Higo et al., 1999).

3.5.6 Microarray analysis and data processing

Rice plants (cultivar Nipponbare) were grown and infected with the C. miyabeanus isolate Cm988 as described before. The microarray study setup consisted of a 2x2 factorial design (mock and infected; untreated and Si-treated). Samples were taken 12h post inoculation, each sample representing a pool from at least 6 individual plants in three biological repetitions. For microarray analysis, we used a previously described two-dye method allowing direct comparison between two samples on the same microarray (Satoh et al., 2010). Signal intensities among all arrays were normalized according to the quantile method for standardization (global scaling) using EXPANDER 6 (Shamir et al., 2005). Significance analysis was performed using a fixed linear model (LIMMA) implemented in MeV (Saeed et al., 2003). Differentially expressed genes were defined as genes with a false discovery rate of less than 0.05 and a 3-fold difference in signal ratio. The microarray data is available in the Gene Expression Omnibus (GEO accession GSE55330). Hierarchical linkage clustering was performed (complete linkage, euclidian distance) using MeV.
3.5.7 Validation of microarray results

Quantitative real-time polymerase chain reaction (PCR) was performed on 8 selected genes (Table 3.3) that were differentially regulated among the different comparisons. Quantitative PCR and microarray results were linearly correlated ($R^2 = 0.92$) (Fig. 3.8).

Table 3.3: Randomly picked primers for microarray validation

<table>
<thead>
<tr>
<th>identifier</th>
<th>forward primer</th>
<th>reverse primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOC_Os03g08020</td>
<td>TTTCACTCTTGGTGTAAGCAGAT</td>
<td>GACTTCTTTCAGATTTCATCGTAA</td>
</tr>
<tr>
<td>LOC_Os08g44270</td>
<td>GGATCGTCAGGAACCTCTTGG</td>
<td>AATCGGCTCCTCAACCGTGAGC</td>
</tr>
<tr>
<td>LOC_Os11g41680</td>
<td>CCAGGAAGCATCCGACTTTGG</td>
<td>TGAACAAGTCTCCGATTTGTC</td>
</tr>
<tr>
<td>LOC_Os10g21670</td>
<td>GTTGTGTCTCTCGTGATCATC</td>
<td>GCAGAAGCAGACACTGTGC</td>
</tr>
<tr>
<td>LOC_Os04g09900</td>
<td>GGATATCCCAGGCGAGGTTG</td>
<td>TGTGCAAGACCTTCCAAATC</td>
</tr>
<tr>
<td>LOC_Os07g48050</td>
<td>CTTGCTTTGTTGTCGTTGCTC</td>
<td>TCCCGACAAGACAACAGACAG</td>
</tr>
<tr>
<td>LOC_Os09g23530</td>
<td>ATCACGCCCGAGATTCTCTGAG</td>
<td>TCCTCTGAACCTCTCCTTG</td>
</tr>
<tr>
<td>LOC_Os04g48930</td>
<td>TTTCGCCACGAGACATTCCAG</td>
<td>AGATCACGATTCTCGTCCTTG</td>
</tr>
<tr>
<td>LOC_Os09g36680</td>
<td>AGTGGAAACAGCTATCGGCGTC</td>
<td>TAGCCGGCTTGATGGCTTG</td>
</tr>
</tbody>
</table>

Figure 3.8: Volcano plot of microarray data of brown spot infected leaves vs. mock treated leaves 12h post inoculation (GEO accession GSE55330).
Ethylene production by *Cochliobolus miyabeanus* as a virulence strategy during rice infection

Authors
Jonas Van Bockhaven\(^1\), Simona M. Cristescu\(^2\), Takayuki Asano 3, Shoshi Kikuchi\(^3\) and Monica Höfte\(^1\), David De Vleesschauwer\(^1\)

Affiliations
\(^1\)Laboratory of Phytopathology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
\(^2\)Life Science Trace Gas Facility, Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
\(^3\)Plant Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Japan
Abstract
The plant hormone ethylene (ET) is a well-studied modulator of plant immune responses. Although ET is widely believed to condition resistance against necrotrophic pathogens, recent advances suggest a more complex reality with both positive and negative effects being reported depending not only on the pathogen lifestyle, but also on specialized features of each interaction. Here, we have analyzed the impact and dynamics of ET during progression of rice brown spot disease caused by the necrotrophic fungus Cochliobolus miyabeanus. We show that the pathogen tricks the plant into producing copious amounts of ET at least in part by synthesizing ET itself, a strategy that is especially important for less virulent C. miyabeanus strains. Moreover, our findings unmask ET as a key signal in the activation of gene expression by C. miyabeanus and demonstrate that host ET signaling compromises brown spot resistance via a two-pronged mechanism involving the amplification of senescence and inhibition of phenylpropanoid-driven defenses. Collectively, these data support a model whereby C. miyabeanus produces ET as a decoy to rewire the rice signaling circuitry and antagonize host immunity. Our results provide novel insights into the multifaceted role of ET in plant innate immunity and highlight the importance of microbial ET production in molding pathological outcomes.
4.1 Introduction

As sessile organisms, plants are constantly threatened by a wide variety of microbial pathogens, including fungi, viruses, bacteria and oomycetes. Many of the defense responses employed to counteract these attackers are regulated by intertwined signal transduction pathways, within which plant hormones fulfill central roles. Salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) are the archetypal defense hormones and their importance in the regulation of the plant defense signaling network is well established. Upon pathogen attack, plants produce a complex blend of SA, JA and ET, which varies greatly in quantity, timing, and composition depending on the plant-attacker combination. It is thought that this so-called signal signature plays a pivotal role in the orchestration of the plant’s immune response and eventually determines the specific nature of the defense response triggered (Rojo et al., 2003; De Vos et al., 2005; Mur et al., 2006).

In the model plant species Arabidopsis thaliana, SA is widely believed to act against biotrophic pathogens, which colonize and derive nutrients from living plant tissues whereas JA/ET-driven defenses are commonly accepted to trigger resistance against necrotrophic pathogens that kill host tissue and feed on the remains (Pieterse et al., 2012). In many other plant-pathosystems, however, the role of SA, JA and ET is not as clear-cut. For instance, in the model monocot plant rice (Oryza sativa), disease resistance seems to be controlled by a highly complicated signaling network that does not support a dichotomy between the effectiveness of the SA, JA and ET pathways and the lifestyle of a given pathogen (De Vleesschauwer et al., 2010, 2013).

Recently, various other hormones, including abscisic acid (ABA), gibberellins (GA), auxins, cytokinins and brassinosteroids have emerged as important regulators of plant-microbe interactions. Although their significance is less well characterized, evidence is accumulating that these hormones influence disease outcomes by feeding into the SA-JA/ET backbone of the plant immune system (Asselbergh et al., 2008; De Vleesschauwer et al., 2008; Robert-Seilianitz et al., 2011; Xu et al., 2013; De Bruyne et al., 2014).

Such interplay or crosstalk among defense pathways is thought to enable the plant to tailor its inducible defense arsenal to the type of attacker encountered and use its limited resources in a cost-efficient manner (Pieterse et al., 2012; Sharma et al., 2013). However, exciting new developments indicate that crosstalk may also be targeted by pathogens to tap into the plant defense signaling circuitry and redirect the host immune response. A classic example is the ability of the bacterial leaf speck pathogen Pseudomonas syringae pv. tomato to promote disease development by injecting effector proteins into the host cell that alter the plant’s auxin and ABA physiology (Chen et al., 2007; de Torres-Zabala...
et al., 2007; de Torres Zabala et al., 2009). In a complementary strategy, *P. syringae* also deploys the phytotoxin and JA-mimic coronatine to hyperactivate JA signaling and counteract effective SA-dependent defenses that normally serve to limit pathogen growth (Brooks et al., 2005; Cui et al., 2005; Melotto et al., 2006). Moreover, multiple other plant pathogens have been reported to produce plant hormones or their functional mimics, suggesting that manipulating host hormone signaling and hijacking crosstalk mechanisms is a common virulence strategy among plant attackers (Arshad and Frankenberger, 1992; Denançé et al., 2013; Grant et al., 2013).

In the past decades, the role of ET in regulating plant immune responses has attracted considerable interest. Analyses of plant mutants and transformants impaired in ET biosynthesis, perception or signaling have demonstrated the function and central importance of ET in the establishment of a broad array of local and systemic immune responses (Van der Ent and Pieterse, 2012). Although the widely held belief is that ET cooperates with JA in necrotroph resistance and antagonizes SA-mediated biotroph resistance, this is likely an oversimplified model (Broekaert et al., 2006; van Loon et al., 2006; Pieterse et al., 2009). Indeed, accumulating evidence in various plant species indicates that the effectiveness of the ET pathway is not always correlated to the lifestyle of the invading pathogen. For example, contrary to the classic binary defense model, disruption of ET signaling was found to render Arabidopsis both hypersusceptible to the biotrophic nematode *Heterodera schachtii* (Wubben et al., 2001) and more resistant to the necrotrophic pathogens *Ralstonia solanacearum*, *Verticillium dahliae* and *Fusarium oxysporum* (Pantelides et al., 2010, 2013). Similar findings were obtained in other plant-pathosystems. In rice, ET signaling increases resistance and susceptibility to the hemibiotrophic pathogens *Magnaporthe oryzae* and *Xanthomonas oryzae* pv. *oryzae*, respectively, (Iwai et al., 2006; Seo et al., 2011; Shen et al., 2011; Helliwell et al., 2013), while other studies implicated ET in inducing susceptibility to, among others, the necrotrophic fungi *F. oxysporum* f. sp. *lycopersici* and *Alternaria alternata* sp. *lycopersici* in tomato and the grey mold pathogen *Botrytis cinerea* in petunia (Lund et al., 1998; Lin et al., 2008; Jia et al., 2013). These observations suggest that ET plays a complex and ambiguous role in the plant immune system, the effect of which may depend not only on the infection mode of the attacking pathogen, but also on the plant species and specialized features of each interaction. Moreover, several plant pathogens have been demonstrated to autonomously produce ET in vitro and in planta (Valls et al., 2006; Van der Ent and Pieterse, 2012). However, the role of ET production for the pathogen as well as its significance in host-microbe interactions remains unclear, adding yet another layer of complexity in developing a coherent view of ET-modulated immunity.
Aiming to further dissect the immune-regulatory role of ET, we have analyzed its dynamics and function during progression of brown spot disease, caused by the necrotrophic fungal pathogen *Cochliobolus miyabeanus* (anamorph: *Bipolaris oryzae*). Particularly prevalent in rain-fed ecosystems, *C. miyabeanus* is known to produce a varied arsenal of phytotoxins, some of which are involved in suppression of plant phenol production (Vidhyasekaran et al., 1997; Condon et al., 2013). Previously, we demonstrated that exogenously administered ET renders rice hyper-susceptible to brown spot infection, whereas reduction of ET perception by the application of silver ions or disruption of ET signaling in *EIN2a* antisense plants resulted in a substantial reduction in disease severity (De Vleesschauwer et al., 2010). Moreover, gene expression experiments revealed a strong activation of ET signaling in susceptible but not in resistant rice plants, raising the hypothesis that *C. miyabeanus* exploits ET as a virulence factor and co-opted the rice ET signaling route to suppress other effectual defense pathways. However, how the pathogen is able to tap into the rice ET machinery and how increased ET signaling favors disease development remained unclear.

Here, we reveal that *C. miyabeanus* produces ET itself via a biosynthetic pathway that is distinct from plant ET biosynthesis and provide evidence that this fungal ET enhances susceptibility in rice both directly and indirectly via the activation of plant ET biosynthesis. Moreover, we show that the virulence of *C. miyabeanus* isolates is at least partly correlated with their ET producing abilities and describe how increased plant ET signaling compromises brown spot resistance by interfering with the phenylpropanoid pathway.

4.2 Results

4.2.1 *C. miyabeanus* infection promotes ET emission in rice leaves

Previously, we demonstrated that exogenously administered ET promotes susceptibility of rice to *C. miyabeanus* (De Vleesschauwer et al., 2010). To study the role of ET in orchestrating rice-*C. miyabeanus* interactions, we first assessed the temporal dynamics of ET production throughout the course of infection. Real-time ET monitoring of detached rice leaves inoculated with the virulent *C. miyabeanus* strain Cm988 revealed two distinct phases in ET production. A first rapid ET peak occurred within 24 hours post inoculation (hpi) and coincided with the development of small necrotic disease lesions (hpi), whereas a second more pronounced ET burst corresponding to advanced chlorotic disease lesions was observed from 48 hpi onwards (Fig. 4.1 A). Starting 72 hpi, ET emission levels decayed to near basal levels, a reaction that was associated with advanced necrosis of the inoculated leaves (Fig. 4.1 A, bottom).
The strong boost in ET production in *C. miyabeanus*-infected leaves was also reflected in a microarray experiment in which we analyzed the transcriptome of Cm988-inoculated rice leaves at 12 hpi (Fig S5.1 GEO accession GSE55330). Corroborating our ET measurements, brown spot infection significantly altered the expression of various ET biosynthesis genes including the ACC synthetase *OsACO7* and ACC oxidases *OsACS2* (Fig. 1B). Moreover, the transcriptome of *C. miyabeanus*-infected plants at 12 hpi displayed strong similarities to that of rice seedlings treated with the ET precursor ACC (Garg et al., 2012). Hierarchical clustering of all 699 genes significantly differentially expressed in both studies revealed that 66% (225 out of 341 genes; cluster I) of the transcripts induced upon brown spot infection are also upregulated in response to ACC treatment (Figure 4.1C). Similarly, genes downregulated by *C. miyabeanus* infection shared a 67% overlap with ACC-repressed genes (240 out of 358 genes; cluster III). Gene ontology (GO) enrichment analysis revealed an over-representation of genes involved in photosynthetic light harvesting among the transcripts down-regulated by both ACC-treatment and brown spot infection. In contrast, GO analysis of genes showing non-conserved expression (clusters II and IV) revealed no significantly enriched biological or cellular processes. In conjunction with the strong disease-promoting effect of exogenously administered ET (De Vleesschauwer et al., 2010), these data confirm ET as a crucial regulator of rice brown spot resistance and uncover ET as an important signal in the activation of gene expression in brown spot infected leaves.
Figure 4.1: A, Real-time ET detection in detached leaves infected with *C. miyabeanus* (Cm988, 1×10^4 conidia.ml$^{-1}$) using laser photoacoustic detection (LPAD). Data presented are means ± SE of three independent biological repetitions are shown. Photographs depict representative disease development at the indicated time points post inoculation. B, Expression data of rice ET-biosynthesis genes from a microarray experiment on *C. miyabeanus* inoculated vs. non-inoculated leaves 12 h post inoculation. C, Hierarchical cluster analysis of 699 genes differentially expressed in *C. miyabeanus* and ACC-treated rice compared with non-treated controls. ACC data was extracted from Garg et al. (2012), while pathogen inoculation data originates from a publicly available microarray experiment on Cm988-inoculated rice leaves (GEO dataset GSE55330). Genes were clustered with The Institute for Genomic Research (TIGR) multi-experiment viewer using Euclidean distance and complete linkage. Gene subclusters of interest that are discussed in the text are indicated by labeled vertical bars to the right of the image.
Chapter 4. ET production by Cochliobolus miyabeanus

4.2.2 C. miyabeanus produces ET in vitro via the 2-oxoglutarate pathway

Recent advances in plant immunity research have provided fascinating insights into the ingenious ways by which microbial pathogens modify plant hormone homeostasis. Besides influencing plant hormone synthesis, pathogens often manipulate the plant’s signaling infrastructure by producing plant hormones or functional mimics thereof themselves. In fungi, ET is most commonly synthesized from the TCA cycle intermediate 2-oxoglutarate. This reaction is catalyzed by a single multifunction ethylene forming enzyme (EFE), and requires additional amino acids, arginine or histidine, and Fe^{2+} as cofactors (Fukuda et al., 1992; Chagué et al., 2006; Fig. 4.2 A). To test whether a similar pathway is operative in C. miyabeanus, we monitored the ET emission of Cm988 spores germinating on solid medium containing oxoglutarate and arginine. As shown in Fig. 4.2 B, Cm988 spores produced ET from oxoglutarate and arginine, but only when a sterile extract of rice leaves was added to the medium. Moreover, Cm988 emitted significantly more ET when grown on media containing arginine and oxoglutarate in comparison with medium containing an equimolar amount of nitrogen in the form of nitrate (Fig. 4.2 C). In contrast, application of 2,2-bipyridyl (2,2-BP), a strong iron chelator and excellent inhibitor of oxoglutarate-dependent ET biosynthesis in Fusarium oxysporum f.sp. tulipae (Hottiger and Boller, 1991), almost completely abolished fungal ET emission in liquid cultures, further demonstrating the ability of C. miyabeanus to produce ET in an oxoglutarate-dependent manner (Fig. 4.2 D).

Over the past few years, various EFE enzymes have been identified and characterized. EFEs typically contain two conserved domains, DIOX_N (pfam14226) and 2OG-FeIIoxy (pfam03171), both of which are specific for iron-dependent oxoglutarate dioxygenases (Fukuda et al., 1992; Marchler-Bauer et al., 2011; Fig. S5.2 and S5.3). Blasting the amino acid sequences of these domains against the draft genome of C. miyabeanus (Condon et al., 2013) revealed the presence of a putative EFE, which we designated CmEFE (BK008840). Interestingly, gene expression analyses of Cm988-inoculated plants revealed that CmEFE transcript levels respond strongly to plant infection and peak at 48 hpi, concomitant with the strong ET burst observed in Cm988-inoculated plants (Fig. 4.2 E). However, when C. miyabeanus was grown on rice leaves that had been flash-frozen and thawed to inhibit active cell metabolism, the fungus failed to produce ET (data not shown). Given that most of the nutrients used by microbial pathogens originate from their host and that rice leaves are low in oxoglutarate (Yuan et al., 2007a), these findings suggest that C. miyabeanus may need to induce plant oxoglutarate accumulation in order to produce ET.
Consistent with this hypothesis, our microarray data showed a significant upregulation at 12 hpi of the glutamate dehydrogenases \textit{OsGDH2} and \textit{OsGDH3}, two out of the four oxoglutarate-forming enzymes in rice (Fig. 4.2 F).
Chapter 4. ET production by Cochliobolus miyabeanus

Figure 4.2: A, Microbial ET biosynthesis in an oxoglutarate-dependent manner [Fukuda et al., 1992]. B, Real-time ET detection of germinating C. miyabeanus spores using laser photoacoustic detection (LPAD). The conidia (Cm988, 1 x 10^4 conidia.ml^-1) were sprayed on solid Czapek medium rich in oxoglutarate and arginine and complemented or not with sterile rice leaf extract. Data of two representative biological repetitions are shown. The experiment was repeated two more times with similar results. C, ET accumulation in C. miyabeanus isolate Cm988 grown for five days in liquid medium containing rice extract and equimolar amounts of nitrogen (4 mM) supplied in the form of nitrate or a mixture of oxoglutarate and arginine. Data presented are means ± SE of four independent biological replicates (Paired t-test, n=24, α = 0.05). Different letters indicate statistically significant differences. D, Influence of 2,2-bipyridyl (2,2-BP) (1 mM) on ET accumulation in 7-days old liquid cultures of C. miyabeanus (Cm988). Data presented are means ± SE of three independent biological replicates (Paired t-test; n=148; α = 0.05). Different letters indicate statistically significant differences. E, Relative expression of fungal ethylene forming enzyme, CmEFE in rice leaves infected with Cm988 (1 x 10^5 conidia.ml^-1). Data presented are mean relative expression levels of three independent experiments ± SE (Mann-Whitney; n=18; α = 0.05). Different letters indicate statistically significant differences. F, Relative expression of rice glutamate dehydrogenases (GDH) in C. miyabeanus-infected leaves at 12hpi. Data were extracted from a publicly available microarray experiment.
4.2.3 *C. miyabeanus*-produced ET boosts rice ET synthesis and acts as a virulence factor

The ability of *C. miyabeanus* to produce ET *in vitro* and the strong upregulation of *CmEFE* transcript levels during progression of brown spot disease strongly suggested that fungal ET might play an important role in shaping disease outcomes. To address this hypothesis, we first probed the effect of exogenously applied Ethephon, an ET-releasing growth regulator, on ET production in detached rice leaves treated or not with the plant ET biosynthesis blockers aminoxyacetic acid (AOA) and cobalt chloride (CoCl$_2$) (Fig. 4.3 A). Importantly, both chemicals significantly reduced ET levels in control-treated leaves but failed to lower ET in fungal cultures, demonstrating the effectiveness and specificity of these inhibitors under our experimental conditions. Furthermore, despite having no significant effect on the ET emission of rice leaves treated with low levels of Ethephon (10μM), co-application of AOA and CoCl$_2$ significantly reduced ET emissions triggered by higher Ethephon concentrations (100 μM), indicating that high doses of exogenously administered ET amplify endogenous ET production.

To test whether fungal ET might have a similar impact on plant ET synthesis during *C. miyabeanus* infection, we next quantified the effect of plant and fungal ET biosynthesis blockers on ET emissions in inoculated leaves (Fig. 4.3 B), on one hand, and brown spot resistance, on the other (Fig. 4.3 C). As expected, uninfected water-treated rice leaves produced almost no ET. Following infection, however, ET levels started to increase rapidly from 6 hpi onwards and peaked around 12 hpi at approximately 20 times the levels found in non-inoculated samples. Blocking plant ET production by treating leaf pieces with 500 μM of AOA and CoCl$_2$ partially inhibited ET emission levels, but failed to exert a significant effect on disease resistance. In contrast, blocking fungal ET production by adding 2,2-BP to the spore solution not only strongly reduced total ET titers but also significantly restricted subsequent disease development, while co-application of plant and fungal ET biosynthesis blockers mirrored the effect of single 2,2-BP treatments. Importantly, application of 2,2-BP had no significant impact on ET levels in non-infected rice tissues, demonstrating the specificity of this inhibitor for fungal ET synthesis. Together these findings indicate that production of ET by *C. miyabeanus* is an important virulence strategy and suggest that fungal ET at least partly acts by amplifying plant ET synthesis.
Figure 4.3: A, Influence of Ethephon on in planta ET accumulation in rice leaves treated with water or the ET biosynthesis inhibitors AOA and CoCl\(_2\) (500µM each) 24h after treatment. Data presented are means ± SE of five independent biological replicates (Mann-Whitney; n=30; α = 0.05). Different letters indicate statistically significant differences.

B, Effect of the fungal ET biosynthesis inhibitor 2,2-BP (2mM in spore solution) and the plant ET biosynthesis blocker (AOA and CoCl\(_2\), 500µM each) on brown spot disease severity. Data presented are means ± SE of five independent biological repeats (Bonferroni; n=40; α = 0.05). Different letters indicate statistically significant differences.

C, ET accumulation detected in detached leaves infected with *C. miyabeanus* (Cm988, 1 x 10\(^4\) conidia.ml\(^{-1}\)) using laser photoacoustic detection (LPAD). Leaf segments were floated for 24h on aqueous solutions containing the plant ET biosynthesis blockers AOA and CoCl\(_2\) (500µM each) and subsequently infected with conidial solution containing 0 or 2mM fungal ET biosynthesis blocker (2,2-BP). Data presented are from a representative experiment. The experiment was repeated twice with similar results.
4.2.4 Rice ET signaling but not ET biosynthesis is essential for brown spot development

The finding that chemical disruption of plant ET production only weakly affected disease severity whereas Ethephon application rendered plants hyper-susceptible (De Vleesschauwer et al., 2010; Fig. S5.6), suggested that ET action, rather than de novo ET biosynthesis, is a crucial factor modulating *C. miyabeanus* pathogenicity. Supporting this hypothesis, inhibition of ET signaling with silver thiosulfate (STS), a well-characterized inhibitor of ET action, almost completely abrogated brown spot development (Fig. 4.4 A and B). Given the senescence-inducing properties of ET on rice leaves (Fig. S5.4) fungal ET production might account for the induction of chlorotic lesions around the site infection. Despite inducing substantial levels of resistance, blocking fungal ET with 2,2-BP was significantly less effective in reducing mean lesion size as compared to STS application (Fig. 4.3 C). Along with the inability of AOA and CoCl$_2$ to mount resistance, these data not only highlight the central importance of plant ET signaling in the establishment of brown spot disease, but also suggest that *C. miyabeanus* has evolved virulence factors other than fungal ET to trick the plant into activating downstream ET action.
4.2.5 ET signaling compromises phenylpropanoid-driven defenses against *C. miyabeanus*

Although the role of ET in the regulation of plant-microbe interactions has been intensively studied, it remains largely unclear how ET contributes to microbial virulence. To further decipher how ET signaling increases rice susceptibility to infection with *C. miyabeanus*, we studied the cytological alterations associated with fungal colonization using the intact leaf sheath method. Contrary to leaf blades, leaf sheath tissue is relatively flat and optically clear, which facilitates live cell imaging. Microscopic analysis of leaf sheaths sampled 48h after *C. miyabeanus* infection and stained with Evan’s blue revealed massive cell death of both invaded and non-penetrated surrounding cells, whereas blocking ET signaling with STS strongly reduced the occurrence of pathogen-induced tissue necrotization (Fig. 4.5 A). Moreover, STS-treatment increased the accumulation of phenolic compounds around the site of penetration as visualized by an intense green autofluorescence under blue light excitation (Fig. 4.5 B). Quantification of the concentration of soluble phenolic
compounds in a detached leaf assay showed that neither Ethephon nor STS treatment significantly affected phenolics accumulation in non-inoculated samples (Fig. 4.5 C). However, substantial differences among treatments were seen following pathogen challenge, with ET and STS respectively enhancing and reducing the level of pathogen-induced phenolics as compared to inoculated controls. Similar effects were also observed in the activity pattern of two key enzymes of the phenylpropanoid pathway, namely phenylammonia lyase (PAL) and polyphenol oxidase (PPO) (Fig. 4.5 D and E). Exogenous application of different phenolics demonstrated the effectiveness of these compounds in reducing brown spot severity (Fig. S5.5). Collectively, these findings argue that ET promotes susceptibility to C. miyabeus at least in part by antagonizing phenylpropanoid metabolism, leading to reduced deposition of phenolic compounds at the site of fungal penetration.
4.2.6 *C. miyabeanus* isolates differ in virulence and ET production

All previous experiments were conducted with the highly virulent isolate Cm988. To address the question of how fungal ET production relates to microbial virulence, we included two other isolates, WK1C and C412, in our analyses. Like Cm988, both of these isolates were isolated from diseased rice in field plots at the International Rice Research Institute (the Philippines). Infection trials revealed that WK1C is least virulent, followed
by C412 and Cm988 (Fig. 4.6 D). In line with these results, liquid cultures of isolates WK1C and C412 also clearly emitted less ET compared to Cm988 (Fig. 4.6 A) and, accordingly, showed a lower expression of CmEFE (Fig. 4.6 B). As shown in Figure 4.6 C, these strain-specific differences in virulence and CmEFE expression correlated well with both total ET emission levels (control) and synthesis of fungal ET (as revealed by AOA and CoCl$_2$ treatment) in detached leaf assays.

To further investigate this putative link between ET metabolism and *C. miyabeanus* virulence, a parallel set of inoculation experiments was performed wherein we tested the significance of plant ET synthesis and signaling in response to all three isolates. Intriguingly, inhibition of plant ET synthesis by combined AOA and CoCl$_2$ application had no significant impact on Cm988 infection but enhanced resistance against the weakly virulent strains WK1C and C412. In contrast, STS-mediated disruption of ET signaling severely restricted disease development irrespective of the pathogen’s virulence. In view of the central importance of plant ET signaling in *C. miyabeanus* pathogenicity, we interpret these data to suggest that pathogen-induced plant ET synthesis is especially important for less virulent strains of *C. miyabeanus* which may produce too little ET themselves to initiate plant ET signaling (Fig. 4.6 D).
Figure 4.6: A, ET accumulation and B, relative expression of CmEFE in 7-day-old liquid cultures of C. miyabeanus isolates ranging in virulence from least (WK1C) to most virulent (Cm988). Data presented are means ± SE of at least three independent biological repeats (Mann-Whitney; n ≤ 12; α = 0.05). Different letters indicate statistically significant differences. C, Influence of the plant ET biosynthesis blockers AOA and CoCl₂ (500 µM each) on ET production in mock- and pathogen-inoculated leaves at 24hpi. Data presented are means ± SE of at least three independent biological repeats (Mann-Whitney; n = 28; α = 0.05). Different letters indicate statistically significant differences. Photographs depict representative symptom development. D, Influence of the plant ET biosynthesis blockers AOA and CoCl₂ (500 µM each) and the ET signaling blocker STS (1 mM) on brown spot resistance at three dpi. Data presented are means ± SE of at least three independent biological repeats (Tukey; n = 36; α = 0.05). Different letters indicate statistically significant differences.
4.3 Discussion

Since its discovery as the main defoliating component of coal gas by Neljubov, the gaseous hormone ET and its myriad effects on plant growth and development have been the subject of intense research. Fueled by the advent of large-scale -omics technologies and recent advances in computational biology, tremendous progress has lately been made in elucidating the molecular mechanisms by which ET is perceived and its signal transduced (for review see Merchante et al. [2013]). Contrary to these paradigm-shifting advances, the precise role and function of ET in the regulation of plant-microbe interactions is less well understood, with both positive and negative effects being reported depending not only on the plant-attacker combination, but also on the hormone concentration, type of tissue, and even timing of infection (Van der Ent and Pieterse [2012]). Aiming to gain further insight into the defense-modulatory role of ET, we have analyzed its impact and dynamics during progression of rice brown spot disease caused by the necrotrophic fungus Cochliobolus miyabeanus. In keeping with the strong disease-enhancing effect of exogenously administered ET (De Vleesschauwer et al. [2010]), our findings unmask ET as a key signal in the activation of gene expression by C. miyabeanus. Moreover, we show that the pathogen tricks the plant into producing copious amounts of ET at least in part by synthesizing ET itself, a strategy that is especially important for less virulent C. miyabeanus strains. Finally, we demonstrate that plant ET signaling compromises basal immunity to C. miyabeanus via a two-pronged mechanism involving disruption of phenylpropanoid metabolism.

Together with SA and JA, ET is a common component of the hormonal blend released by pathogen-infected plants. Real-time monitoring of ET levels during rice-brown spot interaction revealed a biphasic ET burst comprising an initial peak of ET around the time of necrotic lesion formation (i.e. 12 hpi), followed by a second more pronounced ET burst closely associated with further lesion expansion and spreading chlorosis. The first wave of ET production is only a small fraction of the magnitude of the second peak and possibly interferes with plant defense signaling, inducing a state of susceptibility. In contrast, the second peak around 48 hpi is so big that it likely initiates processes such as senescence and chlorosis, further amplifying disease development. Consistent with the strong rise in ET levels, microarray analysis of brown-spot infected leaves revealed substantial transcriptional reprogramming of several rice ET-biosynthesis genes, including OsACO7 and OsACS2. Moreover, the transcriptome of plants infected with C. miyabeanus displayed a strong overlap with that of rice leaves treated with the ET precursor ACC (Garg et al. [2012]), suggesting that elevated ET concentrations in planta
are a primary signal in the activation of gene transcription by *C. miyabeanus*. These findings echo previous findings in the *Arabidopsis-Pseudomonas syringae* pathosystem where effector proteins delivered by virulent bacterial stains were found to activate large suites of ABA-, auxin- and JA-responsive transcripts (Chen et al., 2007; de Torres-Zabala et al., 2007). Moreover, in conjunction with the strong disease-suppressive effect of the plant ET signaling inhibitor STS (Fig. 4 A and B), these results add weight to the concept that *C. miyabeanus* hijacks the plant ET pathway as a decoy strategy to rewire the rice immune signaling circuitry and suppress effectual defense pathways.

One of the outstanding questions in this regard is how does *C. miyabeanus* hijack the rice ET pathway? Naturally, plant pathogens have evolved a variety of strategies to overcome plant hormone-mediated immunity or induce host susceptibility by interfering with various hormonal processes. In many plant-pathogen interactions, hormone-based virulence strategies are based on the delivery into the host cell of proteinaceous virulence effectors that target hormone signaling components (Robert-Seilaniantz et al., 2011; Dou and Zhou, 2012). In tomato, for instance, the *Pseudomonas syringae* pv. *tomato* effectors AvrPto and AvrPtoB are well known to induce ET biosynthesis in order to trigger cell death and facilitate pathogenesis (Cohn and Martin, 2005). In addition, an increasing number of microbes are predicted to produce phytohormones or phytohormone mimics themselves, including SA, JA, ABA, CK, GA, and ET (Denançé et al., 2013). In plants, ET is produced from methionine via the intermediate ACC. In microorganisms, however, ET can be synthesized from different sources, including ACC, the methionine-derivative α-keto-γ-methylthiobutyric acid, and, as is the case in *C. miyabeanus* (Fig. 4.2) and most other fungi, the amino acids 2-oxoglutarate and arginine (Arshad and Frankenberger, 2002). Interestingly, *C. miyabeanus* only produced ET in response to plant extracts, suggesting that fungal ET production does not play a role in the development of the pathogen but rather is required for plant infection. Supporting this assumption, we found two glutamate dehydrogenase genes, namely OsGDH2 and OsGDH3, to be strongly upregulated in brown spot-infected leaves. Often activated under stress- and senescence-inducing conditions (Masclaux-Daubresse et al., 2005; Pageau et al., 2006; Qiu et al., 2009; Masclaux-Daubresse et al., 2010), glutamate dehydrogenases regulate the mitochondrial glutamate/oxoglutarate equilibrium by catalysing the formation of oxoglutarate from glutamate (Dubois et al., 2003; Miyashita and Good, 2008). Since oxoglutarate is not abundantly present in plant cells (Weber, 2002), it is tempting to speculate that *C. miyabeanus* activates its own ET production by inducing oxoglutarate synthesis in infected leaves.

In fungi, oxoglutarate-dependent ET production is commonly mediated by a single multi-
function ethylene forming enzyme (Arshad and Frankenberger, 2002). Blasting EFE protein sequences and pharmacological experiments using the EFE inhibitor 2,2-BP led us to identify a homologue in *C. miyabeanus*, designated CmEFE. To our interest, gene expression experiments revealed a strong induction of CmEFE during infection, suggesting that fungal ET acts as a virulence factor, attenuating the plant resistance response. Consistent with this hypothesis, blocking fungal ET synthesis using 2,2-BP not only abrogated ET production by *C. miyabeanus* in vitro but also significantly increased brown spot resistance. Although production of microbial ET has been described before as a virulence strategy for bacterial plant pathogens such as *P. syringae* pv. *glycinea* and *Ralstonia solanacearum* (Weingart et al., 2001; Valls et al., 2006; Macho et al., 2010), EFE enzymes are found in a wide range of micro-organisms, including post-harvest pathogens, plant beneficial micro-organisms and even micro-organisms that do not interact with plants (Eckert et al., 2014). Therefore, oxoglutarate-dependent microbial ET production may fulfill multiple roles, acting as either a positive or negative regulator of both microbial development and plant defense responses.

Early studies with ET-producing strains of *R. solanacearum*, *P. syringae* and *Xanthomonas citri* have shown that enhanced ET production in diseased plant tissues can be either of host or microbial origin, depending on the specific plant-attacker combination and possibly also the timing of infection (Crownshaw and Pegg, 1976; Goto et al., 1980; Lu et al., 1989; Weingart and Volksch, 1997). To determine the source of ET and its role in brown spot-infected rice leaves, we took advantage of the two different ET biosynthesis pathways in the plant and fungus. These experiments demonstrated that attenuation of fungal ET production by 2,2-bipyridil almost completely negated ET production in diseased leaves, whereas blocking plant ET biosynthesis using the chemical inhibitors AOA and CoCl$_2$ was significantly less effective in reducing ET levels. Although these results indicate *C. miyabeanus* is the prevalent source of ET in brown spot infected leaves, they also suggest that fungal ET amplifies plant ET production. In support of this assumption and consistent with previous findings (Barry et al., 2000; Alexander and Grierson, 2002), we found high concentrations of exogenously administered Etephon to increase endogenous ET production. Opposite to the auto-inhibitory system that generally operates during normal vegetative growth of the plant, ET biosynthesis in brown spot-infected tissues therefore seems to be controlled by a positive feedback mechanism similar to the one described in senescing tissues and ripening fruits (Iqbal et al., 2011).

Despite the apparent importance of ET as a fungal virulence factor, blocking plant ET signaling with the ET receptor inhibitor STS triggered significantly higher levels of resistance compared to the fungal ET blocker 2,2-BP. These findings may be reconciled
by considering that *C. miyabeanus* secretes additional virulence factors that impinge on the plant ET pathway and require ET signaling action for their mode of action. Like other *Cochliobolus* species, *C. miyabeanus* produces a broad palette of cell death-inducing phytotoxins, including ophiobolins A and B [Xiao et al., 1991; Kim et al., 1999; Ahn et al., 2005]. Moreover, several lines of evidence point towards a close interconnection between phytotoxin-induced disease susceptibility and plant ET signaling. For instance, many toxins produced by phytopathogenic microorganisms, comprising both prokaryotes and eukaryotes, induce senescence and increase ET biosynthesis in a wide variety of plants [Mercado Vergnes et al., 2006]. Moreover, ET-dependent signaling often participates in phytotoxin-triggered host cell death. In one of the best studied examples, AAL, a host-selective toxin produced by *Alternaria alternata* f. sp. lycopersici, has been shown to induce plant cell death by triggering a complex signaling cascade centered around the key ET transcription factor EIN3 [Crownshaw and Pegg, 1976; Moore et al., 1999; Chen et al., 2009; Mase et al., 2012, 2013]. Finally, many toxin-producing pathogens contain EFE homologues and some of these pathogens, including *Verticillium dahliae* and *Fusarium oxysporum*, have been reported to induce ET as well [Tzima et al., 2010].

One particularly interesting finding in this study was the observation that the expression of CmEFE as well as ET production *in vitro* and *in planta* is correlated with the virulence of different *C. miyabeanus* isolates. Moreover, blocking plant ET biosynthesis decreased the total ET emission for all isolates and significantly increased disease resistance towards the less virulent isolates, despite being ineffective against the most virulent isolate. One possible interpretation of these findings is that highly virulent strains produce sufficient fungal ET to fully activate the plant ET signaling pathway such that plant-derived ET might not have an additional effect on susceptibility. Conversely, in case of more weakly virulent isolates that produce less fungal ET, pathogen-induced plant ET may still add to ET pathway activation, thereby further enhancing brown spot severity. The observation that STS-mediated disruption of ET signaling triggered high levels of resistance independent of the intrinsic level of pathogen virulence supports this concept. Strain-specific differences in disease severity, however, were still evident following exogenous ET applica-
Chapter 4. ET production by Cochliobolus miyabeanus

4.4 Conclusion

In summary, our results favor a scenario whereby C. miyabeanus strains cause disease by hijacking the rice ET signaling pathway. Under our current model (Figure 4.7), C. miyabeanus rapidly starts synthesizing ET in penetrated rice cells via a reaction that requires 2-oxoglutarate and arginine as cofactors and is catalyzed by a single Ethylene Forming Enzyme. In a self-amplification loop, fungal ET in turn triggers plant ET synthesis, the combined action of which leads to activation of the rice ET signaling pathway. Host ET signaling dictates transcriptional reprogramming of extensive gene sets in diseased leaves and closely interacts with fungal phytotoxins to compromise plant immunity via a dual mechanism comprising amplification of pathogen-induced senescence.
and disruption of phenylpropanoid-driven defenses that normally serve to limit pathogen growth. While providing novel insights into the multifaceted role of ET in the plant’s defense signaling circuitry, the findings presented in this study underscore the importance of microbial ET in modulating plant immunity and hint at a tight relationship between microbial phytotoxin production and ET-induced plant susceptibility.

Figure 4.7: Hypothetical model illustrating the role of plant and fungal ET in triggering susceptibility against C. miyabeanus in rice
Chapter 4. ET production by Cochliobolus miyabeanus

4.5 Addendum: Microbial 2-oxoglutarate-dependent ET biosynthesis in plant-pathogen interactions

Ethylene (ET) is primarily known as a plant hormone that modulates many developmental processes and plays an important role as mediator of defense responses in plants (Wang et al., 2002; van Loon et al., 2006). However, several microorganisms can also produce ET via pathways that are different from plant ET biosynthesis. To date three different microbial ET biosynthetic pathways have been described (Cristescu et al., 2006; Chagué, 2010). Two pathways produce ET from methionine with either 1-aminocyclopropane-1-carboxylic acid (ACC) or 2-keto-4-methylthiobutyric acid (KMBA) as intermediate. The third and best-known pathway describes the production of ET from 2-oxoglutarate and arginine, catalyzed by an ET forming enzyme (EFE) (Fukuda et al., 1992; Chagué, 2010; see Fig 4.2 A). Several plant-pathogens have been reported to produce ET following the 2-oxoglutarate dependent pathway (Table 4.1). To date, only the EFEs of Pseudomonas syringae pathovars, Ralstonia solanacearum and Penicillium digitatum have been identified and functionally characterized (Fukuda et al., 1989; Nagahama et al., 1991a; Sato et al., 1997; Genin and Boucher, 2002). These EFE protein sequences are characterized by the presence of two conserved domains, DIOX_N (Pfam14226) and 2OG-FeIIoxy (pfam03171) (see Chapter 4.2.2) which are specific for enzymes that show 2-oxoglutarate/Fe(II)-dependent dioxygenase activity (Aravind and Koonin, 2001; Hausinger, 2004; Hagel and Facchini, 2010; Marchler-Bauer et al., 2011).

Table 4.1: List of microorganisms that produce ET in a 2-oxoglutarate-dependent manner.

<table>
<thead>
<tr>
<th>Micro-organism</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cochliobolus miyabeanus</td>
<td>see Section 4.2.2</td>
</tr>
<tr>
<td>Fusarium oxysporum</td>
<td>Hottiger and Boller (1991)</td>
</tr>
<tr>
<td>Penicillium cyclopium</td>
<td>Pazour and Pazoutova (1989)</td>
</tr>
<tr>
<td>Penicillium digitatum</td>
<td>Fukuda et al. (1986, 1988)</td>
</tr>
<tr>
<td>Pseudomonas syringae pv. cannabina</td>
<td>Weingart et al. (1999)</td>
</tr>
<tr>
<td>Pseudomonas syringae pv. glycinea</td>
<td>Watanabe et al. (1998); Weingart et al. (1999); Weingart and Volksch (1997); Weingart et al. (2001)</td>
</tr>
<tr>
<td>Pseudomonas syringae pv. phaseolicola</td>
<td>Weingart et al. (2001); Weingart and Volksch (1997); Fukuda et al. (1992); Nagahama et al. (1991b)</td>
</tr>
<tr>
<td>Pseudomonas syringae pv. pisi</td>
<td>Weingart et al. (2007); Weingart and Volksch (1997)</td>
</tr>
<tr>
<td>Pseudomonas syringae pv. sesami</td>
<td>Sato et al. (1997)</td>
</tr>
<tr>
<td>Ralstonia solanacearum</td>
<td>Valls et al. (2006); Genin and Boucher (2002); Macho et al. (2010)</td>
</tr>
</tbody>
</table>

Due to the availability of a fast growing assembly of microbial genome and proteome sequences, many EFEs have been identified and annotated based on the homology with characterized EFEs, mainly from R. solanacearum and P. syringae pathovars. In most cases however, ET producing abilities of the microorganism is still to be proven. Moreover,
there are manifold putative EFE proteins that are homologous with characterized EFEs with the same DIOX,N and 2OG-FeII,oxy domains \cite{Eckert2014}. A phylogenetic tree of all EFE protein homologs, both annotated and putative, shows two large subgroups, one containing fungi and the other bacteria, and a smaller subgroup containing mainly plant-pathogenic fungi from the Pleosporaceae family (Fig 4.8). In order to gain more insight on the role of potential microbial ET biosynthesis in this diverse group of microbes containing a putative EFE homolog, a relevant sub selection of these microorganisms was grouped according to their lifestyle and function (Table 4.2). Some of these organisms are known to produce ET via an annotated EFE, others contain an annotated EFE but have not yet been proven to produce ET and the rest only contains a putative EFE homolog \cite{Eckert2014}.
Table 4.2: Selection of microorganisms that contain a putative EFE-homolog with accession numbers from GenBank

<table>
<thead>
<tr>
<th>type of microorganism</th>
<th>microorganism</th>
<th>accession number</th>
<th>protein function</th>
</tr>
</thead>
<tbody>
<tr>
<td>plant pathogenic bacterium</td>
<td>Pseudomonas cannabina</td>
<td>AAD16441.1</td>
<td>ET producer (EFE)</td>
</tr>
<tr>
<td></td>
<td>Pseudomonas savastanovs</td>
<td>WP_004661945.1</td>
<td>putative EFE</td>
</tr>
<tr>
<td></td>
<td>Pseudomonas syringae pv. glycinea</td>
<td>ZP_11566673.1</td>
<td>putative EFE</td>
</tr>
<tr>
<td></td>
<td>Pseudomonas syringae pv. phaselicola</td>
<td>BAA02477.1</td>
<td>ET producer (EFE)</td>
</tr>
<tr>
<td></td>
<td>Pseudomonas syringae pv. pisi</td>
<td>AAD16443.1</td>
<td>ET producer (EFE)</td>
</tr>
<tr>
<td></td>
<td>Pseudomonas syringae pv. sesami</td>
<td>AAD16442.1</td>
<td>ET producer (EFE)</td>
</tr>
<tr>
<td></td>
<td>Ralstonia solanacearum</td>
<td>YP_006931629.1</td>
<td>ET producer (EFE)</td>
</tr>
<tr>
<td></td>
<td>Ralstonia solanacearum</td>
<td>YP_006961415.1</td>
<td>ET producer (EFE)</td>
</tr>
<tr>
<td>post harvest fungus</td>
<td>Streptomyces bottropensis</td>
<td>WP_005474170.1</td>
<td>putative EFE</td>
</tr>
<tr>
<td></td>
<td>Streptomyces ssoecus</td>
<td>ZP_006912414.1</td>
<td>annotated EFE</td>
</tr>
<tr>
<td></td>
<td>Xanthomonas oryzae pv. oryzicola</td>
<td>YP_005628789.1</td>
<td>annotated EFE</td>
</tr>
<tr>
<td></td>
<td>Claviceps purpurea</td>
<td>CCE32144.1</td>
<td>annotated EFE</td>
</tr>
<tr>
<td></td>
<td>Cochliobolus heterostrophus</td>
<td>EMD86143.1</td>
<td>putative EFE</td>
</tr>
<tr>
<td></td>
<td>Cochliobolus miyabeanus</td>
<td>BK008840</td>
<td>ET producer (EFE)</td>
</tr>
<tr>
<td></td>
<td>Cochliobolus sativus</td>
<td>EMD89871.1</td>
<td>putative EFE</td>
</tr>
<tr>
<td></td>
<td>Colletotrichum graminicola</td>
<td>EFQ36771.1</td>
<td>putative EFE</td>
</tr>
<tr>
<td></td>
<td>Colletotrichum hystigmianum</td>
<td>CCF31757.1</td>
<td>putative EFE</td>
</tr>
<tr>
<td></td>
<td>Colletotrichum oriculare</td>
<td>ENH8987.1</td>
<td>putative EFE</td>
</tr>
<tr>
<td></td>
<td>Fusarium oxysporum f. cubense</td>
<td>EMT67163.1</td>
<td>annotated EFE</td>
</tr>
<tr>
<td></td>
<td>Magnaporthe oryzae</td>
<td>XP_366046.1</td>
<td>annotated EFE</td>
</tr>
<tr>
<td></td>
<td>Neofusicoccum parvum</td>
<td>EOD48827.1</td>
<td>annotated EFE</td>
</tr>
<tr>
<td></td>
<td>Pyrenophora orbiculare</td>
<td>XP_003002061.1</td>
<td>putative EFE</td>
</tr>
<tr>
<td></td>
<td>Pyrenophora tritic-repentis</td>
<td>XP_001935406.1</td>
<td>putative EFE</td>
</tr>
<tr>
<td></td>
<td>Setosphaeria turcica</td>
<td>EOA91625.1</td>
<td>putative EFE</td>
</tr>
<tr>
<td></td>
<td>Verticillium alfae</td>
<td>XP_003000034.1</td>
<td>annotated EFE</td>
</tr>
<tr>
<td></td>
<td>Verticillium dahliae</td>
<td>EGY19158.1</td>
<td>annotated EFE</td>
</tr>
<tr>
<td></td>
<td>Colletotrichum gloeosporioides</td>
<td>ELA32715.1</td>
<td>annotated EFE</td>
</tr>
<tr>
<td></td>
<td>Neurospora crassa</td>
<td>XP_0057496.2</td>
<td>annotated EFE</td>
</tr>
<tr>
<td></td>
<td>Neurospora tetrasperma</td>
<td>EGZ73504.1</td>
<td>annotated EFE</td>
</tr>
<tr>
<td></td>
<td>Penicillium digitatum</td>
<td>EKV19239.1</td>
<td>annotated EFE</td>
</tr>
<tr>
<td></td>
<td>Aspergillus clavatus</td>
<td>XP_001270369.1</td>
<td>putative EFE</td>
</tr>
<tr>
<td></td>
<td>Laccaria bicolor</td>
<td>XP_001884879.1</td>
<td>putative EFE</td>
</tr>
<tr>
<td></td>
<td>Mertarhizium anisopliae</td>
<td>EFY99197.1</td>
<td>putative EFE</td>
</tr>
<tr>
<td></td>
<td>Pseudomonas fluorescens</td>
<td>WP_001752849.5</td>
<td>putative EFE</td>
</tr>
<tr>
<td></td>
<td>Trichoderma virens</td>
<td>EHK24268.1</td>
<td>putative EFE</td>
</tr>
<tr>
<td>nitrogen-fixating bacterium</td>
<td>Frankia sp.</td>
<td>WP_007510697.1</td>
<td>putative EFE</td>
</tr>
<tr>
<td></td>
<td>Beauveria bassiana</td>
<td>EJP64077.1</td>
<td>putative EFE</td>
</tr>
<tr>
<td>insect pathogen</td>
<td>Cordyceps militaris</td>
<td>EGGX3620.1</td>
<td>putative EFE</td>
</tr>
</tbody>
</table>
Figure 4.8: Phylogenetic study of Ethylene-Forming Enzyme (EFE) and EFE-homologous sequences. The tree could be divided into two large groups (fungi and bacteria) and one small group (mostly Pleosporaceae fungi) (Eckert et al., 2014).
Chapter 4. ET production by Cochliobolus miyabeanus

4.5.1 Role of 2-oxoglutarate-dependent ET biosynthesis during plant-microbe interactions

The prevalence of plant-pathogenic microorganisms in Table 4.2 indicates that microbial ET might have different modes of action during the infection process. First, microbial 2-oxoglutarate dependent ET biosynthesis might serve as a virulence factor for some microorganisms in order to cause susceptibility in their host plants. This is the case for the plant pathogenic bacteria *R. solanacearum* and *P. syringae* pathovars (Weingart et al., 1999; Valls et al., 2006; Baltrus et al., 2011) as well as the necrotrophic leaf fungus *C. miyabeanus* (see Chapter 4) and the hemibiotrophic wilting fungus *Verticillium dahliae* (Crownshaw and Pegg, 1976; Pegg, 1981; Tzima et al., 2010). Moreover, *V. dahliae* mutants that are impaired in the cyclic AMP-dependent protein kinase A (cAMP/PKA) pathway, produce less ET and are less virulent (Tzima et al., 2010, 2012). These data suggest that the cAMP/PKA pathway, which is a known fungal signaling pathway (Borges-Walmsley and Walmsley, 2000), regulates fungal ET biosynthesis in *V. dahliae*.

Secondly, microbial ET might serve as a signaling component that could regulate the fungal infection process which could be the case for different *Neurospora* and *Colletotrichum* species and *Magnaporthe oryzae*. None of these pathogens show a convincing link between ET production and host susceptibility, so it is unlikely that ET production by these fungi acts as a virulence factor. However, spore germination and appressorium formation in these fungi are mediated by the cAMP/PKA pathway that regulates different fungal developmental processes (Borges-Walmsley and Walmsley, 2000). This has been reported for *Neurospora crassa* (Pall and Robertson, 1987; D’Enfert, 1997), *M. oryzae* (Xu et al., 1997; Kulkarni et al., 2005), *C. orbiculare* (Kubo and Takano, 2013) and *C. gloeosporioides* (Barhom and Sharon, 2004; Priyatno et al., 2012). The germination of spores and appressorium formation of the post-harvest fungus *C. gloeosporioides* also seems to be induced by ET (Flaishman and Kolattukudy, 1994; Flaishman et al., 1995; Kim et al., 2000). Given that *C. gloeosporioides* occurs on climacteric fruits like tomato and avocados, ET produced during ripening might induce the infection process, although the spores also germinate in the absence of ET. These findings led to the hypothesis that ET, either host-derived or produced by *C. gloeosporioides*, is necessary to initiate the fungal development at the start of the infection process.

In conclusion, it seems that several plant pathogenic bacteria and fungi can produce ET in a 2-oxoglutarate-dependent manner as a virulence strategy. However, ET might also function as a fungal signaling component that possibly mediates different developmental processes during infection probably downstream of the important cAMP/PKA signaling
Chapter 4. ET production by Cochliobolus miyabeanus

pathway. Given the widespread occurrence of putative EFE homologs in plant pathogens (Table 4.2), the role of microbial ET in plant-pathogen interactions promises to be an interesting research topic in the future.

4.5.2 Role of microbial ET biosynthesis for beneficial soil microorganisms

Since the function of 2-oxoglutarate-dependent microbial ET biosynthesis has been almost exclusively investigated in host-pathogen interactions, the current knowledge on microbial ET is mostly associated with plant-pathogen interactions. However, manifold soil microorganisms are known to produce and/or degrade ET, depending on soil type and conditions (Zechmeister-Boltenstern and Smith, 1998). Especially the ET degradation by microbial ACC deaminases is a well-described mechanism (Glick, 2005; Glick et al., 2007; Glick, 2014). A myriad of soil microorganisms show ACC deaminases (EC 3.5.99.7) and their activity is generally associated with plant growth promotion and nitrogen fixation. Furthermore, under aerobic soil conditions, ET is used as a carbon and nutrient source by several groups of microorganisms (Shenman, 2006). On the other hand, anaerobic conditions seem to raise ET levels as a result of fermentation processes that increase the levels of microbial ET precursors along with a decreased O2-dependent ET degradation (Arshad and Frankenberger, 2002; Mundle et al., 2012).

ET plays an important role during the establishment of symbiotic relations between microorganisms and their host plants, but the outcome is different depending on the ET concentration (Guinel and Geil, 2002; Khatabi and Schäfer, 2012). Intermediate levels of ET promote root colonization by beneficial soil microbes such as mycorrhizal fungi and nitrogen-fixating rhizobacteria (Wood, 2001; Riedel et al., 2008; López-Ráez et al., 2010), whereas high ET concentrations trigger root defense responses that prevent root colonization (Guinel and Geil, 2002; Khatabi and Schäfer, 2012). For putative ET producing beneficial soil microorganisms, moderate ET biosynthesis might therefore serve as a strategy to facilitate root colonization.

Microbial 2-oxoglutarate-dependent ET production might also play a role in mediating induced systemic resistance (ISR) against pathogen invasion. Arabidopsis root colonization with Pseudomonas fluorescens WCS417r leads to increased resistance against various pathogens like P. syringae pv. tomato, Erwinia carotovora pv. carotovora, Botrytis cinerea and Hyaloperonospora parasitica (Pieterse et al., 1996; Ton et al., 2002). P. fluorescens WCS417r had the same positive influence on rice plants infected with Magnaporthe oryzae (De Vleesschauwer et al., 2008). The protective effect of P. fluorescens WCS417r is dependent on the activation of the jasmonic acid and ET signaling in roots,
without altering the plant biosynthesis \cite{Pieterse2000,Hase2003,DeVleesschauwer2008}. These findings suggest that potential 2-oxoglutarate-dependent ET production by \textit{P. fluorescens} might play a role in mounting ISR and protecting plants against pathogen attacks.

The role of microbial ET in mutualistic symbiosis between plants and soil microorganisms has not received sufficient attention in the past. However, numerous reports on the role of ET on the interaction between plants and non-pathogenic soil microbes indicate that microbial ET might be a key player in modulating different processes that are at the base of the beneficial effect of different soil microorganisms on growth and pathogen resistance.

4.5.3 A broad mode of action for microbial 2-oxoglutarate dependent ET biosynthesis?

The widespread occurrence of putative EFE homologs in a diverse group of microorganisms which contains microbes that are not directly associated with plants, such as insect pathogens (Table 4.2) suggests a broad mode of action for microbial 2-oxoglutarate dependent ET biosynthesis. Since microbial ET can function as a fungal signaling component during plant-pathogen interactions, ET might serve as a general microbial signaling component. Although there is no convincing evidence for this assumption, the hypothesized novel role for microbial ET may shed new light on microbial signalling networks and the modulation of metabolic processes in various microorganisms.
4.6 Materials and methods

4.6.1 Plant material and growth conditions

All rice plants (Oryza sativa L.) were japonica cultivar Nipponbare. The rice seeds were surface sterilized with 70% ethanol for 1 min and 1% sodium hypochlorite solution for 10 min, rinsed three times with sterile distilled water and germinated at 28°C for five days on wet sterile filter paper in Petri dishes sealed with parafilm (≥ 92% relative humidity). The seedlings were transplanted on vermiculite in half-strength modified Hoagland solution (Hewitt and Smith 1975). Five days later the plantlets are transferred to a hydroponic system in full strength modified Hoagland solution (pH 6.5). The Hoagland solution was replaced every 7 days. The rice plants were grown in a growth chamber (28°C, 12h/12h light regime) for five weeks until they reached the 7-leaf stage.

4.6.2 Pathogen inoculation and disease rating

Cochliobolus miyabeanus isolates Cm988, C412 and WK1C kindly provided by International Rice Research Institute, were grown on potato dextrose agar (PDA, Difco) at 28°C in darkness. After a week the mycelium was put under 12h/12h blue light (Philips TLD 18W/08 and Philips TLD 18W/33) until sporulation. Conidia were harvested as described by Thuan et al. (2006) and suspended in a 0.5% gelatine (type B from bovine skin; Sigma-Aldrich G-6650) in a concentration of 1 x 10^4 conidia.ml^-1. Plants in the 7-leaf stage (5 weeks old) were inoculated by spraying the conidial suspension on the leaves till run off (1ml per plant) using a compressor-powered airbrush gun. The plants were kept in a humid and warm infection chamber (28°C ± 4°C, 92% or greater relative humidity) to promote fungal penetration. After 18h the plants were transplanted to greenhouse conditions (28°C ± 4°C, 16-h-light/8-h-dark regime) for disease development. The symptoms were scored three days after inoculation using APS ASSESS 2.0 software (APS, St Paul, Minnesota, USA). All infection trials were repeated at least three times with similar results.

4.6.3 Microscopic analysis

Leaf sheaths of 5 week-old rice plants were peeled off until only the roots and sheath of the youngest fully developed leaf remained. This sheath was placed in a tray lined with wet paper towels with the adaxial side of the inner sheath epidermis facing upwards and filled with a conidial suspension of C. miyabeanus (1 x 10^4 conidia.ml^-1, 1ml per sheath). The tray was covered with transparent plastic and placed under greenhouse conditions (28°C ± 4°C, 16-h-light/8-h-dark regime). Samples for microscopy were taken at 0, 24, 48 and
72 hours post inoculation and at least six trimmed sheath sections originating from three plants were sampled per time point. The microscopic slides were cut according to Koga et al. (2004). Fungal hyphae were stained with trypan blue (Stone et al., 2000). Evan's blue staining was used to colour dead cells (Mergemann and Sauter, 2000). Phenolic compounds were visualized as autofluorescence under blue light epifluorescence (Olympus U-MWB2 GPF filter set; excitation, 450-480 nm; dichroic beam splitter, 500 nm; barrier filter BA515). Images were acquired digitally (Olympus Colorview II camera) and further processed with the Olympus analySIS cellF software.

4.6.4 Pharmacological Experiments

The ET releasing Etephon (2-chloroethylphosphonic acid), ET precursor ACC (1-amino cyclopropane-1-carboxylic acid), the ET biosynthesis inhibitor AOA (aminoxyacetic acid) and CoCl$_2$ were purchased from Sigma-Aldrich. Silver thiosulfate (STS), an inhibitor of ET signaling, was prepared by mixing solutions of 0.1 M sodium thiosulfate with 0.1 M silver nitrate in a 4:1 ratio (Zhao et al., 2002; Shoresh et al., 2005). All chemicals were dissolved in water at the indicated concentrations and were applied by cutting the 2 youngest fully developed leaves in 7 cm segments and putting them in the chemical solutions 24h prior to inoculation. Afterwards, the leaf segments were placed in square Petri dishes (Greiner Bio-One, 688102) lined with moist paper towels, sprayed with *C. miyabeanus* conidial suspension or drop-inoculated with six 10μl droplets of suspension (1 x 104 conidia.ml$^{-1}$ in 0.25% gelatine). After 24 h, the droplets were removed with a laboratory tissue, and resistance was quantified by measuring lesion area at 72 hpi using APS assess 2.0 (APS, St Paul, Minnesota, USA). Unlike all other chemicals, the fungal ET biosynthesis inhibitor 2,2-BP and the phenolics catechol, trans-cinnamate, gallic acid were added to the spore solution at the time of inoculation.

4.6.5 Quantification of ET accumulation

The production of ET by *C. miyabeanus in vitro* was measured on mycelium grown on liquid and solid Czapek medium (Kubo et al., 1989) containing 40 mM sucrose, 5.6 mM KH$_2$PO$_4$, 0.14 mM KH$_2$PO$_4$, 2 mM MgSO$_4$, 0.04 mM FeSO$_4$, 6.7 mM KCl, 5 mM nitrogen and a sterile rice extract (pH 5.6). Nitrogen was supplied in the form of nitrate or a combination of 5 mM oxoglutarate and 1.25 mM arginine. Media were inoculated with conidial (1 x 104 conidia.ml$^{-1}$) or mycelial suspension and cultured in scintillation vials at 28$^\circ$C and 120 rpm for 7 days. Afterwards, the vials were sealed with a rubber syringe cap allowing ET to collect in the vial for 24 h prior to quantification. To study ET emission rates in brown spot-infected plants, the two youngest fully developed leaves of five-week-
old plants were detached, cut into 3-cm pieces and spray-inoculated with virulent Cm988 (1 x 10^4 conidia.ml^-1). Three hours prior to the indicated time points, leaf pieces were transferred to 5-ml glass scintillation vials, which were subsequently sealed with a rubber syringe cap allowing ET to collect in the vial. At the indicated time points, ET production was quantified using either gas chromatography (Thermo Finnigan TRACE GC Ultra; 25m, 0.54 mm, CP-Parabond CP7354) or a more sensitive laser-based ethylene detector (Sensor Sense, ETD-300) in combination with a real time gas flow through system (LPAD) as described by Cristescu et al. (2013). All experiments were repeated at least three times with comparable results.

4.6.6 Quantification of soluble phenolics and enzymatic assays

Total soluble phenolics were extracted according to Zhang et al. (2013) and quantified using the Folin-Ciocalteu’s method (Kováčik and Bačkor 2007). Soluble proteins were extracted by resuspending the crushed tissue (150 mg FW) in 0.8 ml of 0.1 M potassium phosphate buffer (pH 8), containing 2% (w/v) polyvinylpyrrolidone, 0.1% (v/v) Triton X-100, 1 mM dithiothreitol (DTT) and 1 mM phenylmethylsulfonyl fluoride (PMSF). Crude enzyme extracts were vortexed for 1 min and centrifuged at 10,000 x g for 10 min. PAL and PPO activities were measured exactly as described by Seifi et al. (2013) and Zhang et al. (2013), respectively. Total protein content was determined using the Bradford method (Bradford 1976).

4.6.7 RNA extraction and quantitative RT-PCR

Total RNA was extracted from frozen leaf tissue using the spectrum plant total RNA kit (Sigma-Aldrich) and subsequently Turbo DNase treated according to the provided protocol (Ambion). First-strand cDNA was synthesized from 2 mg of total RNA using Multiscribe reverse transcriptase (Applied Biosystems) and random primers following the manufacturer’s instructions. Quantitative PCR amplifications were conducted in optical 96-well plates with the Mx3005P real-time PCR detection system (Stratagene), using Sybr Green master mix (Fermentas) to monitor dsDNA synthesis. The expression of each gene was assayed in duplicate in a total volume of 25µl including a passive reference dye (ROX) according to the manufacturer’s instructions (Fermentas). The thermal profile used consisted of an initial denaturation step at 95°C for 10 min, followed by 40 cycles of 95°C for 15 s, 57°C for 30 s, and 72°C for 30 s. To verify amplification of one specific target cDNA, a melting-curve analysis was included according to the thermal profile suggested by the manufacturer (Stratagene). The amount of plant RNA in each sample was normalized using elongation factor eIFα (LOC_Os03g08020) as internal control and
mock treated samples were selected as calibrator. For analysis of the CmEFE (BK008840)
expression in fungal and plant samples using the fungal ITS gene as normalizer. The data
were analyzed using Stratagene’s Mx3005P software. Nucleotide sequences of all primers
used are listed in Supplemental Table S5.1.

4.6.8 Identification of EFE homologs in different microorganisms

To reveal putative EFE proteins in different microorganisms the annotated EFE protein
sequences of *Pseudomonas cannabina* (AAD16441.1), *P. syringae* pv. *glycinea* (ZP
11566673.1), *P. syringae* pv. *phaseolicola* (BAA02477.1), *Ralstonia solanacearum* (YP
006031629.1) and *Cochliobolus miyabeanus* (BK008840) were blasted against the NCBI
(Johnson, 2008) and MycoCosm databases (Grigoriev et al., 2014) with similar outcome.
All results with an E-value \(\leq 1 \times 10^{-30} \) were retained. Table 4.2 shows a relevant
selection of microorganisms that contain a EFE homolog arranged according to the type
of microorganism.

4.6.9 Accession numbers

Accession numbers of the genes used in this study are *OsEBP89* (LOC_Os03g08460),
*eIF\(\alpha \) (LOC_Os03g08020), *CmITS* (X78122.1) and *CmEFE* (BK008840).

4.6.10 Acknoledgements

We thank Dr. Marie-Christine Van Labeke for help with the gas chromatography, the
people of Shoshi Kikuchi’s lab for assistance during the microarray experiment, Dr. Tim
De Meyer for supervising analysis of the microarray data and Denys Marchenko and
Holger Danner for their much appreciated help during the LPAD.
4.7 Supplemental data

Table S5.1: Primers for expression analysis.

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Identifier</th>
<th>Forward primer</th>
<th>Reverse primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>CmITS</td>
<td>X78122.1</td>
<td>TCCTCCGCTTATTGATATGC</td>
<td>GGAAGTAAAGCTCGTAACAAGG</td>
</tr>
<tr>
<td>CmEFE</td>
<td>BK008840</td>
<td>ATGCCACCTGTTACAGAGC</td>
<td>CAGAGATAGATCGCGAAGAC</td>
</tr>
<tr>
<td>OseIFα</td>
<td>LOC_Os03g08020</td>
<td>TTTTCACTTCTGGTGGAAGCAGAT</td>
<td>GACCTCCTTCAAGATTTCTCGTAAC</td>
</tr>
<tr>
<td>OeEBP89</td>
<td>LOC_Os03g08460</td>
<td>TGACGATCTTGCTGAACCTGAA</td>
<td>CAATCCCACAAACTTACACA</td>
</tr>
</tbody>
</table>

Figure S5.1: volcano plot of microarray data of brown spot infected leaves vs. mock treated leaves 12h post inoculation (GEO accession GSE55330).

Figure S5.2: Conserved domains in CmEFE protein (Conserved Domain Database; Marchler-Bauer et al., 2011).
Chapter 4. ET production by Cochliobolus miyabeanus
Figure S5.3: Alignment of annotated microbial oxoglutarate-dependent ethylene forming enzymes (EFE). All protein sequences are derived from NCBI (Jabloweak, Waterhouse et al., 2009).
Chapter 4. ET production by Cochliobolus miyabeanus

Figure S5.4: Leaf pieces after 7 days of floating in water, Etephon (100µM) or STS (500µM) for 7 days.

Figure S5.5: Effect of exogenous application of different phenolic compounds on rice leaves 48 h after infection with a spore solution (Cm988, 1 x 10^4 conidia.ml^-1) containing water or 1mM of catechol, trans-cinnamate or gallic acid. Data presented are means ± SE of a representative experiment.
Figure S5.6: Influence of exogenous ET on resistance against *C. miyabeanus* isolates ranging in virulence from least virulent (WK1C) to the most virulent (Cm988). Detached leaves were treated 24h prior inoculation with water and etephon (100µM). The leaf pieces were inoculated with conidial solution (Cm988, 1 x 10⁴ conidia.ml⁻¹) (Parametric test, Bonferoni correction, α=0.05). Data presented are means ± SE of a representative experiment.
Silicon-induced resistance to the rice brown spot pathogen *Cochliobolus miyabeanus* involves repression of pathogen-induced ethylene action

Authors
Jonas Van Bockhaven¹, Lukáš Spíchal ², Ondřej Novák ³, Miroslav Strnad ²,³, Shoshi Kikuchi⁴, Takayuki Asano⁴, Monica Höfte¹ and David De Vleesschauwer¹

Affiliations
¹ Laboratory of Phytopathology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
² Department of Chemical Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic
³ Laboratory of Growth Regulators, Faculty of Science, Palacký University, Olomouc, Czech Republic
⁴ Plant Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Japan
Abstract
Over the past decades, various studies have shown the ability of silicon (Si) to mitigate a wide variety of abiotic and biotic stresses. However, despite this relative wealth of knowledge, much remains to be discovered about the mechanistic basis and regulation of Si-afforded stress protection. Aiming to shed further light onto the prophylactic effect of Si, we have investigated the role of hormone defense pathways in governing Si-induced resistance to the rice brown spot pathogen *Cochliobolus miyabeanus*. To delineate the involvement of multiple hormone pathways, we have pursued a multidisciplinary approach combining exogenous hormone applications, pharmacological inhibitor experiments, time-resolved hormone measurements, and bioassays with hormone-deficient and/or -insensitive mutant lines. Contrary to many other types of induced plant resistance, we found that Si-induced brown spot resistance functions independently of the archetypal stress hormones salicylic acid (SA), jasmonic acid (JA) and abscisic acid (ABA). Similarly, our data rule out a major involvement of the developmental hormones gibberellic acid (GA), auxin and cytokinin (CK). In contrast, several lines of evidence suggest that Si steers its positive effect on *C. miyabeanus* resistance through negative crosstalk with the rice ET pathway. Consistent with ET functioning as a virulence factor of *C. miyabeanus*, exogenous ET application increased susceptibility, whereas genetic and pharmacological disruption of ET signaling rendered plants less vulnerable to brown spot, thereby inducing a level of resistance similar to that observed on Si-treated wild-type plants. Moreover, ET emission levels and transcript levels of the ET-responsive marker gene *OsEBP89* were markedly lower following Si application. Moreover, Si failed to further increase the already high levels of resistance observed in ET-insensitive rice lines, suggesting that Si triggers brown spot resistance by preventing the fungus from hijacking the host ET machinery. Interestingly, rather than antagonizing rice ET signaling per se, Si likely interferes either directly or indirectly with production of ET by *C. miyabeanus*. In conclusion, our findings favour a scenario whereby Si induces rice brown spot resistance by disarming fungal ET and argue that impairment of pathogen virulence factors is a core resistance mechanism underpinning Si-induced plant immunity.
5.1 Introduction

To combat infection by microbial pathogens, plants have evolved a sophisticated immune system providing several strategic layers of constitutive and inducible defense mechanisms. Many of these defenses are regulated by a complex network of signal transduction pathways, within which plant hormones play key roles (De Vleesschauwer et al., 2013; Grant et al., 2013). Salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) are the archetypal defense hormones and their significance in the hard wiring of the plant immune network is well-established (Rojo et al., 2003; De Vos et al., 2005; Mur et al., 2006). Upon infection, plants produce a highly specific blend of SA, JA, and ET, with the exact combination seemingly depending on the pathogen lifestyle. In the model plant species Arabidopsis thaliana, SA is predominantly active against biotrophic pathogens feeding on living tissues, whereas cell death-causing necrotrophic pathogens are usually deterred by JA- and ET-driven defenses. Moreover, interaction between these two pathways is often antagonistic, which has led many authors to suggest that plant immunity follows a binary model with SA and JA/ET having opposing influences (Bari and Jones, 2009).

Although valid for many plant-pathogen interactions, this traditional view is overly generalized, and accumulating findings in both dicot and monocot systems suggest a more complex reality (Pieterse et al., 2012). For instance, in rice Oryza sativa, one of the most important food crops worldwide and a model for molecular genetic studies in cereals, disease resistance seems to be controlled by a highly complicated signaling network that does not support a dichotomy between the effectiveness of the SA, JA and ET pathways and the lifestyle of a given pathogen (De Vleesschauwer et al., 2010, 2013; Riemann et al., 2013). Moreover, over the past few years various other hormones including abscisic acid (ABA), gibberellins (GA), auxins and cytokinins (CK) have emerged as important determinants of plant-microbe interactions. Although their significance is less well characterized, evidence is accumulating that these hormones influence disease outcomes at least in part by feeding into the SA-JA/ET backbone of the plant immune system (Asselbergh et al., 2008; De Vleesschauwer et al., 2008; Robert-Seilaniantz et al., 2011). This so-called crosstalk among defense pathways is thought to enable the plant to tailor its inducible defense arsenal to the type of attacker encountered and use its limited resources in a cost-efficient manner (Pieterse et al., 2012).

Recent developments indicate that crosstalk may also allow successful pathogens to manipulate the plant’s immune signaling network for their own benefit by shutting down biologically effectual defenses through negative network connections (Robert-Seilaniantz et al., 2011). A classic example is the production by some Pseudomonas syringae strains
of a phytotoxin called coronatine that structurally resembles JA derivatives. Actively secreted in the host, coronatine is assumed to hyperactivate JA signaling, thereby counteracting SA-dependent defenses and facilitating bacterial invasion (Brooks et al., 2005; Cui et al., 2005; Melotto et al., 2006). Similarly, we previously demonstrated that the rice brown spot pathogen Cochliobolus miyabeanus exploits ET as a virulence factor and co-opts the rice ET signaling route to suppress effective defense pathways (De Vleesschauwer et al., 2008). Moreover, by taking advantage of the different ET biosynthesis pathways in the plant and the pathogen, we were able to show that fungal ET production is the main source of ET in inoculated rice leaves and an important determinant of pathogen virulence (see chapter 4). Given the economic importance of brown spot and the current lack of effective control measures (Savary et al., 2000), disease management strategies interfering with ET-induced susceptibility seem to hold great potential for durable and sustainable brown spot control in the future.

Over the last decade, various studies have shown the ability of silicon nutrition to mitigate a wide variety of abiotic and biotic stresses (see chapter 2.5). Silicon (Si) is a commonly available element in many soils and is absorbed by plant roots in the form of noncharged silicic acid \([\text{Si(OH)}_4]\). A specific transporter system transports silicon through the xylem into leaf cells where it is deposited into an insoluble, subcuticular silica layer that is believed to act as a physical barrier hampering pathogen penetration (Ma and Yamaji, 2006). Although important, a fast growing number of papers indicate that this passive role of Si is not solely determinant for the silicon-elicited resistance. Indeed, analyses of different plant species showed that Si can also boost the plant’s inducible defense machinery, acting as a biological inducer of a large spectrum of immune responses (Fauteux et al., 2005; Ghareeb et al., 2011; Dallagnol et al., 2013 chapter 2.5).

Nevertheless, despite a multitude of studies demonstrating the prophylactic effects of Si, few reports have focused on understanding the mechanistic basis and regulation of Si-afforded disease control (see Chapter 2.5). Recent progress, however, suggests that Si may modulate stress responses by influencing plant hormone homeostasis. In soybean, for instance, Si treatment reportedly induces synthesis of gibberellic acid, while Si-treated rice accumulates slightly higher levels of gibberellin and JA and lower levels of ET (Fauteux et al., 2006; Hwang et al., 2007; Lee et al., 2010; Ye et al., 2013). Si also strongly interacts with JA in rice defense against insect herbivores (Ye et al., 2013), while recent data implicate Si in regulating wound-induced JA biosynthesis (Kim et al., 2014).

Although much remains to be discovered, these findings clearly demonstrate the potential of Si to interfere at multiple levels with hormone biosynthesis and signaling pathways.
Aiming to gain novel insights into the molecular mechanisms of Si-afforded disease control, we have investigated the role of hormone signaling pathways in governing Si-induced brown spot resistance. By combining exogenous hormone applications and bioassays with hormone-deficient and/or -insensitive mutant lines, we found that Si triggers resistance to *C. miyabeanus* by preventing the fungus from hijacking the rice ET pathway. Moreover, our findings link this disruption of pathogen-induced host ET signaling to Si-mediated deactivation of fungal ET and argue that impairment of pathogen virulence factors may be a core resistance mechanism underpinning Si-induced plant immunity.

5.2 Results

5.2.1 Exogenously administered ET weakens Si-inducible brown spot resistance

[Dallagnol et al. (2013)](#) previously demonstrated the ability of Si to protect rice leaves from infection by *C. miyabeanus*. To test the effectiveness of Si under our experimental conditions, plants were grown in a gnotobiotic hydroponic system and, when five weeks old (7-leaf-stage), spray-inoculated with the *C. miyabeanus* strain Cm988. On control plants, Cm988 was highly virulent, producing typical ellipsoidal light- or dark-brown lesions with a grey sporulating center, surrounded by large zones of chlorotic tissue. These susceptible-type lesions often coalesced within 96 hpi, killing large areas of affected leaves. By contrast, on plants grown in the presence of 2mM Si, fungal development was severely restricted, producing a resistance phenotype characterized by the appearance of isolated, pinpoint-size necrotic spots without excessive chlorosis (Fig. 5.1 A).

In a first attempt to elucidate the hormone signaling network orchestrating Si-mediated resistance to *C. miyabeanus*, we tested the effect of exogenous hormone applications on brown spot development in control and Si-treated rice plants (Fig. 5.1 B). To this end, detached leaf segments were floated in aqueous solutions containing the respective hormones, and 24h later inoculated with a conidial suspension of Cm988. Disease severity was assessed three days post inoculation (dpi) by calculating the mean lesion area using APS assess imaging software. In agreement with previous findings [Ahn et al., 2005; De Vleesschauwer et al., 2010], neither SA (100µM) nor JA (100µM) treatment had a significant impact on the mean lesion area in control plants and both hormones also failed to significantly alter the level of resistance in Si-treated seedlings. Similar results were obtained when pretreating plants with either GA (GA3, 10µM) or indole-acetic acid (IAA, auxin, 100µM), the main auxin in rice, despite these concentrations being high enough to induce hormone marker gene expression (data not shown). Higher and
lower concentrations also failed to trigger increased resistance or susceptibility (data not shown), suggesting that GA and auxin are no major players in either basal or Si-inducible resistance. In contrast, topical application of the ET-releasing growth regulator Ethephon (100µM) significantly increased brown spot severity in both control and Si treatments, whereas supplying plants with 100µM ABA significantly reduced disease severity in control, water-treated plants only.

Figure 5.1: A) Si-induced brown spot resistance, 3 days after drop-inoculation (1 x 10^4 conidia.ml^-1). B Influence of exogenous hormone application on brown spot resistance in control and Si-treated rice leaf pieces (1 x 10^4 conidia.ml^-1). Leaf pieces were treated 24h prior inoculation with salicylic acid (SA, 100µM), jasmonic acid (JA, 100µM), auxin (IAA, 100µM), gibberellic acid (GA₃, 100µM), cytokinin (BAP, 100µM), abscisic acid (ABA, 100µM) and Ethephon (ET, 100µM). Data presented are mean lesion area (mm²) ± SE of three independent experiments (Mann-Whitney, n=36, α = 0.05). Different letters indicate statistically significant differences.

5.2.2 Si-induced resistance to \(C. \) miyabeanus is independent of cytokinin signaling

At the macroscopic level, the phenotype of Si-inducible brown spot resistance is best characterized by the almost complete lack of chlorosis surrounding the necrotic disease lesions. Phytohormones are well known to play important roles in regulating senescence and chlorosis with ET, SA, JA and ABA being reported as positive regulators of these processes. In contrast, cytokinin (CK) has long been shown to function in delaying senescence and chlorosis, a role often described as antagonistic to other hormones or signals (Gan and Amasino 1995; Zwack et al. 2013). To investigate whether CK also contributes to the prevention of pathogen-induced chlorosis in Si-treated plants, we first assessed the impact of Cm988 inoculation on the cytokinin content of control and Si-
treated plants using highly sensitive ultra-performance liquid chromatography electrospray tandem mass spectrometry (UPLC-MS/MS, Novák et al., 2008). The CK-measurement (Table 5.1) showed that in susceptible control leaves the most strongly induced cytokinins were isopentenyl adenine (iP) and the iP-derivatives isopentenyl-adenine-riboside (iPR), isopentenyl-adenine-ribotide (iPRMP) and isopentenyl-adenine-N-glycoside (iPNG). Resistant Si-treated leaves, however, displayed a slightly different CK signature, these plants accumulating comparatively less iP and iP-derivatives but showing an almost twofold increase in the levels of trans-zeatin (tZ).

To test whether this shift in CK balance towards tZ may contribute to Si-induced resistance, detached leaves of control and Si-supplemented plants were treated with iP and tZ (100 µM each) and, 24h later, drop-inoculated with Cm988 (Fig. 5.2 A). However, similar to what was observed for the synthetic aromatic CK 6-benzylaminopurine (BAP, 50 µM), neither iP nor tZ were able to interfere with either basal or Si-inducible resistance. The purine derivative Pi-55, a well-characterized inhibitor of CK action that blocks downstream CK signaling by competitive receptor binding (Spíchal et al., 2009), similarly failed to significantly affect disease severity in either control or Si-treated leaves (Fig. 5.2 B). Furthermore, intact plant bioassays revealed that Si was equally effective in reducing brown spot severity on Gn1a, a near-isogenic rice line displaying reduced overall CK activity due to over-accumulation of conjugated CK bases (Ashikari et al., 2005), and its parent line Koshihikari (Fig. 5.2 C). When considered together, these data strongly suggest that Si-induced resistance functions independently of CK signaling and, hence, that the alterations in CK content detected in Si-treated plants are not causally involved in the establishment of brown spot resistance.
Chapter 5. Si-induced brown spot resistance by inhibiting fungal ET

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Control</th>
<th>24</th>
<th>48</th>
<th>72</th>
<th>96</th>
<th>120</th>
<th>144</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.0 ± 0.1</td>
</tr>
<tr>
<td>10</td>
<td>0.0 ± 0.1</td>
</tr>
<tr>
<td>30</td>
<td>0.0 ± 0.1</td>
</tr>
<tr>
<td>60</td>
<td>0.0 ± 0.1</td>
</tr>
<tr>
<td>120</td>
<td>0.0 ± 0.1</td>
</tr>
<tr>
<td>180</td>
<td>0.0 ± 0.1</td>
</tr>
</tbody>
</table>

Table 5.1: Concentration of cytokinin forms (pmol FW⁻¹) in control and Si-treated leaves at different time points after inoculation with C. miyabeanus. Data presented are means ± SD from 6 pooled plants.

With C. miyabeanus, data presented are means ± SD from 6 pooled plats.
Chapter 5. Si-induced brown spot resistance by inhibiting fungal ET

5.2.3 ET but not SA, JA or ABA is a key player in Si-induced brown spot resistance

Given the well-documented role of SA, JA, ET and ABA in orchestrating plant immune responses, additional bioassays were performed with a number of transgenic and mutant rice lines that are either deficient in or insensitive to these hormones. All lines and the respective wild-types were routinely treated with 2 mM Si and, when five weeks old, inoculated with virulent Cm988. Rice lines that are either deficient in SA (NahG) (Fig. 5.3 A) or JA (hebiba) (Fig. 5.3 C) or show an altered expression of the SA master regulator, OsNPR1 (OsNPR1 ox and OsNPR1 RNAi, Fig. 5.3 B), all retained the high level of Si-induced resistance observed in the respective wild-types, indicating that neither de novo synthesis of SA and JA nor SA signaling is an essential prerequisite for Si-induced resistance to C. miyabeanus. Similar findings were obtained when quantifying the level of basal and Si-inducible resistance in plants silenced for the ABA-inducible MAP kinase OsMPK6. One of the better studied MAP kinases in rice, OsMPK6 (previously referred to as OsMPK5) functions as a positive regulator of ABA signaling. Accordingly, OsMPK6 RNAi plants are partially ABA-insensitive and display reduced expression of ABA-responsive genes [Bailey et al., 2009]. However, as shown in Figure 5.3 D, we were unable to detect any reproducible or significant differences in overall disease severity between wild-type and OsMPK6 RNAi plants, whether grown in the presence or absence of Si. Therefore, even though exogenous ABA confers brown spot resistance, ABA signaling does not appear to be essential for either basal or Si-inducible brown spot

Figure 5.2: Influence of A) exogenous cytokinins and C) CK-signaling blocker, PI-55 on brown spot resistance in control and Si-treated rice leaf pieces. Leaf pieces were treated 24h prior inoculation with water, isopentenyl adenine (iP, 100µM) and trans-zeatin (tZ, 100µM). Data presented are mean lesion area (mm2) ± SE of four independent experiments (ANOVA, n=12, α = 0.05). D) Influence of Si on brown spot resistance in Gn1a, a near-isogenic rice line (parent line: japonica cv Koshihikari) that displays a reduced overall CK activity. Data presented are mean lesion area mm2) ± SE of three independent experiments (ANOVA, n=6, α = 0.05).
Different results, however, were obtained when testing the effectiveness of Si in plants silenced for the central ET signal transducer Ethylene Insensitive 2a (OsEIN2a). Consistent with previous results (De Vleesschauwer et al., 2010) and corroborating the disease-promoting effect of exogenously administered Ethephon, ET-insensitive OsEIN2a antisense plants were significantly more resistant towards brown spot than wild type plants, confirming the negative role of ET in basal resistance to C. miyabeanus (Fig. 5.3 E). Moreover, while the level of resistance of non-treated OsEIN2a antisense plants mirrored that of Si-treated wild-type plants, application of Si failed to further increase resistance in the OsEIN2a background. In conjunction with the results from the exogenous hormone applications, these results suggest that Si-inducible brown spot resistance is not reliant on SA, JA, ABA, GA, IAA or CK signaling, but rather involves suppression of pathogen-triggered ET action.

Figure 5.3: Influence of Si on brown spot resistance in different transgenic and mutant rice lines. A) SA-deficient NahG transgenic rice line (wild type: japonica cv Nipponbare) B) NH1 ox and NH1 RNAi rice lines (wild type: japonica cv Taipei 309) C) JA-deficient mutant hebiba (wild type: japonica cv Nihonmasari) D) ABA-insensitive MPK6 RNAI rice line (wild type: japonica cv Nipponbare) E) ET-insensitive EIN2a antisense rice line (wild type: japonica cv Dongjin). Data presented are mean lesion area three days after inoculation (mm2) ± SE of three independent experiments (ANOVA, n=12, $\alpha = 0.05$). Different letters indicate statistically significant differences.
5.2.4 Si prevents *C. miyabeanus* from hijacking the rice ET pathway

To address the hypothesis that Si-induced resistance is associated with suppression of the plant ET pathway, we first monitored ET emission rates in control and Si-treated plants at various times after brown spot inoculation. Consistent with its role as a fungal virulence factor, infection with *C. miyabeanus* isolate Cm988 caused a strong and continuous increase in ET production in control leaves, whereas Si-treated plants emitted significantly less ET in response to pathogen attack (Fig. 5.4 A). Quantitative reverse-transcription PCR (qRT-PCR) analysis revealed a similar trend for the ET-responsive transcription factor gene *OsEBP89*, suggesting that Si antagonizes not only pathogen-induced ET synthesis but also alleviates downstream ET signaling (Fig. 5.4 B). Consistent with this hypothesis, feeding detached control leaves with the ET signaling inhibitor silver thiosulfate (STS) induced the same level of brown spot resistance as observed upon Si treatment, resulting in the development of small, pinpoint size lesions with very limited development of chlorosis (Fig. 5.4 C and D). Moreover, STS failed to exert an additive effect in Si-treated plants, further supporting our hypothesis. On the other hand, exogenous ET-application (100µM Ethephon) significantly increased disease severity in both control and Si-treated rice leaves (Fig. 5.4 D), whereas application of the plant ET biosynthesis blockers aminooxyacetic acid (AOA) and cobalt chloride (CoCl₂, 500µM each) failed to significantly affect disease development, irrespective of Si treatment. Together, these findings infer i) that ET action, rather than *de novo* plant ET biosynthesis, is an important factor contributing to *C. miyabeanus* pathogenicity, and ii) that Si prevents the fungus from co-opting the rice ET pathway as a decoy strategy to suppress other more effectual immune responses.
Chapter 5. *Si-induced brown spot resistance by inhibiting fungal ET*

Figure 5.4: A) Ethylene production in infected rice leaves at different time points after infection (1 x 10^4 conidia.ml^{-1}). Data presented are mean values ± SE of three independent experiments (ANOVA, n=6, α = 0.05). Different letters indicate statistically significant differences. B) Relative expression of the ET-responsive *EBP89* gene in control and Si-treated rice leaves at various time points after infection (1 x 10^4 conidia.ml^{-1}). C) Influence of blocking ET signaling with STS (1mM) and Si-treatment on brown spot incidence on rice leaves three days post inoculation (1 x 10^4 conidia.ml^{-1}). The lower part show magnification of brown spot lesions on the same leaves cleared in boiling ethanol under the light microscope, scale bars are 500 µM. D) Influence of ET (100µM), ET biosynthesis blockers AOA and CoCl2 (500µM each) and ET signaling blocker STS (1mM) on rice leaves infected with *C. miyabeanaus* (1 x 10^4 conidia.ml^{-1}). Data presented are mean lesion area (mm^2) ± SE of at least three independent experiments (ANOVA, n ≤ 36, α = 0.05). Different letters indicate statistically significant differences.
5.2.5 Blocking fungal ET production mimics Si-inducible brown spot resistance

Previously, we demonstrated that *C. miyabeanus* strain Cm988 is equipped with an Ethylene Forming Enzyme (EFE) and can produce copious amounts of ET *in vitro* when grown on medium containing plant extracts and the EFE substrates 2-oxoglutarate and arginine (Van Bockhaven et al. unpublished). Moreover, pharmacological experiments revealed that fungal ET is the prevalent source of ET in brown spot infected plants (Van Bockhaven et al. unpublished). In view of these findings and given the observations that infected leaves emitted significantly less ET following Si treatment (Fig. 5.4 A) while blocking plant ET synthesis did not compromise Si-induced resistance, we asked whether application of Si might interfere with fungal ET production. To this end, detached leaves were fed with the fungal ET biosynthesis blocker 2,2-bipyridyl and subsequently inoculated with virulent Cm988. Interestingly, similar to what we observed for the plant ET signaling inhibitor STS, blocking fungal ET production with 2,2-bipyridyl mimicked the resistance-inducing effect of Si application, while co-application of both compounds had no additive effect on the level of brown spot resistance (Fig. 5.5 A).

Two different, not mutually exclusive, scenarios can be hypothesized to explain these findings with Si either alleviating fungal ET production *per se* or, alternatively, mitigating the effect of fungal ET by rendering inoculated plants ET-insensitive. In this context, it is noteworthy that Cm988 only produces ET in response to plant extracts, which suggests that *C. miyabeanus* must reprogram the plant’s metabolism to ensure sufficient precursors for fungal ET production (Van Bockhaven et al. unpublished). Taking into account that oxoglutarate is indispensable for EFE-mediated microbial ET production (Fukuda et al., 1992; Chagué et al., 2006) and that rice leaves are low in oxoglutarate (Yuan et al., 2007b), we hypothesized that *C. miyabeanus* may induce plant oxoglutarate accumulation to initiate ET synthesis. In support of this assumption, transcriptome analysis of Si- and control-treated plants responding to Cm988 inoculation (GEO accession GSE55330) showed that in control plants, *C. miyabeanus* significantly up-regulated the expression of the oxoglutarate-forming glutamate dehydrogenases *OsGDH2* and *OsGDH3* (co,I vs. co,m) (Dubois et al., 2003; Miyashita and Good, 2008) (Fig. 5.5 B). Moreover, although brown spot infection also induced *OsGDH2* and *OsGDH3* transcript accumulation in Si-treated plants (si,I vs. si,m), a clear repressive effect of Si application on expression of *OsGDH1*, *OsGDH2* and *OsGDH3* was evident in both uninfected and infected leaves (si,m vs. co,m and si,I vs. co,I). In view of these findings, it is tempting to speculate that downregulation of GDH expression in Si-treated rice leaves alleviates fungal ET.
production by *C. miyabeanus* through lowering the plant oxoglutarate pool.

Figure 5.5: A) Mean lesion area on leaves infected with solution (1 x 10^4 conidia.ml^-1) containing water or 2,2-bipyridyl (2mM) 3 days after spray-inoculation. Data presented are mean lesion area (mm^2) ± SE of three independent experiments (Mann-Whitney, n=36, α = 0.05). Different letters indicate statistically significant differences. B) Microarray data in a 2x2 factorial design: control (co) and Si-treated (si), mock-treated (m) and infected (I) 12h after infection showing differential expression of *glutamate dehydrogenases* (*GDH*) (GEO accession GSE55330).

5.2.6 Si-induced resistance against *C. miyabeanus* is based on restriction of fungal progression in the mesophyll and involves priming for enhanced deposition of phenolic compounds

Over the past few years, Si has been shown to modulate a wide variety of physical and biochemical immune responses, including expression of pathogenesis-related proteins, production of phytoalexins, and formation of pathogen-triggered callose deposits and cell wall fortifications (see Chapter 2.5). To further study how Si counteracts brown spot infection, we studied fungal development and plant defense responses in control and Si-treated leaf sheaths at various times after inoculation with virulent Cm988. Contrary to leaf blades, leaf sheath tissue is relatively flat and optically clear, which facilitates live cell imaging. Quantitative recording of attempted brown spot infections revealed no significant differences in the number of unsuccessful penetration events, indicating that Si does not impede pre-penetration development of *C. miyabeanus* (data not shown). Moreover, rather than showing a rapid epidermis-based resistance reaction, Si-treated plants were characterized by severe restriction of fungal spreading in the mesophyll, similar to what we previously observed for ABA-inducible brown spot resistance (De Vleesschauwer et al., 2010). Starting 12 hpi, Si-treated plants also displayed strong accumulation of phenolic compounds in the anticlinal walls of both penetrated and sur-
rounding cells as indicated by strong blue light-induced autofluorescence (Fig. 5.6). Moreover, consistent with Si suppressing pathogen-triggered ET action, applying the ET signaling blocker STS phenocopied Si-inducible brown spot resistance with a similar restriction of mesophyll spreading and increased accumulation of phenolic compounds near the site of infection. Given the importance of phenolic compounds in basal defense of rice to *C. miyabeanus* [Vidhyasekaran et al. 1992; Shabana et al. 2008], it is not inconceivable that Si-mediated accumulation of phenolic compounds hampers hyphal growth, preventing further pathogen ingress and curtailing symptom development.

Figure 5.6: Microscopic analysis of the influence of the ET signaling blocker STS (1mM) on brown spot infection in rice sheaths of control or Si-treated plants. Microscopic slides of pretreated rice sheaths were cut 24h after brown spot infection (1 x 10^4 conidia.ml^-1). Photographs in the upper section show microscopic slides under normal light. The photographs in the lower section show accumulation of phenolic compounds around the site of infection, visualized as yellow autofluorescence under blue light excitation. Scale bar is 50µM.

5.3 Discussion

To date, dozens of reports have documented the ability of Si to alleviate biotic and abiotic stress. Despite this relative wealth of knowledge, the exact mechanisms by which Si exerts its beneficial effects are still poorly understood, a situation that hinders the widespread application of Si for agricultural purposes. In an attempt to unravel the molecular underpinnings of Si-afforded disease control, we investigated the hormone signaling circuitry governing Si-mediated resistance against the rice brown spot fungus *Cochliobolus miyabeanus*.

Using a combination of exogenous hormone treatments, pharmacological inhibitor experi-
ments and bioassays with hormone-deficient and -insensitive rice lines, we found that Si-induced resistance to *C. miyabeianus* functions independently of either GA, ABA, auxin and CK signaling, and also does not rely upon boosted expression of SA- and JA-dependent defenses. By contrast, several lines of evidence indicate that Si-induced brown spot resistance is based on antagonistic crosstalk with the ET signaling pathway. First, in accordance with previous results (De Vleesschauwer et al., 2010), exogenous Ethephon application rendered plants hypersusceptible to brown spot infection, confirming the negative impact of ET on basal rice immunity to *C. miyabeianus*. Second, inhibition of ET signaling, either by antisense suppression of *OsEIN2a*, a central signal transducer in the rice ET pathway (Jun et al., 2004) or by infiltration of the ET antagonist STS, induced levels of resistance similar to those found in Si-supplemented plants. Moreover, Si treatment of the *OsEIN2a* transgenics or co-application of Si and STS had no additive effect on brown spot resistance, suggesting that Si specifically targets the ET signaling pathway to condition resistance. Third, ET emission levels and transcript levels of the ET-responsive marker gene *OsEBP89* were markedly lower in Si-treated plants than in controls upon *C. miyabeianus* attack. Taken together, these results highlight the importance of ET homeostasis in determining rice-brown spot interactions and favour a model whereby Si protects rice from *C. miyabeianus* attack at least in part by antagonizing pathogen-induced ET signaling.

5.3.1 Priming of plant hormone pathways is an important facet of Si-triggered immunity

In keeping with our findings, plant hormones are well known to play pivotal roles in orchestrating different types of induced resistance, including pathogen-triggered systemic acquired resistance (SAR). One of the most archetypal induced resistance responses, SAR requires endogenous accumulation of SA and is tightly associated with the transcriptional reprogramming of a battery of SA-inducible genes, including those encoding pathogenesis-related proteins (Durrant and Dong, 2004). In addition, there is also ample evidence for induced disease resistance conditioned by signal molecules other than SA, as illustrated by induced systemic resistance (ISR). Opposite to SAR, ISR is a type of inducible resistance that is triggered upon colonization by beneficial rhizobacteria or plant growth-promoting fungi and classically involves JA- and ET-regulated defenses. Recent evidence, however, also point to a role of GA, auxin and ABA signaling in ISR (De Vleesschauwer and Höfte, 2009; Petti et al., 2012; Chowdappa et al., 2013; Vos et al., 2013), while still other variations are indicated by the ability of some ISR-eliciting strains to trigger SA-dependent resistance mechanisms (De Meyer et al., 1999; Domenech et al., 2006).
Therefore, it seems there is not one definitive pathway for induced resistance, but that various hormone-dependent signaling conduits may govern the resistance phenotype depending on the inducing agent and plant-attacker combination.

Interestingly, evidence is accumulating that Si-treated plants display a similar flexibility in the hormone circuitry that is deployed to counteract pathogen invasion. For instance, whereas our results clearly indicate that Si-inducible brown spot resistance functions independently of either SA, JA and GA, other studies demonstrated increased levels of these hormones in Si-treated plants responding to pathogen attack or herbivory (Fauteux et al., 2006; Hwang et al., 2007; Lee et al., 2010; Ye et al., 2013). Similarly, a recent study revealed that Si primes JA-induced tolerance to herbivory (Ye et al., 2013), while earlier findings linked Si to activation of SA and JA-mediated defenses in various plant species (Fauteux et al., 2006). A similar scenario is evident for the ET pathway with Si boosting the expression of ET-responsive transcripts upon infection of rice with the hemibiotrophic blast pathogen *Magnaporthe oryzae* (Brunings et al., 2009), but repressing ET biosynthesis and signaling following attack by *C. miyabeanus*.

These apparently conflicting findings support the view that Si does not impose continuous changes in hormone homeostasis, but rather sensitizes or primes hormone biosynthesis and signaling processes, thereby creating a flexible signaling network that enables plants to fine-tune its immune response to the type of invader encountered. In compliance with this concept, there is ample evidence demonstrating the ability of Si to boost a wide variety of pathogen-specific immune responses (see Chapter 2.5). For example, in addition to the enhanced deposition of phenolic compounds observed in this study (Fig. 5.6), Si treatment was previously shown to restrict pathogen proliferation by accelerating and/or intensifying distinct defense responses such as papillae formation, cell wall fortification, phytoalexin production and expression of pathogenesis-related proteins (Kauss et al., 2003; Rodrigues et al., 2005; Rémus-Borel et al., 2009; Dallagnol et al., 2011b; Shetty et al., 2011). By analogy with a similar phenomenon in metazoan systems, this enhanced capacity to mobilize cellular defenses is often referred to as ‘priming’ (Conrath, 2011).

Because priming initiates a state of readiness that does not confer resistance *per se* but rather allows for accelerated induced resistance once an attack occurs, one presumed benefit is that it entails less fitness costs than direct induction of defense (van Hulten et al., 2006). Moreover, priming is thought to confer flexibility to adapt the defense response to a specific challenge, leading to a less costly and broader spectrum of resistance (van der Ent et al., 2008; Conrath, 2011). As such, priming may not only explain the broad-spectrum character of Si-afforded stress alleviation, but also could offer a mechanistic
framework for how Si is able to trigger resistance against a multitude of stresses without inducing resistance trade-offs and/or growth and yield penalties. Although the molecular aspects of priming are still poorly understood, the induction of priming is increasingly associated with accumulation of dormant signaling components such as MAP kinases and transcription factors as well as chromatin modifications and alterations of primary metabolism (Conrath 2011). Assessing whether similar mechanisms are operative in Si-mediated defense priming is a major challenge ahead.

5.3.2 Si antagonizes *C. miyabeanus*-produced ET

The predicted role of ET repression in Si-inducible brown spot resistance echoes previous findings in rice where exogenously administered ABA was shown to enhance basal resistance to *C. miyabeanus* through negative crosstalk with the rice ET pathway (De Vleesschauwer et al. 2010). One important player orchestrating this ABA-ET antagonism is the MAP kinase OsMPK6 (previously known as OsMPK5). Compared with wild-type plants, OsMPK6 RNAi lines exhibit higher levels of ET and a lower level of ABA (Bailey et al. 2009). Furthermore, OsMPK6 directly interacts with and phosphorylates OsEIL1, an ortholog of Arabidopsis EIN3, implicating OsMPK6 in regulation of both ABA and ET synthesis and their signal transduction (Bailey et al. 2009). However, contrary to ABA-inducible brown spot resistance, Si treatment proved to be equally effective in wild-type and OsMPK6 RNAi plants, ruling out a major role of OsMPK6 in Si-mediated inhibition of pathogen-triggered ET action. Hence, despite both targeting the ET signaling conduit, ABA and Si seem to employ different strategies to counteract pathogen-induced ET signaling. The observation that blocking fungal ET production with the inhibitor 2,2-bipyridyl mimicked the resistance-inducing effect of Si suggested that other than repressing plant ET signaling, Si might also induce brown spot resistance by interfering with microbial ET. One possible mechanism hitherto would be for Si to render plants insensitive to pathogen-produced ET. However attractive, such a concept is hard to reconcile with the ability of exogenously administered Ethephon to alleviate Si-induced brown spot resistance. Therefore, rather than mitigating the effect of fungal ET, Si likely interferes either directly or indirectly with the biosynthesis of microbial ET. Like other fungi, *C. miyabeanus* produces ET from the TCA cycle intermediate 2-oxoglutarate in a reaction catalyzed by a single multifunction Ethylene Forming Enzyme (EFE) (Fukuda et al. 1992; Chagué et al. 2006; Van Bockhaven et al. unpublished). Particularly noteworthy in this respect is the up-regulation of several glutamate dehydrogenases (*GDH*) in control plants responding to brown spot infection. GDHs are a small protein family controlling the equilibrium between glutamate and 2-oxoglutarate in the mitochondria.
Although the enzyme can work in both directions, it is believed that during stress conditions GDH mainly converts glutamate into 2-oxoglutarate (Masclaux-Daubresse et al., 2005; Pageau et al., 2006; Qiu et al., 2009; Masclaux-Daubresse et al., 2010). Considering that C. miyabeanus only produces ET in response to plant extracts (Van Bockhaven et al. unpublished) and that rice plants are naturally low in oxoglutarate (Müler et al., 2001; Yuan et al., 2007b), we hypothesize that C. miyabeanus induces host GDH expression to increase the plant oxoglutarate pool and activate its own ET synthesis. In this scenario, down-regulation of GDH in Si-treated rice would prevent oxoglutarate accumulation, consequently lowering ET production by C. miyabeanus and attenuating ET-mediated induction of host susceptibility.

5.4 Conclusions

In summary, our results support a model whereby Si induces resistance to the rice brown spot pathogen C. miyabeanus at least in part by preventing the fungus from hijacking the rice ET pathway. Moreover, our results suggest that in addition to interfering with the synthesis and/or action of fungal ET, Si also primes naive rice leaves for enhanced accumulation of phenolic compounds at the site of fungal penetration. Together these results offer novel insights into the signaling circuitry governing Si-afforded disease control and argue that impairment of pathogen virulence factors might be a core mechanism accounting for the broad-spectrum disease resistance in Si-treated plants. Further elucidating how Si exerts its prophylactic effects will not only advance our fundamental understanding of how plants cope with their enemies in the context of induced resistance, but also may create new avenues for developing crops that are better able to withstand multiple attackers.

5.5 Material and methods

5.5.1 Plant material and growth conditions

All rice plants (Oryza sativa L.) were japonica cultivar Nipponbare and the corresponding SA-deficient NahG and ABA-insensitive OsMPK6 RNAi rice lines (Xiong and Yang, 2003; Yang et al., 2004), japonica cultivar Taipei and OsNPR1 ox and OsNPR1 RNAi rice lines (Yuan et al., 2007c). The JA-deficient mutant hebiba (Riemann et al. 2003) and ET-insensitive OsEIN2a antisense transgenic line 471 (Jun et al., 2004) are in the background of japonica cultivars Nihonmasari and Dongjin, respectively. The rice seeds were surface sterilized with 70% ethanol for 1 min and 1% sodium hypochlorite solution for 10 min, rinsed three times with sterile distilled water and germinated at 28°C for five days on wet
sterile filter paper in Petri dishes sealed with parafilm (≥ 92% relative humidity). The seedlings were transplanted on vermiculite in half-strength modified Hoagland solution (Hewitt and Smith 1975). Five days later the plantlets are transferred to a hydroponic system in full strength modified Hoagland solution (pH 6.5). The Hoagland solution was replaced every 7 days. The rice plants were grown in a growth chamber (28°C, 12h/12h light regime) for five weeks until they reached the 7-leaf stage.

5.5.2 Pathogen inoculation and disease rating

Cochliobolus miyabeanus isolate Cm988, kindly provided by International Rice Research Institute, was grown on potato dextrose agar (PDA, Difco) at 28°C in darkness. After a week the mycelium was put under 12h/12h blue light (Philips TLD 18W/08 and Philips TLD 18W/33) until sporulation. Conidia were harvested as described by Thuan et al. (2006) and suspended in a 0.5% gelatine (type B from bovine skin; Sigma-Aldrich G-6650) in a concentration of 10^4 conidia.ml^-1. Plants in the 7-leaf stage (5 weeks old) were inoculated by spraying the conidial suspension on the leaves till run off (1ml per plant) using a compressor-powered airbrush gun. The plants were kept in a humid and warm infection chamber (28°C ± 4°C, 92% or greater relative humidity) to promote fungal penetration. After 18h the plants were transplaced to greenhouse conditions (28°C ± 4°C, 16-h-light/8-h-dark regime) for disease development. The symptoms were scored three days after inoculation using APS ASSESS 2.0 software (APS, St Paul, Minnesota, USA). All infection trials were repeated at least three times with similar results.

5.5.3 Pharmacological Experiments

The ethylene (ET) releasing Etephon (2-chloroethylphosphonic acid), ET precursor ACC (1-amino cyclopropane-1-carboxylic acid), the ET biosynthesis inhibitor AOA (aminooxyacetic acid) and CoCl₂, SA (salicylic acid), JA (jasmonic acid), ABA (abscisic acid), tZ (trans-zeatin), iP (isopentenyladenine) BAP (6-benzylaminopurine) and GA₃ (gibberellic acid 3) were purchased from Sigma-Aldrich, Duchefa or VWR. Silver thiosulfate (STS), an inhibitor of ET signaling, was prepared by mixing solutions of 0.1 M sodium thiosulfate with 0.1 M silver nitrate in a 4:1 ratio (Zhao et al. 2002; Shoresh et al. 2005). The CK-signaling blocker PI-55 was kindly provided by Dr. Lukas Spichal from Palacky University in the Czech Republic (Nisler et al. 2010). All chemicals were dissolved in water, unless indicated differently, at the indicated concentrations and were applied by cutting the 2 youngest fully developed leaves in 7 cm segments and putting them in the chemical solutions 24h prior to inoculation. Afterwards, the leaf segments were placed in square Petri dishes (Greiner Bio-One, 688102) lined with moist paper towels, sprayed with C.
miyabeanus conidial suspension or drop-inoculated with six µl droplets of suspension (1 x 10^4 conidia.ml\(^{-1}\) in 0.25% gelatine). After 24 h, the droplets were removed with a laboratory tissue, and resistance was quantified by measuring lesion area at 72 hpi using APS assess 2.0 (APS, St Paul, Minnesota, USA). Blocking fungal ET biosynthesis was done by adding 1 or 2 mM 2,2-bipyridyl ([Hottiger and Boller, 1991] (Sigma Aldrich) to the spore solution before inoculation prior inoculation.

5.5.4 Microscopic analysis

Leaf sheaths of 5 week-old rice plants were peeled off until only the roots and sheath of the youngest fully developed leaf remained. This sheath was placed in a tray lined with wet paper towels with the adaxial side of the inner sheath epidermis facing upwards and filled with a conidial suspension of C. miyabeanus (1 x 10^4 conidia.ml\(^{-1}\), 1ml per sheath). The tray was covered with transparent plastic and placed under greenhouse conditions (28°C ± 4°C, 16-h-light/8-h-dark regime). Samples for microscopy were taken at 0, 24, 48 and 72 hours post inoculation and at least six trimmed sheath sections originating from three plants were sampled per time point. The microscopic slides were cut according to Koga et al. (2004). Phenolic compounds were visualized as autofluorescence under blue light epifluorescence (Olympus U-MWB2 GPF filter set; excitation, 450-480 nm; dichroic beam splitter, 500 nm; barrier filter BA515). Images were acquired digitally (Olympus Colorview II camera) and further processed with the Olympus analySIS cellF software.

5.5.5 Quantification of ET accumulation

The production of ET by C. miyabeanus in vitro was measured on mycelium grown on liquid and solid Czapek medium with minor adjustments ([Kubo et al., 1989] containing 40 mM sucrose, 5.6 mM KH\(_2\)PO\(_4\), 0.14 mM KH\(_2\)PO\(_4\), 2 mM MgSO\(_4\), 0.04 mM FeSO\(_4\), 6.7 mM KCl, 5 mM nitrogen and a sterile rice extract at a pH 5.6 inoculated with 1 x 10^4 conidia.ml\(^{-1}\) or with 1ml mycelial suspension. The nitrogen source was nitrate or a combination of 5 mM oxoglutarate and 1.25 mM arginine. The production on infected leaves was measured in leaf pieces infected with 1 x 10^4 conidia.ml\(^{-1}\) at indicated time points. Two different methods were used to detect ET production with a gas chromatograph (Thermo Finnigan TRACE GC Ultra; 25m, 0.54 mm, CP-Parabond CP7354) with manual injection or with a more sensitive laser-based ethylene detector in combination with a real time gas flow through system (LPAD) both described by Cristescu et al. (2013). All experiments were repeated at least three times with comparable results.
5.5.6 RNA extraction and quantitative RT-PCR

Total RNA was extracted from frozen leaf tissue using the spectrum plant total RNA kit (Sigma-Aldrich) and subsequently Turbo DNase treated according to the provided protocol (Ambion). First-strand cDNA was synthesized from 2 mg of total RNA using Multiscribe reverse transcriptase (Applied Biosystems) and random primers following the manufacturer’s instructions. Quantitative PCR amplifications were conducted in optical 96-well plates with the Mx3005P real-time PCR detection system (Stratagene), using Sybr Green master mix (Fermentas) to monitor dsDNA synthesis. The expression of each gene was assayed in duplicate in a total volume of 25 µl including a passive reference dye (ROX) according to the manufacturer’s instructions (Fermentas). The thermal profile used consisted of an initial denaturation step at 95°C for 10 min, followed by 40 cycles of 95°C for 15 s, 57°C for 30 s, and 72°C for 30 s. To verify amplification of one specific target cDNA, a melting-curve analysis was included according to the thermal profile suggested by the manufacturer (Stratagene). The amount of plant RNA in each sample was normalized using elongation factor eIFα (LO_Os03g08020) as internal control and mock treated samples were selected as calibrator. For analysis of the CmEFE (BK008840) expression in fungal and plant samples using the fungal ITS gene as normalizer. The data were analyzed using Stratagene’s Mx3005P software. Nucleotide sequences of all primers used are listed in Supplemental Table S5.1.
General conclusions and future perspectives
Chapter 6. General conclusions and future perspectives

6.1 General conclusions

As mentioned in the problem statement (see Chapter 1), the main objective of this dissertation is to elucidate the mechanisms that underlie silicon (Si)-induced broad spectrum resistance. The data presented in previous chapters not only offered novel insights in the molecular underpinnings of the rice-Cochliobolus miyabea

6.1.1 Rice-Cochliobolus miyabea pathosystem

Despite its widespread occurrence and impact, relatively little is known about the interaction between rice and C. miyabea, the causal agent of brown spot disease. This necrotrophic rice leaf fungus affects millions of hectares of rice every growing season, mostly under suboptimal growing conditions (Barnwal et al., 2013). Rice leaves infected with C. miyabea show necrotic spots surrounded by chlorotic lesions eventually leading to premature leaf senescence and cell death. The virulence of C. miyabea is determined by many factors, among which the production of phytotoxic compounds (Condon et al., 2013). Many members of the Cochliobolus genus are known to produce a wide variety of toxins to facilitate the infection process. In case of C. miyabea, ophiobolin A and B are the best-characterized toxins which are known to promote pathogen-induced senescence and cell death in rice leaves (Xiao et al., 1991; Kim et al., 1999; Ahn et al., 2005; Condon et al., 2013). Another virulence factor is the production of ethylene (ET) by C. miyabea via a pathway that is distinct from plant ET biosynthesis (see Chapter 4). Exogenous ET is known to confer susceptibility towards C. miyabea, whereas suppressing plant ET perception due to application of silver ions that block ET receptors, disruption of ET signaling in EIN2a antisense plants or ABA-mediated repression of the plant ET signaling, results in a substantial increase in brown spot resistance (De Vleesschauwer et al., 2010; see Chapter 4). Moreover, C. miyabea emits substantial amounts of ET during early stages of the infection process via a reaction that requires 2-oxoglutarate and arginine as cofactors, catalysed by a single Ethylene Forming Enzyme (EFE). In this light, pathogen-induced upregulation of rice glutamate dehydrogenases might play an important role in supplying 2-oxoglutarate, which is one of the main precursors for fungal ET production. In turn, fungal ET induces plant ET biosynthesis in a positive feedback loop. The activation of the plant ET signaling pathway by a combination of
fungal and plant ET largely mediates the differential transcriptome of brown spot infected leaves resulting in induced senescence and disruption of phenylpropanoid-driven defenses that normally serve to limit pathogen growth. Furthermore, preliminary results show that exogenous ET aggravates the induction of cell death by C. miyabeanus crude toxin extract, whereas blocking the plant ET signaling with silver ions increases tolerance towards the toxin extract (data not shown). These data suggest a synergistic role between fungal toxins and ET in during brown spot infection.

Linking the mode of action of ET and toxins produced by C. miyabeanus with microarray data on the effect of brown spot infection on rice metabolic processes, identified potential plant targets of C. miyabeanus on its path to infection.

First, microarray data demonstrated that C. miyabeanus targets the photosynthesis apparatus even at an early stage of infection when no clear symptoms of disease development were visible, indicating that this is a cause rather than a consequence of brown spot infection. The production of toxins and/or ET by C. miyabeanus might be responsible for the observed decrease in photosynthesis, since both are known to impair photosynthesis and induce senescence in rice leaves (Xiao et al., 1991; Moore et al., 1999; Ahn et al., 2005; see Chapter 4). Photosynthetic impairment might have multiple purposes in the rice-C. miyabeanus interaction. On the one hand, impeding photosynthesis might interfere with the energy supply for energy-demanding defense responses. On the other hand, pathogen-mediated photosynthetic impairment also leads to overreduction of the photosynthesis apparatus and subsequent photooxidative damage (Bauwe et al., 2012), which might facilitate the infection process. Since C. miyabeanus is known to alter rice amino acid metabolism, probably for utilization during infection (Chattopadhyay and Bera, 1978; Matsubara and Kuroda, 1980), it is also possible that C. miyabeanus induces senescence in order to provide nutrients via the senescence-mediated nitrogen remobilization pathway (Pageau et al., 2006; Tabuchi et al., 2007). A second major plant metabolic change during brown spot infection is the downregulation of the phenylpropanoid pathway. The accumulation of fungitoxic phenolic compounds around the site of infection is a well-studied defense mechanism against C. miyabeanus (Shabana et al., 2008). Since both phytotoxin and ET production by C. miyabeanus interfere with phenol metabolism (Vidyasekaran et al., 1992; see Chapter 4), these findings indicate that pathogen-mediated abolishment the phenylpropanoid pathway is an important virulence strategy during the infection process. In conclusion, the necrotrophic leaf fungus C. miyabeanus seems to have evolved different virulence strategies that facilitate the infection process both by inducing senescence and by preventing plant defense responses. Although the data presented in this dissertation shed new light on the interaction between rice and C. miyabeanus, different
molecular aspects of brown spot infection remain to be elucidated.

6.1.2 Effect of Si on rice plants

In general, reports on Si-induced stress tolerance show that Si provides protection against different stress situations without the occurrence of growth trade-offs (see Chapter 2.5). However, there is no consensus on whether Si promotes plant growth under non-stress conditions. Even though several articles can be found that rule out a beneficial effect of Si on growth as such, most reports agree on the fact that Si has a positive influence on the plant’s growth and development (Agarie et al., 1992; Rodrigues, 2001; Sun et al., 2010; Tripathi et al., 2011; Detmann et al., 2012; Dallagnol et al., 2013). However, it is unsure whether Si-mediated growth promotion is the result of the protective effect of Si or whether these are two independent observations. In an attempt to provide more insight on the influence of Si, many transcriptional analyses have been performed in different plant species, concluding that Si has little influence on the transcriptome of non-stressed plants (Fauteux et al., 2006; Brunings et al., 2009; Chain et al., 2009; Ghareeb et al., 2011). However, the microarray data on Si-treated rice plants presented in this thesis, show that Si strongly influences the rice transcriptome (see Chapter 3). Furthermore, Agarie et al. (1992) showed that Si has a more pronounced growth-promoting effect under suboptimal conditions. These data are in accordance with increased levels of bioactive gibberellins (GAs) observed in Si-treated soybean and rice, which seems to be the result of decreased abiotic stress (Hwang et al., 2007; Hamayun et al., 2010; Lee et al., 2010; Colebrook et al., 2014). Higher GA homeostasis might explain the increased growth and earlier flower induction often observed in Si-treated plants (Heinai et al., 2005; Mutasa-Göttgens and Hedden, 2009; Toledo et al., 2012; Colebrook et al., 2014; see Chapter 4). These findings also coincide with the outcome of the promoter analysis of TFs that are differentially expressed in Si-treated rice leaves (see section 3.2.3), which suggest that Si-induced upregulation of several transcription factors might be mediated by an increased GA homeostasis in Si-treated plants. In conclusion, these findings favor a model where the accumulated effect of Si-induced tolerance towards omnipresent levels of minor stress during plant growth might result in an apparent growth increase.

6.1.3 Si-induced brown spot resistance

The positive influence of Si on rice resistance against the necrotrophic *C. miyabeanus* has been reported in different publications (Rezende et al., 2009; Dallagnol et al., 2009; Silva et al., 2012; Dallagnol et al., 2013). During brown spot infection, Si-treated plants are characterized by significantly smaller necrotic lesions and less chlorosis. This prophylactic
influence of Si most likely depends on the active role of water soluble silicic acid inside the cell, instead of the passive protection offered by the subcuticular silica layer. Moreover, the increase in resistance of Si-treated plants seems to be the result of the enhanced capacity of these plants to cope with the production of phytotoxins and ET by C. miyabeanus, which act as fungal virulence strategies. For instance, preliminary results suggest that Si application increases tolerance towards a crude toxin extract of C. miyabeanus (data not shown). Furthermore, inhibiting the plant ET signaling, either by exogenous silver ions that block ET receptors or by impairing the ET signaling in EIN2a antisense plants, mimicked Si-induced brown spot resistance (see Chapter 5). Similar findings were obtained by blocking the fungal ET biosynthesis with the inhibitor 2,2-bipyridyl. Together with the fact that Si treatment significantly decreased the ET emission during brown spot infection, these findings suggest that Si-mediated impairment of fungal ET biosynthesis confers brown spot resistance.

Interestingly, infection with C. miyabeanus does not lead to an increased recruitment of plant defense responses in Si-treated plants, but appears to redirect the central metabolism in rice leaves. Microarray data showed that Si reversed pathogen-induced decrease of photosynthetic processes (see Chapter 3), which confirms the findings by Dallagnol et al. (2013) who observed an increase in photosynthesis in infected leaves due to Si application. The observed impediment of C. miyabeanus-mediated senescence due to Si application might confer resistance by hampering the infection process and/or by depriving C. miyabeanus of essential nutrients for fungal growth and reproduction inside the rice leaves. The same microarray experiment also suggested a key role for photorespiration in Si-mediated protection of the photosynthesis apparatus (see Chapter 3). Si application also resulted in the strong accumulation of phenolic compounds around the site of infection (Dallagnol et al. 2011b, 2013, see Chapter 5) which is a well-described defense response against C. miyabeanus (Shabana et al. 2008). It seems that Si application prevents pathogen-mediated inhibition, rather than activating the phenylpropanoid pathway (Vidhyasekaran et al. 1992, see Chapter 3 and 5). In conclusion, the beneficial effect of Si on resistance against C. miyabeanus is not the result of a Si-mediated recruitment of defense responses, but is more likely associated with the impairment of C. miyabeanus’ virulence strategies.

6.1.4 Si-induced defense mechanisms

The current knowledge on Si-induced resistance formed the starting point for the postulation of several mechanisms that might be responsible for the broad spectrum mode of action of Si in plant-pathogen interactions in Chapter 4. Based on the results obtained by studying the influence of Si on the rice-C. miyabeanus pathosystem, we elaborated on
different mechanisms that might explain Si-induced broad spectrum disease resistance.

Si-induced priming for enhanced defense

The most common hypothesis is that Si-induced broad spectrum disease resistance is due to priming of the defense responses. Defense priming renders the plant’s immunity into a state of readiness that does not directly confer resistance, but allows for accelerated induced resistance after stress induction. This strategy not only confers flexibility to adapt the defense response to a specific challenge, it also leads to a less costly and broader spectrum of resistance \[\text{Van der Ent et al., 2008 Conrath, 2011}\]. Si application appears to induce resistance in tomato plants towards the bacterial wilting pathogen *Ralstonia solanacearum* by priming the ET and jasmonic acid (JA)-signaling pathway \[\text{Ghareeb et al., 2011}\]. In rice plants, Si primes JA-mediated defense responses resulting in increased resistance towards caterpillars of the rice leaf folder *Cnaphalocrocis medinalis* \[\text{Ye et al., 2013}\]. Although the beneficial effect of Si on disease resistance is generally attributed to Si-induced defense priming, a central regulator of Si-induced priming has not been characterized. Given the association of priming with the accumulation of signaling components such as transcription factors (TFs) \[\text{Conrath, 2011}\], the observed differential expression of several transcription factors in Si-treated plants might be responsible for Si-induced priming (see section 2.6.1). Our observations on the role of Si-mediated expression of transcription factors as an inducer of broad spectrum disease resistance suggest that a Si-mediated increase in gibberellin homeostasis might be responsible for induced growth and flower initiation (see section 3.2.3). We could not find concrete evidence that Si-mediated accumulation is responsible for mounting broad spectrum disease resistance due to priming. However, all our results are based on existing databases and most of the transcription factors that were differentially expressed were not yet characterized. The possibility remains that in analogy with \[\text{Pozo et al., 2008}\] one of the upregulation of one of the TFs from Table 3.2 is responsible for Si-mediated priming of plant defense responses. However, whereas priming generally protects plants over a slightly extended period of time, Si is only effective for a fairly short time span (see Chapter 3.2.1). Moreover, the multiple reports on Si-mediated disease resistance that suggest that Si prevents the exploitation of virulence factors, rather than leading to an increased recruitment of defense responses (see Chapter 3.3.4) not favor a scenario in which Si-mediated priming alone is responsible for triggering broad spectrum disease resistance. To conclude, the molecular aspects of priming are still poorly understood, therefore elucidating the mechanisms that are responsible for Si-induced resistance due to priming is not evident. However, future insights on the molecular base of defense priming might pave the way to unraveling the
possible role of Si-induced priming in mediating broad spectrum disease resistance.

Si-hormone interactions

Application of Si has been reported to alter hormone homeostasis and/or prime hormone pathways which might play an important role in broad spectrum disease resistance. In rice and soybean, Si imposes an increase of bioactive GAs, which is thought to be responsible for enhancing plant growth (Hwang et al., 2007; Hamayun et al., 2010; Lee et al., 2010). However, the protective role of Si during abiotic stress, herbivory or pathogen attack in different plant species is linked to the differential regulation of ABA, GA, JA, SA and ET pathways and can not be attributed to a fixed influence of Si on hormone pathways (Fauteux et al., 2006; Hwang et al., 2007; Brunings et al., 2009; Hamayun et al., 2010; Lee et al., 2010; Ghareeb et al., 2011; Ye et al., 2013; Kim et al., 2014). In rice, Si application conferred brown spot resistance by preventing the production of fungal ET, which is a known virulence strategy of the fungus (see Chapter 4). Rather than imposing a constitutive change in hormone homeostasis, Si seems to potentiate hormone pathways, creating an adaptable signaling network that enables plants to adapt to different stress-stimuli. These findings are also compatible with the hypothesis that Si confers increased stress tolerance by preventing the negative influence of stress-situations.

Linking Si-driven photorespiration to plant immunity

The beneficial effect of Si against pathogens and abiotic stress is generally characterized by the protection of photosynthetic abilities often in combination with an increased antioxidant capacity (Nwugo and Huerta, 2008; Tripathi et al., 2011; Resende et al., 2012; Chalmardi et al., 2013; Dallagnol et al., 2013; Shi et al., 2013; Perez et al., 2014). These finding are in accordance with our results on Si-mediated resistance against *C. miyabeanus*, during which Si-driven photorespiration is thought to be responsible for safeguarding the photosynthetic abilities of infected plants, thus leading to resistance (see Chapter 5). Moreover, induced photorespiration might be a common mechanism responsible for Si-mediated broad spectrum resistance by protecting photosynthesis during stress situations. Photorespiration is a process that consumes substantial amounts of energy and produces reactive oxygen species (ROS) in different cell organelles which need to be reduced in order to prevent oxidative damage (Foyer et al., 2009). The beneficial role of photorespiration during abiotic stress, generally lies in protecting the photosynthesis machinery, whereas an increase in antioxidant capacity quenches the subsequent ROS production (Wingler et al., 2000; Sørhagen et al., 2013). In general, photorespiration is reported to induce ROS-mediated cell death which can prevent infection (Kangasjärvi
et al., 2012; Sørhagen et al., 2013). We found that Si-driven photorespiration seems to induce brown spot resistance in rice, at least to some extent by safeguarding the photosynthesis apparatus during brown spot infection (see Chapter 3). Since Si-mediated disease resistance seems to be hallmarked by the protection of the photosynthesis machinery during infection, Si-driven photorespiration might be a common Si-mediated defense strategy against multiple pathogens.

Si-mediated impairment of pathogen’s virulence strategies

One of the overall conclusions of Si-induced disease resistance is that rather than creating resistance by directing defense responses, Si appears to nullify the impact of pathogen inoculation. In this light the main mode of action of Si might be to rule out pathogen’s virulence factors which are mainly toxins and effector proteins. In analogy with the role of Si in triggering enhanced heavy metal tolerance in Si-treated plans (Wu et al., 2013), two mechanisms were hypothesized that might prevent the activity of toxins and effectors. First, given the ability of silica to bind with various molecular groups (see Chapter 3), it might be possible that microbial effectors and toxins are immobilized by binding to colloidal silica in the cell, thus preventing their function in the infection process. An alternative hypothesis is that Si application might prevent the pathogen from influencing the host plant by embedding them in silica. Many articles report that Si application leads to the deposition of an amorphous matrix containing silica and aromatic components at the site of infection in rice, cucumber and Arabidopsis leaves (Kauss et al., 2003; Rodrigues et al., 2003; Ghanmi et al., 2004; Fauteux et al., 2006). Since silica deposition is often initiated by aromatic components (Carver et al., 1998; Epstein, 1999), the accumulation of phenolic compounds, which is a typical defense mechanism (Cheynier et al., 2013), might drive the deposition of silicic acid at the site of infection. This process could lead to the ‘encapsulation’ of the pathogen, which might not only impede further microbial progression, but also potentially prevents the exploitation of the pathogen’s virulence strategies.

6.1.5 Mechanistic of Si-induced broad spectrum resistance

Even though several mechanisms that modulate Si-induced broad spectrum disease resistance have been hypothesized, the exact mode of action of Si in the plant remains to be elucidated. To date, there is no evidence for the existence of a plant Si signaling pathway. Therefore it seems more plausible that the role of Si as an initiator of disease resistance might be the result of the physical interaction between Si, both as silica as silicic acid, and plant metabolism. Based on our findings there are three different mechanistic hypotheses...
that might link physical interaction of Si with its influence on plant defense responses. First, there is the continuous polymerization of Si that is thought to depend on photorespiration (see Section 2.6.4). The deposition of silica in plant cells might be the driving force behind Si-driven photorespiration and its suggested protective effect on disease resistance (see Section 6.1.4).

Second, the manifold reports on binding abilities of silica and silicic acid led to the hypothesis that the beneficial effect of Si might be the result of complexation / binding / chelating different components of the plant cell which might influence the plant defense system in a positive manner (see section 2.6.5). However, the binding abilities of Si are non-specific, only depending on the chemical characteristics of the molecules and since Si-induced broad spectrum resistance has been proven to be very flexible and dependent on the type of stress, it does not seem very plausible that the non-specific interaction between Si and plant molecules is the main initiator of Si-induced broad spectrum disease resistance. In the same light, immobilization of xenobiotic compounds due to adsorption by Si might be responsible for the increased levels of resistance in Si-treated plants (see Section 2.6.6). Nonetheless, given the non-specific binding abilities of Si, it is rather unlikely that Si inside the cytosol will immobilize xenobiotics without interfering with plant molecules. On the other hand, since the export of xenobiotics towards the apoplast is a common defense strategy of plants (see Section 2.6.6), inhibition of the action of xenobiotics due to adsorption by Si in the apoplast is a more plausible hypothesis.

A final approach is based on the fact that both influx and efflux of Si in plant cells is important for Si-treated plants, leading to the hypothesis that application of Si might be somehow deleterious because silica deposition inside the cytosol seems to prevent normal functioning of plant cells. Therefore rice plant leaves export cytosolic Si along with different plant molecules and xenobiotics either directly due to efflux of the molecules adsorbed by the exported Si.

Yet another option is that the constant efflux of negatively charged silicic acid ions from the cytosol to the apoplast might possibly activate other transporter proteins in order to maintain the ion strength of the cytosol and the plasma membrane potential. Based on microarray data on the effect of Si on rice leaves (see Chapter 3), Si-treatment leads to the differential regulation of many transporter genes, which strengthens this hypothesis. The Si-mediated hyperactivation of different transporters, might be responsible for the efflux of both plant molecules as xenobiotics.
6.2 Future perspectives

6.2.1 Microbial ethylene production by *C. miyabeanus*

Chapter 4 discusses fungal ethylene (ET) biosynthesis by *C. miyabeanus* catalyzed by Ethylene Forming Enzyme (EFE) and its role during brown spot infection as a virulence factor during infection of rice leaves. Even though there is strong evidence that ET production by *C. miyabeanus* serves as a virulence strategy in order to induce susceptibility in rice, there are different research topics that deserve more attention in the future.

First of all, the construction of a *C. miyabeanus* mutant that is impaired in the EFE gene would allow to further elucidate the role of fungal ET production during the infection process. Infection trials with this efe mutant will characterize the importance of fungal ET for the virulence of *C. miyabeanus*. Moreover, infecting Si-treated plants with the efe mutant could also confirm the hypothesis that Si-induced brown spot resistance is due to impairment of fungal ET biosynthesis.

Second, plant metabolism was hypothesized to be essential for ET biosynthesis by *C. miyabeanus*. Based on microarray data, the role of glutamate dehydrogenase (GDH) seems essential in both providing 2-oxoglutarate for ethylene (ET) biosynthesis by *C. miyabeanus* as a virulence strategy during infection (see Chapter 4) and in preventing fungal biosynthesis in Si-treated plants (see Chapter 3). A first step in elucidating the role of rice GDH during brown spot infection is to perform GDH-activity assays in untreated and Si-treated leaves after infection with *C. miyabeanus*. Furthermore, infection trials on rice mutants impaired in *OsGDH2* (LOC_Os04g45970) and *OsGDH3* (LOC_Os02g43470) would provide more insight on whether GDH plays an important role in fungal ET biosynthesis and in brown spot susceptibility.

Third, preliminary experiments revealed that ethylene increases the susceptibility of rice leaf pieces towards crude spore extracts containing *C. miyabeanus* toxins (data not shown). Follow-up studies on the effect of ET and toxin extract on rice leaf senescence should shed light on a potential synergism between toxins and ET produced by *C. miyabeanus*. Moreover, combining current understanding of the effect of ET on the transcriptome and proteome of stressed and non-stressed rice plants (Garg et al., 2012) might provide new insights into the action mechanism(s) of *C. miyabeanus*-produced phytotoxins.
6.2.2 Microbial ethylene as a common virulence factor for necrotrophic fungi related to the *Cochliobolus* genus

Several fungi related to the Cochliobolus genus harbor a putative ethylene forming enzyme (EFE) (Eckert et al., 2014). These fungi are mostly necrotrophic, toxin-producing pathogens that infect cereal plants. Moreover, ET has been described to negatively influence defense responses in cereals infected infected with *C. victoriae* (Shain and Wheeler, 1975), *C. sativus* (Hodges, 1990), *C. heterostrophus* (Degani et al., 2004), *Pyrenophora tritici-repentis* (Ciuffetti et al., 2010). Together with the fact that *C. miyabeanus* produces ET in planta to induce a state of host susceptibility (see Chapter 4), these findings strongly suggest that EFE-mediated ET production is a common virulence strategy for fungi related to the *Cochliobolus* genus. The use of specific inhibitor compounds targeting EFE, in vitro and in planta ET measurements, and disease trials with ET-deficient and/or -insensitive plant mutants will help to further clarify the importance and function of microbial ET production in plant resistance and susceptibility. Moreover, given the essential role of EFE for *C. miyabeanus* and the homology of the putative EFEs among *Cochliobolus*-related fungi, EFE might constitute an ideal target for the development of novel highly specific fungicides.

6.2.3 The role of photorespiration in Si-induced brown spot resistance

Our microarray study of brown spot-infected leaves suggested a key role of photorespiration in the induction of brown spot resistance in Si-treated plants. In order to further validate this hypothesis, leaf gas exchange measurements on infected plants could distinguish whether the level of photorespiration is higher in Si-treated plants after infection. Also, infection trials with plants that have been treated with the photorespiration inhibitor pyrid-2-yl hydroxymethane sulfonate (Kumagai et al., 2011) could help to further elucidate the importance of photorespiration in Si-induced brown spot resistance. Preliminary results also showed that both exogenous ET and brown spot infection lead to stomatal conductance, which is known to prevent photorespiration (Foyer et al., 2009). In view of these findings, it is tempting to speculate that fungal ET production by *C. miyabeanus* might prevent photorespiration, thus leading to brown spot susceptibility. Time-resolved leaf gas exchange measurements and monitoring the expression of photosynthesis-associated marker genes can reveal the influence of ET on photorespiration, potentially shedding new light onto the role of fungal ET during brown spot infection. Recently, the positive role of photorespiration against abiotic and biotic stresses has received increasing attention (Kangasjärvi et al., 2012; Sørhagen et al., 2013). Attempts to improve photosynthesis in
C3 plants by impairing photorespiration should therefore pay special attention to the potential impact of such modifications on the plant’s ability to withstand biotic and abiotic stress factors (Hanson et al. 2013; Peterhansel et al. 2013).

6.2.4 Mechanisms of Si-induced broad-spectrum disease resistance

Given the huge potential and value of Si nutrition in stress management, the application of a range of biotechnological strategies based on the modulation of Si content and its signaling effects could provide a unique tool for the genetic improvement of crop productivity in a sustainable manner. Classic genetic approaches and genom-wide transcriptional analyses are now beginning to unveil large numbers of Si targets, shedding light on the complexity and diverse activity of Si in plants.

Si-induced priming for enhanced defense

Chapter 3.6 revealed that Si application leads to the differential expression of several transcription factors (TF). Consistent with previous findings in BABA- and rhizobacteria-induced plants (Pozo et al. 2008), such accumulation of dormant TFs may contribute to the ‘primed’ state of Si-treated plants. However, this does not exclude the involvement of other types of signaling molecules in the establishment and/or maintenance of Si-induced priming. Indeed, accumulating evidence connects the primed state to subtle alterations in MAP kinases, chromatin modifications and alterations of primary metabolism such as MAP kinases, small RNAs and histone modifications. Using a combination of molecular, genetic and biochemical approaches, future work should therefore be focused on deriving a holistic picture of the signaling circuitry governing Si-inducing defense priming.

The fact that promoter analysis for rice gene is still in its infancy did not facilitate the research process. However, rice promoter analysis databases and software are developing fast and the list of up- and downregulated TFs (Table 3.2) can act as primer for future research on the regulation of Si-induced broad-spectrum resistance. For instance, evaluation of disease resistance and defense response activation in available T-DNA knockout mutants may help to decipher the possible role of these TFs in the Si-induced resistance.

Alternatively, time-resolved hormone measurements and genome-wide expression profiling could provide additional insights into the cellular processes governing the gain- or loss-of-resistance phenotype.

Si as an inhibitor of pathogen virulence factors

One of the main conclusions of this research was that Si confers brown spot resistance by disarming the virulence factors of *C. miyabeanus*. Similar findings have been obtained
in other plant-microbe interactions, suggesting that Si-mediated impairment of microbial virulence factor is a core mechanism underpinning the prophylactic effects of Si in diverse plant species. Two different, not mutually exclusive, mechanisms can be hypothesized. First, given the ability of orthosilicic acid to bind to certain sugars and hydroxyl-amino, it is not inconceivable that microbial effector proteins and toxins are immobilized by adsorption on silica. As for other molecular interactions, complexation and/or interaction of pathogen virulence factors and silicic acid may alter the location, activity, transport and/or selectivity of the complexed molecules. In analogy with the fact that Cd-stress increases silica deposition in rice plants (Shi et al., 2005), microscopically measuring the silica layer of rice leaves that have been treated with pathogenic effectors or phytotoxins compared to normal Si-treated rice leaves, might indicate whether adsorption of pathogenic virulence factors by Si is an important mechanism of Si-induced resistance. There are a number of fairly easy assays that can be performed in order to test the ability of C. miyabeanus toxins to bind to silica, for instance, by separating fungal toxin extract on a column packed with silica gel. If the toxins do bind silica, scanning electron microscopy could be used to localize the site of silica deposition and gain further insight into the underlying mechanism (Perry et al., 1990; Rodrigues et al., 2003; Ghanmi et al., 2004). A second hypothesis is based on the observation that in several pathogens were found embedded in a matrix containing silica and phenolic compounds (Kauss et al., 2003; Rodrigues et al., 2003; Ghanmi et al., 2004; Fauteux et al., 2006). These findings support the hypothesis that pathogens might be encapsulated in silica, thereby preventing pathogens from exerting influence on their host plants. This process is potentially induced by the defense-related accumulation of phenolic compounds at the site of infection which is a known initiator of silica deposition (Carver et al., 1998; Epstein, 1999). Microscopical analysis of the presence of UV-fluorescent phenolic compounds in silica deposition in infected leaves might confirm this hypothesis.

Mechanistics of the effect of Si

Even though the underpinnings of the direct interaction of Si inside plants remains unknown, the hypotheses in Section 6.1.5 may guide future research. First of all the microarray data in Chapter 3 showed that Si application led to the differential expression of different transporter genes among which several aquaporins. Since all plant Si transporters are aquaporins (Gomes et al., 2009), it is possible that one or more of the differentially expressed aquaporins transports Si from the cytosol of leaf cells towards the apoplast. The same methodology that is followed to characterize the rice root efflux transporter OsLsi2 (Ma et al., 2007) can be used to identify potential rice
leaf Si efflux transporters.

Furthermore, the expression of other transporter genes might be responsible for the efflux of plant molecules and/or xenobiotics towards the apoplast which is one of the hypothesized mechanisms via which Si might influence plant disease resistance [6.1.5]. Thorough datamining will first lead to a selection of transporter proteins that might play a role in Si-induced resistance. Assessing the efficacy of Si in knockout mutants will further elucidate the potential role of these transporters.

Another hypothesis states that interaction between plant molecules and Si might mediate Si-induced broad spectrum resistance. In order to investigate this assumption, a Si-binding assay on plant proteins can be performed by separating rice leaf protein extracts on a column packed with silica gel as described in Section [6.2.4] followed by separation and identification of the Si-binding proteins using 2D-gel electrophoresis. Further characterization of the relevance of the binding capacity of these proteins can be analyzed in knockout mutants, whereas microscopical localization of the GFP-labeled proteins can be used to confirm whether and where inside the cell these proteins interact with Si.
Summary

Pathogen invasion can lead to vast yield losses and the demand for sustainable plant protection strategies has never been greater. Plants have developed an intricate network of constitutive and inducible defense mechanisms that enables them to cope with the continuous threat of a plethora of plant pathogens. Plant defense mechanisms often demand substantial amounts of the plant’s energy and it is generally assumed that inducible defense mechanisms have evolved in order to save energy under stress-free conditions to reduce the defense-related fitness costs. The type and efficacy of plant defense responses that are induced after pathogen infection depends heavily on the lifestyle of the pathogen. Whereas biotrophic pathogens derive nutrients from living host tissues, necrotrophs extract nutrients from dead or dying cells. Chemical plant activators and selected strains of rhizobacteria can increase resistance against specific types of pathogens but these treatments are often ineffective or even cause susceptibility against others due to the occurrence of trade-offs. The application of silicon (Si) is one of the scarce examples of a treatment that effectively induces broad spectrum disease resistance, however, the underlying mechanisms that mediate the prophylactic effect of silicon on plant resistance remains to be elucidated. The main objective of this dissertation was to unravel the mechanisms that underlie Si-induced broad spectrum resistance, by using the interaction between rice and the necrotrophic rice leaf fungus *C. miyabeanus* as a model pathosystem.

In the first part we focused on the uptake of Si and its ability to protect plants against a broad spectrum of pathogens. Although several initiators of induced resistance have been described, Si application is one of the few disease control strategies that is able to induce broad spectrum disease resistance by boosting the plant’s basal defense mechanisms. The prophylactic effect of Si is considered to be the result of both passive and active defenses. Although the phenomenon has been known for decades, the molecular basis of Si-induced disease control remains largely unknown. By combining knowledge on how Si interacts with cell metabolism in diatoms and plants, this part describes Si-induced regulatory mechanisms that might account for broad-spectrum disease resistance in plants. Priming of plant immune responses, alterations in phytohormone homeostasis, regulation of iron homeostasis, Si-driven photorespiration and interaction with defense signaling components are all potential mechanisms involved in regulating Si-triggered resistance responses. Further elucidating how Si exerts its beneficial properties may create
new avenues for developing plants that are better able to cope with multiple stresses.

In the second part of this dissertation, we aimed to further dissect the molecular mechanisms that govern the rice-C. *miyabeanus* interaction. Infection with *C. miyabeanus* is associated with the induction of premature senescence and cell death which promotes the infection process. We found that *C. miyabeanus* produces ethylene (ET) via a pathway that is distinct from plant ET biosynthesis, a process that requires 2-oxoglutarate and arginine and is catalyzed by a fungal ethylene forming enzyme (EFE). Fungal ET, both directly and indirectly via the activation of plant ET biosynthesis, induces ET signaling in rice. The pathogen-mediated onset of ET signaling impairs plant defense responses via the induction of senescence and inhibition of phenylpropanoid-driven defense responses against *C. miyabeanus*. Moreover, we also show that the virulence of *C. miyabeanus* isolates is at least partly correlated with their ET producing abilities. While providing novel insights into the multifaceted role of ET in the plant’s defense signaling network, this part underscores that next to the well-described role of phytotoxins as a virulence factor of *C. miyabeanus*, fungal ET production also appears to be a main determinant of the virulence of *C. miyabeanus*. Furthermore, these findings highlight the importance of microbial ET in modulating plant immunity.

In the third part of this dissertation we investigated the prophylactic role of Si in the interaction between rice and *C. miyabeanus*. Genome-wide expression profiling suggested that *C. miyabeanus* uncouples photosynthesis from photo-harvesting with subsequent photo-oxidative damage being responsible for the induction of senescence. Application of Si, on the other hand, impaired pathogen-induced photo-oxidative damage and alleviated premature senescence, presumably by enhancing photorespiration activity. Together these findings support a scenario whereby the plant’s central metabolism plays a pivotal role in the rice-C. *miyabeanus* pathosystem, leading to either susceptibility via pathogen-induced senescence or resistance through Si-induced prevention of senescence, possibly due to Si-driven photorespiration. Moreover, in accordance with earlier microarray studies, our results suggest that Si nullifies the impact of pathogen inoculation on the plant’s transcriptome, rather than creating resistance where is none by directing massive transcriptional reprogramming of defense-related genes. Furthermore, we also found that ET is the main modulator of basal and Si-induced brown spot resistance in rice. Blocking the ET signaling pathway in rice mimics Si-induced brown spot resistance, producing a resistance phenotype hallmarked by small necrotic lesions due to the accumulation of fungitoxic phenolic compounds at the site of infection. Our data suggest that Si confers brown spot
resistance by preventing fungal ET biosynthesis. In conclusion, these observations not only reaffirm the significance of fungal ET biosynthesis as an important virulence factor for *C. miyabeanus*, but also coincide with earlier findings that Si application induces brown spot resistance by disarming fungal virulence factors.

In conclusion, the results denoted in this thesis have provided several novel insights into the molecular machinery governing the interaction between rice and *C. miyabeanus* and the prophylactic effect of silicon during brown spot infection. Even though we could not characterize a central Si-mediated mechanism that is responsible for mounting broad spectrum resistance in rice the findings presented in this dissertation provide an excellent primer for future studies on the beneficial role of silicon. Advances in the understanding of the molecular mechanisms that govern Si-induced broad spectrum resistance, will not only shed new light on the pathways underpinning broad spectrum resistance, it can also guide novel strategies to improve crop performance to ensure a sustainable and durable crop protection in the future.
Samenvatting

Infectie van de plant met ziekteverwekkers of pathogenen kan leiden tot enorme verlies in opbrengst. Daarnaast neemt de vraag naar duurzame bestrijdingsstrategieën toe. Planten hebben een complex netwerk ontwikkeld van constitutieve en induceerbare afweermechanismen om zich te beschermen tegen een overlod aan plantpathogenen. Afweermechanismen van de plant eisen vaak aanzienlijke hoeveelheden energie en algemeen wordt aangenomen dat induceerbare afweermechanismen zijn ontstaan om energie te besparen onder stressvrije condities. Het type en de werkzaamheid van de afweermechanismen van de plant na pathogeen infectie is sterk afhankelijk van de levensstijl van de pathogeen. Biotrofe pathogenen halen hun voedingsstoffen uit weefsels van levende gastheren terwijl necrotrofen voedingsstoffen extraheren uit dode of stervende cellen. Chemische plant activators en goedaardige wortelkoloniserende bacteriën kunnen de weerstand tegen bepaalde soorten ziekteverwekkers verhogen maar deze behandelingen zijn vaak ineffectief of veroorzaken zelfs gevoeligheid tegen andere pathogenen. Behandeling met silicium (Si) is een van de weinige voorbeelden van een behandeling die effectief breed spectrum ziekteresistentie induceert. Over de onderliggende mechanismen is echter nog weinig gekend. De belangrijkste doelstelling van deze thesis is het ontrafelen van de mechanismen die aan de basis liggen van breed spectrum Si-geïnduceerde plant resistentie. Als modelstelsel hebben we hiervoor gebruik gemaakt van de interactie tussen rijst en de necrotrofe schimmel *C. miyabeanus*.

In het eerste deel van deze thesis focussen we op de opname van Si en het vermogen om de plant te beschermen tegen een breed spectrum van ziekteverwekkers. Ondanks het feit dat verschillende types van geïnduceerde resistentie beschreven zijn, is het toedienen van Si één van de weinige ziektebestrijdingsstrategieën die breed spectrum ziekte resistentie kan induceren door het stimuleren van de basale afweermechanismen van de plant. Het profylactische effect van Si wordt beschouwd als het resultaat van zowel passieve en actieve verdedigingsmechanismen. Hoewel het fenomeen al decennia gekend
is, blijft de moleculaire basis van Si-geïnduceerde ziektebestrijding grotendeels onbekend. Voortbouwend op de kennis over de interactie tussen Si en het metabolisme van de cel in diatoméeën en planten, beschrijven we diverse mechanismen welke kunnen bijdragen aan breedsspectrum ziekteresistentie in planten. Potentiële mechanismen betrokken bij het activeren van afweermechanismen Si zijn het op punt stellen van de immuunresponsen van de plant, wijzigingen van de hormonale balans van de plant, verhoogde fotorespiratie en de interactie met signaal componenten. Het verder ophelderen van de werking van Si kan leiden tot de ontwikkeling van planten die meer stressbestendig zijn.

In het tweede deel van deze thesis ontrafelen we verder de moleculaire mechanismen bij de interactie tussen rijst en *C. miyabeanus*. Infectie met *C. miyabeanus* is geassocieerd met de inductie van vroegtijdige senescentie en celdood, welke het infectie proces bevordert. *C. miyabeanus* produceert ethyleen (ET) via een traject dat verschilt van de plant ET biosynthese. Dit proces vereist 2-oxoglutarater en arginine als cofactors en wordt gekatalyseerd door het Ethylene Forming Enzyme (EFE). ET geproduceerd door de schimmel, induceert tevens ET signalering in rijst, zowel direct als indirect via de activering van plant ET biosynthese. De door *C. miyabeanus* geactiveerde ET signalering zorgt voor de verzwakking van de afweermechanismen, onder andere door het induceren van senescentie en het onderdrukken van het fenylpropanoïde metabolisme. Bovendien tonen we aan dat de virulentie van *C. miyabeanus* isolaten gedeeltelijk gecorreleerd is met hun mogelijkheid om ET te produceren. Naast de goed beschreven rol van fytotoxines als een virulentiefactor van *C. miyabeanus*, wijzen deze resultaten op de belangrijke rol van ET in de virulentie van *C. miyabeanus*.

In het derde deel van dit manuscript, hebben we de positieve invloed van Si tijdens de interactie tussen rijst en *C. miyabeanus* bestudeerd. Microarray analyse toonde aan dat *C. miyabeanus* de fotosynthese cyclus inhibeert wat leidt tot foto-oxidatieve schade en senescentie in de bladeren. Toediending van Si anderzijds voorkwam senescentie, vermoedelijk door verhoogde fotorespiratie in Si-behandelde planten tijdens infectie. Deze bevindingen suggereren een scenario waarin het centraal metabolisme van de plant een essentiële rol speelt tijdens de interactie tussen rijst en *C. miyabeanus*. Enerzijds beïnvloedt *C. miyabeanus* *C. miyabeanus* de stofwisseling in rijstbladeren om senescentie te veroorzaken, wat het infectieproces bespoedigt. Anderzijds zorgt Si toediening voor een heroriëntatie van het centraal metabolisme door het induceren van fotorespiratie om zo te leiden tot verhoogde resistentie. In overeenkomst met eerdere microarray experimenten, tonen onze resultaten bovendien aan dat Si het negatieve effect van *C. miyabeanus* op rijstplanten te
niet doet, eerder dan afweermechanismen te induceren. Verder zagen we ook dat ET de belangrijkste regulerende factor is tijdens basale en Si-geëngageerde afweer tijdens infectie. Zowel het blokkeren van de ET signalering in rijst als het voorkomen van ET biosynthese door *C. miyabeanus* tijdens infectie bootst Si-geëngageerde resistentie na, wat leidt tot minder chlorose en een substantiële reductie van de lesiegrootte. Dit resultaat is waarschijnlijk te wijten aan de massale accumulatie van phenolische componenten rond de plaats van infectie. Deze bevindingen lijken te herbevestigen dat ET productie een belangrijke rol speelt als virulentie factor en dat Si zorgt voor resistentie door het voorkomen van ET productie door *C. miyabeanus*.

In conclusie, de resultaten in deze thesis hebben gezorgd voor nieuwe inzichten in het moleculaire radarwerk dat zorgt voor zowel ziekte door *C. miyabeanus* als resistentie in Si-geëngageerde planten. Hoewel we geen centraal mechanisme konden karakteriseren dat het effect van Si als initiator van breed spectrum ziekteresistentie kan verklaren, vormt dit manuscript een uitstekende uitgangsbasis voor verder onderzoek naar de positieve rol van Si. Meer inzicht in de mechanismen die verantwoordelijk zijn voor Si-geëngageerde ziekteresistentie zal niet alleen een nieuw licht werpen op hoe breed spectrum resistentie in planten werkt, maar kan ook als leidraad dienen ter ontwikkeling van nieuwe strategieën die moeten zorgen voor een meer duurzame gewasbescherming in de toekomst.
Bibliography

Bender, CL, Alarcón-Chaidez, F and Gross, DC. *Pseudomonas syringae* phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiology and molecular biology reviews, **1999**: 63(2):266–292

Block, A and Alfano, JR. Plant targets for *Pseudomonas syringae* type III effectors: virulence targets or guarded decoys? Current opinion in microbiology, **2011**: 14(1):39–46

Bolton, MD. Primary metabolism and plant defense-fuel for the fire. Molecular plant-microbe interactions, **2009**: 22(5):487–497

Broekaert, WF, Delaure, SL, De Bolle, MFC and Cammue, BPA. The role of ethylene in host-pathogen interactions. Annual review of phytopathology, **2006**: 44:393–416

Brooks, DM, Bender, CL and Kunkel, BN. The *Pseudomonas syringae* phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in *Arabidopsis thaliana*. Molecular plant pathology, **2005**: 6(6):629–639

Castilla, NP and Savary, S. Brown Spot. Rice fact sheets (IRRI), 2010: pp. 1–3

154
Chattopadhyay, SB and Dickson, JG. Relation of nitrogen to disease development in rice seedlings infected with *Helminthosporium oryzae*. Phytopathology, 1960: 50:434–438

Chattopadhyay, AK and Samaddar, KR. Effects of *Helminthosporium oryzae* infection and ophiobolin on the cell membranes of host tissues. Physiological plant pathology, 1976: 8:131–139

Chiba, Y, Mitani, N, Yamaji, N and Ma, JF. HvLsi1 is a silicon influx transporter in barley. The plant journal, 2009: 57(5):810–818

155
Cohn, JR and Martin, GB. *Pseudomonas syringae* pv. *tomato* type III effectors AvrPto and AvrPtoB promote ethylene-dependent cell death in tomato. The plant journal, 2005: 44(1):139–154

Dallagnol, LJ, Rodrigues, Fa, Chaves, aRM, Vale, FXR and DaMatta, FM. Photosynthesis and sugar concentration are impaired by the defective active silicon uptake in rice plants infected with Bipolaris oryzae. Plant pathology, 2013: 62(1):120–129

De Meyer, G, Audenaert, K and Höfte, M. Pseudomonas aeruginosa 7NSK2-induced systemic resistance in tobacco depends on in planta salicylic acid accumulation but is not associated with PRIa expression. European journal of plant pathology, 1999: 105(5):513–517

De Schutter, O. The transformative potential of the right to food. FAO, 2014: 1-28

De Vleesschauwer, D, Yang, Y, Cruz, CV and Höfte, M. Abscisic acid-induced resistance against the brown spot pathogen Cochliobolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling. Plant physiology, 2010: 152(4):2036–2052

Dela Paz, MAG, Goodwin, PH, Raymundo, AK, Ardales, EY and Cruz, CMV. Phylogenetic analysis based on ITS sequences and conditions affecting the type of conidial germination of Bipolaris oryzae. Plant pathology, 2006: 55(6):756–765

Ding, X, Cao, Y, Huang, L, Zhao, J, Xu, C, Li, X and Wang, S. Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. The plant cell, 2008: 20(1):228–240

FAO. How to feed the world in 2050. FAO, 2009

Fonteyne, S. De rol van ethyleen, auxine en abscisinezuur in de interactie tussen rijst en de brown spot pathogeen Cochliobolus miyabeanus. Master thesis, Ghent University, Ghent, Belgium (in Dutch), 2011:

Glick, BR. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS microbiology letters, 2005: 251(1):1–7

Glick, BR. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological research, 2014: 169(1):30–39

Guinel, FC and Geil, RD. A model for the development of the rhizobial and arbuscular mycorrhizal symbioses in legumes and its use to understand the roles of ethylene in the establishment of these two symbioses. Canadian journal of botany, 2002: 80(7):695–720

Guo, M, Tian, F, Wamboldt, Y and Alfano, JR. The majority of the type III effector inventory of Pseudomonas syringae pv. tomato DC3000 can suppress plant immunity. Molecular plant-microbe interactions, 2009: 22(9):1069–1080

Hao, D, Yamasaki, K, Sarai, A and Ohme-takagi, M. Determinants in the sequence specific binding of two plant transcription factors, CBF1 and NtERF2, to the DRE and GCC motifs. Biochemistry, 2002: 11:4202–4208
Hase, S, Van Pelt, Ja, Van Loon, L and Pieterse, CM. Colonization of Arabidopsis roots by *Pseudomonas fluorescens* primes the plant to produce higher levels of ethylene upon pathogen infection. Physiological and molecular plant pathology, 2003: 62(4):219–226

Helliwell, EE, Wang, Q and Yang, Y. Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens *Magnaporthe oryzae* and *Rhizoctonia solani* Plant biotechnology journal, 2013: 11(1):33–42

Jun, SH, Han, MJ, Lee, S, Seo, YS, Kim, WT and An, G. OsEIN2 is a positive component in ethylene signaling in rice. Plant & cell physiology, 2004: 45(3):281–289

Kenigsbuch, D and Cohen, Y. Inheritance of resistance to downy mildew in Cucumis melo Pi-124112 and commonality of resistance genes with Pi-124111F. Plant disease, 1992: 76(6):615–617

Kováčik, J and Bačkor, M. Phenylalanine ammonia-lyase and phenolic compounds in chamomile tolerance to cadmium and copper excess. Water, air, and soil pollution, 2007: 185(1-4):185–193

Liang, Y, Si, J and Römheld, V. Silicon uptake and transport is an active process in Cucumis sativus. New phytologist, 2005a: 167(3):797–804

Lin, Z, Alexander, L, Hackett, R and Grierson, D. LeCTR2, a CTR1-like protein kinase from tomato, plays a role in ethylene signalling, development and defence. The plant journal, 2008: 54(6):1083–1093

Lu, SF, Tzeng, DD and Hsu, ST. In vitro and in vivo ethylene production in relation to pathogenesis of Pseudomonas solanacearum (Smith) on Lycopersicon esculentum M.. Plant protection bulletin, 1989: 31:60–76

Lund, ST, Stall, RE and Klee, HJ. Ethylene regulates the susceptible response to pathogen infection in tomato The plant cell, 1998: 10(3):371–382

Ma, JF and Yamaji, N. Silicon uptake and accumulation in higher plants. Trends in plant science, 2006: 11(8):392–397

Macho, AP, Guidot, A, Barberis, P, Beuzón, CR and Genin, S. *Ralstonia solanacearum* type III effector mutant strains with reduced fitness in host plants. Molecular plant-microbe interactions, 2010: 23(9):1197–1205

168

Mei, C, Qi, M, Sheng, G and Yang, Y. Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Molecular plant-microbe interactions, 2006: 19(10):1127–1137

Mercado Vergnes, D, Renard, ME, Duveiller, E and Maraite, H. Effect of growth stage on host sensitivity to helminthosporol toxin and susceptibility to Cochliobolus sativus causing spot blotch on wheat. Physiological and molecular plant pathology, 2006: 68(1-3):14–21

Mew, TW and Gonzales, P. A handbook of rice seedborne fungi. 2002

Ming, DF, Pei, ZF, Naeem, MS, Gong, HJ and Zhou, WJ. Silicon alleviates PEG-induced water-deficit stress in upland rice seedlings by enhancing osmotic adjustment. Journal of agronomy and crop science, 2012: 198(1):14–26

Mitani, N, Chiba, Y, Yamaji, N and Ma, JF. Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice. The plant cell, 2009a: 21(7):2133–2142

Navarre, Da and Wolpert, TJ. Inhibition of the glycine decarboxylase multienzyme complex by the host-selective toxin victorin. The plant cell, 1995: 7(4):463–471

Oide, S, Moeder, W, Krasnoff, S, Gibson, D, Haas, H, Yoshioka, K and Turgeon, BG. NPS6, encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes. The plant cell, 2006: 18(10):2836–2853

Okita, TW and Volcani, BE. Role of silicon in diatom metabolism: differential synthesis of DNA polymerases and DNA-binding proteins during silicate starvation and recovery in Cylindrotheca fusiformis. Biochimica et biophysica acta, 1978: 519:76–86

Ou, SH. Rice Diseases. Commonwealth Mycological Institute, Kew, UK, 1985

Qiu, X, Xie, W, Lian, X and Zhang, Q. Molecular analyses of the rice glutamate dehydrogenase gene family and their response to nitrogen and phosphorous deprivation. Plant cell reports, 2009: 28(7):1115–1126

Riedel, T, Groten, K and Baldwin, IT. Symbiosis between *Nicotiana attenuata* and *Glomus intraradices*: ethylene plays a role, jasmonic acid does not. Plant, cell & environment, **2008**: 31(9):1203–1213

Rivero, RM, Shulaev, V and Blumwald, E. Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit. Plant physiology, **2009**: 150(3):1530–1540

Robert-Seilaniantz, A, Grant, M and Jones, JDG. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annual review of phytopathology, **2011**: 49:317–343

Rodrigues, FA. Effect of silicon and host resistance on sheath blight development in rice. Plant disease, **2001**:85:827–832

Roychoudhury, A, Gupta, B and Sengupta, DN. Trans-acting factor designated OSBZ8 interacts with both typical abscisic acid responsive elements as well as abscisic acid responsive element-like sequences in the vegetative tissues of indica rice cultivars. Plant cell reports, 2008: 27(4):779–794

Saeki, K. Adsorption of Fe$^{2+}$ and Mn$^{2+}$ on silica, gibbsite, and humic acids. Soil science, 2004: 169:832–840

Savant, NK, Snyder, GH and Datnoff, LE. Silicon management and sustainable rice production. Advances in agronomy, 1997: 58:151–199

Seth, CS. A review on mechanisms of plant tolerance and role of transgenic plants in environmental clean-up. The botanical review, 2012: 78(1):32–62

Shetty, R, Fretté, X, Jensen, B, Shetty, NP, Jensen, JD, Jørgensen, HJrL, Newman, MA and Christensen, LPr. Silicon-Induced changes in antifungal phenolic acids, flavonoids, and key phenylpropanoid pathway genes during the interaction between miniature roses and the biotrophic pathogen Podosphaera pannosa. Plant physiology, 2011: 157(4):2194–2205

Shoresh, M, Yedidia, I and Chet, I. Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology, 2005: 95(1):76–84

Singh, RK, Singh, CV and Shukla, VA. Phosphorus nutrition reduces brown spot incidence in rainfed upland rice. IRRI notes, 2005: 30(2):31–32

177

Sullivan, CW and Volcani, BE. Role of silicon in diatom metabolism III. the effects of silicic acid on DNA polymerase, TMP kinase and DNA synthesis in Cylindrotheca fusiformis. Biochimica et biophysica acta, 1973: 308:212–229

Tamura, K, Peterson, D, Peterson, N, Stecher, G, Nei, M and Kumar, S. MEGA5: molecular evolutionary
genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.

Tanaka, N, Fujita, M, Handa, H, Murayama, S, Uemura, M, Kawamura, Y, Mitsui, T, Mikami, S, Tozawa,
Y, Yoshinaga, T and Komatsu, S. Proteomics of the rice cell: systematic identification of the protein

Tao, Z, Liu, H, Qiu, D, Zhou, Y, Li, X, Xu, C and Wang, S. A pair of allelic WRKY genes play opposite

Thamatrakoln, K, Alverson, AJ and Hildebrand, M. Comparative sequence analysis of diatom silicon

Thines, E, Anke, H and Weber, RW. Fungal secondary metabolites as inhibitors of infection-related

Thordal-Christensen, H. Fresh insights into processes of nonhost resistance. Current opinion in plant

Thuan, NTN, Bigirimana, J, Roumen, E, Straeten, D and Höfte, M. Molecular and pathotype analysis of

Timmer, CP, Block, S and Dawe, D. Long-run dynamics of rice consumption, 1960-2050. In Rice in the
global economy: strategic research and policy issues for food security, Pandey, S, Byerlee, D, Dawe,

Tipton, CL, Paulsen, PV and Betts, RE. Effects of ophiobolin A on ion leakage and hexose uptake by

Toledo, MZ, Castro, GSa, Crusciol, CAC, Soratto, RP, Cavariani, C, Ishizuka, MS and Picoli, LB. Silicon
leaf application and physiological quality of white oat and wheat seeds. Semina: Ciências Agrárias,

Ton, J, De Vos, M, Robben, C, Buchala, A, Métraux, JP, Van Loon, LC and Pieterse, CMJ. Characteri-
zation of Arabidopsis enhanced disease susceptibility mutants that are affected in systemically induced
resistance. The plant journal, 2002: 29(1):11–21

Tripathi, DK, Singh, VP, Kumar, D and Chauhan, DK. Impact of exogenous silicon addition on chromium
uptake, growth, mineral elements, oxidative stress, antioxidant capacity, and leaf and root structures

Tripathi, P, Deo, R, Pratap, R, Dwivedi, S and Goutam, D. Silicon mediates arsenic tolerance in rice
(Oryza sativa L .) through lowering of arsenic uptake and improved antioxidant defence system.
Ecological engineering, 2013: 52:96–103

179

Vidyasekaran, P, Borromeo, ES and Mew, TW. *Helminthosporium oryzae* toxin suppresses phenol metabolism in rice plants and aids pathogen. Physiological and molecular plant pathology, **1992**: 41:307–315

Vleeshouwers, VGaa and Oliver, RP. Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens. Molecular plant-microbe interactions, **2014**: 27(3):196–206

Vlot, aC, Dempsey, DA and Klessig, DF. Salicylic acid, a multifaceted hormone to combat disease. Annual review of phytopathology, **2009**: 47:177–206

Walker, EL and Connolly, EL. Time to pump iron: iron-deficiency-signaling mechanisms of higher plants. Current opinion in plant biology, **2008**: 11(5):530–535

Walters, D and Heil, M. Costs and trade-offs associated with induced resistance. Physiological and molecular plant pathology, **2007**: 71(1-3):3–17

Wang, KL, Li, H and Ecker, JR. Ethylene biosynthesis and signaling networks. The plant cell, **2002**: pp. S131–S152

Wang, YY, Hsu, PK and Tsay, YF. Uptake, allocation and signaling of nitrate. Trends in plant science, **2012**: 17(8):458–467

Webster, RK and Gunnell, PS. Compendium of rice diseases. American phytopathological society, St. Paul (MN), USA, 1992

Xiong, L and Yang, Y. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. The plant cell, 2003: 15:745–759

Yang, Y, Qi, M and Mei, C. Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. The plant journal, 2004: 40(6):909–919

183

Zwack, PJ, Robinson, BR, Risley, MG and Rashotte, AM. Cytokinin response factor 6 negatively regulates leaf senescence and is induced in response to cytokinin and numerous abiotic stresses. Plant & cell physiology, 2013: 54(6):971–981
Curriculum vitae

Personal information

first name: Jonas
last name: Van Bockhaven
address: Hubert Frère-Orbanlaan 40, 9000 Gent
date of birth: May 17, 1986
place of birth: Temse
nationality: Belgian
tel.: +32499693829
e-mail: vbjonas@hotmail.com

Education

2009: Master in Bioscience Engineering: Agricultural Sciences, University of Gent (UGent)
Master thesis: “Deciphering silicon-induced resistance against necrotrophic pathogens in rice (Oryza sativa L.)”
Promotor: Prof. Dr. ir. Monica Höfte

2007: Bachelor in Bioscience Engineering: Agricultural Sciences, University of Gent (UGent)

2004: High school diploma (Science and Mathematics), Berkenboom Humaniora, Sint-Niklaas, Belgium
Additional training

Protein Chemistry (1 semester) 2010
Effective Scientific Communication (certified; 20 contact hours) 2010
Introduction to Gene Regulation (1 day) 2013

Professional Record

PhD candidate at the Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University (UGent)
PhD thesis: “Silicon-induced brown spot resistance in rice (Oryza sativa L.)”
Promotor: Prof. Dr. Monica Höfte

Publications

Peer reviewed:

Conference Proceedings

Participation to conferences and symposia

Van Bockhaven J, De Vleesschauwer D and Höfte M. Silicon-induced brown spot resistance in rice (Oryza sativa L.). V simposio Brasileiro sobre silicio na agricultura,

Van Bockhaven J, De Vleesschauwer D and Höfte M. Silicon Silicium-geinduceerde resistentie in monocotylen. Studiedag in het kader van AOG primaire plantaardige produc
tie, June 2, 2010, Bottelare, Belgium. **Oral presentation** by Van Bockhaven J.

Attended conferences and symposia without participation

61st International Symposium on Crop Protection, May 19, 2009, Ghent, Belgium

Plant hormones: new insights for biotechnology (Belgian plant biotechnology association), November 13, 2009, Gembloux, Belgium

Living together: Plant - Microorganism Biotechnology (Belgian plant biotechnology association), November 18, 2011, Louvain-la-Neuve, Belgium

65th International Symposium on Crop Protection, May 21, 2013, Ghent, Belgium

65th International Symposium on Crop Protection, May 20, 2014, Ghent, Belgium

Awards

Green footsteps award, June 17, 2011
Van Bockhaven J, De Vleesschauwer D and Höfte M. Silicon and broad spectrum disease resistance: one step closer to the holy grail of plant pathology.