Characterisation of chemo-enzymatic surface functionalised PET by fluorescence spectroscopy

Harisa Donelli, Philippe F. Smet, Dirk Poelman, Giuliano Freddi, Vincent A. Nierstrasz, Lieva Van Langenhove, Paul Kiekens

Stazione Sperimentale per la Seta, Milano, Italy
Lumilab, Department of Solid State Sciences, Ghent University, Gent, Belgium
Department of Textiles, Ghent University, Technologiepark 907, 9052 Zwijnaarde/Gent, Belgium
Vincent.Nierstrasz@UGent.be

This paper reports on the characterisation of chemo-enzymatic surface functionalised poly(ethylene terephthalate) (PET) using fluorescence spectroscopy. Surfaces of crystalline and amorphous polyester films were hydrolysed using a lipolytic enzyme [1]. Contact angle measurements and FTIR analysis confirmed surface hydrolysis and the increase of hydrophilic groups in the surface of amorphous PET [1, 2]. The surfaces were functionalised by alkylation with 2-(bromomethyl)naphthalene (BrNP). Introduction of BrNP results in local increase of hydrophilicity as well as fluorescence of the surface [2]. The chemo-enzymatic surface functionalised PET samples were analysed using fluorescence spectroscopy. Photoluminescence emission and excitation spectra were recorded using a fluorescence spectrometer (wavelength range from 200 to 850 nm). The emission and excitation spectra of the surface modified PET films were measured with excitation and emission wavelengths of 350 and 440 nm respectively. The focused excitation beam fell onto sample under an angle of 45°, and the emission was monitored under an angle of 45°. The enzymatically modified PET films have increased opacity [3]. To evaluate the effect of increased opacity and scattering effects of the amorphous PET films as a result of the enzymatic treatment compared to the other treatments, the total photoluminescence intensity was measured using an integrating sphere. The samples were put inside the integrating sphere. The results are compared with photoluminescence measurements on standard set-up. The results confirm that we can actually functionalise the enzymatically modified PET surface using fluorescent groups.

Acknowledgements
Vincent A. Nierstrasz acknowledges the support of the European Commission (Marie-Curie grant, People FP7), Grant Agreement Number PIEF-GA-2008-21966. Philippe F. Smet is a post-doctoral researcher for the Fund for Scientific Research - Flanders (FWO-Vlaanderen). Authors also thank Dr. Jan Marek of inoTEX for providing the enzyme sample.


References
[1] D. Chau, R. Coll
COST 868 meeting on
Biotechnology and Biopolymers in Textile, Packaging, Cosmetics and Medical Applications
February 19-20, 2009 Istanbul-Türkiye

COST 868: Biotechnical Functionalisation of Renewable Polymeric Materials
meeting on
"Biotechnology and Biopolymers in Textile, Packaging, Cosmetics and Medical Applications"

February 19-20, 2009
Istanbul - Türkiye

Plasma Aided Bioengineering and Biotechnology Research Group,
Hacettepe University, Ankara, Türkiye