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Raman spectroscopy is a powerful technique as it is non-destructive, water interference is 

minimal and the required sample volumes are small. These features in combination with 

whole cell information as provided by Raman spectroscopy make this method of analysis 

attractive for use in microbiology. Indeed, a lot of current microbiological techniques of 

analysis focus on certain types of biomolecules (fatty acid methyl ester (FAME) analysis, 

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) for proteins, etc.) 

and are labor-intensive. Identification of microorganisms on species2,6 and even strain1,4,7 

level is possible. Bacterial Raman spectra can not only serve as a fingerprint pattern for 

identification, but they also contain important information about the cell’s composition. 

However, because these spectra contain contributions of all Raman active molecules in the 

cell, they are complex. Bacterial Raman spectra usually have a typical shape (Fig. 1.1) 

because all cells contain the same basic building blocks: DNA, RNA, proteins, fatty acids, 

lipids, etc. Each band in a bacterial Raman spectrum is usually a superposition of 

contributions of several biomolecules. Therefore, in theory, we can not assign a single band 

to one biomolecule. However, in practice, some bands are dominated by the contribution of 

specific biomolecules and therefore some assignments to (groups of) biomolecules or 

specific vibrations have been made earlier in literature (Fig. 1.1)3,5. Although these 

assignments can lead to valuable information, they ignore possible contributions of other 

biomolecules. 

 

The aim of this work is to explore the possibilities to obtain information about cell 

compounds from bacterial Raman spectra. This includes the study whether these Raman 

spectra reflect differences in culturing conditions and whether these differences provide 

useful information about the cell’s composition or metabolism. 

 

This thesis starts with some theoretical considerations about microbiology (Chapter 2), 

Raman spectroscopy (Chapter 3) and data processing (Chapter 4). In order to get a better 

idea of the possible contribution of several cell compounds to a bacterial Raman spectrum, 

a database of reference Raman spectra of biomolecules present in cells was constructed and 

is discussed in Chapter 5. These spectra serve as basic knowledge for the extraction of 
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information about bacterial compounds. Whether these biomolecules will contribute 

significantly to bacterial Raman spectra depends on their intrinsic Raman activity as well as 

on their concentration in the cell. Therefore, in some cases, Raman bands in bacterial 

spectra can approximately be assigned to a specific biomolecule. For these cases, the 

possibilities of extracting information from bacterial Raman spectra are illustrated in 

Chapter 6. For example, the intensity of these bands can be directly compared to each 

other in different spectra, in order to deduce changes between different populations of 

cells. However, in many cases, it is incorrect to assume that a bacterial Raman band is 

approximately caused by only one biomolecule. Then, more complex approaches are 

necessary to obtain information about specific cell compounds, which are illustrated in 

Chapter 7. One of the illustrated methods, namely the use of coefficients from an EMSC 

(extended multiplicative signal correction) procedure, is extended in Chapter 8 to obtain 

information about structurally very similar biomolecules. 

 

Figuur 1.1 Figuur 1.1 Figuur 1.1 Figuur 1.1 Tentative band assignments in a typical bacterial Raman spectrum according 

to Maquelin et al.5, here applied on a spectrum of Cupriavidus metallidurans LMG 1195.    
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Chapter 9 explores the potential of Raman spectroscopy to monitor a Raman active cell 

compound (semi-)quantatively. A case study in Chapter 10 applies some of the described 

methods to compare the behavior of a bacterial strain cultured in microgravity conditions 

and in a control setup. Finally, in Chapter 11, some conclusions and suggestions for further 

research are made. 
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In this chapter, some theoretical considerations are presented concerning 

microbiology. General aspects of the bacterial cell, population growth and taxonomy are 

discussed. In addition, some specific characteristics of bacteria that are of importance for 

this work are treated, such as sporulation, PHB formation and the nomenclature and 

characteristics of some specific species. 

  

 

2222.1.1.1.1    BBBBacteria in the pool of living organismsacteria in the pool of living organismsacteria in the pool of living organismsacteria in the pool of living organisms    

 

The universal tree of life was built on basis of (merely 16S) rRNA gene sequence 

comparisons. In 1978, Carl R. Woese proposed three domains based on the cell type of 

organisms: Bacteria, Archaea and Eukarya. Both Bacteria and Archaea display a 

prokaryotic cell type in contrast to the eukaryotic cells of the Eukarya. In addition to 

differences in rRNA gene sequences, the organisms of these domains differ in cell 

composition, membrane lipid structure, sensitivity to antibiotics, etc. The domain Bacteria 

includes pathogenic bacteria as well as the vast majority of nonpathogenic ones, each 

displaying wide metabolic diversity. The domain Archaea includes prokaryotes that lack 

peptidoglycan in their cell walls and often live in extreme environments. According to the 

endosymbiotic hypotheses Eukarya have developed by nucleus formation in a pro-

eukaryotic cell, due to fusion of ancient bacteria and Archaea or nucleus formation from 

the Golgi apparatus in Archaea28,39. 

 

2222.2.2.2.2 The bacterial cell The bacterial cell The bacterial cell The bacterial cell    

 

2.2.1 General bacterial cell constitution 

 

In general, a cell consists of a cell membrane enclosing the cytoplasma containing 

macromolecules, ribosomes (protein-synthetizing factories that consist of rRNA and 

proteins), small organic molecules and inorganic ions18. These entities are surrounded by a 
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cell wall to give structural strength. More specifically, bacterial cells are prokaryotic and 

differ from eukaryotic cells by the absence of a membrane-enclosed nucleus. They have a 

simple internal structure and are in general very small (typically one to a few µm in length). 

They are surrounded by a cell wall from which the rigidity is caused by a substance called 

peptidoglycan or murein. The basic structure of peptidoglycan is a sheet where glycan 

chains (of N-acetylglucosamine and N-acetylmuramic acids) are connected by peptide 

cross-links (of L-alanine, D-alanine, D-glutamic acid and lysine or diaminopimelic acid). 

The degree of cross-linking determines the rigidity and varies amongst different bacteria. 

Structural differences in the cell wall divide the Bacteria in Gram-positive and Gram-

negative (Fig. 2.1). The Gram-negative cell wall is complex and multilayered, while the 

Gram-positive cell wall consists mainly of a thick layer of peptidoglycan. 

 

In a prokaryotic cell, there is generally one large double-stranded circular DNA molecule, 

called the bacterial chromosome, which aggregates to form the nucleoid. More recently, it 

has been shown that various bacteria (e.g. Burkholderia cepacia46) contain more than one 

chromosome. Because the chromosome contains only one copy of most genes, these genes 

are genetically haploid. In addition to the bacterial chromosome(s), prokaryotes may 

contain extrachromosomal (circular) DNA, called plasmids. The genes on plasmids usually 

encode special properties, such as antibiotic resistance, in contrary to the essential 

housekeeping genes located on the chromosome. The chemical composition of a 

prokaryotic cell is given in Table 2.1. 

 

Figure 2.Figure 2.Figure 2.Figure 2.1111    Composition of the cell wall of Gram-positive and 

Gram-negative bacteria18 
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Table 2.Table 2.Table 2.Table 2.1111 Chemical composition of a prokaryotic cell18 

        MoleculeMoleculeMoleculeMolecule    PercenPercenPercenPercent of dry weightt of dry weightt of dry weightt of dry weight    

Total macromolecules 96 

Protein 55 

Polysaccharide 5 

Lipid 9.1 

Lipopolysaccharide 3.4 

DNA 3.1 

RNA 20.5 

Total monomers 3 

Amino acids and precursors 0.5 

Sugars and precursors 2 

Nucleotides and precursors 0.5 

Inorganic ions 1 

 

 

2.2.2 Nutrition and metabolic systems 

 

The most important macronutrients for prokaryotes are carbon and nitrogen containing 

compounds18. Carbon is necessary for the assimilation of many cell compounds, such as 

fatty acids, amino acids, etc. Nitrogen is mainly present in nature under inorganic form 

(mostly NH4
+, NO3

-, N2). Most bacteria only need NH3 as nitrogen source, but many of 

them can also use NO3
- and NO2

-. Only a limited number of bacteria, called nitrogen-

fixers, can use N2 as a nitrogen source. Other nutrients are listed in Table 2.2. 

 

Table 2.Table 2.Table 2.Table 2.2222    Nutrients for microbial growth, apart from C and N sources18 (essential nutrients 

are marked with *) 

NutrientNutrientNutrientNutrient    Function in the cellFunction in the cellFunction in the cellFunction in the cell    

P* (organic and inorganic) In nucleic acids, phospholipids and ATP 

S* (sulfate (SO4
2-) or 

sulphide (HS-)) 

In amino acids (cysteine, methionine), vitamins 

(thiamin, biotin, lipoic aicd) and coenzyme A 

K* In enzymes 

Mg* For the acivity of enzymes and stabilization of 

ribosomes, cell membranes and nucleic acids 

Ca Stabilization of cell wall and endospores 

Na Can be required in certain habitats 

Fe* Major role in cellular respiration: cytochromes and 

iron-sulphur proteins for electron transport 

Trace elements* In enzymes 

Growth factors (vitamins, 

amino acids, purines and 

pyrimidines) 

Vitamins → cofactors 

Amino acids → proteins 

Purines and pyrimidines → DNA and RNA 
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In biological systems, energy conservation involves mainly oxidation-reduction reactions18. 

In general, the formation of adenosine triphosphate (ATP) is the central step in energy 

conservation. ATP is a high-energy compound (high free energy of hydrolysis) that 

conserves the energy released by oxidation-reduction reactions during catabolism. 

Subsequently, ATP can be used as an energy source for biosynthesis (anabolism) and other 

cell activities. According to the energy source used for ATP production, we distinguish 

chemotrophs and phototrophs.  

 

ð  ChemotrophsChemotrophsChemotrophsChemotrophs use chemicals as energy source for their metabolism, via different 

energy conservation mechanisms according to the type of electron donor en electron 

acceptor. 

 

Focusing on the differences in terminal electron acceptor, we distinguish: 

 

• Fermentation: ATP is produced only by substrate-level phosphorylation, thus 

during the catabolism of an organic compound. The redox processes occur in 

absence of a terminal electron acceptor. In fermentation, oxidation of a compound 

is coupled to reduction of compounds generated from the initial substrate to 

balance the electrons. Fermentation occurs frequently through glycolysis with the 

conversion of glucose to fermentation products (e.g. ethanol and CO2, or lactic 

acid). 

• Respiration: the carbon flow in respiration occurs usually through glycolysis 

(formation of pyruvate) and subsequently the citric acid cycle (oxidation of 

pyruvate to CO2 and ATP formation by substrate-level phosphorylation). During 

electron transport over (membrane associated) carriers, such as the coenzymes 

nicotinamide-adenine dinucleotide (NAD+) and NAD-phosphate (NADP+), 

flavoproteins (riboflavin-containing electron carriers), iron-sulphur proteins, 

quinones and cytochromes, a pH gradient is created across the membrane by 

translocation of protons. ATP is then produced by oxidative phosphorylation, thus 

at the expense of the proton motive force. Molecular oxygen (aerobic respiration) 
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or other molecules such as NO3
-, Fe3+, SO4

2-, CO3
2- and organic compounds 

(anaerobic respiration) are used as final electron acceptor. During electron 

transport, protons originating from the proton donating substance (e.g. sugars) are 

translocated through the membrane resulting in a pH gradient. The proton motive 

force can then be used to form ATP via ATP synthase. The presence of a final 

electron acceptor allows the full oxidation of pyruvate to CO2, which results in a 

larger energy yield compared to fermentation. Furthermore, different intermediates 

from the citric acid cycle can be redrawn for biosynthesis (anabolism).  

 

Differences in electron donor molecules lead to a second distinction within the 

chemotrophs: 

 

• Chemoorganotrophy: organic compounds are used as electron donors. 

• Chemolithotrophy: inorganic compounds such as H2S, H2, Fe2+ and NH3 instead of 

organic compounds are used as electron donors. As the electron donors are 

inorganic, chemolithotrophs need another source of carbon for biosynthesis. Most 

chemolithotrophs use atmospheric CO2 and hence are refered to as autotrophs. 

However, some chemolithotrophs lack enzymes of the calvin cycle and need 

organic compounds as a carbon source. These are called mixotrophs because their 

electron donor is inorganic while their carbon source is organic.  

 

ð  PhototrophsPhototrophsPhototrophsPhototrophs use light as an energy source to create a proton motive force and hence 

to produce ATP (light reaction). For biosynthesis (dark reaction), they can either use 

CO2 (photoautotrophs) or organic compounds as carbon sources (photoheterotrophs). 

To drive autotrophic reactions, some bacteria obtain reducing power from electron 

donors such as H2O (oxygenic) or reduced sulphur sources, H2, H2S, Fe2+, etc. 

(anoxygenic). Prefixes and terms used to indicate types of metabolism are summarized 

in Figure 2.2. 
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Figure Figure Figure Figure 2.2.2.2.2222    Summary of prefixes and terms used to describe different types of metabolism18    

 

Combination of the type of energy source, electron donor, electron acceptor and carbon 

source, leads to a specific type of metabolism, from which some examples are given in 

Table 2.3. 

 

Table 2.Table 2.Table 2.Table 2.3333 Examples of bacterial metabolism18 

metabolismmetabolismmetabolismmetabolism    E sourceE sourceE sourceE source    eeee---- donor donor donor donor    eeee---- acc acc acc acceeeepppptortortortor    C sourceC sourceC sourceC source    

denitrification chemo organic NO3
-/NO2

- → N2 organic (hetero) 

nitrification chemo NH4
+/NO2

- → 

NO3
- 

O2 CO2 (auto) 

anammox chemo NH4
+ → N2 NO3

- CO2 (auto) 

chemo H2 SO4
2-/S → H2S CO2 (auto) Sulphate en S 

reduction chemo organic SO4
2-/S → H2S organic (hetero) 

S oxidation chemo H2S/S2O3/S → 

SO4
2- 

O2/ NO3
- CO2 (auto) 

methanogenesis chemo H2 CO2 CO2 (auto) 

acetogenesis chemo H2 CO2 CO2 (auto) 

methanotrophy chemo CH4 → CO2 O2 CH4 

cyanobacteria photo H20 (NADP+) CO2 (auto) 

 

 

energy source C source

final e- acceptor

chemicals CO2

inorganic: “chemlitho-”

organic

NO3
-, Fe3+, CO3

2-, SO4
2-, organic, etc.: “anaerobic respiration”

O2: “aerobic respiration”

no: “fermentation” (anaerobic)

light

“chemo-”“photo-” “auto-” “hetero-”

organic: “chemoorgano-”

e- donore- donor

H2O: “oxygenic” (O2 production)

H2, H2S, S0, S2O3
2-: “anoxygenic”

Catabolism:
energy generation

Anabolism:
energy consumption for biosynthesis

ATP

energy source C source

final e- acceptor

chemicals CO2

inorganic: “chemlitho-”

organic

NO3
-, Fe3+, CO3

2-, SO4
2-, organic, etc.: “anaerobic respiration”

O2: “aerobic respiration”

no: “fermentation” (anaerobic)

light

“chemo-”“photo-” “auto-” “hetero-”

organic: “chemoorgano-”

e- donore- donor

H2O: “oxygenic” (O2 production)

H2, H2S, S0, S2O3
2-: “anoxygenic”

Catabolism:
energy generation

Anabolism:
energy consumption for biosynthesis

ATP
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2.2.3 Sporulation 

 

Certain Bacteria form endospores within their cells. Endospore-forming bacteria are found 

most commonly in soil and the best studied endospore-forming bacteria are members of 

Bacillus, Clostridium and relatives18. 

 

Endospores are differentiated cells that are structurally more complex than vegetative cells 

and consist of (Fig. 2.3): 

• The exosporium: the outermost layer is thin and constituted of proteins. 

• Spore coat: layers of spore-specific proteins. 

• The cortex: loosely cross-linked peptidoglycan. 

• The core of the spore: it contains the usual cell structures such as the cell wall (core 

wall), cytoplasmic membrane, cytoplasm, nucleoid, etc. 

 

The structure of an endospore thus differs from that of a vegetative cell by the layers 

outside the core wall. In addition, pyridine-2,6-dicarboxylic acid (Appendix) or dipicolinic 

acid (DPA) is an important spore compound which is not present in vegetative cells. It is 

located in the spore core, where it forms a complex with calcium ions. The calcium 

dipicolinate complex (CaDPA) represents about 10% of the endospores dry weight. Other 

spore-specific compounds are small acid soluble proteins (SASPs). They bind tightly to 

DNA to protect it and serve as a carbon energy source when the spore germinates. The 

Figure 2.Figure 2.Figure 2.Figure 2.3333 Schematic composition 

of an endospore18 
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core is in a partially dehydrated state as it contains only 10 to 30% of the water content of 

a vegetative cell. Its pH is about one unit lower than that of a vegetative cell. 

 

Endospore formation (sporulation) occurs when growth ceases because essential nutrients, 

such as carbon and/or nitrogen, become depleted. The synthesis of some proteins 

necessary in certain vegetative cell functions cease, while specific spore proteins are 

synthesized. Sporulation involves a series of cellular differentiation and can be divided into 

7 stages that are illustrated in Figure 2.4. 

 

 

A free endospore can show resistance to dry heat, wet heat, UV radiation and chemicals 

such as hydrogen peroxide, nitrous acid and formaldehyde (up to certain concentrations, 

which can differ per species). Setlow33 reported that (a combination of) properties such as 

the content of water, SASPs, CaDPA and core minerals can enhance resistance to these 

environmental conditions. This way, a spore can remain dormant for many years and can be 

rapidly converted into a vegetative cell in three steps. The first step includes activation of 

the spore, which is followed by germination. During germination the spore loses CaDPA, 

                    Figure 2.Figure 2.Figure 2.Figure 2.4444    Seven steps towards endospore formation18    
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cortex compounds and its resistance. SASPs are degraded and the third stage, outgrowth, 

can begin. The cell swells by water uptake and synthesis of DNA, RNA and proteins, and is 

ready to divide. 

 

2.2.4 PHB production 

 

Certain bacteria synthesize storage materials which are often included in granules or 

inclusions18. One of the most common storage materials is poly-3-hydroxybutyrate (PHB), 

which is formed by many bacteria when growth conditions become unfavorable, such as a 

high C/N ratio1. PHB is a biodegradable polyester and its production by bacteria is of 

importance for the industry. Cupriavidus necator (previously known as Ralstonia eutropha 

and Alcaligenes eutrophus) is the most widely used organism for industrial PHB 

production25. PHB consists of β-3-hydroxybutyric acid units that are connected by ester 

linkages (Fig. 2.5). The length of the polymer can vary from 4 up to 18 monomer units in 

certain organisms18. 

 

 

Figure Figure Figure Figure 2.2.2.2.5555    Chemical structure of β-3-hydroxybutyric acid and 

poly-3-hydroxybutyrate 

 

Carbon sources such as glucose, acetate, lactate and butyrate are favorable for PHB 

production. Figure 2.6 shows the metabolic flux of this species grown on several carbon 

sources34. During PHB accumulation, cells do not grow or divide. Other 

polyhydroxyalkanoates (PHA’s) can be formed when carbon sources with different chain 

lengths are included in the medium, such as the formation of a copolymer of 

3-hydroxybutyrate and 3-hydroxyvalerate units from glucose and propionic acid. The 

composition of these polyesters is determined by the relative concentration of the carbon 

sources present in the medium1. 
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Jurasek and Marchessault16 gave an overview of granule formation in C. necator. As PHB 

chains grow, agglomerations are formed attached to PHB synthase. Newly formed PHB 

synthase molecules are swept up by the PHB surfaces and so granules start to form. 

Collisions of several granules may lead to coalescence and thus growth of the granules. 

However, by growing, the mobility of the granules decreases. In addition, the protein 

phasing, which has a high affinity for PHB surfaces, is synthesized in large amounts and 

covers a large part of the PHB granule surface. By these two effects, the average granule 

diameter reaches a plateau in the later stage of the accumulation process. Eventually, 

there is a dynamic equilibrium on the granule’s surface between synthase, phasing and 

PhaR protein that blocks the transcription of the phasing gene. In addition, the granule 

surface contains a small number of phospholipids and PHB depolymerase. The latter 

converts PHB into digestible products when for example growth conditions are favorable 

and/or when lacking essential nutrients become available. The final number of PHB 

granules is 10 on average with each a diameter of about 500 nm, leading to PHB yield of up 

to 90% of the cell’s dry weight. An electron micrograph of bacterial cells containing PHB 

granules is shown in Figure 2.7. 

succinate

malate

succinyl-coA

α-ketoglutarate

citrate
oxalacetate

fumarate

isocitrate acetoacetyl-coA

acetyl-coApyruvate

acetate

butyrate

L-(-)-hydroxybutyrate-coA

D-(-)-hydroxybutyrate-coA

lactate

PHB

NADP+

NADPH

succinate

malate

succinyl-coA

α-ketoglutarate

citrate
oxalacetate

fumarate

isocitrate acetoacetyl-coA

acetyl-coApyruvate

acetate

butyrate

L-(-)-hydroxybutyrate-coA

D-(-)-hydroxybutyrate-coA

lactate

PHB

NADP+

NADPH

Figure 2.Figure 2.Figure 2.Figure 2.6666    Metabolic cycle for PHB production in C. necator from 

various carbon sources34 
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2222.3.3.3.3 Bacterial growth Bacterial growth Bacterial growth Bacterial growth    

 

Bacterial growth is defined as an increase in the number of microbial cells in a population18. 

The time required for the formation of two cells from one cell (cell division) is called the 

generation time. Although this parameter can vary substantially, most bacteria have a 

generation time of 1 to 3 hours. After each time interval corresponding to the generation 

time, the number of cells in a population doubles, which is called exponential growth. This 

implies that the initial increase in absolute cell number is low, but it increases per 

generation to a high number. In a batch culture (i.e. a closed system with a finite amount of 

nutrients), there are typically four stages of growth that describe a growing population (not 

individual cells) (Fig. 2.8). When fresh medium is inoculated, growth usually does not start 

immediately, but after a lag phase. This phase is necessary when the inoculum contains 

cells of an old culture or when the population is transferred from a rich to a poor medium. 

The lag phase is then respectively the time needed to resynthesize essential constituents 

or to synthesize new enzymes that can metabolize the metabolites in the medium. The 

exponential phase can start after this lag phase or immediately after inoculation. 

Exponential growth cannot occur indefinitely because essential nutrients become depleted 

and/or waste products build up and have an inhibitory toxic effect. The stationary phase 

begins at the point where there is no net increase in cell number. Either there is no growth 

or growth and death balance out (cryptic growth). Even when there is no growth, cell 

Figure Figure Figure Figure 2.2.2.2.7777    Electron micrograph of a thin 

section of cells of Rhodovibrio 
sodomensis containing PHB granules18    
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functions such as energy metabolism and some biosynthetic processes may continue. When 

incubation continues, cells may start to die, usually at a slow rate but faster than they 

divide. This is called the death phase.  

 

2222.4.4.4.4 Taxonomy Taxonomy Taxonomy Taxonomy    

 

2.4.1 Definition and techniques 

 

TaxonomyTaxonomyTaxonomyTaxonomy includes three aspects: (i) the classification of bacteria in groups on the basis of 

similarities, (ii) the naming of these groups (nomenclature) and (iii) verification whether a 

bacterium belongs to one of these groups classified in (i) and named in (ii) (identification)41. 

Today, microbiologists use a combination of methods to differentiate organisms on both 

genetic and phenotypic ground, named polyphasic taxonomy18. Vandamme et al. gave an 

overview of the techniques that can be used in polyphasic taxonomy and evaluated them for 

various taxonomic levels41. 

Classical bacterial taxonClassical bacterial taxonClassical bacterial taxonClassical bacterial taxonomyomyomyomy relies on several characteristics such as various aspects of 

morphology, nutrition, physiology and habitat18. Morphological characteristicsMorphological characteristicsMorphological characteristicsMorphological characteristics have helped 

taxonomists to classify organisms in the past and some of them, such as the presence of 

endospores and flagella, can still be useful39. Differential stainingDifferential stainingDifferential stainingDifferential staining (Gram stain or acid-fast 

stain) is based on the chemical composition of cell walls and is used to obtain information 

quickly in a chemical environment39. Biochemical testsBiochemical testsBiochemical testsBiochemical tests that evaluate the enzymatic 

activities of an organism in specific culturing conditions can be performed using 

Figure 2.Figure 2.Figure 2.Figure 2.8888    A typical growth curve of a bacterial population18 
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commercially available kits developed for medically important bacteria39. Next to these 

phenotypic characteristics, determination of the GC ratioGC ratioGC ratioGC ratio is also part of classical bacterial 

taxonomy18. This ratio reflects the guanine plus cytosine content of an organism’s genomic 

DNA and is expressed as (G+C)/(A+T+G+C)×100%. GC ratios can vary from 20 to 80 % in 

the microbial world and can be identical for unrelated organisms. Therefore the GC ratio of 

an organism is only of limited taxonomic value. 

 

MMMMolecular taxonomyolecular taxonomyolecular taxonomyolecular taxonomy is based on DNA related techniques of analysis. Comparative analysis 

of 16S rRNA16S rRNA16S rRNA16S rRNA gene  gene  gene  gene sequences reflects the bacterial phylogeny and forms the basis for 

bacterial systematics. Phylogeny is defined as the study of the evolutionary history28. It 

reveals the evolutionary relatedness between bacteria rather than their general 

resemblance. Today, most scientists perform this 16S rRNA gene sequencing by using the 

polymerase chain reaction (PCR) with a specific primer to amplify the genomic DNA genes 

that encode 16S rRNA and then sequence the PCR product by standard dideoxy (Sanger) 

sequencing. DNADNADNADNA----DNA hybridizationDNA hybridizationDNA hybridizationDNA hybridization, which measures the degree of DNA sequence 

similarity, is useful for differentiation of closely related organisms at the species level. 

Practically, an organism’s isolated DNA is sheared, radioactively (32P or 3H) or 

fluorescently labeled and denatured. This DNA is mixed with a similarly prepared sample 

from another organism and cooled down so the DNA can reanneal. The double stranded 

DNA is separated from the unhybridized DNA and its radioactivity or fluorescence is 

determined compared to the control (100%). In MLSAMLSAMLSAMLSA (multilocus sequence analysis), 

several conserved housekeeping genes are sequenced. This technique was proposed as an 

alternative for DNA:DNA hybridization to detect differences at the species level7. 

Several characterization techniques rely on the generation of a DNA fingerprint. RRRRibotypingibotypingibotypingibotyping 

is one of the methods used for DNA-based typing. After restriction enzyme digestion of 

DNA from a particular organism, the fragments are separated and probed with a labeled 

ribosomal RNA probe, for example 16S rRNA or a fragment of it18,41. For AFAFAFAFLLLLPPPP15 (amplified 

fragment length polymorphism) analysis, two restriction enzymes are used that cut specific 

sticky ends. Next, adapters are ligated to these sticky ends. Subsequently, the DNA 

fragments are selectively amplified using primers that are slightly longer than the length of 
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the adapter and the sticky end sequences. In this way, the PCR reaction and subsequent 

electrophoresis result in a fingerprint pattern. A fingerprint pattern can also be generated 

without the use of a restriction enzyme, when choosing an appropriate primer for PCR. In 

rrrrepepepep----PCRPCRPCRPCR (repetitive element primed – polymerase chain reaction) one or two conservative 

primers are used (e.g. REP-PCR44 and BOX-PCR43), while in random primed PCR random 

primers of variable length (5- to 20-mers) are used. Both techniques result after 

electrophoresis in a characteristic pattern that may be strain specific. 

 

Chemotaxonomichemotaxonomichemotaxonomichemotaxonomic techniques techniques techniques techniques are analytical techniques that provide phenotypic information.    

One of the most important chemotaxonomic techniques is FAMEFAMEFAMEFAME (fatty acid methyl ester) 

analysis which determines the fatty acid composition of the membrane and outer membrane 

lipids of cells. Therefore, fatty acid are extracted from cell hydrolysates and derivatized to 

methyl esters which are volatile and can be detected by gas chromatography18. FAME 

easily allows grouping of many organisms according to the resemblance of their fatty acid 

pattern. In addition, it can be used for identification when standardized culturing conditions 

are applied and an extensive database of FAME data is available.  

 

2.4.2 Taxonomic ranks and Bergey’s manual 

 

In prokaryotic taxonomy, the commonly used ranks are (in descending order): phylum, 

class, order, family, genus and species. The basic taxonomic group is the species and every 

organism is named according to the binomial nomenclaturebinomial nomenclaturebinomial nomenclaturebinomial nomenclature (genus, species). Until 1987, a 

species was described as a collection of strains that share an important number of stable 

(genotypic and/or phenotypic) characteristics and that differ significantly from other groups 

of strains28,39. In 1978, Wayne et al.45 described that the complete bacterial genome should 

be the reference for phylogeny and taxonomy. At that moment whole genome sequencing 

was not possible and whole genome DNA-DNA hybridization was found to be the best 

approach for analyzing whole genome similarity. The phylogenetic definition of a species 

includes strains with at least 60-70% DNA-DNA hybridization similarity. Phenotypic 

characteristics should agree with this definition. Bacteria that show less than 70% 
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relatedness in DNA-DNA hybridization experiments with known species, have generally 

less than 97% 16S ribosomal RNA gene sequences in common, as illustrated by the green 

box in Figure 2.9. Therefore, a bacterial strain whose 16S ribosomal RNA sequence differs 

by more than 3% from that of all other bacteria should be considered as belonging to a new 

species (more recently, even a 2% limit is used). 

 

Nevertheless some species show more than 97% similarity in 16S rRNA gene sequence, 

while their genomic DNA-DNA relatedness is low (blue box in Fig. 2.9). This illustrates 

that 16S rRNA gene sequencing alone is not sufficiently precise as a taxonomic marker for 

species delineation and that a polyphasic approach is necessary. The orange box in Figure 

2.9 represents data from identical species.  

 

Bergey’s Manual of Systematic Bacteriology6 is considered as the primary reference for 

bacterial taxonomy. The first edition of the book is a four volume set and gives a detailed 

description of species according to a taxonomic outline. Bergey’s Manual of Determinative 

Microbiology14 is dedicated to bacterial identification. It does not classify bacteria 

according to evolutionary relatedness, but provides identification schemes. 

 

 

 

 

Figure Figure Figure Figure 2.2.2.2.9999    Relation between 16S rRNA sequence similarity 

and genomic DNA hybridization between different pairs of 

organisms18    
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2.4.3 Taxonomic position of species studied in this work 

 

The species studied in this work belong to the following genera: 

 

Table 2.4Table 2.4Table 2.4Table 2.4 Taxonomic situation of the genera from which strains are used in this work 

Genus Family Order Class Phylum 

Cupriavidus Burkholderiaceae Burkholderiales β-Proteobacteria Proteobacteria 

Bacillus Bacillaceae Bacillales Bacilli Firmicutes 

Paenibacillus Paenibacillaceae Bacillales Bacilli Firmicutes 

Enterococcus Enterococcaceae Lactobacillales Bacilli Firmicutes 

 

Cupriavidus necator 

 

Cupriavidus necator was first described by Makkar and Casida19 in 1987. It is a Gram-

negative aerobic, mesophilic rod and a non-obligate bacterial predator in soil. It has simple 

nutritive requirements when it is not acting as a predator and uses fructose (not glucose) 

or specific amino acids as a carbon source. It is highly resistant to copper, by which its 

growth is stimulated. This species has some characteristics in common with the genus 

Alcaligenes, such as testing negative for glucose degradation and a similar DNA G+C 

content. C. necator was classified in a separate genus because of its predatory activity, its 

use of fructose and resistance to and growth stimulation by copper. However, Makkar and 

Casida only studied morphological, biochemical, respiratory and nutritional characteristics 

of this organism and molecular characteristics. 

In 2004, Vandamme and Coenye40 reported that Wautersia eutropha is a later synonym of 

Cupriavidus necator. They compared results of several analyses of both taxa such as 16S 

rRNA gene sequencing, SDS-PAGE, DNA base ratio and finally performed DNA:DNA 

hybridization. Wautersia eutropha itself was formerly known as Ralstonia eutropha which 

was in its turn a reclassification of Alcaligenes eutrophus performed by Yabuuchi et al.47 

who also proposed Burkholderia pickettii and Burkholderia solanacearum as Ralstonia 

members. This generic reclassification was based on phenotypic characterization, cellular 

lipid and fatty acid analysis, phylogenetic analysis of 16S rDNA nucleotide sequences and 
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rRNA-DNA hybridization. Vaneechoutte et al.42 showed that based on 16S rRNA gene 

sequence analysis two sublineages exist within the genus Ralstonia: the Ralstonia eutropha 

lineage and the Ralstonia picketti lineage. This observation was supported by phenotypic 

differences concerning the presence of flagella, the production of acid from glucose and the 

susceptibility to colistin. Therefore, it was proposed that the species of the R. eutropha 

lineage should be reclassified in a novel genus, Wautersia. When Vandamme and Coenye 

reported that Wautersia eutropha is a latter synonym of Cupriavidus necator, it became 

clear that the isolate described by Makkar and Casida in 1987 should have been originally 

classified as Alcaligenes eutrophus. Because the names Ralstonia and Wautersia were 

published later then Cupriavidus necator, the latter has priority.  

 

Cupriavidus metallidurans 

 

In the late 1970s, the strain CH34, a Gram-negative rod, was isolated from sediments of a 

decantation basin of a zinc factory near Liège (Belgium)21. This strain showed a heavy-

metal resistance, which was shown to be a plasmid born characteristic. In 1985, this strain 

was considered as a member of Alcaligenes eutrophus, because of its hydrogen-oxidizing 

characteristics22. In 1995, the taxonomic status of A. eutrophus and some related strains 

was revised and these bacteria were reclassified as Ralstonia47. In 2001, Goris et al.8 

subjected 31 heavy metal resistant isolates from industrial biotopes to a polyphasic 

characterization. All strains belonged to the genus Ralstonia and two groups of 8 and 17 

strains respectively were clearly delineated from the other species and showed low 

similarity to the existing Ralstonia strains. These isolates were proposed as two new 

Ralstonia species, of which one was named Ralstonia metallidurans with CH34 as type 

strain. When Vaneechoutte et al.42 discovered that there were two lineages within the 

genus Ralstonia, Ralstonia metallidurans was reclassified in the genus Wautersia. When 

Vandamme and Coenye40 showed that Wautersia eutropha was a synonym of Cupriavidus 

necator, they proposed that the name Wautersia was replaced by Cupriavidus, and thus 

that all species of the genus Wautersia should be considered as species of the genus 

Cupriavidus, including Cupriavidus metallidurans. The epithet metallidurans indicates that 
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this species is able to survive high heavy-metal concentrations. Therefore, this species 

offers perspectives for the treatment of waste-water and the recycling of polluted soils8. 

 

Bacillus species 

 

The genus Bacillus is a member of the family Bacillaceae of which a distinguishing feature is 

the production of endospores. Members of the genus Bacillus are characterized as Gram-

positive, rod-shaped, aerobic or facultative anaerobic, endospore-forming bacteria6,38. The 

phylogenetic heterogeneity within the genus Bacillus is very large; Bacillus species show a 

large diversity in physiology and their G+C content varies from 32 to 69%. In 1991, Ash et 

al.2 performed 16S rRNA gene sequencing on 51 Bacillus species and found five 

phylogenetically distinct clusters which has led to the proposal of reclassifying some 

Bacillus species in several (new) genera: 

• Group 1:  Bacillus sensu stricto including the type species B. subtilis and 27 other 

species, some of them were later reclassified in genera such as Virgibacillus13 and 

Halobacillus37. 

• Group 2 consisted of B. sphaericus and 5 other species form which three were 

reclassified as Sporosarcina48. 

• Group 3 was reclassified as Paenibacillus3. 

• Group 4 was reclassified as Brevibacillus35. 

• Group 5 was reclassified as Geobacillus 24. 

 

The strains studied in this work are members: 

• B. cereus is a species belonging to the B. cereus group which includes amongst others 

B. thuringiensis, B. anthracis and B. cereus sensu stricto29. This species is known to 

cause foodborne illnesses9. 

• B. coagulans was first described by Hammer10 in 1915. This species was earlier known 

as Lactobacillus sporogenes but it was reclassified in 1939 as B. coagulans. This species 

indeed shares some characteristics with species of Lactobacillus, but was originally 

classified as Bacillus because of its spore-forming capacity12. 
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• B. licheniformis, a species with high intraspecific diversity4,5,20.  

• B. sporothermodurans, a species that was proposed in 1996 for strains that produce 

highly thermoresistant spores that may survive the ultrahigh temperature treatment 

(UHT) of milk26. 

• B. subtilis, which was devided in 1999 into B. subtilis subsp. subtilis and subsp. 

spizizzenii23.  

 

Paenibacillus lactis 

 

The genus Paenibacillus was proposed a new genus to reclassify a number of Bacillus 

species3, belonging to rRNA group 3 of Ash et al.2. Later, many other named Bacillus 

species were transferred to this genus27,36. The members of this genus are facultative 

anaerobic and produce endospores. Their cells are rods of Gram-positive structure but 

they usually stain negatively in Gram stain3. In this work, a strain of Paenibacillus lactis 

was used. This species name was proposed by Scheldeman et al.30 for 19 closely related 

Paenibacillus strains isolated from raw and heat-treated milk.  

 

Enterococcus faecalis 

 

Enterococci are facultative anaerobic, Gram-positive cocci and belong to the lactic acid 

bacteria. Enterococcus faecalis inhabits the gastrointestinal tracts of humans and other 

mammals and can cause infections. It was known as Streptococcus faecalis until the 1980s 

when the heterogeneous genus Streptococcus was divided into Streptococcus sensu stricto 

and two novel genera Enterococcus31 and Lactococcus32. The taxonomy of the species 

Streptococcus and Enterococcus were summarized by Hardie et al.11 and Köhler17. 

 

In this chapter, some theoretical considerations about microbiology were discussed. 

The next chapter presents theoretical aspects of Raman spectroscopy. 
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This chapter presents some theoretical aspects of Raman spectroscopy. Not only the 

Raman effect is explained, but also considerations concerning the Raman band position in a 

spectrum, Raman band intensity, interferences and instrumental properties are discussed.    

 

3.1 Introduction3.1 Introduction3.1 Introduction3.1 Introduction    

 

Raman scattering or inelastic scattering was theoretically predicted by Smekal6 in 1923 and 

observed for the first time using solar irradiation by Raman and Krishnan5 in 1928. Raman 

spectroscopy as an analytical technique became important with the invention of lasers in 

the 1960’s and the development of better instrumentation in the 1980’s (detector, fiber 

optics, miniaturizing)4. This progress was of large importance as Raman spectroscopy is an 

inherently weak effect and thus sensitivity is an issue. 

 

3.3.3.3.2222    The Raman effectThe Raman effectThe Raman effectThe Raman effect: quantum theory: quantum theory: quantum theory: quantum theory    

 

The Raman effect2 is a light scattering effect and can be described according to the energy 

diagram in Fig. 3.1. When monochromatic light interacts with a molecule, it can be excited 

to a virtual state. This molecule can relax in several ways. When it returns to its original 

vibrational state, it emits a photon of the same energy (or wavelength) as the incident light, 

which is called Rayleigh scattering or elastic scattering. Alternatively, the molecule can 

return to a higher vibrational state by scattering light with a lower energy (or larger 

wavelength) than the incident light, which is called Stokes scattering, a form of inelastic 

scattering. Inelastic scattering can also occur when the molecule relaxes towards a lower 

vibrational state by emitting a photon with higher energy than the incident light and is 

called anti-Stokes scattering. The shift in energy (or wavelength) between the incident 

light and the Stokes or anti-Stokes scattering gives information about the vibrational states 

of a molecule. The intensity of both inelastic scattering processes is proportional to the 

number of molecules that can undergo these processes. According to the Boltzmann 

distribution, the number of molecules at thermal equilibrium in a lower vibrational state is 
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always higher than in a higher vibrational state. Therefore, the Stokes intensity is usually 

higher than the anti-Stokes intensity and is therefore commonly used in Raman 

spectroscopy. 

 

 

3.3.3.3.3333    The Raman effect: classical The Raman effect: classical The Raman effect: classical The Raman effect: classical theorytheorytheorytheory and selection rules and selection rules and selection rules and selection rules    

 

The classical theory of the Raman effect is based upon polarizability of molecules, which 

reflects how easy an electron cloud of a molecule can be distorted by an electric field 

(e.g. light)4. Energy from light can interact with the molecular vibrations and is released as 

scattered light. The scattered light can have a frequency equal to the incident light 

(Rayleigh), equal to the incident light minus the vibrational frequency (Stokes) and equal to 

the incident light plus the vibrational frequency (anti-Stokes). This theory predicts most 

aspects of Raman scattering correctly and predicts that the Raman intensity is not equal in 

all directions4. Raman scattering is usually observed at 90°or 180°relative to the 

direction of the incident light and these setups are called right-angle scattering or 

backscattering geometries, respectively. Because this theory does not take the 

quantization of vibrational levels into account, it incorrectly predicts that Stokes and anti-

Stokes intensities are equal. 

FiguFiguFiguFigurrrreeee 3.1  3.1  3.1  3.1 Energy diagram that illustrates different types of scattering when a 

molecule is illuminated with light of energy hν0 and fluorescence2. 
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When molecules are considered as point masses connected by a spring that oscillates 

harmonically, the following equation is useful for deducing trends in frequencies of certain 

molecular vibrations4: 

(3.1) 

 

Where k = force constant of the chemical bond 

     µr = reduced mass = m1m2/(m1+m2) 

m1, m2 = masses of the vibrating atoms 

     c = speed of light 

     w = wavenumber 

 

Symmetry arguments allow determining which vibrations are Raman inactive, which reflect 

vibrational transitions that are quantum-chemically forbidden4. A vibration is Raman 

inactive when it does not induce a change in polarizability of the molecule1. 

 

3.3.3.3.4444 Raman  Raman  Raman  Raman shift and shift and shift and shift and intensityintensityintensityintensity    

 

A Raman spectrum is a plot of the Raman intensity versus the wavenumber or Raman shift 

in reciprocal centimetres. The relation between energy, wavelength, wavenumber and 

Raman shift* is as follows4: 

  (3.2) 

   

(3.3) 

 

Where E = energy of light 

h = Planck’s constant 

     ν = frequency of light 

     c = speed of light 

                                                 
*
 According to IUPAC, Raman wavenumber should be used instead of Raman shift. However, to stress the fact 

that a reciprocal difference between the wavelength of the laser light and the Stokes scattering is presented, we 

use the term Raman shift throughout the whole thesis. 
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     λ = wavelength of light from incident light (inc) or Stokes scattering (Stokes) 

     ω = wavenumber of light 

 

An expression for the intensity of Raman scattering4 was derived by Plačzek: 

 

  (3.4) 

 

Where IL = intensity of the incident light 

N = number of molecules that scatter the light 

ν = molecular vibrational frequency (s-1) 

ν0 = frequency of the incident light (s-1) 

k = Boltzmann constant 

T = absolute temperature 

αa’ = mean value for invariant of the polarizability tensor 

γa’ = anisotropy invariant of the polarizability tensor 

 

From this equation, it can be deduced that the intensity of the scattered light is 

proportional to the number of molecules (basis for quantitative analysis), the intensity of 

the incident light and (ν0 - ν)4. Higher laser intensity and a higher laser frequency thus 

enhance the intensity of Raman scattering. 

 

Some molecular factors that affect the intensity of a Raman band are: 

• Raman bands of vibrations of polar bonds are generally weak, because their electron 

clouds are not easily distorted by light. 

• The Raman intensity of stretching vibrations is generally stronger than that of 

bending vibrations. 

• Double or triple bonds yield more intense stretching bands. 

• The Raman intensity increases with the atomic number of the vibrating atoms. 

• Symmetric vibrations generally cause more intense Raman bands. 

• Crystalline materials cause stronger Raman bands. 
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3.3.3.3.5555    FluorescenceFluorescenceFluorescenceFluorescence    

 

As the Raman effect in inherently weak, the suppression and/or subtraction of 

interferences and noise is important. Fluorescence is one of the most disturbing features in 

a Raman spectrum2. Visible light can excite molecules to a vibrational level in an excited 

electronic state (Fig. 3.1). After relaxation to a lower vibrational state in the excited 

electronic state, it can return to a vibrational state of the electronic ground state by 

emitting fluorescence. Fluorescence can be suppressed by choosing appropriate 

instrumental properties such as laser wavelength and spectrometer type (see below). 

 

3.3.3.3.6666 Advantages and Advantages and Advantages and Advantages and disadvantages disadvantages disadvantages disadvantages    

 

Raman spectroscopy is a non-destructive and fast technique that requires only small 

sample volumes, that has a high spatial resolution and the sample preparation and water 

interference is minimal. A disadvantage is the inherent weakness of Raman scattering and 

the interference of fluorescence. To deal with these issues, the selection of appropriate 

instrumental properties is important. 

 

Because fluorescence occurs mostly when exciting with visible light, the choice of a laser 

with a wavelength in near-IR region can be useful to suppress this effect1. Using UV 

excitation, a higher signal intensity can be obtained next to resonance effects, so 

fluorescence is less of a problem. However, the sensitivity is lower when using near-IR 

light, while UV radiation can damage the sample. The choice of the detection system is 

also important. A dispersive spectrometer (CCD detector) is more sensitive than a 

Fourier-transform spectrometer, but it does not allow high laser wavelengths3. The 

research described in this thesis was performed with a dispersive spectrometer to obtain a 

high sensitivity. The laser wavelength for this instrument was chosen as high as possible 

(785 nm, near-IR) to suppress fluorescence. 
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In this chapter, theoretical considerations concerning the Raman effect and some 

instrumental properties were discussed. The next chapter discusses the use of 

dataprocessing, this is the treatment of (raw) data to enhance information extraction. 
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Chapter 3 described the Raman effect and some instrumental properties. In order to 

be able to extract information from the collected Raman spectra, appropriate 

(pre)processing is necessary. This chapter presents several approaches that are used in 

this work. 

 

4.1 Introduction4.1 Introduction4.1 Introduction4.1 Introduction    

 

Bacterial Raman spectra are complex and the differences between them are often very 

small. It is important that an accurate calibration and further processing is performed, in 

order to be able to extract information from these spectra. The calibration procedure used 

for this work is described by Hutsebaut et al.5. It includes absolute wavelength calibration 

with a neon lamp, intensity calibration with a tungsten bulb, relative wavelength calibration 

with seven reference products, corrections for dark noise and signals from optical 

compounds. In addition, a standardization procedure is performed to eliminate variations 

between the calibration and the measurement session. Indeed, absolute shifts can be 

caused by changes in the optical pathway while shifts in laser wavelength can occur for 

instance when switching the laser on or off. Since several neon and ε-caprolactone spectra 

are collected during each measurement session, these shifts can be eliminated by shifting 

the collected spectra to a reference wavelength axis and a reference wavenumber axis. 

 

Further pre-processing steps are: 

• Background moddeling with EMSC  

• Deleting spikes 

• Calculation of average spectra of the four spectra that were recorded around a 

focus point 

 

Other processing methods that are used in this work are: 

• PCA analysis (always with precedent auto scaling) 

• Subtraction of the background (if band intensities need to be calculated) 
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• Calculation of dot products between reference spectra and bacterial spectra 

• Use of coefficients from an EMSC model 

 

Some of these methods are discussed in detail below. 

 

4.24.24.24.2    EMSCEMSCEMSCEMSC    

 

Extended multiplicative signal correction (EMSC) was developed by Martens and Stark8 and 

is a “soft modelling” method, which implies the use of empirical measurements and as few 

as possible statistical and causal assumptions. This method can separate physical and 

chemical effects in light spectroscopy. One of the purposes is to exclude additive (e.g. 

absorbance effects of chemical interferences) and multiplicative effects (light scattering 

variation, optical path length variation) from the data. The model used for these purposes 

is (matrices are printed in bold): 

 (4.1) 

 

Where ZZZZ = {zzzzi = 1, 2, … , I} = the measured spectra of I samples (zzzzi column vector) 

 XXXX = {xxxxi = 1, 2, … , I} = the corrected spectra of I samples (xxxxi column vector) 

 1111 = (1, 1, … , 1)’ 

 ai = unknown additive effect 

 bi = unknown multiplicative effect 

 eeeei = the residual in the model 

 

Under ideal conditions (Beer’s law) the data xxxxi can be seen as a sum of contributions of 

different compounds: 

 (4.2) 

 

Where KKKK = {kkkkj, j=1, 2, … ,J} = reference spectra of single compounds (kkkkj column vector) 

 cccci = {cij, j=1, 2, … ,J} = the concentration of component j in sample i 

iijjiii ccc Kckkkx =+++= ...2211

iiiii ab e1xz ++=
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The corrected spectra xxxxi can be written as a deviation from a mal spectrum mmmm, which is in 

this study the average spectrum of the dataset. This mal spectrum represents the general 

shape of a spectrum of the dataset and all spectra will be modelled towards this mal 

spectrum.  

(4.3) 

Where ddddi = cccci-1111c0 = the compounds’ concentrations compared to the mal spectrum 

 

Substitution of xxxxi in equation 4.1 yields: 

 (4.4) 

 

In the case of conventional multiplicative scattering correction the term KdKdKdKdibi is ignored 

and the parameters ai and bi are estimated by the least squares solution: 

 

 (4.5) 

 

In the case of extended multiplicative scattering correction ddddibi is termed ∆cccci from which 

the values ∆ci,j reflect the difference in the concentration of compound j between the ith 

sample spectrum and the mal spectrum. The least squares solution is:  

 

 (4.6) 

 

For both cases, the corrected spectra xxxxi can be calculated as follows: 

 

 (4.7) 

 

In the EMSC toolbox by Martens7, these procedures are called ‘Datacase 103’ and 

‘Datacase 106’. In this study ‘Datacase 103’ is used to correct a dataset for physical 

interferences (additive and multiplicative effects (4.5)). When reference spectra of single 

compounds are included in ‘Datacase 106’ (KdKdKdKdibi term (4.4)), the resulting coefficients ∆ci,j 

were used as relative values for the contribution of reference spectrum j in bacterial Raman 

spectrum i. 
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4.4.4.4.3333    Modified polynomial fitModified polynomial fitModified polynomial fitModified polynomial fit    

 

Modified polynomial curve fitting was presented in 2003 by Lieber and Mahadevan-Jansen6 

as a method for background subtraction (mainly fluorescence) in biological Raman spectra. 

When a polynomial curve is fitted to a spectrum (least squares fit), it will not represent the 

background properly, as it was fitted to a spectrum consisting of background and Raman 

bands. To eliminate bands from this fit, a modified polynomial fit is generated which 

includes for each Raman shift the minimal value of the spectrum and the polynomial fit. 

This first polynomial fit is then again subjected to this procedure, etc. In this work, 150 

iterations were performed and the final modified polynomial fit was subtracted from the 

original spectrum (illustrated in Chapter 9). 

 

4.4.4.4.4444    PCAPCAPCAPCA    

 

Principal component analysis (PCA) is a multivariate statistical technique1,2. It allows 

unsupervised pattern recognition which aims to detect similarities and for which no a priori 

knowledge is used. PCA is a data reducing method and aims to determine the underlying 

information from multivariate raw data by: (i) interpreting the principal components (scores 

related to objects and loadings related to variables) and (ii) observing patterns. 

 

The method can be explained as follows. A dataset, for example a set of spectra XXXX can be 

written as a combination of signals from the constituents and some noise. 

 

 

 

(4.8) 

 

 

Where XXXX = data matrix (objects in rows, variables in columns) 
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 SSSS = spectra of each constituent 

 EEEE = the error 

 

CCCC and SSSS could be predicted, but can never be observed directly and perfectly. In order to 

observe the most important features and trends in the dataset, it can be reduced by PCA. 

The data matrix is then decomposed in two matrices: 

 

 

 

(4.9) 

 

 

Where TTTT = the scores 

 PPPP = the loadings 

 

Scores and loadings vectors are orthogonally, which means that the product between any 

two loadings and scores vectors are zero. If the columns are mean centred (autoscaling, 

see below), the correlation between any two scores or loadings vectors is also zero. As our 

original dataset contained j variables, in theory the scores matrix also contains j 

components. Each component contains a certain percentage of the information (variability) 

of the dataset, which is expressed by the eigenvalue of the component λi: 

 

 

 (4.10) 

 

 

Where Sj = the sum of squares of the jth PC (the jth score vector)  

 Stotal = the sum of squares of the entire dataset 
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The first component has the highest eigenvalue and the eigenvalues further decrease with 

increasing number of the components. The dataset can now be reduced by retaining m 

principal components, where m is mostly determined by studying the eigenvalues. In this 

way, PCA has reduced the data set (i,j) to a scores matrix (i,m): 

 

 

 

(4.11) 

 

 

In order to present our data visually, a scores plot can be constructed of the two principal 

components that contain the most valuable information. The scores plot shows possible 

groupings between objects (here spectra). Mostly, the first two principal components are 

used. Analogously, a loadings plot can be constructed of these two principal components, 

which shows the relation between the original variables. From the comparison between the 

scores and loadings plots, it can be deduced which variables (here Raman bands) are 

characteristic for certain objects and which variables are responsible for the differentiation 

between them. Indeed a variable with a high loading for PC1, is an important feature in the 

objects with a high score for PC1 and vice versa. In this way, (groups of) objects/spectra 

can be related to certain variables/Raman bands, so information about their relative 

composition can be obtained (as applied in Chapter 6). 

 

In this work, spectra are always autoscaled before performing PCA. Autoscaling is in fact 

mean centring of the columns (variables/Raman shifts) of the data matrix xxxx(i,j)3: 

 

(4.12) 

 

 

Where jx = average value of column j 
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In this way, minor differences in certain bands are taken into account to the same extent as 

larger band differences when performing PCA.  

 

Equation 4.9 can be rewritten as follows: 

 

 

 

(4.13) 

 

 

In this way, it is clear that the m loading vectors in PPPP are linear combinations of the 

original spectra. In chapter 8, loading vectors were used to replace an original dataset. A 

set of very similar fatty acid spectra caused colinearity problems in the EMSC procedure 

and was therefore replaced by a limited number (first three principal components) of 

orthogonal loadings vectors, called mix spectra. After applying the intended EMSC 

procedure, the information about the mix spectra can be transferred to information about 

the original objects by studying the scores. 

 

4.4.4.4.5555    Calculation of dot productsCalculation of dot productsCalculation of dot productsCalculation of dot products    

 

A dot product, also called scalar product or inner product, of two vectors aaaa = [a1, a2, ... , 

an] and bbbb = [b1, b2, ... , bn] returns a number. It can be presented in different ways and is 

defined by4: 

 (4.14) 

 

The dot product can also be written as a matrix multiplication by transposing vector aaaa to a 

column vector: 

 (4.15) 

nni

n

i

i babababa +++==• ∑
=

...2211

1

ba

baba
T=•

.=

scores data matrixloadings

XTP

ij j variables

i objects /
spectram PC’sm PC’s .=

scores data matrixloadings

XTP

ij j variables

i objects /
spectram PC’sm PC’s



Chapter 4 

54 

In this study, dot products were calculated between reference spectra and bacterial Raman 

spectra. Per pixel (Raman shift) the intensities of the reference spectrum and the bacterial 

spectrum are multiplied and these values are summed. This is illustrated in Fig. 4.1 with a 

simplified example that considers a reference spectrum with one band (dots represent 

pixels). In sample spectrum 2, the intensity equals almost zero at the Raman shifts where 

the reference spectrum shows a band, so their dot product is approximately zero. In sample 

spectrum 1, the products between the dotted pixels of each spectrum is significant and the 

dot product is high. The higher the intensities of the bacterial spectrum are at the Raman 

shifts where the reference spectrum shows bands, the higher the resulting dot product is. 

This shows that dot products are values for the correlation between these spectra and 

therefore resemble the contribution of the reference spectrum to the bacterial spectrum. 

 

 

 

In chapter 2, 3 and 4 some theoretical considerations were presented concerning 

microbiology, Raman spectroscopy and data processing, respectively. These chapters 

contain the information necessary to comprehend the results.    
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In literature, only few reference Raman spectra of sufficient quality of biological 

molecules are available. The need for such reference spectra is obvious in order to analyze 

Raman spectra of biological materials. Therefore, a database of Raman spectra of biological 

molecules was constructed and is presented in this chapter. 

 

5.1 5.1 5.1 5.1 IntroductionIntroductionIntroductionIntroduction    

 

Raman spectroscopy is a non-destructive, fast technique of analysis that requires only 

small sample volumes and nearly no interference of water occurs. The bands in Raman 

spectra are well resolved compared to similar spectroscopic techniques, such as infrared 

spectroscopy. Therefore, it finds its application in a lot of research domains in chemistry, 

such as art analysis20, analysis of historical objects4, catalyst research18, etc. Over the past 

few years, its possibilities in biology and microbiology have been explored. As mentioned 

by Carey et al.1, improvements have been made concerning problems such as low 

sensitivity, fluorescence rejection and data treatment, and thus the application of Raman 

spectroscopy became possible in these research fields. 

Part of the research performed in these domains focuses on the identification of organisms 

such as bacteria, fungi and yeasts. Several of these studies have been successful as 

identification at the species11,12, sometimes even at the strain7,8,17 level can be obtained. For 

this purpose, spectra are treated as mathematical data and only little or no attention is 

given to the interpretation of the spectra. Despite a lot of (bio)chemical information is 

present in these spectra, it is hard to retrieve it due to the complex nature of Raman 

spectra of biological materials. Indeed, it is advantageous that the spectra contain 

contributions of all (complex) biomolecules from whole cells, but it is very hard to analyze 

them. Several research groups worked on the interpretation of Raman spectra of biological 

samples. For example, some Raman bands in bacterial spectra have already been assigned 

to simple biomolecules and groups of molecules, such as nucleic acids and proteins13. In 

mycology, De Gussem et al.3 analysed Lactarius spore composition and Edwards et al.5 

studied lichens. Despite the progress in this field, there is still a lot of information included 
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in these spectra that remains unused. Some authors have tried to avoid the complexity of 

the spectra by enhancing the contribution of specific molecules, by using surface enhanced 

Raman spectroscopy (SERS) or resonance Raman (RR) spectroscopy2,23. This is an 

interesting approach when only one or a limited number of biomolecules is of interest. 

However, when an overview of the entire cell composition is needed, one has to rely to 

general Raman spectroscopy. A first step towards the interpretation of these complex 

spectra is the knowledge of the Raman band positions caused by the cell components. 

Lippert et al.10 and Weng et al.22 have already presented Raman spectra of some fatty acids 

and fats. Surface enhanced Raman spectra of saccharides were recorded by Mrozek et al.16, 

while Raman spectra of different types of carotenoids were described by Weesie et al. 21. 

In this paper, we give an overview of Raman spectra of biomolecules. These spectra can 

serve as reference spectra for the interpretation of Raman spectra from biological 

materials. This database contains the most important building blocks of biomolecules 

present in a cell. It provides the basic information necessary to check the presence of 

biomolecules in biological materials, to monitor metabolism through time or to track 

changes induced by the environment. Finally, this approach is illustrated by the assignment 

of several bands in Raman spectra of bacteria and fungal spores. 

 

5.2 5.2 5.2 5.2 ExperimentalExperimentalExperimentalExperimental    

 

5.2.1 Raman instrumentation 

 

Raman spectra were recorded with a Kaiser System Hololab 5000R modular Raman 

microspectrometer. A diode laser of 785 nm (Toptica Photonics AG) was focused through 

an 100x objective of the microscope (Leica), which resulted in a laser power of 

approximately 45 mW on the sample. The scattered light is transferred through a confocal 

15 µm aperture pinhole and a collection fiber to the spectrograph, where it was detected by 

a back illuminated deep depletion Pelletier cooled (–70 °C) CCD detector (Andor). The 

Raman signal was collected in the spectral interval of 150 cm-1 until 3500 cm-1, but only the 



Chapter 5 

61 

region from 365 till 1800 cm-1 was used. The acquisition time for all spectra was 60 s and 

the spectral resolution was approximately 4 cm-1.  

Spectral calibration was performed in MATLAB as described by Hutsebaut et al.6, which 

includes (i) absolute wavelength calibration with a neon lamp, (ii) intensity calibration with 

a tungsten lamp, (iii) relative wavelength calibration with seven reference products, 

(iv) correction for dark noise of the detector as well as (v) correction for the spectral 

contribution of optical components. 

 

5.2.2 Reference products 

 

Table 5.1 lists all 61 reference products along with their supplier and technical information. 

The products were divided into 6 groups: DNA and RNA bases, amino acids, fatty acids 

and fats, saccharides, primary metabolites and others. For analysis, the reference products 

were transferred to a CaF2 slide. For each reference product different focus points (2 to 4) 

were chosen, where each five Raman spectra of 60 s were collected. These calibrated 

spectra were treated by extended multiplicative signal correction (EMSC)15, using the 

EMSC toolbox developed by H. Martens14. In particularly, datacase 103 was applied which 

represents a correction for physical interferences. Afterwards, the spikes were removed, 

followed by the calculation of the mean spectrum for each reference product. 

    

Table Table Table Table 5.5.5.5.1111 List of the reference products along with their supplier and technical information 

NameNameNameName    SupplierSupplierSupplierSupplier    SpecificationsSpecificationsSpecificationsSpecifications    

DNA and RNA basesDNA and RNA basesDNA and RNA basesDNA and RNA bases      

adenine Acros organics 99% 

cytosine Sigma-Aldrich  

guanine Sigma-Aldrich 98% 

thymine Sigma-Aldrich  

uracil Sigma-Aldrich crystalline 

Amino acidsAmino acidsAmino acidsAmino acids      

glycine Sigma-Aldrich  
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L-alanine Sigma-Aldrich Reagent grade, 98% (TLC) 

L-valine Sigma-Aldrich Reagent grade, 98% (TLC) 

L-serine Sigma-Aldrich ReagentPlus®, 99% (TLC) 

L-glutamate (monosodium salt 

hydrate) 

Sigma-Aldrich ≥99% (TLC), powder 

L-arginine Sigma-Aldrich Free base 

L-phenylalanine Sigma-Aldrich  

L-tyrosine Merck For biochemistry 

L-tryptophan Sigma-Aldrich Reagent grade, ≥98% 

L-histidine Sigma-Aldrich ReagentPlus®, 99% (TLC) 

L-proline Sigma-Aldrich Biochimika, 99% (NT) 

Fatty acids and fatsFatty acids and fatsFatty acids and fatsFatty acids and fats            

lauric acid Sigma-Aldrich 98% 

myristic acid Sigma-Aldrich Sigma grade, 99-100% 

palmitic acid Sigma-Aldrich Free acid, Sigma grade 

stearic acid Sigma-Aldrich Free acid, grade I,  ∼99% 

12-methyltetradecanoic acid  Sigma-Aldrich  

13-methylmyristic acid Sigma-Aldrich  

14-methylpentadecanoic acid Sigma-Aldrich  

14-methylhexadecanoic acid  Sigma-Aldrich  

15-methylpalmitic acid Sigma-Aldrich  

oleic acid Sigma-Aldrich Reagent grade, 99% 

cis-vaccenic acid Sigma-Aldrich  

glycerol Sigma-Aldrich BioChemika Ultra, 
anhydrous, ≥99.5% (GC) 

triolein Sigma-Aldrich (C18:1,-CIS-9) Sigma grade 

approx 99% 

trilinolein Sigma-Aldrich (C18:2,-CIS,CIS-9,12) 

approx 99% 

trilinolenin Sigma-Aldrich Purum ∼98% (GC) 

saccharidessaccharidessaccharidessaccharides      

β-D-glucose MP Biomedicals 99% 

lactose DMV International 

(Veghel, The 

Netherlands) 

Respitose SV003 

cellulose MP Biomedicals 98% 

D(+)-dextrose MP Biomedicals anhydrous 

D(+)-trehalose Sigma-Aldrich Biochimika ∼99.5% (HPLC) 

amylose MP Biomedicals Essential free of 

amylopectin 

amylopectin MP Biomedicals  

D(+)-mannose Sigma-Aldrich For microbiology 

D(+)-fucose Merck  

D(-)-arabinose Merck  
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D(+)-xylose Merck  

D(-)-fructose Sigma-Aldrich 99% 

D(+)-galactosamine 

hydrochloride 

Sigma-Aldrich Cell culture tested 

N-acetyl-D-glucosamine Sigma Aldrich ≥ 99%, powder 

chitin MP Biomedicals Practical grade 90-95% 

Primary metabolitesPrimary metabolitesPrimary metabolitesPrimary metabolites      

citric acid Sigma-Aldrich Anhydrous, 99% 

succinic acid Merck  

fumarate (sodium salt) Merck  

malic acid Merck  

pyruvate (sodium salt) Sigma-Aldrich Reagent plus TM, ≥99% 

phosphoenolpyruvate Boehringen 

Mannheim 

 

coenzyme A Sigma-Aldrich Free acid from yeast, 

hydrate 

acetyl coenzyme A Sigma-Aldrich  

acetoacetic acid (lithium salt) Sigma-Aldrich  

D-fructose-6-phosphate 

(disodium salt) 

Sigma-Aldrich  

OthersOthersOthersOthers      

β-carotene Sigma-Aldrich Type II, synthetic, ≥95% 

(HPLC), crystalline  

ascorbic acid Certa Ph. Eur. 

riboflavin (sodium phosphate) Certa  

glutathione (reduced form) Boehringen 

Mannheim 

 

    

    

5.3 5.3 5.3 5.3 Results and discussionResults and discussionResults and discussionResults and discussion    

 

Figures 5.1 to 5.12 show Raman spectra of DNA and RNA bases, amino acids, fatty acids 

and fats, saccharides, primary metabolites and others. The spectra of these groups can 

clearly be distinguished from each other. The spectra of DNA and RNA bases are 

dominated by ring breathing vibrations in the region from 600 until 800 cm-1 (Fig. 5.1). In 

spectra of cells, not only the vibrations of these bases but also symmetric >(PO2
-) stretches 

of the DNA and RNA backbone will be visible at ca. 1100 cm-1. In general, the presence of 

proteins can be noticed by amide I and amide III bands at about 1300 and 1655 cm-1. 

Raman bands of specific amino acids (Fig. 5.2 and 5.3) are discussed below. Raman spectra 



Chapter 5 

64 

of pure fatty acids and fats (Fig. 5.4, 5.5 and 5.6) were collected and can be distinguished 

from the other groups by typical bands at about 1300 and 1440 cm-1. Spectra of 

saccharides (Fig. 5.7, 5.8 and 5.9) are characterized by groups of bands in the regions from 

1000 until 1200 cm-1 and 1300 until 1500 cm-1. The spectra of the primary metabolites 

(Fig. 5.10 and 5.11) are mutually very different. 

 

5.3.1 DNA and RNA bases 

 

The Raman spectra of the five bases present in DNA and RNA are shown in Figure 5.1. 

Each spectrum contains an intense band in the region from 600 until 800 cm-1 that can be 

assigned to ring breathing vibrations. The ν(C=O) stretching vibrations cause only for 

thymine an intense band (1671 cm-1). In the spectra of all five bases almost no similarities 

can be noticed, so it is easy to distinguish between them. Even T and U do not show 

similarities while their chemical structure only differs in the substitution of a methyl group 

at the C5 position (see appendix). These five bases can be divided into purine bases 

(adenine and guanine) and pyrimidine bases (cytosine, thymine and uracil), but there are no 

bands observed that are characteristic for each group, as reported by Socrates et al.19 
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Figure 5Figure 5Figure 5Figure 5....1111    Raman spectra of DNA and RNA bases: (a) adenine, (b) cytosine, (c) 

guanine, (d) thymine, (e) uracil    
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Table Table Table Table 5555....2222 Raman bands and intensities for each reference product (very weak bands are not listed) 

ProductProductProductProduct    Raman bandsRaman bandsRaman bandsRaman bands    FigFigFigFig    

adenine 536(m), 560(w), 623(m), 723(s), 898(w), 941(m), 1024(w), 1125(m), 

1162(w), 1134(w), 1248(m), 1307(w), 1332(m), 1371(w), 1419(w), 

1462(w), 1482(m), 1612(w) 

5.1a 

cytosine 402(mw), 444(w), 537(m), 548(m), 568(w), 599(m), 792(s), 971(mw), 

991(w), 1011(w), 1108(mw), 1250(m), 1275(s), 1362(mw), 1460(w), 

1493(w), 1533(w), 1653(mw), 1690(w) 

5.1b 

guanine 397(m), 496(m), 548(w), 563(m), 650(s), 711(w), 849(w), 937(m), 

1048(w), 1158(w), 1187(w), 1234(m), 1266(m), 1360(m), 1391(m), 

1422(m), 1468(w), 1479(w), 1550(m), 1602(w), 1674(w) 

5.1c 

thymine 429(m), 479(m), 561(m), 617(s), 740(s), 767(w,sh), 804(m), 984(m), 

1156(w), 1216(w), 1247(w), 1261(w), 1369(vs), 1408(w), 1435(w), 

1459(w), 1490(m), 1655(w,sh), 1671(vs), 1702(w) 

5.1d 

uracil 429(w), 529(w), 537(w), 556(m), 577(m), 790(vs), 984(w), 995(w), 

1100(w), 1235(s), 1255(w), 1394(m), 1418(m), 1455(w), 1504(w), 

1608(w), 1646(m), 1711(w) 

5.1e 

glycine 504(s), 560(w), 606(m), 686(m), 894(vs), 932(w), 1049(m), 1129(m), 

1156(w), 1323(m), 1338(m), 1346(m), 1398(m), 1441(m), 1499(w), 

1589(w), 1627(w), 1634(w), 1674(w) 

5.2a 

L-alanine 398(ms), 480(w), 532(ms), 652(mw), 773(m), 851(vs), 920(mw), 

1021(m), 1112(m), 1146(m), 1236(w), 1305(s), 1359(vs), 1378(mw), 

1409(m), 1462(s), 1482(s), 1499(m), 1596(m) 

5.2b 

L-valine 374(mw), 396(mw), 429(mw), 472(w), 497(w), 542(vs), 664(mw), 

715(m), 753(m), 776(s), 824(m), 849(s), 891(w,sh), 902(m), 

923(mw,sh), 948(s), 964(m), 1029(mw), 1035(mw), 1066(mw), 

1106(w), 1125(m), 1146(mw), 1179(mw), 1191(m), 1272(m), 

1321(m,sh), 1330(m), 1343(s,sh), 1351(s), 1398(m), 1427(m), 

1452(s), 1508(mw), 1567(w), 1587(w), 1619(mw), 1633(mw), 1660(w) 

5.2c 

L-serine 515(m), 611(m), 813(m), 853(s), 910(w,sh), 922(w), 968(m), 1008(m), 

1090(w), 1134(mw), 1220(mw), 1299(m), 1326(s), 1368(w), 1384(w), 

1416(mw), 1426(mw,sh), 1462(m), 1599(w), 1613(w), 1628(w) 

5.2d 

L-glutamate 382(mw), 429(mw), 477(mw), 499(m), 529(m), 604(mw), 633(w), 

663(mw), 740(w), 775(m), 792(mw), 808(mw), 857(vs), 876(s), 

925(m), 942(vs), 1003(mw), 1042(mw), 1056(mw), 1075(mw), 

1095(m), 1123(mw), 1142(m), 1160(mw), 1192(w), 1258(w), 1282(m), 

1293(m), 1317(s), 1341(s), 1353(m), 1401(vs), 1421(s), 1434(s), 

1517(w), 1536(w), 1570(w), 1605(mw), 1624(mw), 1641(w), 1683(w) 

5.2e 

L-arginine 376(w), 410(w), 490(mw), 551(m), 577(m), 613(m), 849(m), 879(mw), 

922(m), 982(vs), 1036(mw), 1067(s), 1100(m), 1122(m), 1189(m), 

1264(mw), 1298(m), 1330(m), 1377(mw), 1436(s), 1475(m), 1713(w) 

5.2f 

L-

phenylalanine 

361(w), 468(m), 527(w), 605(w), 622(m), 747(mw), 832(m), 852(m), 

951(w), 1004(vs), 1037(m), 1157(w), 1183(w), 1216(m), 1308(w), 

1336(w), 1353(w), 1447(w), 1586(m), 1602(m) 

5.3a 
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ProductProductProductProduct    Raman bandsRaman bandsRaman bandsRaman bands    FigFigFigFig    

L-tyrosine 379(w), 431(m), 491(w), 527(w), 641(m), 714(w), 797(mw), 828(vs), 

845(m), 983(m), 1044(w), 1177(ms), 1200(m), 1214(m), 1247(w), 

1265(m), 1326(m) 

5.3b 

L-tryptophan 393(w), 425(w), 456(w), 498(m), 509(m), 534(m), 548(w), 574(m), 

596(m), 626(m), 683(w), 706(m), 741(m), 755(vs), 766(m), 778(m), 

802(w), 840(m), 848(m), 865(m), 874(s), 988(w), 1009(vs), 1046(w), 

1076(w), 1103(w), 1118(m), 1160(w), 1207(w), 1231(m), 1253(w), 

1278(w), 1309(w), 1314(m), 1328(m), 1338(s), 1358(s), 1423(s), 

1450(m), 1457(m), 1486(m), 1556(s), 1576(m), 1616(m) 

5.3c 

L-histidine 404(m), 422(mw,sh), 540(mw), 623(mw), 656(m), 680(w), 731(mw), 

784(mw), 804(m), 824(mw), 852(m), 918(m), 929(mw,sh), 963(m), 

976(m), 1061(m), 1087(s), 1111(m), 1140(mw), 1174(m), 1224(m), 

1250(m), 1271(s), 1317(vs), 1336(m), 1347(m), 1407(m), 1430(m), 

1476(mw), 1498(m), 1538(w), 1571(m), 1608(w), 1639(w) 

5.3d 

L-proline 374(mw), 452(vs), 563(w), 577(w), 642(m), 681(mw), 774(w), 

793(mw), 834(vs), 842(vs,sh), 850(s,sh), 877(m), 899(vs), 916(vs), 

930(m), 947(m), 951(m,sh), 987(mw,sh), 994(m), 1035(m), 1045(m), 

1083(m), 1166(mw), 1175(mw), 1194(mw), 1216(w), 1240(m), 

1267(m), 1286(m), 1317(mw), 1333(mw), 1350(mw), 1357(mw), 

1378(m), 1389(m), 1410(mw), 1418(mw), 1434(w,sh), 1443(mw,sh), 

1454(s), 1479(mw), 1547(w), 1605(w) 

5.3e 

lauric acid 464(w), 631(w), 664(w), 891(m), 906(m), 1018(w), 1038(w), 1061(s), 

1078(m,sh), 1084(m), 1127(vs), 1178(w), 1191(w), 1272(w,sh), 

1296(vs), 1369(w), 1408(m), 1446(vs), 1459(s), 1490(s), 1497(w), 

1651(w) 

5.4a 

myristic acid 414(m), 421(w,sh), 670(w), 893(m), 908(m), 986(w), 1039(w), 

1063(vs), 1092(m), 1128(vs), 1175(w), 1296(vs), 1371(w), 1412(m), 

1422(s), 1438(s), 1454(m), 1507(w), 1627(w), 1650(w) 

5.4b 

palmitic acid 375(m), 433(w), 670(w), 893(m), 909(m), 1063(vs), 1099(m), 

1129(vs), 1174(w), 1296(vs), 1371(w), 1421(s), 1438(vs), 1455(m), 

1465(s), 1481(w), 1627(w) 

5.4c 

stearic acid 818(w), 848(m), 866(m), 890(w), 909(w), 1062(s), 1100(m), 1129(s), 

1173(m), 1187(w), 1206(w), 1296(s), 1371(w), 1408(m), 1418(m), 

1441(vs), 1463(s), 1474(m), 1498(w), 1648(w) 

5.4d 

12-

methyltetradec

anoic acid 

(15Aiso) 

433(w), 669(w), 772(w), 818(m), 840(w), 905(m), 983(w), 990(w), 

1018(w), 1040(w), 1063(s), 1098(s), 1130(w,sh), 1141(s), 1171(w), 

1265(w), 1296(s), 1302(m), 1344(w), 1371(w), 1380(w), 1412(m), 

1440(s), 1447(s), 1459(s), 1472(s), 1505(w), 1649(w) 

5.5a 

13-

methylmyristic 

acid (15iso)  

435(w), 822(m), 907(m), 917(w), 936(w), 1061(s), 1098(m), 1134(s), 

1170(w), 1272(w), 1296(vs), 1371(w), 1410(w), 1447(vs), 1469(s), 

1492(w), 1649(w) 

5.5b 
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ProductProductProductProduct    Raman bandsRaman bandsRaman bandsRaman bands    FigFigFigFig    

14-

methylpentade

canoic acid 

(16iso) 

418(m), 434(w), 666(w), 815(m), 831(w), 904(m), 918(w), 940(w), 

952(w), 1048(w,sh), 1061(s), 1102(m), 1135(s), 1170(w), 1244(w), 

1270(w,sh), 1284(m), 1296(s), 1337(w), 1370(w), 1412(m), 1445(s), 

1465(s), 1651(w) 

5.5c 

14-

methylhexadec

anoic acid 

(17Aiso) 

372(m), 452(w), 667(w), 771(m), 788(w), 815(m), 834(m), 906(m), 

969(w), 983(w), 995(w), 1006(w), 1031(m), 1062(vs), 1104(vs), 

1140(s), 1170(w), 1186(w), 1253(w), 1296(s), 1344(m), 1370(m), 

1411(m), 1441(vs), 1465(w), 1479(m), 1649(m) 

5.5d 

15-

methylpalmitic 

acid (17iso) 

405(m), 416(m), 467(w), 516(w), 666(w), 801(w), 820(s), 846(w), 

905(m), 910(m), 930(w), 952(w), 1010(w), 1050(w,sh), 1061(vs), 

1103(s), 1135(vs), 1171(m), 1188(w), 1259(w), 1296(vs), 1306(s), 

1323(w), 1340(w), 1369(w), 1386(w), 1410(m), 1448(vs), 1464(vs), 

1501(w), 1648(w) 

5.5e 

oleic acid 602(w), 725(w), 845(m,sh), 856(m), 866(m), 890(m), 903(m), 971(m), 

1023(m,sh), 1035(m,sh), 1065(m), 1080(m), 1118(m), 1265(m), 

1301(s), 1416(m,sh), 1440(vs), 1655(s) 

5.6a 

vaccenic acid 817(w), 863(m), 889(m), 971(w), 1018(w), 1034(w), 1065(m), 

1078(m), 1091(m), 1112(w,sh), 1264(m), 1302(s), 1416(w,sh), 

1439(vs), 1655(s) 

5.6b 

glycerol 392(s), 416(m), 485(s), 548(mw), 675(m), 820(s), 850(vs), 923(m), 

976(mw), 1055(vs), 1110(vs), 1257(m, br), 1315(m), 1465(vs) 

5.6c 

triolein 601(w), 725(w), 852(m), 869(m), 881(m), 971(mw), 1065(m), 1081(m), 

1118(mw), 1266(m), 1301(s), 1440(vs), 1655(s), 1743(mw) 

5.6d 

trilinolein 841(mw), 868(m), 912(mw), 972(m), 1075(m), 1108(mw), 1264(m), 

1302(m), 1440(m), 1654(vs), 1743(w) 

5.6e 

trilinolenin 866(m), 969(mw), 1024(mw), 1081(mw,br), 1160(mw), 1266(m), 

1302(m), 1441(m), 1640(sh), 1655(vs), 1741(w) 

5.6f 

β-D-glucose 405(s), 440(m), 542(s), 650(mw), 772(mw), 841(ms), 914(ms), 

1002(mw), 1022(m), 1054(m), 1075(ms), 1120(ms), 1149(m), 

1272(m), 1296(ms), 1459(m) 

5.7a 

lactose 377(vs), 399(m), 421(mw), 446(mw), 477(s), 555(mw), 568(w), 

633(mw), 648(w), 677(w), 700(w), 782(w), 851(m), 876(m), 900(mw), 

916(ms), 953(mw), 1005(mw), 1021(ms), 1031(m), 1041(m), 

1053(ms), 1087(ms), 1120(m), 1142(ms), 1168(w), 1222(w), 1261(m), 

1296(mw), 1326(m), 1359(m), 1380(m), 1414(w), 1455(mw), 1470(w) 

5.7b 

cellulose 380(m), 436(w), 458(m), 493(m), 520(mw), 577(mw), 896(m), 969(w), 

998(w), 1046(mw), 1061(m), 1096(vs), 1120(s), 1147(m), 1266(mw), 

1337(m), 1379(m), 1413(m), 1461(m) 

5.7c 

D(+)-dextrose 

(α-D-glucose) 

407(s), 440(m), 541(s), 652(m), 772(m), 841(s), 914(m), 1022(m), 

1054(m), 1075(m), 1108(m), 1149(m), 1272(m), 1330(m), 1346(m), 

1459(m) 

5.7d 

D(+)-trehalose 369(s), 407(vs), 430(m), 450(s), 523(vs), 540(s), 580(mw), 604(m), 

671(m), 697(m), 732(w), 804(m), 838(vs), 912(vs), 927(w), 957(mw), 

5.7e 
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1018(m), 1061(m), 1080(m), 1102(s), 1120(vs), 1149(vs), 1211(w), 

1220(w), 1240(mw), 1261(mw), 1273(mw), 1313(mw), 1330(m), 

1358(vs), 1371(m), 1386(m), 1411(m), 1455(m), 1469(mw) 

amylose 407(m), 442(m), 481(vs), 579(m), 712(w), 758(w), 854(m), 901(m), 

936(ms), 944(m), 1045(m), 1083(ms), 1123(ms), 1208(w), 1262(mw), 

1267(m), 1339(m), 1379(m), 1460(m) 

5.7f 

amylopectin 409(m), 439(m), 477(vs), 515(mw,sh), 578(mw), 612(w), 717(w), 

762(m), 769(w), 866(m), 905(sh), 940(m), 1051(m), 1082(m), 

1109(m), 1127(m), 1264(m), 1339(m), 1378(m), 1460(m) 

5.7g 

D(+)-mannose 397(s), 426(m), 447(s), 473(ms), 495(s), 530(s), 576(m), 604(m), 

621(m), 683(m), 830(s), 861(s), 882(s), 914(m), 934(m), 958(m), 

1033(m), 1087(s), 1106(s), 1139(ms), 1239(m), 1263(m), 1352(m), 

1369(m), 1459(m), 1481(m) 

5.8a 

D(+)-fucose 383(w), 440(vs) 529(m), 669(m), 700(w), 772(mw), 815(m), 879(m), 

964(mw), 1032(mw), 1076(mw), 1088(mw), 1113(m), 1129(m), 

1155(m), 1256(m), 1273(m), 1331(m), 1452(m) 

5.8b 

D(-)-arabinose 406(w), 427(w), 512(mw), 580(m), 613(m), 698(m), 843(vs), 896(mw), 

936(mw), 994(m), 1052(m), 1095(m), 1138(mw), 1259(m), 1311(mw), 

1356(w), 1375(w), 1476(m) 

5.8c 

D(+)-xylose 410(m), 428(s), 504(m), 526(s), 565(m), 608(m), 757(mw), 903(vs), 

930(m), 1017(mw), 1086(s), 1115(s), 1148(mw), 1315(mw), 1340(m), 

1374(m), 1398(m), 1468(mw) 

5.8d 

D(-)-fructose 401(w,sh), 420(s), 463(m), 526(m), 595(m), 626(vs), 818(s), 872(s), 

925(w), 978(m), 1048(m), 1060(w), 1082(m), 1143(w), 1176(w), 

1250(w), 1265(s), 1340(w), 1399(w), 1455(w), 1471(m) 

5.8e 

D(+)-

galactosamine 

378(m), 421(m), 462(m), 530(vs), 606(mw), 657(w), 704(w), 776(w), 

822(w), 872(vs), 887(m), 938(m), 948(m), 999(mw), 1020(m), 

1038(mw), 1062(m), 1094(m), 1121(m), 1143(m), 1153(m), 1238(m), 

1267(vs), 1318(w), 1336(m), 1369(mw), 1386(m), 1452(mw), 1468(w), 

1514(mw), 1588(w), 1616(w) 

5.9a 

N-acetyl-D-

glucosamine 

416(m), 463(w), 481(m), 513(s), 527(m), 554(m), 578(s), 630(mw), 

698(w), 790(m), 865(m), 916(mw), 929(m), 973(vs), 1002(m), 

1020(m), 1039(m), 1091(m), 1126(s), 1151(m), 1206(w), 1257(m), 

1279(m), 1292(mw), 1321(m), 1330(m), 1361(m), 1380(m), 1432(m), 

1473(m), 1552(m), 1627(m) 

5.9b 

chitin 366(m), 396(m), 460(m), 498(m), 711(mw), 895(m), 955(m), 1059(m), 

1107(s), 1149(m), 1205(mw), 1262(m), 1328(m), 1371(m), 1414(m), 

1449(mw), 1626(m),1656(m) 

5.9c 

citric acid 380(s), 420(m), 489(w), 513(m), 554(m), 597(m), 641(w), 685(m), 

784(vs), 881(w), 903(m), 942(s), 1053(m), 1082(m), 1145(w), 

1170(w), 1211(m), 1345(w), 1390(m), 1426(w,sh), 1434(m), 1465(w), 

1633(w), 1691(s), 1732(m) 

5.10 

a 
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succinic acid 386(s), 582(w), 684(m), 936(vs), 1086(m), 1230(w), 1294(m), 

1369(m), 1420(s), 1432(s), 1457(m,sh), 1655(m) 

5.10

b 

fumarate 768(m), 913(m), 982(m), 1293(m), 1430(vs), 1563(w), 1593(w), 

1629(m), 1640(m), 1657(s) 

5.10

c 

malic acid 400(mw), 440(mw), 535(mw), 611(s), 660(w), 749(s), 882(mw), 

911(mw), 964(vs), 1033(m), 1098(m), 1176(w), 1186(w), 1222(w), 

1261(w), 1277(w), 1309(w), 1351(m), 1378(mw), 1423(m), 1447(mw), 

1633(mw), 1675(mw) 

5.10

d 

pyruvate 393(w), 435(mw), 547(w), 636(m), 834(s), 980(mw), 1197(w), 

1371(m), 1408(vs), 1430(w,sh), 1628(w), 1658(mw), 1700(vs) 

5.11

a 

Phosphoenol- 

pyruvate 

391(w), 406(w), 431(w), 451(mw), 465(w), 535(w), 548(mw), 741(w), 

756(mw), 787(vs), 846(m), 863(mw), 891(w), 966(mw), 973(mw), 

1034(s), 1085(w), 1097(w), 1185(w), 1234(w), 1266(m), 1286(w), 

1318(w), 1355(w), 1373(mw), 1397(mw), 1446(m), 1472(w), 1631(mw) 

5.11

b 

coenzyme A 525(m), 559(m), 633(w), 663(m), 722(vs), 787(m,sh), 803(m), 879(m), 

927(w), 949(w), 1027(m), 1053(m), 1100(m), 1157(w), 1203(m), 

1248(m), 1325(s), 1407(s), 1420(s,sh), 1461(m), 1508(m), 1557(m), 

1608(w), 1654(w) 

5.11

c 

acetyl 

coenzyme A 

496(m), 531(m), 564(m), 631(s), 683(w,sh), 724(vs), 799(m), 882(m), 

926(w), 948(w), 1026(m), 1045(m,sh), 1094(m), 1121(m), 1207(m), 

1243(m), 1306(s), 1333(s), 1375(m), 1408(m), 1462(m), 1508(m), 

1559(w), 1576(m), 1658(w) 

5.11

d 

acetoacetate 401(m), 486(m), 498(m), 519(m), 551(m), 582(m), 640(s), 719(w), 

761(s), 830(vs), 903(m), 928(s), 1005(s), 1025(m), 1087(w), 1158(m), 

1171(m), 1191(m), 1219(w), 1283(m), 1326(m), 1362(m), 1399(vs), 

1422(vs), 1444(vs), 1580(m), 1600(w), 1626(w), 1653(w), 1703(vs), 

1715(s,sh) 

5.11

e 

D-fructose-6-

phosphate 

390(m), 534(m), 617(m), 716(w), 834(m), 973(s), 1071(m), 1127(m), 

1229(w,sh), 1266(m), 1347(m), 1376(m,sh), 1458(m), 1724(w) 

5.11

f 

β-carotene 1008(m), 1156(vs), 1190(m), 1211(m), 1270(w), 1280(w,sh), 1353(w), 

1394(w), 1448(w), 1515(vs) 

5.12

a 

ascorbic acid 448(m), 566(s), 588(m), 629(s), 696(m), 710(m), 820(s), 1025(m,sh), 

1130(vs), 1256(s), 1296(m), 1319(s), 1498(m), 1653(vs), 1667(vs) 

5.12

b 

riboflavin 422(w), 451(w), 502(m), 531(w), 603(w), 677(w), 742(m), 785(m), 

1158(m), 1184(m), 1226(s), 1253(w), 1345(vs), 1402(m), 1464(m), 

1496(m), 1534(m), 1576(m), 1621(w), 1658(w), 1704(w) 

5.12

c 

gluthatione 400(s), 446(w), 523(w), 550(m), 625(vs), 643(m), 660(s), 679(vs), 

722(w), 776(s), 811(m), 828(m), 867(m), 885(s), 917(m), 931(s), 

953(m), 972(m), 988(m), 1015(m), 1041(m), 1074(w), 1117(w), 

1143(w), 1169(m), 1224(m), 1235(m), 1255(w), 1280(s), 1309(m), 

1334(m), 1368(m), 1403(m), 1415(m), 1443(m), 1455(m), 1536(w), 

1629(m), 1660(w), 1703(w) 

5.12

d 

Abbreviations: w, weak; mw, medium weak; m, medium; ms, medium strong; s, strong; vs, very strong; sh, 

shoulder; br, broad. The reference spectra can be requested at http://www.analchem.ugent.be/Raman 
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5.3.2 Amino acids 

 

Raman spectra of eleven amino acids with a variety of functional groups on the R side 

chains were recorded. In Figure 5.2, Raman spectra of six amino acids without a ring 

structure on the R side chain are shown. Lin-Vien et al.9 describe that several Raman 

bands for carboxylic acids and NH2 groups are rather weak. This can explain why the amino 

acids, which have these two functionalities in common, show little similarities in their 

Raman spectra. 

 

In the Raman spectra of glycine (5.2a) and L-alanine (5.2b), which have small and simple R 

side chains, an intense band in the region between 850 and 900 cm-1 appears which can be 

ascribed to the ν(CNC) symmetric stretch of the amino group9. In amino acids with a more 

extended or complex R side chains, the influence of this R group on the position of the 

ν(C-N) stretch band can be large and therefore it is hard to assign a band to this vibration. 

For all amino acid spectra in Figure 5.2, δ(CH2) or δ(CH3) deformations are observed in 

the region 1420-1500 cm-1. For L-valine (5.2c), L-serine (5.2d) and L-glutamate (5.2e) 

some bands are observed originating from functional groups of the R side chain. In the 
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Figure 5Figure 5Figure 5Figure 5....2222    Raman spectra of amino acids with a non-cyclic R side chain: (a) glycine, 

(b) L-alanine, (c) L-valine, (d) L-serine, (e) L-glutamate, (f) L-arginine    
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spectrum of L-valine (5.2c), δ(CC3) deformation and tertiary δ(CH) deformation of the 

isopropyl group give rise to bands at respectively 542 and 1351 cm-1.9 For L-serine (5.2d), 

the bands 813 and 853 cm-1 are located in the region where in phase ν(C-C-O) stretches 

of primary alcohol functions as well as ν(C-N) stretches of amines are expected. The 

symmetric ν(CO2
-) stretch of L-glutamate (5.2e) can be observed at 1401 cm-1. 

 

Raman spectra of five amino acids of which the R side chain contains a ring structure are 

shown in Figure 5.3. For L-phenylalanine (5.3a), L-tyrosine (3b) and L-tryptophan (3c), 

that all contain a benzene structure, the most intense Raman bands can be attributed to 

the ring vibrations. Indeed, the intense bands at 1004 and 1009 cm-1 present in the spectra 

of respectively L-phenylalanine and L-tryptophan can be assigned to the trigonal ring 

breathing of the benzene ring. As L-tyrosine contains a parasubstituted benzene ring, its 

ring breathing vibration is located at 828 cm-1. The Raman bands at 1358 and 1423 cm-1 of 

L-tryptophan, are described as typical for indole rings by Socrates et al.19 For L-histidine 

and L-proline, it is hard to attribute the Raman bands to specific functional groups. 

Instead, quantum chemical calculations would be necessary in order to perform accurate 

band assignments. 
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5.3.3 Fatty acids and fats 

 

The spectra of four unbranched saturated fatty acids are shown in Figure 5.4. 

Characteristic for these fatty acids are the three Raman bands between 1050 and 

1150 cm-1, the band at 1296 cm-1 and a group of bands in the region between 1400 and 

1500 cm-1 due to ν(C-C) stretching vibrations, δ(CH2) twist vibrations and δ(CH3) or 

δ(CH2) deformations, respectively. As the fatty acid chain elongates with two carbon 

atoms, several effects in the Raman spectra can be observed. Two shifts occur with 

increasing chain length: (i) the ν(C-C) stretching vibration band at 1084 cm-1 in the 

spectrum of lauric acid (5.4a) shifts over 1092 cm-1 (myristic acid, 5.4b) and 1099 cm-1 

(palmitic acid, 5.4c), to 1100 cm-1 for stearic acid (5.4d) and (ii) the chain expansion 

vibration shifts from 464 cm-1 for lauric acid (5.4a), over 414 cm-1 (myristic acid, 5.4b), to 

375 cm-1 for palmitic acid (5.4c). The relative intensity of the bands at approximately 891 

and 908 cm-1, due to ρ(CH2) rocking vibrations, changes with the chain length.  

 

In Figure 5.5, spectra of saturated branched fatty acids are shown (full names together with 

their abbreviations are given in Table 5.2). Although the general profile of these Raman 

spectra is similar to the spectra of the linear fatty acids, there are some clear differences. 
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Figure 5Figure 5Figure 5Figure 5....4444 Raman spectra of saturated lineair fatty acids: (a) lauric acid, (b) myristic 

acid, (c) palmitic acid, (d) stearic acid 
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Comparison of the Raman spectra of palmitic acid (5.4c) and 16iso (5.5c) shows that the 

δ(CH2) and δ(CH3) deformations result in only two intense bands in the region from 1400 

until 1500 cm-1 for branched fatty acids, while the Raman spectra of the linear fatty acids 

show four to five smaller bands in that region. The ρ(CH2) rocking doublet at 893 and 

909 cm-1 in palmitic acid (5.4c) is decomposed into several bands in the spectrum of 16iso 

(5.5c) and some additional bands appear around 800 cm-1. In the region of the chain 

expansion vibrations (below 470 cm-1) more bands appear in the spectra of the branched 

fatty acids. 

 

The spectra of the iso fatty acids (fatty acids branched at the one but last carbon atom) 

clearly show some differences compared to the spectra of the Aiso acids (fatty acids 

branched at the third carbon atom, counted from the end of the carbon chain). Firstly, in 

the spectra of the Aiso acids, the relative intensity of the band at 1296 cm-1 is lower than 

in the spectra of the iso acids. Secondly, for the Aiso acids the three bands in the region 

1050 to 1150 cm-1 have about the same intensity, but for the iso acids the band at 
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Figure 5Figure 5Figure 5Figure 5....5555 Raman spectra of saturated branched fatty acids: (a) 12-methyltetradecanoic 

acid (15Aiso), (b) 13-methylmyristic acid (15iso), (c) 14-methylpentadecanoic acid 

(16iso), (d) 14-methylhexadecanoic acid (17Aiso), (e) 15-methylpalmitic acid (17iso) 
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approximately 1090 cm-1 is smaller compared to the two surrounding bands. And thirdly, in 

the region of the ρ(CH2) rocking vibrations the Aiso fatty acids show only one band at 

approximately 906 cm-1, while the iso fatty acids show three to four extra bands between 

910 and 970 cm-1. 

 

The Raman spectra of two mono unsaturated fatty acids are shown in Figure 5.6: oleic acid 

(5.6a) and cis-vaccenic acid (5.6b). These acids are fluids and so their Raman spectra show 

broader bands compared to the saturated fatty acids, although all bands are located around 

the same wavenumber. For the unsaturated fatty acids (5.6a,b) an additional band at 

1655 cm-1 appears due to ν(C=C) stretching vibrations. These acids differ only in the 

position of the double bond (see appendix), so their Raman spectra are highly similar. Only 

in the fingerprint region (600-1200 cm-1) some minor differences can be observed. The 

spectrum of triolein (glycerol esterificated three times with oleic acid) shows a very similar 

Raman pattern compared to oleic acid. Indeed, no contribution of the glycerol 

spectrum (5.6c) is seen in the three fats (5.6d,e,f): the glycerol spectrum shows clear bands 

at 416 and 485 cm-1, a region where no bands are present in the spectra of the fats. The 

most important difference between the fatty acids (5.6a,b) and the fats (5.6d,f) is the 
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Figure 5Figure 5Figure 5Figure 5....6666 Raman spectra of the unsaturated fatty acids (a) oleic acid and (b) cis-vaccenic 

acid, of (c) glycerol and of the fats (d) triolein, (e) trilinolein and (f) trilinolenin 
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presence of a weak band at about 1743 cm-1 that can be attributed to ν(C=O) stretching 

vibrations from the ester bonds between glycerol and the fatty acids. Triolein, trilinolein 

and trilinolenin consist of glycerol esterified with identical fatty acids containing 

respectively one, two and three double bonds (see appendix). Consequently the intensity of 

the ν(C=C) stretching band at 1655 cm-1 increases compared to the other Raman bands in 

the spectra 5.6d, e and f. Next to some minor changes in the fingerprint region, it is 

noteworthy that the relative intensity of the bands at 1265 and 1301 cm-1, due to 

respectively δ(=CH) deformations and δ(CH2)n deformations, changes as the fats contain 

more double bonds. 

 

5.3.4 Saccharides 

 

Figure 5.7 shows the spectra of β-D-glucose and D(+)-dextrose (α-D-glucose) and some 

of their dimers and polymers. The spectra of β-D-glucose (5.7a) and D(+)-dextrose (5.7d) 

are very similar, but can be distinguished from one another in the regions from 1000 to 

1200 and from 1300 to 1500 cm-1 that contain bands of ν(C-O) and ν(C-C) stretches 

respectively δ(CH2) and δ(CH2OH) deformations22. The spectra of D(+)-dextrose (5.7d) and 

its dimer D(+)-trehalose (5.7e) are also very similar, although a clear shift of an intense 

band can be observed from 541 to 523 cm-1. This band is associated with exocyclic 

deformations, while the band at approximately 405 cm-1 can be assigned to endocyclic 

deformations16. In the spectra of β-D-glucose (5.7a) and lactose (5.7b) the endocyclic and 

exocyclic deformation bands both show large shifts from 405 to 377 cm-1 and from 542 to 

477 cm-1 respectively. In the regions of δ(COH), δ(CCH) and δ(OCH) side group 

deformations (800-950 cm-1), of ν(C-O) and ν(C-C) stretches (950-1200 cm-1) and of 

δ(CH2) and δ(CH2OH) deformations (1250-1500 cm-1), the spectrum of lactose shows more 

bands than the spectrum of β-D-glucose (5.7a). This is probably due to the fact that 

lactose consists of β-D-glucose and another monosaccharide, viz. β-D-galactose. In the 

spectra of cellulose (5.7c), amylose (5.7f) and amylopectin (5.7g), polymers of β-D-glucose 

and D(+)-dextrose, the Raman bands are much broader than those in the spectra of the 

monomers. Despite the broadening of the Raman bands in the spectra of amylose (5.7f) and 
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amylopectine (5.7g), they resemble the spectrum of their monomer D(+)-dextrose (5.7d) in 

the region from 800-1500 cm-1. In the region below 700 cm-1, intense bands for endo and 

exocyclic deformations were observed in the spectrum of D(+)-dextrose (5.7d), but only 

one intense band is present in the spectra of amylose (5.7f) and amylopectin (5.7g). The 

branching in the structure of amylopectin does not induce many changes in its Raman 

spectrum compared to that of amylose. The spectrum of cellulose (5.7c) does not resemble 

the spectrum of its monomer β-D-glucose (5.7a). 

 

The spectra of five other monosaccharides are shown in Figure 5.8. Except for D(+)-

mannose, they can also appear in a furanose structure instead of a pyranose structure. For 

D(+)-mannose, we noticed sample inhomogenity and so the average spectrum contains 

many small bands (5.8a) and is hard to compare with the spectra of the other 

monosaccharides. D(+)-fucose (5.8b), D(-)-arabinose (5.8c) and D(+)-xylose (5.8d) differ 

only in a modification of the CH2OH group, but their Raman spectra are clearly different 

from one another and from the spectrum of β-D-glucose. 
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Figure 5.9 presents spectra of three nitrogen-containing saccharides. For D(+)-

galactosamine (5.9a) many shifts can be observed compared to the spectrum of β-D-

glucose (5.7a), which are caused by the amino group and the change of a stereocenter (see 

appendix). The most prominent band, compared to other monosaccharides, is the intense 

band at 1267 cm-1, which is situated in the region of ρ(NH2) rocking and δ(NH2) twisting 

vibrations19. For N-acetyl-D-glucosamine (5.9b), the presence of the amide group induces 

a much more complex Raman spectrum compared to β-D-glucose (5.7a). The band at 

1627 cm-1 is typical for the ν(C=O) stretch of an acetyl amide9. The spectrum of 

chitin (5.9c) shows broader bands than the spectrum of its monomer N-acetyl-D-

glucosamine (5.9b). 

 

5.3.5 Primary metabolites 

 

Figures 5.10 and 5.11 show Raman spectra of primary metabolites. Figure 5.10 contains 

the spectra of four intermediates from the citric acid cycle: citric acid (5.10a), succinic acid 

(5.10b), fumarate (5.10c) and malic acid (5.10d). In the spectra of the acids (5.10a, c, d), a 
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strong band is present in the region between 930 and 970 cm-1 that can be assigned to the 

δ(OH--O) out of plane wagging vibration of intermolecular hydrogen bonds. The spectrum 

of citric acid shows an intense band at 784 cm-1, which is probably caused by a δ(C3CO) 

deformation. For fumarate (disodium salt, the acid was not commercially available) the 

symmetric ν(CO2
-) stretch results in a strong band at 1430 cm-1, while the ν(C=C) bond 

that is conjugated with the carbonyl groups gives rise to a ν(C=C) stretch band at 

1657 cm-1. Although succinic acid, fumarate and malic acid are subsequent intermediates in 

the citric acid cycle and have readily similar chemical structures (see appendix), their 

Raman spectra can be easily distinguished from each other. From comparison with 

biological materials, we suspect that Raman bands in the spectra of the pure acids better 

resemble the bands in biological spectra than Raman bands in the spectra of the 

corresponding salts (such as disodium fumarate). 

 

Figure 5.11 present Raman spectra of six metabolites that are related to the citric acid 

cycle.  The spectra of pyruvate (5.11a) and phosphoenolpyruvate (5.11b) are very different, 

because the Raman bands of different functional groups dominate them. For 
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pyruvate (5.11a), the most intense bands at 1408 and 1700 cm-1 can be attributed to the 

symmetric and asymmetric ν(CO2
-) stretch respectively. The symmetric and asymmetric 

ν(POC) stretches give rise to the intense bands at 787 and 1034 cm-1 in the spectrum of 

phosphoenolpyruvate (5.11b). The spectra of coenzyme A (5.11c) and acetyl coenzyme A 

(11d) are similar and both contain a band at approximately 723 cm-1, which is the most 

intense band in the spectrum of adenine (5.1a). The ν(C-S) stretching bands of coenzyme 

A (5.11c) shifts from 663 cm-1 to 631 cm-1 in the spectrum of acetyl coenzyme A (5.11d), 

due to the conversion of the thiol to a thioester. For acetoacetate (5.11e), analogous to 

pyruvate (5.11a), the bands for symmetric and asymmetric ν(CO2
-) stretches are observed 

in the region between 1395 and 1450 cm-1 and between 1700 and 1720 cm-1. In the 

spectrum of D-fructose-6-phosphate (5.11f), the bands are broader than in the spectrum 

of D(-)-fructose (5.8e). The asymmetric ν(POC) stretch of the phosphate group (973 cm-1) 

causes the most intense band as this functional group is highly polarisable. 

 

5.3.6 Others 

 

Figure 5.12 presents Raman spectra of four other products that are of importance for living 

organisms. The spectrum of β-carotene (5.12a) is characterized by two intense bands at 

1156 and 1515 cm-1, that can be assigned to a combination of a ν(C-C) stretch and ν(C-H) 

deformation on the one hand and ν(C=C) stretch on the other hand. The spectrum of 

ascorbic acid (5.12b) shows a broad band at 1653-1667 cm-1 due to the ν(C=O) stretch of 

the lacton. In the spectrum of riboflavin (5.12c) a strong band can be observed at 

1226 cm-1 that can be assigned to an aromatic vibration of the polycyclic structure. In the 

spectrum of glutathione (5.12d) intense bands are observed that are related to the 

presence of the sulphur atom: (i) ν(C-S) stretching causes intense bands in the region 

600-700 cm-1 and (ii) the band at 400 cm-1 can be assigned to δ(C-S) deformations. 

Furthermore, the ν(C=O) stretching of amide and carboxylic groups gives rise to a broad 

band at 1630 cm-1. 
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5.3.7 Examples of Raman spectra of biological materials 

 

All these reference spectra can be used for the interpretation of Raman spectra of 

biological materials. To illustrate the applicability of these reference spectra, we selected 

two Raman spectra of biological materials. In Figure 5.13, Raman spectra of fungal spores 

(5.13a) and bacteria (5.13b) are shown. There is a high similarity between the spore 

spectra of Amanita phalloides (5.13a) and the spectra of fatty acids and fats (Fig. 5.4, 5.5, 

5.6). Indeed, the typical bands for these molecules that were mentioned above appear in 

the region from 1000 until 1700 cm-1. Therefore, we can conclude that fatty acids and fats 

are the main components of these spores. The bands at 970, 1065, 1081, 1121, 1302, 1440 

and 1656 cm-1 can be attributed to triolein and trilinolenin. Oleic acid bands can be 

observed at 1036, 1302 and 1440 cm-1. The amyloidic ornamentation, consisting of 

amylopectine, is observed in this spectrum trough the Raman bands at 477 and 864 cm-1. In 

the spectrum of Bacillus valismortis LMG 18725 (5.13b) clear bands of fatty acids 

(1450(br), 1660(br) cm-1), phenylalanine (1003 cm-1), adenine (723 cm-1) and carotenes 

(1155 and 1520 cm-1) can be observed. 
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5.4 5.4 5.4 5.4 ConclusionConclusionConclusionConclusionssss    

 

We presented Raman spectra of six groups of biomolecules. Most of these spectra can be 

easily distinguished from each other. The spectra of the DNA and RNA bases show almost 

no similarities, so it is easy to distinguish between them and no characteristic bands are 

observed for either purine or pyrimidine bases. The spectra of all bases are characterized 

by intense ring breathing vibrations in the region from 600 until 800 cm-1. The Raman 

bands of the functional groups present in the R side chain dominate the Raman spectra of 

amino acids. Only structurally very similar molecules, such as fatty acids mutually and 

saccharides mutually, give rise to similar Raman spectra. The spectra of fatty acids can be 

recognized by three intense bands in the region from 1000 until 1200 cm-1 and bands at 

about 1296 and 1440 cm-1. For fats the most prominent bands are those at approximately 

1265, 1302, 1440 and 1655 cm-1. Examples of Raman spectra of bacteria and fungal spores 
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Figure 5.Figure 5.Figure 5.Figure 5.13131313 Raman spectra of biological materials: (a) spores of Amanita phalloides and 

(b) Bacillus vallismortis LMG 18725 
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show that these reference spectra can be used to analyze complex biological Raman 

spectra. 

 

 

This database was after publication of the paper (De Gelder et al., J. Raman 

Spectrosc. 38 (2007) 1138-1147) further extended with reference spectra of biomolecules 

of interest for specific studies. These include spectra of calcium-dipicolonate, cysteïne, 

poly-3-hydroxybutyrate and β-3-hydroxybutyrate, presented in Chapter 6 and 9. It must 

be noted that the spectra of the reference products can differ slightly from their signals in 

biological samples. Indeed, a different physicochemical state and the physiological 

environment can induce shifts in Raman band positions and/or intensities. A strongly 

pronounced example of these shifts is illustrated in Chapter 9 where a ν(C=O) stretching 

band of poly-3-hydroxybutyrate (PHB) is located at 1725 cm-1 in the reference spectrum 

and at 1734 cm-1 in the bacterial spectra. The physiological conditions of biomolecules in a 

cell can not be fully imitated in vitro and an attempt to do so would lead to reference 

spectra including contributions of biomolecules other than the one of interest. The 

reference spectra in this database should thus be considered as approaches of the 

biomolecules’ signals in bacterial Raman spectra. They are useful to evaluate the possible 

contribution of certain biomolecules to a complex bacterial Raman spectrum. 

The next chapter starts with an illustration of the use of these reference spectra to extract 

information about the presence of specific cell compounds from bacterial Raman spectra. It 

focuses on compounds that clearly contribute (observed by visual inspection) to bacterial 

Raman spectra. Processing methods are illustrated that allow information extraction of such 

compounds from Raman spectra of sporulating bacteria and endospore solutions. 
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In the previous chapter we established a database with reference spectra of 

biomolecules. Now we will examine to which extent reference spectra can be utilized to 

study sporulating bacteria and bacterial endospore solutions with Raman spectroscopy. In 

general, an overview is given of approaches to extract information when the biomolecules of 

interest contribute highly to the bacterial or endospore Raman spectra. These approaches 

use information from reference spectra and include the calculation of difference spectra and 

the use of principal component analysis (PCA). 

 

6.1 6.1 6.1 6.1 IntroductionIntroductionIntroductionIntroduction    

 

Upon depletion of essential nutrients, some Gram-positive bacteria can form endospores 

with a complex structure that ensures the maintenance of a dormant state. When 

conditions become favorable, they may germinate to vegetative cells. Detection of spores is 

very important, because of their role in e.g. food spoilage and foodborne disease. 

Resistance of endospores to extreme conditions can be influenced by multiple features such 

as water content of the core, the presence of small acid-soluble proteins (SASPs) that can 

bind to DNA, spore coat proteins and core mineral ions and 2,6-pyridinedicarboxylic acid 

(dipicolinic acid; DPA), as reported by Setlow26. This review describes that resistance to 

each specific condition, such as wet heat, dry heat, ultraviolet light and chemicals, is 

determined by a combination of the above mentioned spore characteristics. However, the 

way these components contribute to these forms of resistance is not always clear. Another 

study23 indicates that DPA may contribute to a spore’s resistance by protecting spore 

DNA from damage. Therefore, not only the detection of spores is important, but also the 

study of their composition can be of interest in relation to their resistance. 

Raman spectroscopy is a fast and non-destructive method of analysis that has proven to be 

successful in microbiology for the identification of bacterial species11,12 or strains10,18. As 

Raman spectra contain contributions of all Raman active molecules present in the sample, 

this technique is also useful for the detection of certain cell components5,15,16. Several 

research groups have already investigated the possibility to detect endospores by focusing 
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on the Raman bands of the calcium complex of DPA (CaDPA)2,3,4,6,7,17,19. Bell et al.2 reported 

that surface enhanced Raman spectroscopy (SERS) is suitable for the quantitative analysis 

of pure CaDPA. It has been demonstrated that it is possible to detect DPA in bacterial 

samples by using Raman spectroscopy6, as well as by using surface enhanced Raman 

spectroscopy (SERS)4, coherent anti-Stokes Raman spectroscopy19 and resonance Raman 

spectroscopy7. Even determination of concentrations of CaDPA in single spores with 

Raman spectroscopy3 and SERS17 has been reported. 

In this study, we focus on the analysis of the spore’s composition rather than on detection 

of spores. Changes in Raman spectra during growth and sporulation of Bacillus licheniformis 

LMG 7634 were studied. Raman spectra of spore suspensions of several strains cultured 

under different conditions were compared. Different growth media and incubation 

temperatures were applied and certain samples were pre-treated with hydrogen peroxide. 

The latter is known to be a heat resistance inducing stress factor and resistance against it 

is influenced by spore coat layers20 and the binding of SASPs to DNA24. A sublethal 

hydrogen peroxide treatment of spores resulted in a heat resistance induction effect for a 

subpopulation of B. sporothermodurans spores, termed HRS22. The possibility of 

discriminating these spore suspensions from each other by their Raman spectra was 

studied, as well as possible assignments of discriminating bands to biomolecules in the 

spores. 

 

6.2 6.2 6.2 6.2 ExperimentalExperimentalExperimentalExperimental    

 

6.2.1 Strains and culturing conditions 

 

Bacillus licheniformis LMG 7634 was precultured overnight on Tryptone Soya Agar (TSA) 

(Oxoid) at 37 °C. A single colony was picked to make other streaks on TSA that was 

incubated for 1, 2, 3, 4, 5 or 6 days. This was repeated at least 5 times for each incubation 

time to include variation in microbial growth. 

Table 6.1 lists all the strains and culturing conditions used to prepare purified spore 

suspensions of other spore-forming species. 
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6.2.2 Sample preparation 

 

For B. licheniformis LMG 7634, part of a single colony was transferred to a CaF2 plate with 

a 1 µL smear loop. The smears were dried for 3 min on silica.  

The preparation of the purified spore suspensions was described by Scheldeman et al.21. 

The suspensions were centrifuged at 4 °C and 11000 rpm for 5 min. Part of the pellet was 

transferred with a 1 µL smear loop to a CaF2 plate. A total of five smears per spore 

suspension were made and dried on silica for 5 min. 

 

6.2.3 Products 

 

L-cysteine and 2,6-pyridinedicarboxylic acid (dipicolinic acid; DPA) were purchased from 

Sigma-Aldrich (Belgium). Calcium dipicolinate (CaDPA) was synthesized from DPA as 

described in Ghiamati et al.7. 

 

6.2.4 Raman spectroscopy 

 

The Raman spectra were recorded with a System Hololab 5000R modular Raman 

microspectrometer (Kaiser). The 785 nm laser light from a diode laser (Toptica Photonics 

AG) was focused through a 100x objective of the microscope (Leica) to obtain a power of 

50 to 60 mW at the sample. The scattered light was transferred to the spectrograph by a 

confocal aperture collection fiber (15 µm numerical aperture) where it was detected by a 

back illuminated deep depletion Pelletier cooled (–70 °C) CCD detector (Andor). The 

Raman signal was collected in the spectral interval between 150 and 3500 cm-1, but only 

the region between 365 and 1780 cm-1 was used, while the spectral resolution was 

approximately 4 cm-1. On each smear of bacteria or spores on the CaF2 plate, a central 

focus point was fixed around which four Raman spectra of 60 s were collected. 

MATLAB (The Mathworks, Natick, MA, USA) was used for data preprocessing. Calibration 

was performed as described by Hutsebaut et al.9, including (i) absolute wavelength 

calibration with a neon lamp, (ii) intensity calibration with a tungsten bulb, (iii) relative 
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wavelength calibration with seven reference products, (iv) correction for dark noise and 

(v) correction for the contribution of optical components. Extended multiplicative signal 

correction (EMSC) was applied14 using the EMSC toolbox developed by Martens13. More 

specifically, the Raman spectra were treated with DataCase 103 which includes a 

correction for physical interferences. Spikes were omitted from the spectra and the average 

of each set of four spectra collected around one focus point was calculated. The plotted 

spectra are normalized. For the calculation of band intensities, a background subtraction 

was performed. Autoscaling and principal component analysis (PCA) were performed to 

study the possibility of discriminating different spore suspensions or B. licheniformis 

samples of different incubation times. From a comparison of a principal component (PC) 

and its corresponding factor in the loading plot, changes in Raman bands could be related 

to certain samples, and thus to certain incubation times. For the spore suspensions, the 

first 20 PCs were subjected to a cluster analysis in SPSS (Chicago, IL, USA) using squared 

Euclidean distance and Ward algorithm. 

 

6.3 6.3 6.3 6.3 Results and discussionResults and discussionResults and discussionResults and discussion    

 

6.3.1 Monitoring sporulation of Bacillus licheniformis LMG 7634 

 

For the Raman measurements, B. licheniformis LMG 7634 was cultured on TSA for 1 to 6 

days, because microscopic study showed that after 6 days of culturing the maximum spore 

yield was reached. Raman spectra were recorded from at least six independent cultures per 

incubation time. In this way physiological variation due to differences in microbial growth 

was covered. Per incubation period, an average value of the recorded spectra was 

calculated (Fig. 6.1). These spectra are further refered to as ‘mean spectra’. The most 

remarkable feature in these spectra is the band at 1018 cm-1 that rises with increasing 

incubation time. In order to visualize additional differences between sporulating and non-

sporulating cells, a difference spectrum was calculated between the mean spectra obtained 

after 6 days and 1 day of incubation, respectively (Fig. 6.2). Comparison of this difference 

spectrum and a reference spectrum of CaDPA shows that this compound can contribute in 
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a bacterial spectrum to bands at approximately 661, 822, 1018, 1396, 1448 and 1575 cm-1 

(Fig. 6.2). Band positions of CaDPA can differ by several wavenumber units between the 

reference spectrum and the bacterial spectra, because of a different physicochemical state 

of CaDPA in bacteria and in the reference product. CaDPA is one of the unique 

components from the spore core and represents about 5 - 10% of the dry weight of Bacillus 

spores25. The mean spectra also show bands of tyrosine, phenylalanine, fats and bases of 

DNA/RNA, but some of these may overlap with bands of CaDPA, when present. Band 

assignments are summarized in Table 6.2. 

 

To study the evolution of Raman bands over all applied incubation times in more detail, 

autoscaling and subsequent PCA were performed on the pre-processed Raman spectra 

(Fig. 6.3). From the score plot, it can be derived that longer incubation times have higher 

scores for the first PC, which is indicated by the arrow in Figure 6.3a. Despite this 

observation, no distinct groups could be delineated according to incubation time, because 

of the microbial variation between different cultures at the same incubation time. 
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Figure 6.Figure 6.Figure 6.Figure 6.1111 Mean Raman spectra of B. licheniformis LMG 7634 (TSA, 37°C) per incubation 

time: (a) 1 day, (b) 2, (c) 3, (d) 4, (e) 5 and (f) 6 days. 



Chapter 6 

95 

 

400 600 800 1000 1200 1400 1600 1800

0

Raman shift (cm-1)

In
te

ns
it
y

(A
rb

it
ra

ry
un

it
s)

85
4

94
5

96
9

10
1
7

14
46

3
89 61

9 64
3

66
0

74
0 82

8

12
08

13
95

72
6

78
3 10

6
5

1
09

4

14
79

10
18

40
3

43
4

6
61 8
22

13
98

14
4
8

15
69 1

58
8

11
52

(a)

(b)

8
09

400 600 800 1000 1200 1400 1600 1800

0

Raman shift (cm-1)

In
te

ns
it
y

(A
rb

it
ra

ry
un

it
s)

85
4

94
5

96
9

10
1
7

14
46

3
89 61

9 64
3

66
0

74
0 82

8

12
08

13
95

72
6

78
3 10

6
5

1
09

4

14
79

10
18

40
3

43
4

6
61 8
22

13
98

14
4
8

15
69 1

58
8

11
52

(a)

(b)

8
09

Figure 6.Figure 6.Figure 6.Figure 6.2222 (a) Difference spectrum between the mean Raman spectra of B. licheniformis 
LMG 7634 cultured for 6 days and 1 day and (b) reference Raman spectrum of calcium 

dipicolinate. 
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(b) loading plot of the first two principal components. The arrow indicates the trend in incubation time. 
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Table Table Table Table 6.6.6.6.2222 Band assignments for Raman spectra of endospores (Fig. 6.5) and 

endospore forming bacteria (Fig. 6.1). 

Raman shift (cmRaman shift (cmRaman shift (cmRaman shift (cm----1111))))****    BBBBand assignmentsand assignmentsand assignmentsand assignments    

527 ν(S-S) stretching (cysteine in spore coat)+ 

622 Phe 

638 ν(C-S) stretching (cysteine in spore coat)+ 

643 Tyr 

661 CaDPA 

723 A, CoA, acetyl-CoA 

783 C, U, citric acid 

822-827 CaDPA and Tyr 

853 Tyr 

1004 Phe 

1018 CaDPA 

1031 ν(PO2
-) symmetrical stretching 

1250-1300 Amide III, δ(CH2) deformation 

1397 CaDPA 

1448 CaDPA, δ(C-H2) deformation (e.g. from fats) 

1576 CaDPA, G, A 

1616 Tyr 

1650-1680 Amide I 
Apart from CaDPA and cysteine, band assignments are based on literature5,15. 
*No relative band intensities are given because they vary widely between the 

different bacteria/spore spectra. 
+Only visible in some of the spore spectra, not in bacterial spectra. 

 

A loading plot was constructed with Raman shifts of those bands that are clearly visible in 

the spectra (Fig. 6.3b). Comparison of the score and loading plots provides information 

about the Raman bands that are responsible for the differences between the spectra over 

the six incubation periods. Raman shifts that have a high score for factor 1 in the loading 

plot contribute highly in the spectra that have a high score for PC1 in the score plot, and 

vice versa (indicated in Figure 6.3 by the arrows in the score and loading plots that point 

in the same direction). Thus, the Raman bands with a high score for factor 1 are more 

intense in the spectra of cultures that were incubated longer. Therefore, it can be 

concluded from the loading plot that the Raman bands of CaDPA (661, 822, 1018, 1397 

and 1576 cm-1), phenylalanine (622, 1004 cm-1) and tyrosine (643, 827, 853 cm-1) 

contribute more in the spectra of cultures that were incubated longer. These findings show 

that Raman spectroscopy can be applied to monitor sporulation by CaDPA production, as 
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shown in Figure 6.4, where band intensities of the most intense band of CaDPA (1018 cm-1) 

are plotted as a function of incubation time. The variation of the band intensity for each 

incubation time is due to heterogeneity of the spore production process within one culture 

as well as between different cultures. This variation is larger at longer incubation times. 

The increase in band intensities of phenylalanine and tyrosine might be explained by the 

production of small acid-soluble proteins (SASPs) that protect DNA in the spore core.  

 

 

Analogously, Raman bands that have a strongly negative score for factor 1 are more 

prominent in Raman spectra of cultures with short incubation periods. They include bands 

at 723 cm-1 (adenine (A), coenzyme A (CoA), acetyl-CoA) and 783 cm-1 (guanine (G), 

uracil (U), citric acid). The observation that the band at 1448 cm-1 also has a negative 

score for factor 1 indicates that this band changes mainly owing to δ(C-H2) deformation 

vibrations from e.g. fats and to a lesser extent owing to CaDPA production. The bands 

showing a negative score for factor 1 thus reflect the ongoing metabolism during 

exponential growth, which slows down at longer incubation times when spores are formed. 
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Figure 6.4Figure 6.4Figure 6.4Figure 6.4 Band intensities of the most intense band of CaDPA (at 1018 cm-1) versus 

incubation time for Raman spectra of B. licheniformis LMG 7634. 
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6.3.2 Discrimination between endospores from different species, strains or cultivation 

conditions 

 

 The strains, from which 17 endospore suspensions were obtained, are listed in Table 6.1 

along with their culturing conditions. Raman spectra were recorded from five bacterial 

smears that were prepared for each spore suspension. The average spectra for each spore 

suspension were calculated and are shown in Figure 6.5a-d. 

Figure 6.5Figure 6.5Figure 6.5Figure 6.5 Mean Raman spectra of spore suspensions of (a) B. sporothermodurans MB385, (b) other 

B. sporothermodurans strains. Specifications for the labels in these spectra are listed in Table 6.1 
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These spectra show a large variation in the intensity of the CaDPA band at 1018 cm-1. 

When CaDPA is present in large amounts, there is also a remarkable contribution in the 

bacterial spectra at other Raman band positions such as 661, 822, 1397, 1448 and 

1576 cm-1. From Table 6.2, it is clear that the bands at 822 and 1448 cm-1, may also have 

a contribution from or overlap with bands of respectively tyrosine (827 cm-1) and other CH2 
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Figure Figure Figure Figure 6666.5.5.5.5 Mean Raman spectra of spore suspensions of (c) B. cereus, (d) P. lactis and B. 
subtilis. Specifications for the labels in these spectra are listed in Table 6.1. 



Chapter 6 

100 

deformations from e.g. fats (1448 cm-1). The observation that the bands at 822 and 

1448 cm-1 in bacterial spectra rise together with the other bands of CaDPA, confirms the 

assumption that the bands at 822 and 1448 cm-1 contain a significant contribution from 

CaDPA. Other prominent bands are those at 622 and 1004 cm-1 from phenylalanine, and at 

643, 827 and 853 cm-1 from tyrosine. In some spectra, for example that of MB1317 perox 

(Fig. 6.5b), two bands appear at 527 and 638 cm-1. In these regions, sulphur related 

vibrations can occur such as δ(C-S) bending, ν(S-S) stretching and ν(C-S) stretching27. 

According to Aronson and Fitz-James1, cysteine residues can be incorporated in spore 

coat proteins during late sporulation by disulfide interchange between cystine or cysteine 

and proteins with intermolecular disulfide bonds. In the reference spectrum of cysteine 

(data not shown) the most intense bands are located at 443 and 639 cm-1 and can be 

assigned to δ(C-S-H) out of plane bending and ν(C-S) stretching27. By incorporating 

cysteine in proteins, the S-H bond and thus the corresponding Raman band at 443 cm-1 

disappears and is replaced by an S-S bond which causes a stretching band at 527 cm-1. In 

the fingerprint region of the spore spectra, bands of tyrosine, phenylalanine, CaDPA and 

incorporated cysteine may (partly) overlap. Therefore, Table 6.2 gives an overview of the 

possible contributions of several biomolecules in Raman spectra of endospore forming 

bacteria and spore suspensions. 

In order to study the similarity/dissimilarity of spore spectra between different strains 

and/or culturing conditions, PCA was performed on the pre-processed data. The first 

20 PCs were selected for cluster analysis, the dendrogram of which is given in Figure 6.6. 

For some samples, e.g. MB1632 ut, all five Raman spectra (obtained from different smears 

of one spore suspension) are clustered in the same subgroup, so the composition of the 

spores in these suspensions is regarded as homogenous. For the samples MB385 perox and 

MB1632 perox, one of the five Raman spectra is considered as an outlier (marked in Figure 

6.6 with an asterisk). This suggests that these samples show a higher heterogeneity in the 

composition of the spores within the particular spore suspensions. This is in concordance 

with a recent study by Huang et al.8 which reports heterogeneity in CaDPA concentrations 

amongst single spores of a population. The dendrogram shows that, on the basis of Raman 

spectra, the spore suspensions can be divided in two main groups (A and B). 
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Figure 6.Figure 6.Figure 6.Figure 6.6666 Dendrogram obtained from cluster analysis of the first 20 principal components of the PCA 

analysis performed on the Raman spectra of spore suspensions. Specifications for the labels in these spectra 

are listed in Table 6.1. 



Chapter 6 

102 

The key factor for this separation is a combination of the strain differences and the growth 

medium (casein hydrolysate and yeast extract (CCY) or not). Indeed, all samples of the 

strains B. sporothermodurans MB1313, B. cereus MB1632 and MB1634 and Paenibacillus 

lactis MB1928 are gathered in group A (bluish boxes), except for the sample MB1632 CCY 

which is located in group B (reddish boxes) together with the other CCY samples plus all 

samples of the B. sporothermodurans strains MB372, MB385 and MB1317 and the 

B. subtilis strain. The subdivision of group A (two bluish boxes in Figure 6.6) cannot be 

linked to certain strains or culturing conditions. In group B (four reddish boxes in Figure 

6.6), one subdivision is formed containing the spore samples of strains cultured on CCY 

and the untreated sample of MB385. The other subdivision within group B consists of three 

B. sporothermodurans strains that were peroxide stressed and of MB385 sporulated on milk 

agar. 

 

From this cluster analysis (Fig. 6.6), it is clear that according to the Raman spectra, the 

spore suspensions can be divided in groups. In order to search for markers that form the 

basis of this division, we compare the score plot of the first two PC’s with the 

corresponding loading plot (Fig. 6.7a,b). The Raman shifts plotted in the loading plot, are 

those of the most prominent bands in the Raman spectra. According to the four quadrants 
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Figure 6.7Figure 6.7Figure 6.7Figure 6.7 (a) Score and (b) loading plot of the first 2 principal components of the PCA analysis performed on 

the Raman spectra of spore suspensions. 
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in the score and loading plot (indicated by arrows in Figure 6.7a,b), the composition of four 

groups of samples is summarized in Table 6.3. 

 

Table Table Table Table 6.6.6.6.3333 Summary of the information about the composition of the spore suspensions: i) groupings were 

based on the four quadrants in score plot of the PCA analysis (indicated by arrows in Fig. 6.7a), 

ii) comparison of the score and loading plots (Fig. 6.7a and b) gave information about the presence of certain 

Raman bands, which was confirmed and/or completed by studying the mean spectra (Fig. 6.5). 

GroupGroupGroupGroup    Quadrant:Quadrant:Quadrant:Quadrant:    

PC1/2 orPC1/2 orPC1/2 orPC1/2 or    

factor1/2 factor1/2 factor1/2 factor1/2     

Samples in score Samples in score Samples in score Samples in score 

plotplotplotplot    

Raman shifts Raman shifts Raman shifts Raman shifts 

(cm(cm(cm(cm----1111) in ) in ) in ) in 

loading plotsloading plotsloading plotsloading plots    

Biomolecule informationBiomolecule informationBiomolecule informationBiomolecule information    

I +/+ mb372 perox 

mb385 perox 

mb385 milk 

mb1317 perox 

527,638 

622 

643 

977 

1171 

1271 

Prominent bands of cysteine 

incorporated in spore coat 

proteins. 

Fingerprint region shows 

many bands. 

Weak CaDPA bands. 

II +/- mb385 CCY 30°C 

mb385 CCY 37°C 

mb385 CCY 42°C 

mb1632 CCY 

subt CCY 

 No prominent bands. Spectra 

show little detail and have a 

background that falls back at 

1400 cm-1. 

Bands of phenylalanine and 

CaDPA are moderate present 

in the spectra. 

III -/- mb385 ut 

mb1313 perox 

mb1632 perox 

mb1634 ut 

mb1928 ut 

661,822,1018,

1397,1448, 

1576 

 

 

 

 

Bands of CaDPA are present 

in the spectra in high 

intensity. 

 

IV -/+ mb1632 ut 

mb1634 perox 

mb1928 perox 

1004 

1031 

1670 

No prominent bands in the 

fingerprint region. 

Weak CaDPA bands. 

 

From this table, it is clear that Raman spectra of spores cultured on CCY medium 

(group II) are highly similar, even for different strains and species. They show no prominent 

bands in the fingerprint region and have a moderate intensity for phenylalanine and CaDPA 

(Fig. 6.5a,c). The spectra show higher noise than spectra derived from spores that were 

not harvested from CCY medium and their background is rather flat up to 1400 cm-1 from 

which point on it drops. These effects on noise and background could be caused by a 

thicker or denser spore coat. Group III is characterized by a large amount of CaDPA, while 
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the spectra of group I and IV show only weak bands of CaDPA (Fig. 6.5). This observation 

of large variations in CaDPA content amongst spores of different species and strains was 

confirmed by Huang et al.8. In addition, from these groupings, it can be concluded that 

there is no unambiguous correlation between a peroxide treatment and the amount of 

CaDPA present in the spores of different species or strains. Nevertheless, compared to 

untreated samples, there is always a remarkable increase or decrease of the band intensity 

at 1018 cm-1 when a peroxide treatment was applied. Indeed, the Raman spectra of the 

samples MB385 ut, MB1313 perox, MB1632 perox, MB1634 ut and MB1928 ut (Fig. 6.5) 

show high intensities at 1018 cm-1 (CaDPA), while the spectra of MB372 perox, 

MB385 perox, MB1317 perox, MB1632 ut, MB1634 perox and MB1928 perox (Fig. 6.5) 

show lower intensities for CaDPA. The spectra of group I (samples MB372 perox, MB385 

perox, MB385 milk and MB1317 perox) are characterised by prominent bands at 527 and 

638 cm-1 that can be assigned to ν(S-S) and ν(C-S) stretching vibrations of cysteine 

residues incorporated in spore coat proteins. The bands of cysteine are only visible in the 

spectra of some of the spore suspensions of B. sporothermodurans (Fig. 6.5a,b). We stress 

that the division in Table 6.3 reflects similarities between Raman spectra of the spore 

suspensions. Thus, this division is based on the spore components that contribute 

significantly in the Raman spectra, rather then on the over-all spore composition. 

 

6.4 6.4 6.4 6.4 ConclusionsConclusionsConclusionsConclusions    

 

In this work, Raman spectra of endospores and endospore-forming bacteria were studied. 

The spectra of B. licheniformis LMG 7634 recorded at incubation times of 1 to 6 days, 

show trends in band changes as a function of incubation time. Not only indications of a 

lower metabolism, but also band increases due to endospore formation could be observed. 

The most important changes during sporulation include the rise of bands at ca. 661, 822, 

1018, 1397, 1448 and 1576 cm-1, which can be assigned to CaDPA, a unique endospore 

core component. Sporulation of bacteria can easily be monitored by the band intensity at 

1018 cm-1. Bands from phenylalanine (622 and 1004 cm-1) and tyrosine (643, 827 and 
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853 cm-1) also increase as a function of the incubation time, which could be explained by 

the formation of SASPs during sporulation. 

Seventeen spore suspensions were obtained from different species, strains and culturing 

conditions. Their Raman spectra vary widely in intensity of bands from biomolecules such 

as phenylalanine, tyrosine and calcium dipicolinate. Cluster analysis shows that even the 

spore composition within a suspension, obtained from a certain strain cultured under a 

certain condition, can be heterogeneous. Two bands at 527 and 638 cm-1 occur in some 

spectra of B. sporothermodurans spore suspensions and were assigned to cysteine residues 

incorporated in spore coat proteins. These variations suggest that important differences in 

spore composition are possible. A recent study by Huang et al.8 confirms that Raman 

spectroscopy can detect CaDPA variations within a population and between different 

species and strains, but no information about other spore components could be deduced 

from their spectra. PCA shows that the Raman spectra of spores are not only influenced by 

the strain or species, but also by the culturing medium. Indeed, Raman spectra of spore 

suspensions obtained from cultures on CCY medium form a distinct group in the PCA score 

plot. These spectra have similar intensities at 1018 cm-1 (CaDPA) and show little detail in 

the fingerprint region. Peroxide treatment seems to induce large changes in CaDPA 

concentrations compared to untreated samples of the same strains, but no consistent 

increases or decreases of CaDPA are observed between these culturing conditions for the 

studied strains. In general, Raman spectroscopy is suitable for the study of the composition 

of endospores, especially for CaDPA and amino acids such as tyrosine, phenylalanine and 

cysteine. 

 

 

This study shows that bacterial Raman spectra, combined with reference spectra, 

can be used to study differences in cell or endospore content between different populations 

(different species, strains or culturing conditions). Indeed, biomolecules that show a high 

and varying signal in bacterial Raman spectra cause clear bands in their difference spectra. 

Studying band positions in loading plots and comparing them to score plots of a principal 

component analysis (PCA), leads to conclusions about the samples’ composition and the 
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degree of chemical similarity between different samples. This demonstrates that Raman 

spectroscopy is suitable for studying the bacterial cell content. However, bacterial Raman 

spectra reflect mainly the presence of good Raman scatterers and/or molecules that are 

present in the cell in high concentrations. Therefore, the presence or change in 

concentration of minor components or molecules with weak Raman activity can be masked. 

Well distinguished bands in bacterial Raman spectra are often related to specific chemical 

bonds or structures, for example aromatic rings (purine and pyrimidine bases of DNA and 

RNA, and CaDPA) or organosulphur bonds (cysteine). 

Although this chapter demonstrates that the use of difference spectra and PCA are suitable 

to study Raman spectra of sporulating bacteria or endospores, these approaches are 

insufficient to study compounds with minor contributions to overall bacterial Raman 

spectra. In addition, a lot of signals from specific compounds overlap, resulting in bacterial 

Raman spectra where most bands contain contributions of more than one biomolecule. To 

approach this phenomenon, more complex processing methods should be applied, in order 

to extract information about cell compounds with a minor contribution or from overlapping 

bands. In the next chapter, a few methods are illustrated in order to study Cupriavidus 

metalidurans LMG 1195 in several stages of its growth. 
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Comparison of reference spectra from our database (Chapter 5) with bacterial 

Raman spectra shows that many bands in bacterial spectra may contain contributions of 

several biomolecules. Methods like the calculation of difference spectra and PCA (applied 

in Chapter 6) are not able to provide information about the separate biomolecules that 

contribute to these composite bacterial Raman bands. Therefore, more enhanced 

approaches are required to extract information on individual biomolecules from the 

bacterial Raman spectra. These approaches are discussed in Chapter 7 and do not focus on 

a single characteristic band. Instead, they take the whole reference spectrum of a 

biomolecule into account to evaluate the biomolecule’s presence in the cell. Next to two 

methods that estimate the contribution of reference spectra in bacterial Raman spectra 

(namely the calculation of dot products and EMSC coefficients), the potential of 2D 

correlation spectroscopy is illustrated to obtain information about changes in Raman bands 

(and thus biomolecules) following a perturbation. This is illustrated by studying changes in 

bacterial cell composition, due to different incubation times. 

 

7.1 7.1 7.1 7.1 IntroductionIntroductionIntroductionIntroduction    

 

Over the years, Raman spectroscopy has been developed and applied for microbiological 

applications. As Raman spectroscopy is a whole cell non-destructive fingerprinting 

technique, an important advantage is that biochemical information of all Raman-active cell 

components is present in bacterial spectra. There is also minor interference of water and 

only small samples are required. Several research groups have already worked out an 

identification procedure for bacteria9,10. Even closely related species within the 

Enterococcus group8 and within the Bacillus subtilis group6 could be distinguished by 

Raman analysis. For these purposes, Raman spectra are considered as mathematical data 

on which chemometric techniques, such as principal component analysis (PCA), linear 

discriminant analysis (LDA) and hierarchical cluster analysis (HCA), are applied, allowing 

discrimination at the species and even at the strain level6,7,10,17. 
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Next to identification, it would also be very interesting to retrieve the biochemical 

information incorporated in the bacterial Raman spectra. Several Raman bands of bacterial 

spectra have already been assigned to common biomolecules such as phenylalanine (Phe), 

tyrosine (Tyr) and the pyrimidine and purine bases of DNA and RNA and certain regions 

are attributed to groups of molecules such as fatty acids and proteins4,10,15. Unfortunately, a 

lot of biochemical information in bacterial Raman spectra remains unassigned. Therefore, 

our aim is to take the first step in performing a more detailed interpretation of bacterial 

Raman spectra in order to extract more biochemical information about the cell’s 

metabolism. We do not determine absolute concentrations of biomolecules, but focus on 

relative changes in certain biomolecules during five different stages of growth of 

Cupriavidus metallidurans LMG 1195. We focused on the primary metabolites of this 

species and their evolution during the various phases of growth. Several approaches are 

presented to retrieve this information from bacterial Raman spectra: (i) the interpretation 

of the average spectra per growth stage and the difference spectra between these average 

spectra, (ii) the use of dot product values between the bacterial Raman spectra and the 

reference spectra of biomolecules, (iii) use of coefficients obtained from an extended 

multiplicative signal correction (EMSC) to map out the production and/or consummation of 

biomolecules and (iv) the employment of two dimensional (2D) correlation spectroscopy to 

track which changes in Raman bands are related. 

EMSC is a method developed to remove physical and chemical interferences from spectra14. 

In contrast with other chemometric techniques which model physical and chemical 

interferences separately, EMSC models them at once. It uses empirical knowledge such as 

spectra of the analytes and/or interferents. Application of this technique on biological 

material was described by De Decker et al.2. 

2D correlation spectroscopy16 is a chemometric technique, which is especially skilled for 

modeling spectral changes related to an external factor, such as time. This chemometric 

technique results in 2D synchronous spectra that indicate which spectral channels are 

correlated to each other, while the complementary asynchronous spectra are used to 

determine the order in which spectral changes occur. As a result, 2D correlation analysis 
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has been used in many different research areas, including spectroscopic analysis of complex 

biomaterials1,3,16. 

 

7.2 7.2 7.2 7.2 ExperimentalExperimentalExperimentalExperimental    

 

7.2.1 Strain and medium 

 

Cupriavidus metallidurans LMG 1195 (formerly known as Ralstonia metallidurans, Ralstonia 

eutropha, Alcaligenes eutrophus) was cultured in a defined medium with sodium gluconate 

as carbon source (Table 7.1). The strain was cultured on Petri dishes to check purity, but 

liquid medium was used for the Raman experiments. An overnight grown liquid culture was 

diluted with medium to OD (590 nm) 0.25. Then 2 mL of this suspension was added to 

250 mL Erlenmeyer flasks each containing 50 mL of the fluid medium. These Erlenmeyer 

flasks (OD (590 nm) approximately 0.01) were shaken at 28 °C for 16, 24, 48, 72 or 

96 hours respectively.  

 

7.2.2 Sample preparation 

 

Out of each Erlenmeyer flask minimal 3 samples of 2 mL were pipetted into Eppendorf 

cups. The growth experiments were conducted at random for about 10 times during a 

period of two months in order to include biological and instrumental variations. In order to 

eliminate spectral interference of the medium, the samples were washed. Therefore, 

samples in the Eppendorf cups were centrifuged at 15000 g for 2 minutes. The supernatant 

was removed and 1 mL of physiological water was added. The Eppendorf cups were 

vortexed and the suspension was pipetted up and down three times before centrifugation 

(15000 g for 2 minutes). The same procedure was repeated once, with 10 minutes of 

centrifugation. After removing the supernatant, a dense pellet was obtained, which was 

transferred to a CaF2 plate with a 1 µL smear loop. The smears were dried for 20 minutes 

with silica. This sample preparation allows us to obtain high quality Raman spectra from 

fluid cultures. 
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Table Table Table Table 7.7.7.7.1111 Medium composition 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.2.3 Raman spectroscopy 

 

All Raman spectra were recorded with a Kaiser System Hololab 5000R modular Raman 

microspectrometer. The 100x objective of the microscope (Leica) was used and the samples 

were excited using 45 - 50 mW (at the sample) of 785 nm laser light from a diode laser 

(Toptica Photonics AG). The scattered light is transferred to the spectrograph by a 

confocal aperture collection fiber (15 µm N.A.) where it was detected by a back illuminated 

deep depletion Pelletier cooled (–70 °C) CCD detector (Andor). The Raman signal was 

collected in the spectral interval 150 - 3500 cm-1, but only the region between 365 and 

1800 cm-1 was used, while the spectral resolution was approximately 4 cm-1.  

Per liter bidistillated water:Per liter bidistillated water:Per liter bidistillated water:Per liter bidistillated water:    

Tris/HCl 6.06 g (50 mmol L-1) 

NaCl 4.68 g (80 mmol  L-1) 

KCl 1.49 g (20 mmol  L-1) 

NH4Cl  1.07 g (20 mmol  L-1) 

Na2SO4 0.43 g (3 mmol  L-1) 

MgCl2.6H2O  0.20 g (1 mmol  L-1) 

CaCl2.2H2O 0.03 g (0,2 mmol  L-1) 

Na2HPO4.2H2O 40 mg or 4ml from a 1% solution 

Fe(III)NH4citrate 10 mL from a solution of 0.48 g L-1 

SI 7 trace elements 

solution  
1 mL 

As a carbon source 0,2% (weight/volume) sodium gluconate is 

added. The solution is brought to pH 7 with concentrated HCl. 

For the preparation of solid medium 2% agar is added.    

Trace solution: per liTrace solution: per liTrace solution: per liTrace solution: per liter bidistillated water:ter bidistillated water:ter bidistillated water:ter bidistillated water:    

25% HCl 1,3 ml (10 mmol L-1) 

ZnSO4.7H2O 144 mg (0.5 mmol L-1) 

MnCl2.4H2O  100 mg (0.5 mmol L-1) 

H3BO3  62 mg (1 mmol L-1) 

CoCl2.6H2O 190 mg (0.8 mmol L-1) 

CuCl2.2H2O 17 mg (0.1 mmol L-1) 

NiCl2.6H2O 24 mg (0.1 mmol L-1) 

Na2MoO4.2H2O 36 mg (0.15 mmol L-1) 
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To record bacterial Raman spectra, on each smear of the CaF2 plate a central focus point 

was chosen and around this center, 4 spectra of 60 s were collected. The smears were 

measured at random in order to eliminate systematic errors. 

For the interpretation of bacterial Raman spectra we considered it useful to construct a 

database of Raman spectra of biomolecules (Chapter 5). We purchased some pure amino 

acids, purine and pyrimidine bases, fatty acids and components of the main metabolic 

pathways of C. metallidurans (Sigma-Aldrich, Belgium). At least three sets of 4 Raman 

spectra around 3 different focus points of each product were collected. 

 

7.2.4 Data preprocessing 

 

MATLAB was used for data preprocessing. The calibration was performed as described by 

Hutsebaut et al.5, using (i) a neon lamp for absolute wavelength calibration, (ii) a tungsten 

bulb operating at 6.500A for intensity calibration, (iii) seven reference products for relative 

wavelength calibration, (iv) dark spectra and (v) optics spectra. 

For subsequent interpretation of the spectra and spectral changes, extended multiplicative 

signal correction (EMSC) was applied14 using the modeled EMSC toolbox developed by 

Martens13. In particularly, the bacterial Raman spectra used for the calculation of the dot-

products were subjected to EMSC correction for the elimination of physical interference 

(datacase 103). In this procedure, multiplicative effects as well as baselines (which are 

brought to an equal level for all spectra) are modeled. For the calculation of mean spectra 

and difference spectra, and for the interpretation of trends in chemical composition using 

EMSC, datacase 106 was used which includes a physical EMSC correction as well as it uses 

an input from reference spectra of chemical compounds (referred to as ‘Good spectra’)13. 

In this procedure the average spectrum of the bacterial Raman data set was used as mal 

spectrum mmmm, while reference spectra from the biomolecule database were used as ‘Good 

Spectra’ input. The spectra of the biomolecule database were, for each reference product 

separately, subjected to EMSC using datacase 103. These spectra were averaged out to 1 

reference spectrum ki per product. In the EMSC procedure (datacase 106), the bacterial 

spectra were modeled according to the equation zzzzi= mmmm bi + kkkk1 ∆ci,1 + … + kkkkj ∆ci,j +1111 ai + eeeei 
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where zzzzi represent the measured spectra, mmmm the mal spectrum (here the average spectrum 

of the dataset), ai the unknown additive effect, bi the unknown multiplicative effect and ∆ci,j 

values for the difference in concentration of component j between the bacterial spectrum i 

and the mal spectrum14. The coefficients ∆ci,j were estimation by ordinary least squares 

(OLS) and used as a value for the contribution of the reference spectra in the bacterial 

Raman spectra. The coefficients were imported in SPSS where ANalysis Of VAriance 

(ANOVA) was performed to identify significant differences at the 95% confidential level. 

Spikes were removed from the spectra and the average of each set of 4 spectra collected 

around 1 focus point was taken. Principal component analysis was used to show that the 

spectra recorded in the different growth stages can be distinguished from each other. For 

two-dimensional correlation spectroscopy in-house routines were implemented in 

MATLAB, in which the Hilbert transform algorithm for equidistant data-intervals was used.  

 

7.3 7.3 7.3 7.3 Results and Results and Results and Results and ddddiscussioniscussioniscussioniscussion    

 

Raman spectra of C. metallidurans LMG 1195 were collected at five points of the growth 

curve, corresponding to 16, 24, 48, 72 and 96 hours of incubation. Despites the 

standardized protocols for inoculation and incubation, there are still considerable OD 

variations within the groups of the spectra collected after 16 and 24 hours of incubation 

(both exponential growth) due to biological variation. In the PCA plot (not shown), this 

variation caused an overlap between 16 and 24 hours spectra. The spectra collected after 

16 and 24 hours of incubation were therefore rearranged into groups according to OD 

(590nm) values of lower than 1.0, respectively 1.0 and above 1.0. These groups are more 

representative for the different growth stages and were further referred to as stage 1 and 2. 

Stage 3, 4, and 5 still correspond to the data obtained after 48, 72 and 96 hours of 

incubation, respectively. The PCA plot (Fig. 7.1a) now clearly shows separate groups and a 

direction of growth can be seen which reaches a maximum in PC2 when stationary growth 

begins (stage 3). 
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To study the differences between the five observed growth stages the average spectra per 

growth stage were calculated (Fig. 7.1b). Although these spectra are very similar, some 

trends as a function of growth stage can already been seen at 725, 783, 828, 852, 1032, 

1102 and 1575 cm-1.* In literature12, some of these bands have been assigned to 

                                                 
* The values of the Raman shifts mentioned for specific metabolic products can vary 1 cm-1 between the 

average spectra, difference spectra and 2D correlation spectra. 
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Figure 7.Figure 7.Figure 7.Figure 7.1111 (a) PCA plot colored by growth stage (arrow indicates growth) and 

(b) average spectra per growth stage. The Phe ring breathing band is showed in 

detail in the inset. 
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biomolecules: adenine (A) for 725 cm-1, cytosine (C) and uracil (U) for 783 cm-1, tyrosine 

(Tyr) for 828 and 852 cm-1. Unfortunately, only major differences can be observed. In order 

to see more details, difference spectra between each couple of two successive growth 

stages were calculated. In the difference spectrum of stages 1 and 2 for example (Fig. 7.2), 

some features appear at 808, 1140 and 1482 cm-1 that were not visible as differences in the 

average spectra or that were present in the average spectra as shoulders to more intense 

bands. 

 

However, only intense bands of biomolecules that are present in sufficient amounts give 

rise to visible bands in the average spectra and to visible features in difference spectra. 

Moreover, the most intense band(s) of some biomolecules may overlap. These two effects 

complicate the interpretation of average and difference spectra. From our reference 

database (Chapter 5), we found for example that the Raman band at 725 cm-1, which was in 

literature assigned to A, could also be caused by coenzyme A (CoA) and acetyl coenzyme 

A (acetyl-CoA) respectively. The same remark can be made for the band at 783 cm-1 which 

was in literature12 assigned to C and U, but could also be caused by citric acid according to 

our database. As little other intense bands of these biomolecules are clearly visible in the 

average and difference spectra and because these bands can also include contributions of 
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different biomolecules, it is hard to determine which biomolecule has the largest 

contribution for a certain Raman band. Moreover, opposite changes over time in the 

concentration profile of biomolecules with the same main Raman bands can average out, 

which makes it impossible to study the evolution in time for each biomolecule separately. 

Therefore, more advanced mathematical approaches are necessary that do not focus on just 

a few Raman bands, but that take the whole reference spectrum of the biomolecules into 

account. 

 

Table Table Table Table 7.7.7.7.2222    Trends in dot product values and EMSC coefficients (obtained by application of EMSC procedure 

by Martens et al., datacase 106: reference database an input of ‘Good spectra’5) for each reference 

spectrum of the database. >> and << indicate significant differences at the 95% confidential level that were 

tracked with ANOVA. 

Reference productReference productReference productReference product    dot prodot prodot prodot productductductduct    EMSC coefficientsEMSC coefficientsEMSC coefficientsEMSC coefficients    

Fatty acids   
Myristic acid (fat14) 1>2>3>4>5 1<<2<<3>4>>5 

Palmitic acid (fat16) 1>>2>3>4>5 1>>2>3>>4>>5 

Stearic acid (fat18) 1>>2<3<4<<5 1>2>>3<<4<<5 

Vaccenic acid (vac) 1>>2>3<<4<<5 1>>2>>3>4<<5 

Metabolites   
D-fructose-6-phosphate (Df6P) 1<<2>>3>>4>>5 1<<2<3>>4>>5 

Malic acid (mal) 1<<2<3>>4>>5 1<<2<3<<4<<5 

Li acetoacetate (acac) 1<<2<<3<<4<<5 1<<2<3>4<5 

Succinic acid (succ) 1>>2<<3<<4<<5 1>>2<<3<<4<<5 

Citric acid (cit) 1>>2>>3>4>5 1>>2>>3>>4<5 

Acetyl coenzyme A (acCoA) 1>>2>>3<4<<5 1>>2>>3>>4>>5 

Coenzyme A (CoA) 1>>2>>3>4<<5 1>>2<<3<<4<<5 

Phosphoenolpyruvate (PEP) 1>>2>3<<4<<5 1>>2<<3<<4<<5 

Amino acids   
Tryptophan (Tryp) 1>2<3<4<5 1>>2<3<<4<<5 

Glycine (Gly) 1>>2>3<4<<5 1<<2<<3<4>5 

Phenylalanine (Phe) 1>>2<<3<<4<<5 1>>2<<3<<4<<5 

Tyrosine (Tyr) 1<<2<<3>>4>5 1<<2>>3>>4>>5 

DNA/RNA bases   
Adenine (A) 1>>2>>3<4<<5 1<<2<<3<4<5 

Cytosine (C) 1>2>>3>4>5 1>>2>>3<4<5 

Thymine (T) 1>2<<3<<4<5 1>>2>>3<<4<<5 

Uracil (U) 1<<2>>3>4>5 1>>2>>3<4<<5 
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A possible approach that could be used to determine the contribution of reference spectra 

in bacterial Raman spectra is the calculation of the dot product, that was used in a vector 

correction routine by Maquelin et al.11 to estimate and subtract the contribution of water 

and medium from bacterial Raman spectra. Here, we use the dot product of a reference 

spectrum from our database (listed in Table 7.2) and a bacterial Raman spectrum as a 

number for the contribution of this reference spectrum in the bacterial Raman spectrum. 

These dot products were calculated between all reference spectra of the database and all 

bacterial Raman spectra of our dataset. The whole bacterial Raman dataset was first 

treated with a pure physical EMSC (datacase 103, no input of reference spectra) and all 

replicate spectra of each reference product separately, were also treated with EMSC 

(datacase 103). ANOVA was applied on these values (factor: growth stage), which reveals 

for each reference spectrum whether there are significant differences in contribution 

between the different stages of growth (Table 7.2). The advantage of this approach is that 

all bands of the Raman spectrum of the reference product are taken into account, in 

contrary to the interpretation of the average and difference spectra, which is only based on 

one or a few intense bands of the reference spectra. Nevertheless, one has to keep in mind 

that overfitting can occur due to contributions of structural very similar biomolecules. For 

example, the trends in dot product values between the different stages of growth for 

myristic acid (fat14) and palmitic acid (fat16) on one hand, and A, CoA and acetyl-CoA on 

the other hand, are similar. The dot product values for these biomolecules probably 

enclose the contributions of not only a given, but also of several very similar products (that 

give rise to very similar Raman spectra). To distinguish contributions of structural similar 

products, a more refined technique has to be used, namely the use of coefficients from the 

EMSC procedure. 

 

To address the issue of overfitting, the original bacterial dataset was also treated with an 

EMSC procedure (datacase 106, physical correction and input of ‘Good Spectra’) where 

the reference database of biomolecules was taken into account. Reference spectra that 

systematically gave rise to negative dot product values with our bacterial data set were not 

used as input in this EMSC treatment. These biomolecules are weak Raman scatterers or 
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are not present in sufficient amounts in the cell to be detected by Raman spectroscopy and 

hence negative values are a result of sample and spectral variation. The EMSC coefficients 

(∆ci,j: value for the difference in concentration of component j between the bacterial 

spectrum i and the mal spectrum) were imported in SPSS and an ANOVA test was 

conducted (factor growth stage). The results of this test are summarized in Table 7.2, 

where the relation between the average EMSC coefficients per stage of growth is given by 

< or > , and by >> or << for a significant difference at 95% confidential level. Most 

differences were significant and the mean plots (Fig. 7.3) do not show random variations 

but rather clear indications as a function of growth, which are acceptable from the 

microbiological point of view. 

 

From comparison of the dot product values and the EMSC coefficients, a similar evolution 

in function of growth was seen for certain biomolecules. In contrary, for some of the 

structural very similar biomolecules, the EMSC coefficients show different trends, where 
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the dot product values show similar tendencies. For example, the evolution of the dot 

product values as a function of growth is the same for A, CoA and acetyl-CoA, but EMSC 

coefficients show different evolutions for these three structural similar biomolecules. This 

confirms the expectation that simultaneous fitting of the reference spectra in the EMSC 

procedure provides an advantage over separate calculation of dot products. Less 

overfitting occurs in the EMSC procedure and the contributions of A, CoA an acetyl-CoA 

in the bacterial Raman spectra can now be separated from each other. Some other 

biomolecules also show different trends for dot product values and EMSC coefficients, even 

if they are not structurally very similar to other biomolecules from the database. This is 

also due to overfitting caused by resemblance of intense bands in certain reference spectra 

when calculating dot products. For example, both malic acid and 

phosphoenolpyruvate (PEP) cause an intense Raman band at 1033 cm-1 and PEP and citric 

acid have a band at 783 cm-1 in common, despite the fact that these molecules are 

structurally not very similar. EMSC coefficients show different trends for PEP and malic 

acid than the dot products, because all reference spectra are fitted together in the EMSC 

procedure, in contrary to the calculation of dot products for each reference spectrum 

separately. In this way the use of EMSC coefficients reduces overfitting and consequently 

confusion of reference spectra and the results are more reliable. For biomolecules with a 

very high, visible contribution in the bacterial Raman spectra, the trends in dot product 

values and EMSC coefficients are similar and resemble the observed visible evolution in the 

average and difference spectra. For example, dot product values and EMSC coefficients 

show for Phe a decrease from 16 h incubation to 24 h incubation and an increase from 24 h 

to 96 h incubation, while for Tyr an opposite trend is observed. These increases and 

decreases can be confirmed by studying the characteristics bands of these biomolecules 

(1003 cm-1 for Phe and 828-832 cm-1 for Tyr) in the average spectra (Phe band in the inset 

of Figure 7.1b) and the consequent difference spectra. Indeed, Phe shows a positive band 

at 1003 cm-1 in the difference spectra between growth stages 1 and 2 (Fig. 7.2) and a 

negative band at 1003 cm-1 in the difference spectra between the other growth stages (data 

not shown). This consistency supports that the trends predicted by the EMSC coefficients 

are reliable. Furthermore, the evolution in the Raman band at 783 cm-1 resembles the trend 
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of citric acid, C and U predicted by the EMSC coefficients. Probably both citric acid and 

the DNA/RNA bases C and U contribute to the Raman band at 783 cm-1 in the bacterial 

spectra. 

From Figure 7.3 a remark can be made concerning the metabolic pathway of 

C. metallidurans. Apparently, the formation of D-fructose-6-phosphate (Df6P) is ceased in 

the stationary phase. Subsequently, there is no conversion to acetyl-CoA and citric acid, 

which are still metabolized in the citric acid cycle. The levels of citric acid and acetyl-CoA 

decrease and the level of the intermediates of the citric acid cycle (malic acid and succinic 

acid) remain constant or increase. 

An important remark here is that the reference spectra were collected from pure, mostly 

powdery products. The physiologic form of the product may be different in the cell and 

therefore it is possible that the Raman bands of the reference spectra are not exactly 

identical to those of the same molecules retrieved from the bacterial spectra. Nevertheless, 

it is assumed that the changes are minimal because of the high consistency between the 

results of the different presented processing techniques. Moreover, the predicted trends 

are not random variations but acceptable evolutions as a function of growth. 

 

In order to confirm or complete the results, 2D correlation spectroscopy was applied (2D 

spectrum not shown). The bacterial Raman spectra were collected after five fixed 

incubation times and some of them were redivided into groups according to OD values, so 

five classes were obtained which reflect different growth stages. Because incubation time 

and OD are not linearly related to the spectral changes, the 2D correlation algorithm for 

constant intervals was used to treat the five stages of growth. Because of the complex 

nature of the bacterial Raman spectra and because most spectral changes as a function of 

growth were not linear, no conclusions were drawn from the asynchronous 2D spectra. The 

symmetry axis signal of the 2D synchronous spectrum (Fig. 7.4), referred to as power 

spectrum, shows the Raman bands that vary most importantly during growth. Most of these 

bands were also found in the difference spectra. 
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The signals in the 2D synchronous spectrum on a vertical line at each wavenumber, 

referred to as slice spectra, reflect which wavenumbers are changing together during the 

experiment. All synchronous slice spectra for each wavenumber of the bands observed in 

the power spectrum, were plotted and subsequently a hierarchical cluster analysis was 

performed (Pearson correlation, average linkage; data not shown). Three clearly separate 

groups of slice spectra are formed, from which three representative slice spectra at 1003, 

832 and 784 cm-1 are shown in Figure 7.5. These wavenumbers can be related to 

respectively Phe, Tyr and a combination of citric acid, C and U. 

The slice spectrum of 784 cm-1 provides further proof for the contribution of citric acid, C 

and U at that wavenumber. Indeed, the changes in the Raman band at 784 cm-1 seem to be 

positively correlated to bands that appear in the reference spectra of these biomolecules: 

579, 1099 and 1234 cm-1 for U, 554 (sh), 559, 1254 and 1654 cm-1 for C and 1050, 1084 

(sh), 1392 (sh) and 1732 cm-1 for citric acid. Not all bands of these biomolecules can be 

found in this slice spectrum, which is acceptable because changes in opposite directions of 

different biomolecules with a band at the same wavenumber can counteract each other. The 

slice spectrum also contains a positive band at 724 cm-1 which was earlier associated with 
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acetyl-CoA, CoA and A. Moreover, the most intense bands of the reference spectrum of 

acetyl-CoA can also be found in this slice spectrum at 629 and 1335 cm-1. For A the same 

argumentation can be made for the bands at 535 and 1335 cm-1, while for CoA the 

resemblance between bands in the reference spectrum and the slice spectrum for 784 cm-1 

is minimal. The strong correlation between the bands at 724 and 784 cm-1 further supports 

the suggestion of the contribution of acetyl-CoA and citric acid in the Raman bands at 

respectively 724 and 784 cm-1. Indeed, a similar trend of these biomolecules in function of 

growth can be expected, regarding that citric acid succeeds acetyl-CoA in the metabolic 

pathway of C. metallidurans. This similarity in trends was also predicted by the EMSC 

coefficients. 

    

7.4 7.4 7.4 7.4 ConclusionsConclusionsConclusionsConclusions 

 

In this article we presented several approaches for the interpretation of bacterial Raman 

spectra, which were applied on a large data set containing Raman spectra from five stages 

of growth of C. metallidurans. A study of the Raman bands of the bacterial spectra as such 

Figure 7.Figure 7.Figure 7.Figure 7.5555 2D synchronous slice spectra at (a) 1003, (b) 832 and (c) 784 cm-1 
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only provides information of molecules that are present in large amounts and/or that are 

intense Raman scatterers, such as Phe and Tyr. Difference spectra reveal more varying 

Raman bands. Indeed, some shoulders that were increasing or decreasing according to the 

growth stage, were not observed in the average spectra, but caused distinct Raman bands 

in the difference spectra. Since all Raman bands are the sum of bands from different 

biomolecules, more complex mathematical approaches were applied in order to distinguish 

the contributions of different biomolecules in the bacterial Raman spectra. Dot products 

and EMSC coefficients were used to reveal the evolution of biomolecule concentrations 

during growth. These methods both take all Raman bands of the reference spectra of the 

biomolecules into account. During the EMSC procedure, all reference spectra of the 

biomolecules in our database were fitted simultaneously to the bacterial Raman spectra. 

Thus, contributions of biomolecules with similar Raman spectra could be distinguished from 

each other, which is an important advantage of the EMSC coefficients over the dot product 

values. With 2D correlation spectroscopy the most important changes in the dataset could 

easily be identified by the power spectrum and related to each other by the synchronous 

slice spectra of three representative wavelengths. 

The reference spectra were recorded from pure, mostly solid products and therefore can 

have slightly different Raman bands compared to the same molecules in the physiological 

environment in the cell, which can induce anomalies in the calculation of the EMSC 

coefficients. A database of reference spectra of biomolecules in physiological environment 

would be useful, but may be hard to obtain. Nevertheless, the results of several techniques 

that were applied confirmed each other and produced biochemically acceptable trends. 

The above mentioned techniques all confirm that the Raman bands at 724 and 783 cm-1 not 

only contain a contribution of A respectively C and U, both also of CoA and acetyl-CoA 

respectively citric acid. The EMSC coefficient profiles reveal the ceasing of D-fructose-6-

phosphate in the stationary phase, which leads to a decrease in acetyl-CoA and citric acid 

levels that are consumed by the citric acid cycle and to an accumulation of citric acid cycle 

intermediates. 
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This paper shows that models as incorporated in an EMSC procedure are very 

useful to estimate the contribution of reference spectra in bacterial Raman spectra. The 

question rises to what extent the number of reference spectra added to the model 

influences the estimation of their contribution to the bacterial Raman spectra. Would the 

accuracy of the model be improved by raising the number of reference spectra/products or 

by adding only some representatives of each group of biomolecules? This, together with a 

study of the similarity of the Raman signals of biomolecules in pure solid state (reference 

spectra) and physiological conditions could improve the accuracy of the results, although 

the output of such models will always be an estimation. Therefore, the challenge should be 

to make the estimation as accurate as possible. It is also recommended to include always 

some basic cell compounds that contribute highly in bacterial Raman spectrum (even when 

they are not of interest in the study) to improve the model’s accuracy. This issue was 

discussed by Sowa et al.18, who evaluated several models for the estimation of the 

composition of simulated multicomponent systems. They showed the importance of the 

presence of the basis reference spectra in order to perform accurate least squares 

estimations (the EMSC procedure includes a least squares estimation). 

The developers of the EMSC procedure warn for possible colinearity problems13, which can 

occur e.g. in case highly similar reference spectra are added to the model. When spectra of 

structurally very similar biomolecules are added, the model cannot distinguish between the 

contributions of these biomolecules to the bacterial spectra. In the next chapter, a possible 

solution for this problem is supplied and illustrated for the analysis of the fatty acid 

composition of bacterial cells. 
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In this chapter, the EMSC procedure, which was introduced in Chapter 7, is used to 

estimate contributions of highly similar biomolecules in bacterial Raman spectra. As we 

focused on the fatty acid composition within a bacterial cell, highly similar fatty acid 

spectra were added to the EMSC model, which could suffer from colinearity problems13,14. 

This chapter illustrates the introduction of a PCA before EMSC is started as a solution to 

avoid colinearity problems. 

 

8.1 8.1 8.1 8.1 IntroductionIntroductionIntroductionIntroduction    

 

Over the past few years, Raman spectroscopy became attractive as analytical tool in 

microbiology. The development of identification procedures for microorganisms such as 

bacteria7,8,10,16, yeasts11 and fungal spores5 have been successful. Several research groups 

have reported band assignments in bacterial Raman spectra for biomolecules such as 

phenylalanine, tyrosine, DNA and RNA bases, etc.8,12,15. However, many other bands in a 

bacterial Raman spectrum remain unassigned, due to the complex nature of the spectrum. 

Each band is most often the superimposed result of bands caused by several biomolecules 

present in the cell. The assignment of a band from bacterial Raman spectra to one specific 

biomolecule is therefore difficult or even impossible. De Gelder et al.3 present several 

methods to extract more biochemical information from complex Raman spectra (Chapter 7). 

Using a reference database and mathematical approaches, information was obtained for 

several biomolecules present in the cell. 

The question raised how detailed the biochemical information is that can be extracted from 

bacterial Raman spectra. It is our aim to explore the possibility of achieving relevant 

information on a group of very similar biomolecules and so this paper focuses on the 

contribution of fatty acids in bacterial Raman spectra. The fatty acid composition of 

biological materials has already been studied with Raman spectroscopy: Beattie et al.2 

analyzed adipose tissue, while Afsethi et al.1 used self-made mixtures of fatty acids that 

serve as food model systems. In both cases, the Raman spectra consisted solely or mainly 

of bands that coincide with fatty acids. These spectra allowed determining the fatty acid 
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composition by partial least squares regression (PLS). Laucks et al.9 reported that Raman 

spectra of marine and common mesophilic bacteria show large differences. One band was 

attributed to the presence of polyunsaturated fatty acids, but no single fatty acids were 

determined quantitatively. In this paper, we explore the possibilities to retrieve fatty acid 

information from bacterial Raman spectra. For this purpose, we selected Enterococcus 

faecalis LMG 7937 grown on two different media and Bacillus coagulans LMG 6326 

incubated at two different temperatures. The Raman spectra of the two conditions for each 

strain were compared in order to answer the following questions: (i) can these culturing 

conditions be distinguished from one another by their Raman spectra, (ii) can these 

culturing conditions be distinguished from one another by the fatty acid information 

provided by the Raman spectra and (iii) how detailed is the fatty acid information that we 

can extract from bacterial Raman spectra? To confirm our findings, we performed in parallel 

gaschromatographic Fatty Acid Methyl Ester (FAME) analyses. 

 

8.2 8.2 8.2 8.2 ExperimentalExperimentalExperimentalExperimental    

 

8.2.1 Strains and culturing conditions 

 

Enterococcus faecalis LMG 7937 was cultured at 28 °C on two different solid media namely 

TSA (tryptone soya agar) and MRS (De Man, Rogosa, Sharpe) Agar, while Bacillus 

coagulans LMG 6326 was cultured on TSA at two different temperatures namely 32 and 

52 °C. All incubations occured for 24 h to obtain confluent growth. From each plate a 

sample for Raman analysis was taken with a 1 µL smear loop, while the rest was harvested 

from one or more plates to obtain sufficient biomass for gaschromatographic FAME 

analysis. 
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8.2.2 Raman spectroscopy 

    

A Kaiser System Hololab 5000R modular Raman microspectrometer was used. A 785 nm 

diode laser (Toptica Photonics AG) was focused through an 100x objective of the 

microscope (Leica), to obtain ca. 45 mW of laser power on the sample. The scattered light 

was transferred through a confocal 15 µm aperture pinhole and a collection fiber to the 

spectrograph. Detection was performed by a back illuminated deep depletion Pelletier 

cooled (–70°C) CCD detector (Andor). The Raman signal was collected in the spectral 

interval of 150 cm-1 until 3500 cm-1. Only the region from 365 till 1780 cm-1 was used 

because: i) the sensitivity is lower at higher wavenumbers and ii) for higher wavenumbers 

there are no standards that allow a good quality calibration of the Raman shift axis. The 

acquisition time was 60 s for all spectra with a spectral resolution of ca. 4 cm-1.  

The reference spectra of fatty acids and other biomolecules (DNA and RNA bases, amino 

acids and some primary metabolites) were presented by De Gelder et al.4 (Chapter 5), 

where all reference products are listed together with their specifications and suppliers. For 

the measurement of bacterial Raman spectra, the samples were transferred to a CaF2 plate 

and dried for 10 minutes on silica gel. 

Spectral calibration was performed in MATLAB as described by Hutsebaut et al.6. The 

spectra were preprocessed by extended multiplicative signal correction (EMSC)14, for which 

the toolbox by Martens was used13. The reference spectra were treated with datacase 103 

(physical correction) for each product separately, which includes correction for additive 

and multiplicative effects4. The bacterial Raman spectra were treated (per strain) with 

datacase 106. This datacase includes a physical correction (elimination of additive and 

multiplicative effects) and models the spectra as a function of ‘good spectra’, which are in 

this case the reference spectra of fatty acids and other biomolecules. The EMSC 

coefficients for each reference spectrum that were calculated in the EMSC model are 

values for the contribution of a reference spectrum in a bacterial spectrum compared to a 

mal spectrum (mean spectrum of the dataset). These coefficients were used as relative 

values for the concentration of the different biomolecules. These values can be compared 

per reference product, but not between different reference products, because they do not 
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take the intrinsic Raman activity of the reference products into account. The spectra were 

collected in a small temperature interval of 19 to 21°C. 

 

8.2.3 Gas chromatographic fatty acid methyl esters analysis (FAME) 

 

Methyl esters of fatty acids were prepared and analyzed with the MIDI (Newark, Delaware) 

gaschromatographic system according to the manufacturer’s prescription. The obtained 

fatty acid profiles were compared pair-wise per strain and in relation to the different 

incubation conditions. 

 

8.3 8.3 8.3 8.3 ResultResultResultResults and Discussions and Discussions and Discussions and Discussion    

 

8.3.1 FAME analysis 

 

Multiple FAME analyses were performed in parallel to the Raman spectroscopic 

measurements. Average values of the FAME data for each culturing condition are shown in 

Figure 8.1. These percentages reflect for each fatty acid the relative concentration 

compared to the total fatty acid content of the cell. For B. coagulans LMG 6326 

(Fig. 8.1a) the major differences after incubation at 32 and 52 °C, are the percentages of 

c15Aiso* and c17Aiso. PCA (data not shown) shows that FAME profiles from 2 groups are 

clearly separated from each other by PC1 according to the incubation temperature. The 

loading plot shows that c15iso does not contribute significantly to this separation, as its 

absolute value of the loading for PC1 is relatively low. Furthermore, it is remarkable that 

lower fatty acids such as c14iso, c14, c15Aiso and c16iso have a high score for the data 

collected at 32 °C. This trend is expected as the cells try to keep the fluidity of their 

membranes at a constant level. Therefore, the production of fatty acids with longer carbon 

chains (which have higher boiling points) is increased at higher incubation temperatures. 

The results for E. faecalis LMG 7937 (Fig. 8.1b) show that the largest differences between 

                                                 
* Abbreviations of fatty acids are listed in Table 8.1. 
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the data obtained after culturing on TSA and MRS are the percentages of oleic acid and 

vaccenic acid, which differ only in the position of the double bond in the carbon chain. 

Again, the PCA plot (data not shown) shows 2 distinct groups according to the media that 

were used. The loading plot reveals that oleic acid, vaccenic acid, c14 and two sum peaks† 

contribute the most to PC1, which is responsible for the separation of these groups. 

 

 

 

                                                 
† Sum peaks contain contributions of several fatty acids that could not be separated by gas chromatography. 

Figure 8.Figure 8.Figure 8.Figure 8.1111 FAME analysis results for (a) B. coagulans LMG 6326 

and (b) E. faecalis LMG 7937. 
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8.3.2 Discussion of the Raman spectra of fatty acids 

 

The aim of this study is to examine whether useful information from a group of highly 

similar molecules, in this case fatty acids, can be extracted from a complex bacterial Raman 

spectrum. A logic first step is the study of the spectra of pure fatty acids that are 

commercially available and present in the cell as deduced from the FAME analyses of B. 

coagulans LMG 6326 and E. faecalis LMG 7937 (Table 8.1). Reference spectra of these 

products were recorded at multiple positions to include variations in the Raman spectra 

and are presented in De Gelder et al.4, along with bands assignments (Chapter 5). The 

Raman spectra of saturated and unsaturated fatty acids are clearly different: i) the 

unsaturated fatty acids are in liquid state and therefore have much broader bands and ii) an 

intense band at 1655 cm-1 is present in the spectra of the unsaturated fatty acids and can 

be assigned to the ν(C=C) stretching vibration. The two unsaturated fatty acids, oleic acid 

and vaccenic acid, which differ from each other by the position of the double bond, show 

only small differences in their Raman bands. 

 

Table Table Table Table 8888....1111 Fatty acids from which reference Raman spectra were recorded, along with 

their abbreviations used in the text and their specifications. 

Product nameProduct nameProduct nameProduct name    AbbreviationAbbreviationAbbreviationAbbreviation    

used in textused in textused in textused in text    

SpecificationsSpecificationsSpecificationsSpecifications****    

lauric acid c12 98% 

myristic acid c14 Sigma grade, 99-100% 

palmitic acid c16 Free acid, Sigma grade 

stearic acid c18 Free acid, grade I,  ∼99% 

12-methyltetradecanoic 

acid  

c15Aiso  

13-methylmyristic acid c15iso  

14-methylpentadecanoic 

acid 

c16iso  

14-methylhexadecanoic acid  c17Aiso  

15-methylpalmitic acid c17iso  

oleic acid  Reagent grade, 99% 

cis-vaccenic acid   
* all products were supplied by Sigma–Aldrich, Belgium 
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PCA was performed on the Raman spectra of the saturated fatty acids to evaluate whether 

these spectra show sufficient differences to allow distinction between these fatty acids. The 

score plots in Figure 8.2 show that linear fats, iso branched fats and Aiso branched fats can 

be clearly distinguished from one another. Furthermore, the similar fatty acids c14 and c16 

can be distinguished by PC1, while c15Aiso and c17Aiso are distinguished by PC3. Only 

the separation of the different iso fatty acids is not clear. These score plots illustrate the 

high similarity of the Raman spectra of these fatty acids and indicate that the interpretation 

of complex Raman spectra concerning the contributions of individual fatty acids will be 

difficult. 

 

 

 

It should be stressed that the reference spectra are not necessarily identical to the 

contributions of the fatty acids in the bacterial Raman spectra, due to different 

physicochemical states. The concordance of our conclusions with these of FAME analysis 

in the discussion below shows that this issue is not of a major influence for the accuracy of 

the results.  
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Figure 8.Figure 8.Figure 8.Figure 8.2222 Score plots of the PCA of the reference spectra from saturated fatty acids: (a) PC2 versus 

PC1 and (b) PC3 versus PC2. 
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8.3.3 Discussion of Raman spectra of B. coagulans and E. faecalis  

 

After the discussion of the Raman spectra of the pure fatty acids, we studied whether 

information about (similar) fatty acids can be extracted from complex bacterial Raman 

spectra. The two strains were each cultured in two different conditions: E. faecalis LMG 

7937 on TSA and MRS, and B. coagulans LMG 6326 on TSA at 32 and 52 °C. The Raman 

spectra were EMSC corrected (datacase 10613) with input of reference spectra from fatty 

acids and other biomolecules4 (Chapter 5). PCA was performed on these preprocessed 

bacterial Raman spectra. Per strain, clearly distinct groups in the score plots of the first 

two principal components are formed according to the two different incubation conditions 

(Fig. 8.3). 

 

For each strain, the mean spectra were calculated per culturing condition (Fig. 8.4-8.5). 

Most bands are visible in all 4 spectra and the majority can be assigned to DNA/RNA or 

proteins. Indeed, the bands at ca. 622, 1004 and 1606 cm-1 are assigned to phenylalanine, 

while tyrosine causes bands at 644, 825, 853 and 1617 cm-1. Bands of DNA and RNA can 

be found at 668 (G), 724(A), 782 (C,U) and 1573  cm-1 (G,A)12, although those at 724 and 

782 cm-1 can also contain contributions of primary metabolites acetyl coenzyme A and 
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citric acid, respectively3,4. Visible contributions of fats and fatty acids are observed at 1296 

and 1449 cm-1 due to δ(CH2) and δ(C-H) deformations, respectively. Saturated fatty acids 

contribute to bacterial Raman spectra by a triplet at ca. 1062, 1092-1103 and 

1126-1135 cm-1 caused by ν(C-C) stretching, while unsaturated fatty acids contribute to 

these spectra at ca. 1655 cm-1 by ν(C=C) stretching. 

 

Although fatty acids seem to have a significant contribution in bacterial Raman spectra, 

some difficulties make it very hard to obtain accurate information about the fatty acid 

composition of the cell. First, most of the fatty acid bands visible in bacterial Raman 

spectra are caused in more or lesser extent by all saturated or all unsaturated fatty acids. 

As a consequence, at specific positions in the bacterial Raman spectra there is a 

superposition of signals of several fatty acids that cannot be separated. Second, at these 

Raman band positions contributions of other biomolecules can as well be observed. For 

example, bands at ca. 1092-1103 cm-1 do not only contain contributions from C-C skeletal 

vibrations, but also from ν(COC) 1,4 stretches from glycosidic links and ν(>PO2
-) 

symmetric stretches. The same remark can be made for the band at ca. 1126 cm-1 where 

ν(C-C) and ν(C-N) stretches contribute, and for the band at ca. 1659 cm-1 where ν(C=C) 
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stretches of several biomolecules cause a Raman signal. When comparing both spectra of 

B. coagulans (Fig. 8.4), cultured under different conditions, the most remarkable 

differences are the larger intensities of the bands at 688, 724, 782 and 1573 cm-1 in the 

spectrum of incubation temperature 32 °C compared to 52 °C. These bands all contain 

contributions of the purine and pyrimidine bases present in DNA and RNA. 

 

 

The largest difference between both spectra of E. faecalis (Fig. 8.5) concerns the band at 

924 cm-1, which is of higher intensity in the spectrum of MRS compared to that of TSA. 

From these comparisons, we conclude that the most important differences in the Raman 

spectra are not related to the contribution of fatty acids. In order to visualize more 

differences, difference spectra were calculated between the two culturing conditions for 

each strain (Fig. 8.6). In the difference spectrum of B. coagulans (Fig. 8.6a), only the band 

at 1482 cm-1 can be related to fatty acids. Most Raman spectra of saturated fatty acids 

contain a band in that region as a shoulder to the intense band at 1449 cm-1. Although this 
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band can thus be related to saturated fatty acids, it is not possible to draw conclusions 

about specific fatty acids, as this band is the result of contributions from various saturated 

fatty acids. In the difference spectrum of E. faecalis LMG 7937 (Fig. 8.6b) a negative band 

at in the region of 1655-1675 cm-1 is observed and seems to consist of several 

contributions, such as a shoulder at 1658 cm-1. A band at 1655 cm-1 is only very weakly 

present in spectra of saturated fatty acids (ν(C=O) symmetrical stretch vibration), but is 

much more intense for unsaturated fatty acids (ν(C=C) stretch vibration). This difference 

spectrum thus suggests the presence of more unsaturated fatty acids when E. faecalis is 

cultured on TSA instead of on MRS. This observation is confirmed by the FAME data as 

the sum of the percentages of oleic and vaccenic acid is higher for the data collected with 

TSA instead of MRS grown cells. The most prominent difference between the reference 

spectra of oleic acid and vaccenic acid, is the presence of a band at 1118 cm-1, which is 

also observed as a positive band in the difference spectrum of E. faecalis. This observation 

suggests the presence of more oleic acid when culturing on MRS, which is confirmed by the 

FAME data. 
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Figure 8.Figure 8.Figure 8.Figure 8.6666 Difference spectra of both culturing conditions of (a) B. coagulans 
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In general, there is a significant contribution of fatty acids in bacterial Raman spectra. 

However, difference spectra show that most of the differences between the studied 

conditions are not related to fatty acids. Some minor differences can be attributed to fatty 

acids, although they are hard to assign to specific molecules, because these bands contain 

contributions of different fatty acids. Indeed, increasing contributions of certain fatty acids 

can be compensated by decreases of others and hence no difference is observed in the 

spectra. Band assignments are summarized in Table 8.2. 

 

Table Table Table Table 8.8.8.8.2222 Band assignments in the Raman spectra of B. coaguluans LMG 6326 and 

E. faecalis LMG 7937, based on Maquelin et al.12 and De Gelder et al.4 

Raman shift (cmRaman shift (cmRaman shift (cmRaman shift (cm----1111))))    

B. coagulansB. coagulansB. coagulansB. coagulans    
LMG 6326LMG 6326LMG 6326LMG 6326    

E. faecalisE. faecalisE. faecalisE. faecalis    
LMG 7937LMG 7937LMG 7937LMG 7937    

Band assignments 

425 429  

501 501  

533 537-540 S-S str, COC glycosidic ring def 

622 622 Phe 

644 644 Tyr 

668 668 G 

724 725 A, CoA, acetyl-CoA 

782 782 C, U (ring str), citric acid 

810 810  

824 825 “exposed” Tyr 

853 853 “buried” Tyr 

899 899 COC str 

932 924  

958 960  

1003 1004 Phe 

1033 1032  

1096-1102 1195-1103 C-C skeletal*, COC 1,4 str from 

glycosidic link, >PO2
- sym str 

1126 1126 C-N and C-C str* 

1156 1156  

1210 1210  

1263 1250 Amide III 

1296 1296 CH2 def* 

1319 1320  

1339 1338  

1449 1450 C-H2 def* 

1573 1575 G, A (ring str) 

1605 1606 Phe 

1617 1617 Tyr 

1659 1657-1659 Amide I, C=C str* 
* Raman shifts where a contribution of fatty acids is possible. 
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8.3.4 Chemometric approach for the extraction of fatty acid information from bacterial 

Raman spectra 

 

To obtain more information about the contribution of specific fatty acids to these Raman 

spectra, the coefficients of the fatty acids resulting from the EMSC correction were studied 

(datacase 10613), as described in Chapter 73. These values (data not shown) seemed to be 

difficult to compare with the FAME values. The EMSC coefficients (for all spectra per 

strain) were subjected to PCA, which produced very complex loading plots that were hard 

to interpret. From these EMSC coefficients, no valuable conclusions could be drawn that 

were consistent with FAME analysis, likely because of colinearity problems in the EMSC 

procedure as described by Martens et al.13,14. To avoid colinearity, an alternative procedure 

was applied that is summarized in a flow chart in Figure 8.7. 
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Figure 8.Figure 8.Figure 8.Figure 8.7777 Flow chart of the data processing that was applied to obtain fatty acid information from 

bacterial Raman spectra. 
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We first performed PCA analysis on the reference Raman spectra of the fatty acids, where 

the loading vectors of a full rank PCA present an equivalent dataset where the vectors are 

orthogonal. For B. coagulans the score plot (PC1, PC2) in Figure 8.8a shows that PC1 

makes a distinction between the Aiso fatty acids and the other fatty acids, while PC2 

distincts linear from branched fatty acids. Other principal components do not allow making 

a useful differentiation between the fatty acids. The first three loading vectors of this PCA 

of the fatty acid reference spectra were selected to serve as new reference spectra. These 

spectra are linear combinations of the original fatty acid reference spectra and are 

orthogonal (further referred to as ‘mix spectra’). Together with the reference spectra of 
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Figure 8.Figure 8.Figure 8.Figure 8.8888    (a) Score plot from the PCA performed on the reference spectra of the fatty acids of 

interest for B. coagulans LMG 6326 and (b) score and loading plot from the PCA performed on the 

EMSC coefficients of the fatty acid mix spectra for B. coagulans LMG 6326. 
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other biomolecules, these three loading vectors now serve as the ‘good spectra’ input for 

the EMSC procedure (datacase 106) applied on the bacterial Raman spectra. PCA analysis 

was performed on the resulting EMSC coefficients for the three mix spectra. Figure 8.8b 

shows the score plot for the first and the second principal component and the 

corresponding loading plot. The score plot shows a distinction (line drawn) between the 

data obtained after incubation at 32 and 52 °C. Although the distinction is not absolute, a 

trend is observed that most spectra obtained after incubation at 32°C have a lower score 

for PC1 and a higher score for PC2 compared to the spectra obtained after incubation at 

52°C. Therefore, these culturing conditions can be distinguished from each other by fatty 

acid information extracted from Raman spectra.  

 

Table Table Table Table 8.8.8.8.3333 Scores of the fatty acids for the first three loading vectors (mix 

spectra), resulting from the PCA’s of the fatty acid reference Raman 

spectra of interest for each strain. 

(a) (a) (a) (a) B. coagulansB. coagulansB. coagulansB. coagulans LMG 6326 LMG 6326 LMG 6326 LMG 6326    

 mix1 mix2 mix3 

c14 5.34 20.87 -3.17 

c15Aiso -29.58 -2.07 -11.95 

c15iso 19.40 -12.21 -8.04 

c16 9.87 17.71 2.33 

c16iso 7.01 -8.21 11.05 

c17Aiso -21.29 -3.15 12.17 

c17iso 9.25 -12.95 -2.38 

(b) (b) (b) (b) E. faecalisE. faecalisE. faecalisE. faecalis LMG 7937 LMG 7937 LMG 7937 LMG 7937    

 mix1 mix2 mix3 

c12 15.30 15.41 9.45 

c14 13.85 -13.58 4.85 

c16 15.14 -9.36 -1.33 

c18 14.89 7.12 -12.96 

oleic acid -29.28 0.24 1.10 

vaccenic acid -29.89 0.17 -1.12 

 

 

Comparison of the score and loading plots shows that mix1 and mix2 (loading vectors 1 and 

2 of the PCA performed on the fatty acid reference spectra) are related to the spectra 

recorded after incubation at 52 °C. From the scores of the PCA applied on the fatty acid 

reference spectra (Table 8.3a), it can be seen that mix1 has a negative contribution for the 
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Aiso fatty acids and a positive contribution for the other fatty acids. Therefore, we can 

conclude that incubation at 52 °C results in a lower Aiso content compared to incubation 

at 32 °C. This observation is confirmed by FAME analysis, as the sum of the percentages 

of c15Aiso and c17Aiso is higher for incubation at 32 °C (69.7%) than at 52 °C (67.0%). 

Analogous, mix2 has a positive contribution from the linear acids and a negative 

contribution of the branched acids, so there appear to be more linear acids in the cell at 52 

°C. Again, this observation is confirmed by FAME analysis as the sum of the percentages 

of c14 and c16 is higher for incubation at 52 °C (7.2%) than at 32 °C (6.1%). For mix3 no 

conclusions were drawn, as PC3 in the PCA analysis on the fatty acid reference spectra did 

not make a logic distinction between the fatty acids. 

A similar procedure was performed for the spectra of E. faecalis LMG 7937. First, PCA was 

performed on the reference spectra of the fatty acids of interest for this strain. Figure 8.9a 

shows the score plots of the first three principal components. PC1 makes a clear 

distinction between saturated and unsaturated fatty acids while PC2 shows no logic 

information about the fatty acids. For the saturated acids, it is clear that a higher score for 

PC3 is related to a lower number of carbon atoms in the fatty acids chain. Again, the first 

three loading vectors were used as new reference spectra (mix spectra), which are linear 

combinations of the fatty acid reference spectra and are orthogonal. These three mix 

spectra were used, together with reference spectra of other biomolecules, as ‘good 

spectra’ input for the EMSC procedure (datacase 106), that was applied on the bacterial 

Raman spectra. The coefficients of the three mix spectra, resulting from this EMSC 

procedure, were treated with PCA (Fig. 8.9b). 

The score plot shows that the two different media form clearly distinct groups, based on 

the fatty acids information and that only PC1 is responsible for this separation. The loading 

plot shows that mix1 and mix3 have the highest contributions in PC1. From comparison of 

the score plot and the loading plot, it is clear that mix1 and mix3 are related to cultivation 

on MRS. The scores of the first PCA (Table 8.3b) show that mix1 has a positive 

contribution from the saturated fatty acids and a negative contribution from the 

unsaturated fatty acids. Therefore, it is expected that more saturated fatty acids are 

present in the cell when culturing on MRS instead of on TSA. Analogous, mix3 has a 
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positive contribution of oleic acid, c12 and c14, so the sum of the concentration of these 

acids is expected to be higher when culturing on MRS instead of on TSA. These two 

findings match the FAME data as the sum of the unsaturated acids (oleic and vaccenic 

acid) is 34.5% and 40.5% for MRS and TSA grown cells respectively, while the sum of c12, 

c14 and oleic acid is 13.9% and 4.9% for MRS and TSA grown cells respectively. No 

conclusions were drawn for mix2, because mix2 has a lower (absolute) contribution in PC1 

and a higher one in PC2 that is not responsible for the distinction between data of the two 

media. Moreover, mix2 did not contain any logic information according to the PCA of the 

fatty acid reference spectra. 
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Figure 8.Figure 8.Figure 8.Figure 8.9999 (a) Score plots from the PCA performed on the reference spectra of the fatty acids of 

interest for E. faecalis LMG 7937 and (b) score and loading plot from the PCA performed on the 

EMSC coefficients of the fatty acid mix spectra for E. faecalis LMG 7937. 
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8.4 8.4 8.4 8.4 ConclusionConclusionConclusionConclusionssss    

 

In this study we explored the possibilities of Raman spectroscopy to provide information 

about the fatty acid composition of bacterial cells. Reference Raman spectra were recorded 

from several commercially available fatty acids. Most of these spectra could be 

distinguished from one another, although generally their Raman pattern is very similar 

which stresses the complexity of this study. The bacterial Raman spectra and their 

difference spectra are dominated by Raman bands from other biomolecules such as DNA 

and RNA bases, amino acids, etc. Furthermore, minor differences related to fatty acids are 

difficult to interpret because these bands contain contributions of several fatty acids. For a 

more detailed study of the data, we used the coefficients resulting from the EMSC 

procedures as values for the relative concentration of fatty acids in the cell. Due to the 

complexity of bacterial Raman spectra, it is very difficult to extract information about single 

fatty acids from these spectra. Indeed, PCA performed on the EMSC coefficients of the 

single fatty acids did not supply useful information, likely due to a colinearity problem in 

the EMSC procedure. Therefore, PCA was performed on the fatty acid reference spectra. 

Only three loading vectors (mix spectra) were used as ‘good spectra’ input for the EMSC 

procedure. The resulting coefficients of the mix spectra were subjected to PCA. In the 

score plots, the different culturing conditions form distinct groups. Thus, these culturing 

conditions could be easily distinguished from each other based on the fatty acid information 

in the bacterial Raman spectra. Comparison of the score and loading plots provided 

information about the relative amount of groups of fatty acids present in the cell. This 

information was consistent with the results from gaschromatographic FAME analysis. We 

conclude that Raman spectroscopy can provide information about fatty acid in bacterial 

cells, but the information is not as refined as that resulting from FAME analysis. We 

consider the described chemometric method useful to obtain fatty acids information when a 

whole cell profile has to be obtained, for which Raman spectroscopy is very suitable. 

Application of this chemometric method can be performed on similar problems that aim to 

achieve information from bacterial Raman spectra about any kind of biomolecule group with 

structurally very similar members. 
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This study shows that the use of an EMSC model for the estimation of the 

contribution of biomolecules to bacterial Raman spectra can be extended to highly similar 

biomolecules, provided PCA precedes the EMSC procedure. Unfortunately, in this way, it 

is not possible to obtain information about each of these compounds separately, but only 

about groups of them.  

The previous chapters showed how reference spectra (Chapter 5) can be used to study 

bacterial compounds (Chapters 6, 7 and 8). Further research should focus on the vague 

borderline when to use the EMSC approach with or without precedent PCA analysis. The 

question remains whether also (semi-)quantitative information can be obtained from the 

biomolecules in bacterial cells. This will be dealt with in Chapter 9. 
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This chapter explores the possibility of monitoring and of quantifying a specific 

bacterial compound. For this study, we selected poly-3-hydroxybutyrate (PHB), a 

compound that contributes highly to the bacterial Raman spectrum and shows an isolated 

band at 1734 cm_-1. In addition, bacterial PHB formation is of industrial importance for the 

production of bioplastics. 

 

9.1 9.1 9.1 9.1 IntroductionIntroductionIntroductionIntroduction    

 

Poly-3-hydroxybutyrate (PHB) is a biodegradable polymer that can be produced by certain 

bacteria in large amounts when unbalanced growth conditions such as a high 

carbon/nitrogen ratio are applied1,26. PHB is stored in granules and metabolized when the 

growth conditions become favorable or when lacking essential nutrients become available. 

Industries were interested in the production of PHB in microorganisms for the production 

of bioplastics1,2. Over the years, several species and culturing conditions have been 

evaluated in order to obtain an efficient PHB production. Cupriavidus necator (formerly 

Ralstonia eutropha) was the most preferred organism and fed-batch cultivation the most 

preferred method of production23. Oliveira et al.21 described the characterization of PHB 

produced by Cupriavidus necator in solid state fermentation. Characterization of its 

chemical structure, thermal properties and crystalline morphology was performed by NMR 

and FTIR spectroscopy, differential scanning calorimetry, X-ray diffraction and polarizing 

optical microscopy. The results showed that solid state fermentation is an interesting 

alternative for submerged fermentation for the production of PHB with adequate properties. 

Obviously, the production rate needs to be monitored. The preferred methods for PHB 

quantification are GC-MS20 and HPLC9. These labor-intensive techniques require a 

destruction of the samples and derivatization of PHB. A PHB ester is measured after GC 

by MS. In the case of HPLC, PHB is converted to crotonic acid monomers from which the 

absorbance at 210 or 214 nm is measured. As an alternative technique, flow cytometry3,8 

has been proposed. This requires a staining of a small amount of cells in suspension using 

the fluorescent lipid dye Nile Red. This dye penetrates cells in suspension and 
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preferentially accumulates in a lipid-rich environment such as PHB granules. Cell counts 

and fluorescence intensities can be recorded during the flow cytometry analysis using an 

excitation and emission wavelenth of 488 nm and 585 nm, respectively. Fourier transform 

infrared spectroscopy (FT-IR)18 has also been described as an alternative for HPLC. On-

line determination is possible using a sequential analysis flow system7. 

Raman spectroscopy has already been reported as a powerful tool for identification of 

species10,13 or strains6,15,22. However, this technique also allows the extraction of information 

about cell components. Several bands in bacterial Raman spectra are already assigned to 

(groups of) biomolecules16,19. Because of band overlap, there is often a need for 

mathematical fitting of reference spectra to these bacterial Raman spectra, in order to 

obtain information about specific cell compounds4 (Chapter 7). Raman spectroscopy is 

potentially suitable for the determination of PHB for process control, as it requires only 

small sample volumes and minimal sample preparation, the analysis is fast and on-line 

detection systems could be developed.  

In this paper, the possibilities of Raman spectroscopy to follow PHB production are 

described. The Raman spectra of pure PHB and HB were collected. Raman spectra 

collected from Cupriavidus necator DSM 428 (H16) were studied for their contribution of 

PHB and HB signals. The possibility to monitor PHB production during growth was 

evaluated. In a separate setup, the results from Raman spectroscopy were compared to 

PHB concentrations determined by parallel HPLC analysis. 

 

9.2 9.2 9.2 9.2 ExperimentalExperimentalExperimentalExperimental    

 

9.2.1 Strains, culturing conditions and sampling 

 

Cupriavidus necator DSM 428 (H16) producing PHB25 and its mutant strain Cupriavidus 

necator DSM 54124 unable to produce PHB, were cultured in 50 mL of a mineral medium 

(Table 9.1) inoculated from an overnight trypticase soy broth (TSB) culture to obtain a 

start OD660 nm of 0.01.  
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Table Table Table Table 9.9.9.9.1111 Composition of the mineral medium 

Mineral medium: per L MilliQMineral medium: per L MilliQMineral medium: per L MilliQMineral medium: per L MilliQ----waterwaterwaterwater****::::    

Sodium acetate 2.4 g 

MgSO4.7H2O 600 mg 

NH4Cl 160 mg 

Sodium EDTA 100 mg 

K2HPO4 92 mg 

KH2PO4 45 mg 

CaCl2.2H2O 70 mg 

Spore solution 2 mL 

Spore solution: per L MilliQSpore solution: per L MilliQSpore solution: per L MilliQSpore solution: per L MilliQ----water:water:water:water:    

FeCl3.6H2O 150 mg 

H3BO3 150 mg 

CoCl2.6H2O 150 mg 

MnCl2.4H2O 120 mg 

ZnSO4.7H2O 120 mg 

Na2MoO4.2H2O 60 mg 

CuSO4.5H2O 30 mg 
*MilliPore, Vergeze, France 

 

To monitor PHB production and consumption, two sets of three cultures of DSM 428 and 

one culture of DSM 541 were shaken at 28 °C. The first set was sampled after 26, 28, 30, 

32, 34, 36, 50, 52, 54, 56, 58 and 60 h of incubation, while the second set was sampled 

after 14, 16, 18, 20, 22, 24, 38, 40, 42, 44, 46 and 48 h of incubation. In this way, Raman 

measurements were performed every two hours between 14 and 60 h of incubation, in 

triplicate for DSM 428 and once for the PHB negative mutant DSM 541. Samples of 0.5 mL 

were washed 2 times with 0.5 mL of water (9000 × g, 1 min) and were transferred to a 

fused silica slide. The samples were dried for 15 min at 37 °C and analyzed with 

instrument 1 (see below). 

For the comparison of Raman spectroscopic and HPLC analysis of PHB, samples were 

taken in parallel from separate cultures after 18, 22, 26, 30, 34, 36, 38, 40, 42, 46, 50 and 

54 h of incubation. From each culture, two samples of 10 to 20 mL were taken for HPLC 

analysis and three samples of 2 to 4 mL were used for Raman spectroscopy (for cultures 

with lower OD values, larger samples are necessary). The samples were washed 2 times 

with 1 mL water (9000 × g, 2 min), transferred to a CaF2 slide, dried for 10 min on silica 

and analyzed with instrument 2 (see below). 
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The range of the studied incubation times differs for the experiments on Raman instrument 

1 and 2, because the use of different incubators causes differences in growth rate. 

 

9.2.2 Products 

 

Poly(3-hydroxybutyric acid) (natural origin) and (R)-(-)-3-hydroxybutyric acid (sodium 

salt, 98%) were purchased from Sigma-Aldrich (Belgium). 

 

9.2.3 Raman spectroscopy 

 

Instrument 1 

  

Raman spectra were collected using a Model 2500 High Performance Raman Module 

(HPRM) (River Diagnostics BV, Rotterdam, The Netherlands), coupled to a custom-build 

inverted microscope stage, with an automated XY-stage (River Diagnostics) and operated 

using RiverICon software (River Diagnostics), version 1.63. The microscope contained a 

custom-designed microscope objective (River Diagnostics) with a numerical aperture of 

0.7, 20× magnification, a working distance of 100mm, and optimized for Raman 

experiments in the 750-1000 nm wavelength region. The objective focused laser light 

emitted by the Model 2500 HPRM through the fused silica slide into the samples on top of 

the slide. The measurement volume of the instrument is approximately 5 µm in the lateral 

direction and 15 µm along the optical axis. The objective also collected Raman scattered 

light from the samples. Samples were excited using laser light from a 785 nm diode laser 

(Sacher Lasertechnik, Marburg, Germany), delivering approximately 150 mW to the sample. 

The spectrometer was calibrated according to the manufacturer’s guidelines.  

Automated data collection and signal pre-treatment was performed using the RiverICon 

software, requiring 100 s to sample 100 independent locations per sample. A correction for 

the signal contribution of the fused silica substrate was performed. 
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Instrument 2 

 

For practical reasons, we used a Raman instrument that was located close to the HPLC 

instrument for the comparative study. Raman spectra were recorded with a Kaiser System 

Hololab 5000R modular Raman microspectrometer. Laser light of a 785 nm diode laser 

(Toptica Photonics AG, Grafelfing, Germany) was focused through a 100x objective of the 

microscope (Leica, Wetzlar, Germany) to obtain a power of 50-60 mW at the sample. The 

scattered light is transferred to the spectrograph by a confocal aperture collection fiber 

(15 µm N.A.) where it was detected by a back illuminated deep depletion Peltier cooled 

(-70 °C) CCD detector (Andor, Belfast, Northern Ireland). On each smear of the CaF2 

plate 4 Raman spectra of 60 s were collected around a central focus point. The calibration 

was performed as described by Hutsebaut et al.5. MATLAB version 6.5 (The Mathworks, 

Natick, Massachusetts) was used for data preprocessing. 

 

9.2.4 Data analysis 

 

Extended multiplicative signal correction (EMSC) was applied17 and spikes were removed 

from the spectra. For the spectra collected on instrument 1 and 2 the average of the 100 

and 4 spectra per sample, respectively, was calculated. Band intensities were obtained at 

the pixel with the highest signal for the band at 1734 cm-1. The spectra collected on 

instrument 2, for the comparison with HPLC analysis, were subjected to a background 

subtraction (modified polynomial fit11) before calculating band intensities. 

 

9.2.5 HPLC analysis 

 

PHB content of the biomass was determined by acid hydrolysis of PHB to crotonic acid. 

Culture samples were centrifuged for 10 minutes at 7000 x g. The pellets were resuspended 

in 1 mL of distilled water and transferred to pre-weighted eppendorf tubes. Samples were 

centrifuged for 5 minutes at 13000 x g, dried overnight at 100 °C and weighted again for 

the determination of total biomass. Dried pellets were digested with 1 mL of 96% H2SO4 at 
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100 °C for 1 h to form crotonic acid. The reaction mixture was cooled to room 

temperature, samples were 50-fold diluted with distilled water and crotonic acid was 

determined by HPLC using a Dionex ASI-100 autosampler injector (Dionex Corporation, 

Sunnyvale, CA, USA) equipped with an Aminex HPX-87H ion-exchange organic acids 

column (300 x 7.8 mm) (BioRad). The solvent used was 0.014 N H2SO4 at a flow rate of 

0.7 mL/min. The elution peaks were monitored at 210 nm with a Dionex UV detector. PHB 

content was calculated from a calibration curve for standards of commercial PHB 

(Goodfellow Cambridge Ltd., Huntingdon, England) treated in the same way as the 

samples. 

 

9.3 9.3 9.3 9.3 Results and discussionResults and discussionResults and discussionResults and discussion    

 

9.3.1 Raman spectra of PHB and its monomer HB 

 

A Raman spectrum of commercially available PHB was recorded (Fig. 9.1a). The most 

prominent bands in this spectrum are located at 433, 839 and 1725 cm-1 and can be 

assigned to δ(CC) skeletal deformations, ν(CC) skeletal stretches and a ν(C=O) stretching 

vibrations12. The regions from 1040 to 1140 cm-1 and from 1250 to 1460 cm-1 show bands 

caused by respectively ν(CC) skeletal stretches and δ(CH), δ(CH2), δ(CH3) deformations12. 

When recording spectra of bacterial samples, all Raman active biomolecules will contribute 

to the resulting spectrum and their signals may overlap. Therefore, it is important to study 

reference spectra of compounds related to PHB, for example its monomer. Therefore, a 

spectrum of the sodium salt of β-3-hydroxybutyric acid (HB) was recorded (Fig. 9.1b). In 

this spectrum, the bands of δ(CC) skeletal deformations and ν(CC) skeletal stretches seem 

to be shifted to 483 and 853 cm-1 respectively. At 909 and 953 cm-1, two bands of medium 

intensity are observed and can be assigned to ν(C-C-O) stretches of the hydroxyl group at 

the β-position in the monomer12. Because this monomer contains a COOH or COO- 

function instead of an ester bond, its spectrum shows no band between 1720 and 

1740 cm-1 12. Indeed, the ν(C=O) stretching vibration of carboxylic acids contributes only 

weakly in a Raman spectrum in the region between 1625 and 1687 cm-1, while the 
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symmetric and asymmetric ν(C=O) stretching vibrations of carboxylic acid salts are 

observed at 1540-1695 cm-1 (weak) and 1360-1450 cm-1 (strong) respectively12.  

 

 

 

9.3.2 Monitoring of PHB production and consumption of C. necator DSM 428 and its PHB 

negative mutant DSM 541 during growth 

 

Raman spectra of C. necator DSM 428 and its PHB negative mutant DSM 541 were 

recorded during growth (14 to 60 h, step 2 h). Examples of these spectra for both strains 

collected after 26 h of incubation are shown in Figure 9.2 (band assignments in these 

spectra are summarized in Table 9.2). Compared to the spectrum of the PHB negative 

mutant DSM 541 (Fig. 9.2a), the spectrum of the strain DSM 428 (Fig. 9.2b) shows 

significant higher intensities at 1452 and 1734 cm-1, and in the regions from 340 to 430, 

from 800 to 960 and from 1040 to 1130 cm-1. The differences between the PHB producing 
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Figure 9.Figure 9.Figure 9.Figure 9.1111 (a) Reference Raman spectra of poly-3-hydroxybutyrate 

(PHB) and (b) the sodium salt of β-3-hydroxybutyric acid (HB) and (c) 

difference spectrum between C. necator DSM 428 and the PHB 

negative mutant DSM 541 after 26 h of incubation (instrument 1). 
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strain and the mutant strain were more pronounced when a difference spectrum was 

calculated between their spectra collected after 26 h of incubation time (Fig. 9.1c). 

Comparison of this difference spectrum to the reference spectrum of pure PHB (Fig. 9.1a), 

shows that the most prominent contributions of PHB to a bacterial Raman spectrum are 

located at ca. 357, 423, 607, 830, 1055, 1101, 1351, 1453 and 1734 cm-1. Raman band 

positions of PHB in the reference spectrum and in the bacterial spectra may differ several 

wavenumbers, because of the different physicochemical state of PHB and a different matrix 

in bacteria. The reference product was measured as a dry powder, but in the cell PHB is 

present a suspended form inside granules14. 

 

In Figure 9.3, spectra of one culture series sampled at 14, 24, 38 and 48h are plotted. This 

figure shows that the above mentioned bands that were assigned to PHB vary as a function 

of incubation time. Because the band at 1734 cm-1 is isolated in the spectra of DSM 428 

and not present in the spectra of the PHB negative mutant DSM 541 (Fig. 9.2a), its 

intensity seems to be a potential marker for the PHB content of bacteria. A possible 

contribution from the monomer of PHB in the bacterial Raman spectra was considered. 
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Figure 9.Figure 9.Figure 9.Figure 9.2222 Raman spectra of (a) C. necator DSM 541 (PHB negative 

mutant) and (b) C. necator DSM 428 after 26 h of incubation 

(instrument 1). 
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Indeed, the HB bands at 853, 909 and 953 cm-1 (Fig. 9.1b) could also contribute in the 

difference spectrum (Fig. 9.1c). Moreover, these bands seem to vary as a function of 

incubation time in the bacterial spectra in Figure 3, analogously to the bands of PHB. This 

observation confirms the contribution of HB in the bacterial spectra. The Raman spectrum 

of the monomer HB (Fig. 9.1b) does not show bands above 1700 cm-1, which suggests that 

the band at 1734 cm-1 in bacterial Raman spectra contains a dominant contribution of the 

polymer PHB.  

 

Therefore, we used the intensity of the band at 1734 cm-1 as a marker for the PHB 

concentration in the cells. Band intensities at 1734 cm-1 were calculated for all Raman 

measurements of C. necator DSM 428 and DSM 541 and plotted as a function of the 

incubation time (Fig. 9.4). The error bars represent the standard deviation on the 

100 independent measurements that were collected for each sample. Because cells in a 

culture are not all in the same state, these bars mainly represent within-culture variation 

instead of instrumental variation. Especially in the case of PHB, which occurs in granules, 

there is heterogeneity within a culture. As can be seen from the error bars, this 
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Figure 9.Figure 9.Figure 9.Figure 9.3333    Mean spectra per incubation time of some spectra of C. 
necator DSM 428 in culture series 1: (a) 14 h, (b) 24 h, (c) 38 h and 

(d) 48 h (instrument 1).    
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heterogeneity is larger in the exponential phase than in the stationary phase. For the PHB 

negative mutant DSM 541, the intensity is limited to the background level and no evolution 

during incubation time is observed. For DSM 428 a clear evolution of production and 

consumption of PHB can be observed by the Raman intensity at 1734 cm-1. For the applied 

culturing conditions, the maximum PHB yield was reached after 28 to 30 h of incubation. 

An offset is observed between the two culture series due to different microbial growth, as 

these series were initiated from different inocula. 

 

Table Table Table Table 9.9.9.9.2222 Band assignments for the Raman spectra of C. necator DSM 428 and the PHB 

negative mutant DSM 541. 

Raman bands (cmRaman bands (cmRaman bands (cmRaman bands (cm----1111) in the spectra of) in the spectra of) in the spectra of) in the spectra of    

C. necatorC. necatorC. necatorC. necator DSM 428 DSM 428 DSM 428 DSM 428    
C. necatorC. necatorC. necatorC. necator DSM 541  DSM 541  DSM 541  DSM 541 

(mutant)(mutant)(mutant)(mutant)    

Band assignments in bacterial Band assignments in bacterial Band assignments in bacterial Band assignments in bacterial 

Raman spectraRaman spectraRaman spectraRaman spectra****    

357 (m)  PHB 

417 (m,br,400-450)  PHB 

519 (w) 531 (m) ν(S-S) 

600 (m)  PHB 

617 (m) 621 (w) Phe 

638 (m) 642 (w) Tyr 

 669 (w) G 

723 (w) 723 (m) A 

755 (w) 757 (w)  

779 (w) 779 (m) C, U 

830 (vs) 825 (m) Tyr, PHB 

853 (s) 853 (m) Tyr, HB 

899 (s) 896 (w) ν(COC), HB 

 933 (w)  

954 (m) 957 (w) HB 

1003 (m) 1003 (vs) Phe 

 1031 (m)  

1055 (s)  PHB, HB 

1101 (s) 1095 (s) PHB, HB, ν(>PO2
-) sym 

1128 (m) 1123 (m) ν(C-N), ν(C-C) 

1175 (w,sh) 1171 (w)  

1205 (m,sh)   

1234 (m) 1247 (s) Amide III 

1302 (m)     

 1315 (s)  

1345 (s) 1332 (s)  

1452 (vs) 1448 (vs) δ(CH2), e.g. PHB, HB 

1538 (w) 1543 (m)  

1575 (w) 1574 (m) G, A 

1617 (w,sh) 1616 (w,sh) Tyr 

1660 (s) 1661 (vs) Amide I 

1734 (vs)  PHB 
* ‘PHB’, ‘HB’ indicate contributions of these molecules in the Raman spectra of DSM 428 

w = weak, m = medium, s = strong, vs = very strong, sh = shoulder, br = broad 
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9.3.3 Determination of the PHB content of C. necator DSM 428: comparison of Raman 

band intensities and absolute concentrations obtained from HPLC analysis 

 

In order to relate the intensity of the Raman feature at 1734 cm-1 with the PHB content of 

the cultured cells, a comparative study with HPLC was performed. Twelve analyses of 

independently grown cultures between 18 and 54 hours of incubation were performed for 

C. necator DSM 428 to cover a large range of the assumed PHB content. Therefore, the 

twelve cultures were prepared by adding an overnight TSB grown inoculum to 50 mL 

mineral medium so OD660nm 0.01 was obtained. After the appropriate incubation time, these 

cultures were sampled in parallel for Raman spectroscopy and HPLC analysis. From each 

culture (50 mL), three Raman samples (2-4 mL) and two HPLC samples (10-20 mL) were 

taken. A background subtraction based on a modified polynomial fit11 was performed before 
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Figure 9.Figure 9.Figure 9.Figure 9.4444 (a) Band intensities at 1734 cm-1 (PHB) in the Raman spectra of C. necator DSM 428 and the 

PHB negative mutant DSM 541 recorded during growth (instrument 1). The error bars represent the 

standard deviation of the 100 independent measurements collected per sample and reflect mainly 

within-culture variation. For sake of clarity, manually drawn curves have been added to indicate the 

evolution of the two culture series of DSM 428. (b) OD660nm as a function of incubation time, measured in 

parallel to the Raman experiment. 
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calculating the Raman band intensities at 1734 cm-1 (Fig. 9.5). Raman bands intensities and 

absolute concentrations (mg/L culture) are given in Table 9.3.  

 

 

PHB concentrations determined by HPLC can vary substantially, probably due to 

variations in sample preparation (recovery for the conversion to crotonic acid). The 

variations in Raman band intensities are smaller and likely to be caused by a combination of 

heterogeneity in PHB formation between the individual cells of a culture and the small 

Figure 9.Figure 9.Figure 9.Figure 9.5555 Illustration of (a) the modified polynomial fit, (b) background subtraction and calculation of 

band intensity at 1734 cm-1, applied on a Raman spectrum of C. necator DSM 428 incubated for 36 h 

(instrument 2). 
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Figure 9.Figure 9.Figure 9.Figure 9.6666 Determination of the PHB content of C. necator DSM 428: comparison of the relative 

values deduced from Raman spectra and the absolute concentrations (mg/L culture) determined by 

HPLC analysis (instrument 2). 
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sampling volume of the laser (ca. 22 µm3). Per incubation time (per culture), the average 

values were calculated for Raman spectroscopy as well as for HPLC analysis. In Figure 9.6 

these values are plotted, in order to visualize the relation between the values obtained for 

both techniques. The Raman band intensity at 1734 cm-1 was related linearly (R2 = 0.95) 

with the concentration of PHB determined by HPLC and expressed as mg PHB per L 

culture. This observation shows the potential of Raman spectroscopy for the quantification 

of PHB in bacterial cells and the ability to qualitatively follow the PHB production as a 

function of culture time. 

 

Table Table Table Table 9.9.9.9.3333 Raman band intensities at 1734 cm-1 and PHB content (mg/L culture) determined by 

parallel HPLC analysis. 

PHB content determined byPHB content determined byPHB content determined byPHB content determined by    
IncubIncubIncubIncubation ation ation ation 

time (h)time (h)time (h)time (h)    
Raman band intensities at 1734Raman band intensities at 1734Raman band intensities at 1734Raman band intensities at 1734    cmcmcmcm----1111    

(arbitrary units)(arbitrary units)(arbitrary units)(arbitrary units)    
HPLC (mg/HPLC (mg/HPLC (mg/HPLC (mg/L culture)L culture)L culture)L culture)    

18 6.55 6.40 6.88 4.80 4.20 

22 9.55 8.49 8.46 20.99 31.52 

26 9.36 7.83 9.20 18.42 26.59 

30 11.29 11.24 12.31 42.46 49.30 

34 11.65 11.05 13.11 103.10 63.20 

36 13.37 11.86 13.33 114.10 79.80 

38 13.34 11.60 13.49 115.10 79.20 

40 13.01 14.58 14.12 154.40 115.50 

42 15.74 16.20 16.66 145.80 121.97 

46 18.80 18.99 17.61 184.73 195.92 

50 16.29 16.42 16.41 155.06 177.36 

54 15.60 15.87 15.89 146.56 158.47 

 

 

9.4 9.4 9.4 9.4 ConclusionsConclusionsConclusionsConclusions    

 

The presence of PHB in C. necator DSM 428 and most likely in other bacterial species can 

be deduced from its contribution in bacterial spectra to Raman bands at ca. 357, 423, 830, 

1055, 1101, 1351, 1453 and 1734 cm-1. The band at 1734 cm-1 seems to be suitable for 

monitoring PHB, as no contribution from other biomolecules is observed at 1734 cm-1 in 

the Raman spectra of the mutant strain DSM 541 which is unable to produce PHB. 

Moreover, the ν(C=O) stretching vibration of the monomer, hydroxybutyric acid, is located 
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below 1700 cm-1 and has weak intensity. Therefore, production and consumption of PHB in 

C. necator DSM 428 could be observed as a function of the incubation time by the Raman 

band intensity at 1734 cm-1. For the PHB negative mutant, these intensities remained at 

the background level during the observed growth, while for the PHB producing strain 

DSM 428, the Raman band intensities at 1734 cm-1 are linearly related to the absolute 

concentrations of PHB (mg/L culture) determined by HPLC (R2 = 0.95). 

We conclude that Raman spectroscopy could be used for the fast monitoring of PHB 

production and consumption. Raman band intensities at 1734 cm-1 can be used as relative 

values for the PHB content in bacteria and show potential for its quantitative 

determination. 

 

 

This chapter shows the potential of Raman spectroscopy for quantitative 

determination of a bacterial cell compound. Further research could try to determine the 

absolute concentration of a compound directly by using, for instance, a PLS model. 

However, this approach requires the possibility to prepare reference samples with different 

known concentrations of that compound, so that their Raman spectra could be used for 

calibration of the model. 

The previous chapters showed the applicability of reference spectra and several processing 

methods for studying bacterial compounds with Raman spectroscopy. Chapter 10 reports 

on a case study where some of the described methods were applied to study the influence 

of microgravity on Ralstonia metallidurans LMG 1195 with Raman spectroscopy. 
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This chapter presents a case study of Ralstonia metallidurans LMG 1195 cultured in 

microgravity conditions and a control setup. The cellular differences induced by 

microgravity are subtle and so it is challenging to identify them. Some of the processing 

techniques presented in Chapter 6 and 7 were used to extract relevant information about 

these differences from bacterial Raman spectra. 

 

10.1 10.1 10.1 10.1 IIIIntroductionntroductionntroductionntroduction    

    

Future long-term manned space trips demand the possibility to recycle waste en produce 

food in a space environment. Therefore, microbial based life support systems are being 

developed9,11,12. These systems can only be used in a reliable way if one understands the 

behaviour of microorganisms in spaceflight conditions (e.g. microgravity and cosmic 

radiation). Currently, studies are being performed in the orbital station International Space 

Station (ISS) to investigate this issue2,21. Wilson et al.39 have shown that the pathogenicity 

of a S. thyphimurium strain increased when it was cultured in space flight conditions (on 

the Space Shuttle). This observation is of paramount importance for estimating the possible 

impact of bacteria on the astronaut’s health. The knowledge about the behaviour 

(pathogenicity in particular) of bacteria in a space flight environment is of importance in the 

frame of long-term manned space missions because the presence of bacteria can not be 

avoided during the missions15,32. Space flight experiments are limited, extremely expensive 

and have many experimental constraints (limited access to the ISS, small experimental 

setups, little experimental control, etc.). The application of laboratory models to simulate 

certain aspects of spaceflight has proven to be useful to overcome a number of these 

practical constraints. Furthermore, these models can be used to elaborate hypotheses 

about the effects of spaceflight conditions on living cells. In this respect, the Rotating Wall 

Vessel (RWV) technology was developed by the National Aeronautics and Space 

Administration (NASA), and is used in the field of space research to simulate the low-shear 

environment inherent to microgravity17. The RWV is a cylindrical bioreactor which can be 

completely filled with medium and which is rotated on an axis parallel with the ground. 
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Subsequently, a solid body mass rotation of the culture medium is obtained creating a low 

fluid-shear environment (calculated to be less than 0.001 Pa10,28) allowing bacterial cells to 

remain in suspension in a restricted orbit23. Several research groups apply the RVW 

technology for cultivation of various bacteria8,22,38,39. Wilson et al.39 reports that differences 

detected between cultures from the Space Shuttle and an identical ground control setup 

were confirmed with the ground based microgravity culture model in the RWV. This 

strengthens the assumption that the RWV can mimic (only) low-shear microgravity effects. 

In addition to space-flights, microgravity studies can be useful in ground-based 

applications. Studying changes in pathogenesis, metabolism and physiology induced by 

microgravity can lead to a better understanding of their mechanisms30. Studies, for space as 

well as ground-based applications, have already reported differences in gene expression, 

physiology and pathogenesis and are summarized in Nickerson et al.31 and Leys et al.21. 

However, some processes such as DNA repair do not seem to be altered by 

microgravity18,34.  

Raman spectroscopy is a vibrational spectroscopic technique. Raman band positions are 

related to certain vibrations and therefore the spectra provide information about the 

composition of a sample. A Raman spectrum recorded from bacterial cells is thus a 

superposition of signals from most cell constituents. Raman spectroscopy has been 

explored for its possibilities in microbiology and has proven to be useful for the 

identification of microorganisms on the species19 and even strain level14,24,33. In addition, 

information on the composition of bacterial cells can be obtained3,5,25,29. In this work we 

used Raman spectroscopy to compare cultures of Cupriavidus metallidurans LMG 1195 that 

were grown under simulated microgravity (SMG) conditions and a control setup, both in the 

RWV. Cupriavidus metallidurans was chosen because it was used in previous studies as a 

model organism for studying the influence of microgravity27. Our aim was to show that 

Raman spectroscopy is a useful technique 1) for the discrimination between bacterial cells 

grown in SMG and control conditions and 2) for the extraction of information about the 

constitution and/or metabolomics of bacterial cells. 
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10.2 10.2 10.2 10.2 Materials and methodsMaterials and methodsMaterials and methodsMaterials and methods    

 

10.2.1 Strain and culturing conditions 

 

The inoculation of the Rotating Wall Vessel (RWV) bioreactors (Cellon, Bereldange, 

Luxembourg) occurred as follows: an overnight shaken culture of Cupriavidus metallidurans 

LMG 1195 was diluted in fresh mineral medium to obtain OD(590nm) of 0.01. A detailed 

composition of the medium is given by De Gelder et al.3 (Chapter 7). The RWV bioreactors 

were filled completely with circa 50 mL of the diluted cell culture. In order to avoid 

undesired shear stress, air bubbles were carefully removed through the sampling ports 

using syringes (without needle). The vessels were mounted on separate RWV devices in an 

incubator. One device was put in a horizontal and one in a vertical position representing 

the control and the SMG setup, respectively (Fig. 10.1). Gas exchange in the RWV during 

growth was ensured by the gas-permeable silicone membrane present at the back of each 

RWV culture vessel. Evaporation of the culture medium through the gas-permeable silicone 

membrane was minimized by enlarged humidity in the incubator (approximately 60%). 

Bacterial growth in RWV conditions was allowed for 24 or 48 h at 28 °C. The vessels were 

continuously rotated at 20 rpm in forward direction. The experiments were repeated up to 

6 times on different days. OD(590nm) values were recorded for each culture. 

 

10.2.2 Raman spectroscopy 

 

The Raman spectrometer and its calibration are described by Hutsebaut et al.13. For Raman 

analysis, 2 samples of 2 mL culture were taken from each vessel and were centrifuged at 

15000 × g for 2 minutes. The pellets were washed three times with 1 mL physiological 

water. The final centrifugation lasted 10 minutes in order to obtain a dense pellet. The 

pellets were transferred to a CaF2 plate and dried for 15 minutes on silica. On each smear, 

a focus point was chosen on the CaF2 plate and four spectra were recorded in the 

surrounding area, each with a collection time of 60 s.  

 



Chapter 10 

182 

10.2.3 Data processing 

 

Data processing of the Raman spectra were performed using Matlab version 6.5 (The 

Mathworks, Natick, Massachusetts) and SPSS 12 (SPSS inc., Chicago, Illinois). Principal 

components analysis (PCA) was performed on the spectra, which is a data reduction 

method that summarizes most variability (read ‘information’) of a dataset in a few new 

variables (principal components, PC’s). A plot of the first two PC’s (called score plot) 

shows the relatedness between the samples. In this way, groups of samples with different 

composition can be distinguished from one another. The calculation of difference spectra 

and the use of an extended multiplicative signal correction (EMSC) procedure to extract 

chemical information from the Raman spectra, are described by De Gelder et al.3. 

 

10.3 10.3 10.3 10.3 RRRResultsesultsesultsesults    

 

Raman spectra were recorded from Cupriavidus metallidurans LMG 1195 cultured for 24 h 

in the RWV, one vessel mounted in SMG setup and one in control setup. From each 

culture, the OD(590nm) value was determined and a sample was taken for Raman 

measurement. A paired T-test (between smg en controle samples originating from the same 

inoculum) showed that the OD(590nm) values of the smg and controle cultures do not 

significantly differ from each other on the 95% confidential level. All spectra were subjected 

Figure 10.Figure 10.Figure 10.Figure 10.1111    The rotating wall vessel (RWV) technology: (a) vertical setup to generate low-shear microgravity, 

(b) the RWV bioreactors and (c) rotation of the RWV in this way the cells are maintained in suspension in a 

restricted fluid orbit. 
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to autoscaling (mean centering for each Raman shift) and subsequent principal component 

analysis (PCA). The score plots did not show a clear distinction between the spectra from 

samples cultured under SMG and the control condition (data not shown). This suggests 

that Raman spectroscopy as expressed in PCA can not detect differences in cell 

composition induced by microgravity above the day-to-day variations caused by the use of 

different inocula. 

Mean spectra were calculated for all SMG and control samples. These mean spectra 

(Fig. 10.2) show subtle differences (indicated by arrows). To clearly visualize these 

differences, the difference was calculated between the mean SMG spectrum and the mean 

control spectrum was calculated. The resulting spectrum, further referred to as difference 

spectrum (Figure 10.3a, microgravity minus control spectrum), shows some clear bands 

that can be related to the storage polymer poly-3-hydroxybutyrate (PHB). Several bands 

in the difference spectrum (434, 600, 839, 1058, 1100, 1360-1460 and 1721 cm-1) match 

the most intense bands of the reference Raman spectrum of pure PHB (Fig. 10.3b). In 

addition, some bands of the reference Raman spectrum of PHB’s monomer 

β-3-hydroxybutyrate (HB) (Fig. 10.3c) such as the bands at 853 and 916 cm-1 can be 

observed in the difference spectrum (Fig. 10.3a). Band positions in the bacterial spectra 

can differ slightly from those in the reference spectra due to a different physicochemical 

state in the cell compared to the reference product. However, it has been shown that the 

bands in the bacterial spectra that were assigned to PHB, indeed reflect the PHB 

concentration in the cell6 (Chapter 9). These results are thus indicative for a higher 

concentration of PHB in C. metallidurans LMG 1195 when grown for 24 h in SMG 

compared to control conditions. This observation was checked in the individual difference 

spectra for each cultivation and measurement day (SMG spectrum minus control spectrum, 

pair-wise per measurement day and thus per inoculum). All these spectra (not shown) 

contained bands (to a variable extent) of PHB and HB and it can therefore be concluded 

that there is indeed an indication for more PHB production in SMG after 24 h of 

incubation. The reason for not observing two distinct groups according to microgravity and 

control setup when performing PCA, is probably that the main spectral differences are 

caused by the use of different inocula and thus uncontrolled fluctuations in growth. 
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Figure 10.2Figure 10.2Figure 10.2Figure 10.2 Mean Raman spectra of Cupriavidus metallidurans LMG 1195 cultivated 

for 24 h in a RWV simulating low-shear microgravity (SMG) and a control setup. 
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Figure 10.Figure 10.Figure 10.Figure 10.3333 (a) Difference spectrum between the two mean Raman spectra (Fig. 10.2) of 

Cupriavidus metallidurans LMG 1195 cultivated for 24 h in a RWV simulating low-shear 

microgravity (SMG) and a control setup (SMG minus control) and reference Raman spectra 

of (b) poly-3-hydroxybutyrate (PHB) and of (c) its monomer β-3-hydroxybutyrate (HB). 
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Next, a mathematical procedure, known as extended multiplicative signal correction 

(EMSC)26, was applied to extract information about spectral differences smaller than those 

caused by PHB and HB3 (Chapter 7). This procedure allows estimating the contribution of 

several biomolecules to a bacterial Raman spectrum by fitting reference spectra of these 

biomolecules from a database present in our lab4 (Chapter 5). The EMSC technique 

identified several biomolecules that contributed differentially to the SMG and the control 

spectra. Next to differences concerning PHB and HB, higher levels of acetyl-CoA, citric 

acid and malic acid were found in the SMG compared to the control, whereas the 

contribution of succinic acid was more pronounced in the spectra of control experiment. 

 

Similar analyses were performed on Raman spectra that were recorded after a cultivation 

time of 48 h cultures (spectra not shown). The mean spectra for the SMG conditions and 

the control setup showed much larger differences than the 24h-old cultures. After 

autoscaling of the spectra and subsequent PCA, the score plot of the first two principal 

components clearly shows two distinct groups of samples according to the culturing 

condition (smg or control) (Fig 10.4). Raman spectroscopy can thus distinguish between 

Figure Figure Figure Figure 10101010....4444 Score plot of the first two principal components of 

the PCA of the spectra from Cupriavidus metallidurans 
LMG 1195 cultivated for 48 h in a RWV simulating low-shear 

microgravity (SMG) and a control setup. 
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bacterial cells cultured for 48 h in smg conditions from those of the control setup. In 

accordance to the results for the 24h-old cultures, EMSC revealed higher levels of acetyl-

CoA, citric acid and malic acid, and a lower level of succinic acid in SMG conditions 

compared to the control setup. In contrast to 24h-old cultures, PHB and HB appeared to 

be present in lower amounts in the SMG samples compared to the control samples. 

However, OD(590nm) values differed slightly, but significantly at the 95% confidential level, 

between smg and control cultures and thus cells sampled from both setups might not be in 

the same metabolic state. 

 

10.4 10.4 10.4 10.4 DDDDiscussioniscussioniscussioniscussion    

    

We have studied the behavior of Cupriavidus metallidurans LMG 1195 in RWV conditions. 

The aim of our study was to use Raman spectroscopy to discriminate biopatterns obtained 

in simulated microgravity (SMG) and the respective control condition. A second aim was to 

extract information about the biomolecules that could be responsible for the different 

biopatterns. 

Raman spectra were collected for 24h- and 48h-old C. metallidurans cultures using 

independent cultures that were set up on different days. The PCA of the 24h-spectra did 

not reveal a significant difference between SMG and the control. This lack of differentiation 

is regarded as being caused by subtle differences in the inocula that were used. The day-

to-day variations in the Raman spectra caused by the use of different inocula probably 

dominated the differences induced by simulated microgravity. This is confirmed by the 

observation of the same Raman bands in the difference spectra (smg minus control) that 

were calculated per measurement day (thus per inoculum). These difference spectra all 

resemble the difference spectrum in Figure 10.3a (mean SMG spectrum minus mean control 

spectrum). Clear bands could be identified for a relative increase in the amount of PHB and 

its monomer HB in SMG conditions (Fig. 10.3b,c). EMSC indicated a relative increase in 

the levels of acetyl-CoA, citric acid and malic acid in SMG and a decrease of succinic acid. 

These changes in the Krebs cycle compounds indicate that the carbon metabolism may be 

affected in low-shear simulated microgravity as mimicked in the RWV. A possible 
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explanation why the results for succinic acid are opposite to the other citric acid cycle 

compounds might be the fermentation of succinic acid to propionate as in Propiogenium 

modestum16. In this metabolic pathway, the decarboxylation of succinate allows sodium 

export, which causes ATP synthesis when re-imported via the Na+-pump when sufficient Na 

is present. This kind of mechanism has so far not been reported in Gram-negatives 

although decarboxylases are well known in fermentative metabolism of Gram-negatives as 

well. Changes in bacterial metabolism caused by SMG were reported previously: Lam et al. 

199820 reported a higher production of the antibiotic monorden by Humicola fuscoatra in 

the Space Shuttle compared to ground control samples, while Demain et al. 20007 observed 

changes in levels of several secondary metabolites induced by SMG. The change in PHB 

and HB also indicate an effect at the level of carbon metabolism. PHB is a storage polymer, 

which is formed when the carbon-nitrogen ratio is high1,35. The surplus of carbon is stored 

as PHB that can be used when the cell is in need of an additional carbon source or when 

the growth conditions become favourable. The observed increase in PHB after 24 h is in 

accordance with Thiruvenkatam and Scholz37 who reported a higher PHB production 

(especially after 18 and 24 h of incubation) and no lag phase for Azotobacter vinelandii 

UWD (ATCC 53799) upon culturing in microgravity conditions using the RWV compared to 

a control setup consisting of shaked flasks with similar oxygen flow as in the RWV. The 

authors assumed that reduced gravity is a stress factor that stimulates the bacteria to 

produce storage polymers.  

 

The spectra obtained after an incubation of 48 h, showed the same evolution for the Krebs 

cycle compounds. In contrast to the 24h-data, the levels of PHB and HB appeared to be 

lower in the SMG cultures compared to the control cultures. The reason for this change in 

function of the time is difficult to explain at present. Bacterial growth is a dynamic process 

controlled by many factors at the transcript level and metabolic level. It is plausible that 

the growth conditions between 24 h at 48 h of culture changed and triggered the cells in 

SMG to start consuming the PHB that was accumulated in the first 24 h. In addition, the 

OD(590nm) values after 48 h of culturing were slightly higher for the control setup than 

under microgravity conditions. Apparently growth is going faster in the control setup, 
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which might be caused by sinking of the bacterial mass towards the membrane (visually 

observed) which can cause a difference in oxygen exchange compared to the microgravity 

setup. Thus, the observation that there is more PHB and HB in the control setup than in 

the microgravity setup after 48 h, might not be solely caused by the microgravity effect 

itself. Interplay of the SMG environment, different oxygen demand and different growth 

characteristics may be responsible for the difference in Raman patterns. In this respect, 

Tavares et al.36 found a more efficient PHB production of Ralstonia eutropha (Cupriavidus 

necator) when cultivated in an airlift bioreactor compared to a stirred tank bioreactor. 

These results are hard to compare to the ones presented here, because the growth 

conditions are completely different. The conclusions made by Tavares et al.36 do not 

include microgravity effects, but state that the production of the same amount of PHB can 

be obtained with a lower oxygen demand in the airlift bioreactor compared to the stirred 

tank. Because other effects than microgravity might have interfered, no conclusions were 

drawn concerning the effect of low-shear microgravity on Cupriavidus metallidurans after 

48 h of culturing. 

 

In conclusion, Raman spectroscopy holds potential as a non-destructive method for 

studying whole-cell chemical composition of bacteria. It can be classified as a high content 

data methodology, which may generate biological information that can be used to uncover 

the bacterial response to a particular growth condition or treatment. Our results indicate 

that Raman spectroscopy could be used for discriminating biopatterns of C. metallidurans 

grown in simulated microgravity using the RWV and a control setup. 

 

 

This case study shows that Raman spectroscopy can provide useful information 

about small differences in metabolism when culturing under different conditions. 
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The Raman effect relies on molecular vibrations and therefore Raman spectra provide 

information about a samples’ composition. More specific, the presence of certain molecules 

in samples can be deduced from their Raman active vibrations. Raman spectra of bacterial 

cells thus comprise signals from all Raman active vibrations of the cell’s compounds. 

Therefore, on the one hand, Raman spectra of bacterial cells are rich in information, but on 

the other hand they are complex. 

 

When using Raman spectroscopy as a tool for studying bacterial cell compounds, variations 

in cell composition within and between cultures should be considered. In this work, for 

each experiment, several independent cultures were prepared, sampled and measured on 

different days in order to obtain a reliable Raman fingerprint of a strain cultivated in certain 

conditions. In qualitative Raman spectroscopy, very often differences between two or more 

strains and/or cultivation conditions are compared. Before proceeding to the interpretation 

of the bacterial spectra, they should first be subjected to PCA in order to assess whether 

the within- and between-culture variation is smaller than the differences caused by the 

variety of the studied strains and/or cultivation conditions. 

 

The basic information needed for the interpretation of bacterial Raman spectra are the 

Raman signals caused by specific cell compounds. Therefore, a database of reference 

Raman spectra was constructed from biomolecules (or their building blocks) which were 

commercially available. The information comprised in these reference spectra can be used 

in several ways to extract information from bacterial Raman spectra (summarized in 

Table 11.1). The proper method(s) to do so depend(s) on the position (isolated band or 

band overlap) and intensity of the Raman signal from the studied biomolecule(s). 

 

When studying compounds that contribute highly to a bacterial Raman spectrum, 

information can be retrieved by focussing on one or a few characteristic Raman band(s). 

The presence of these compounds in the cells can be simply deduced by comparison of 

their reference spectra and the bacterial spectra. Difference spectra and PCA reveal 

differences in cell concentration of compounds between different strains or cultivation 
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conditions. However, many bands in a Raman spectrum contain contributions of several 

biomolecules. To study these compounds, more enhanced approaches are necessary. A dot 

product between a reference spectrum and a bacterial spectrum reflects the contribution of 

the reference spectrum from the studied biomolecule to the bacterial spectrum. These dot 

products can be compared per biomolecule for different bacterial spectra to determine 

which samples show a higher or lower content of that biomolecule. However, these values 

are not appropriate for comparison between different biomolecules, as they do not take into 

account the intrinsic Raman activity of the biomolecules. The advantage of dot products 

lies in the consideration of the whole reference spectrum of the studied biomolecule, 

instead of focussing on a single or a few characteristic bands. These dot products reflect 

the contribution of a reference spectrum that can not be distinguished from contributions 

of signals from other biomolecules. Dot products can thus overestimate the relative 

concentration of a biomolecule in a sample. To address this problem, the EMSC model, 

which was previously used for pre-processing, was extended by adding reference spectra. 

The coefficients resulting from this model reveal similar information as the dot products, 

but should be more reliable for distinguishing contributions of several biomolecules. Indeed, 

in the EMSC procedure, the reference spectra are fitted together towards the bacterial 

spectrum and so overfitting is minimized. To overcome colinearity problems when adding 

very similar reference spectra (of structurally similar biomolecules) to the EMSC model, 

PCA can be performed on these reference spectra and some of the resulting loading 

vectors can be used as input in EMSC. The resulting EMSC coefficients can be related to 

the original biomolecules by studying the scores of the PCA. In this way, information is 

retrieved from groups of biomolecules instead of from each separate biomolecule. 

 

The above mentioned methods allow to compare the relative concentration of a particular 

biomolecule in different bacterial samples. In this way, samples originating from different 

strains, metabolic states or culturing conditions can be studied for their differences. 

However, it would be interesting to be able to determine absolute concentrations of a given 

compounds in a cell. The potential to do so was shown by the linear relation between the 

intensity of an intense characteristic band of a PHB and the PHB concentration (mg/L 
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culture) as determined by HPLC. This approach was possible because we focussed on a 

PHB band that was completely isolated in the bacterial spectrum and appropriate pre-

processing was applied. When band overlap occurs, other processing methods should be 

applied to allow quantitative determination of compounds. For example the use of PLS 

models could provide quantitative data when calibration with standards is possible. 

Problems with the implementation of this approach could be solubility in water of some 

compounds and the cost to prepare solutions of sufficient concentration of compounds that 

are expensive in purified form. These standards were not necessary for the application of 

EMSC as this procedure provides relative values instead of absolute concentrations. 

 

Table 11.1Table 11.1Table 11.1Table 11.1    Overview of the applied methods for studying bacterial cell compounds with Raman spectroscopy 

approachapproachapproachapproach    qualitative qualitative qualitative qualitative     quantitativequantitativequantitativequantitative    applicabilityapplicabilityapplicabilityapplicability    

based on separate 

Raman bands 

Difference spectra, 

PCA (Ch6) 

Band intensity (Ch9) When a biomolecule shows 

an intense and isolated 

band in bacterial Raman 

spectra. 

based on a whole 

reference spectrum 

Dot product (Ch7) 
 

based on multiple 

reference spectra 

EMSC (Ch7,8)  

When a biomolecule shows 

a minor and/or not 

isolated contribution in 

bacterial Raman spectra. 

 

 

This work has shown that Raman spectroscopy is a potential powerful tool for microbial 

analysis. On the one hand, this technique allows in vivo detection, monitoring or 

(semi-)quantification of a specific cell compound (illustrated in this work for CaDPA and 

PHB). On the other hand, bacterial Raman spectra provide whole cell profiles and are thus 

suitable for fast detection of differences in general cell constitution between various 

samples. In this way, the influence of specific culturing conditions on the cell’s composition 

or metabolism can be tracked, provided the use of a standardized protocol that excludes 

other variations. The requirement of only small sample volumes and the minimal sample 

preparation are attractive characteristics in the microbial laboratory. The non-destructive 

nature of Raman spectroscopy allows the construction of in situ monitoring systems. 

Recent developments of instrumentation allowing single-cell measurements even broaden 

the field of application. Some important practical constraints of this technique are: (i) the 
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studied compounds have to be Raman-active, (ii) fluorescence may mask the spectrum, (iii) 

slimy bacteria need extra washing steps in the sample preparation, in order to obtain high-

quality spectra. As Raman spectra include information about the amount of specific 

(building blocks of) biomolecules present in the cell, no sequence information of any kind 

can be extracted from them. Therefore, Raman spectroscopy should be used as a 

supplementary technique in the microbial lab or as a first whole cell screening tool instead 

of a substitute for existing microbial techniques of analysis. 

 

At the end of Chapter 5 and 7 two important remarks on the presented approaches were 

discussed, which each lead to ideas for future research. 

Firstly, reference spectra are estimations of the biomolecules’ signal in a bacterial Raman 

spectrum. These estimations can be improved in such a way that the output of the data 

processing, such as dot product calculations or EMSC, becomes more accurate. In theory, 

this could be achieved by collecting Raman spectra from these biomolecules in an 

environment resembling the bacterial cell. However, it is impossible to imitate a cell’s 

composition completely and by trying so the collected Raman spectrum would contain 

interfering effects from the other constituents. Perhaps, in future, quantum chemistry could 

help to predict Raman signals of biomolecules in a cell environment, as this field is 

developing fast. 

Secondly, one can imagine that the amount of reference spectra added to the EMSC model 

can affect the obtained results. It is obvious that the set of reference spectra should 

include all biomolecules with the most intense contributions in a bacterial Raman spectrum. 

However, one can wonder whether the set can contain too many of such reference spectra 

or whether the presence of reference spectra that do not contribute to the bacterial 

spectrum affects the accuracy of the model. Future research may focus on the 

determination of fitting errors on artificial data and fitting errors on experimental data by 

comparison to data obtained from other techniques of analysis. However, it is hard to find 

appropriate techniques for such a comparison as these should provide quantitative data of 

(building blocks of) biomolecules that are detected by Raman spectroscopy. 
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In conclusion, Raman spectroscopy is an interesting non-destructive tool for studying 

bacterial cell compounds. According to the contribution of the studied biomolecule in the 

bacterial spectrum, different processing methods can/should be applied. Although till 

present, mainly relative values for the concentrations of biomolecules can be obtained and 

compared for different strains or cultivation conditions, the technique has shown its 

potential for quantitative analysis of bacterial cell compounds. Further research should 

focus on quantitative determination and the accuracy of the used models. In the microbial 

laboratory, it is an interesting technique supplementary to others and it allows fast whole 

cell profiling. 
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SummarySummarySummarySummary    

 

Raman spectroscopy is an attractive tool for microbial analysis because of the very small 

sample volumes needed for analysis, the minor sample preparation and the speed of 

analysis. Moreover, Raman spectra provide information of all Raman active molecules in the 

bacterial cell. This technique has already proven to be successful for bacterial identification 

at the species and strain level. For this purpose, Raman spectroscopy is used as a 

fingerprint technique. However, these spectra also contain valid information about 

biochemical composition of the cells. Because bacterial Raman spectra are the sum of 

signals from all Raman active cell compounds, they are complex. Although in literature 

some bands have been assigned to (specific or groups of) biomolecules, only very few 

studies are published where Raman spectroscopy is used to study specific bacterial cell 

compounds. Therefore, the aim of this work was to develop methods for extracting 

information from these complex bacterial spectra. 

 

The foundation of this work was laid by constructing a database that contains reference 

Raman spectra of biomolecules that are known to constitute bacterial cells (Chapter 5). 

These reference spectra were further used throughout this work to extract information 

about biomolecules from bacterial Raman spectra. 

 

In Chapter 6, sporulating bacteria and endospores obtained from several strains or after 

different cultivation conditions were analysed. Because the studied compounds show 

intense bands in the bacterial spectra, information can be obtained by: (i) comparison of 

reference spectra and bacterial spectra, (ii) comparison of reference spectra and difference 

spectra obtained from spectra originating from different strains or cultivation conditions, 

(iii) comparison of the score and loading plots from PCA. In this way, sporulation of 

Bacillus licheniformis LMG 7634 could be followed as a function of incubation time by the 

characteristic band at 1018 cm-1 of calcium dipicolinate (CaDPA). Spores obtained from 

various strains cultured under different conditions, were found to differ in the 

concentration of various compounds such as CaDPA, cysteine, phenylalanine and tyrosine. 
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Although the approaches presented in Chapter 6 are very useful to study bacterial cell 

compounds, they are less accurate when the signals of different biomolecules overlap in the 

bacterial spectra. 

 

To tackle the problem of compounds that show band overlap in the bacterial spectra, more 

enhanced approaches are necessary to extract information on individual components. Two 

approaches are illustrated in Chapter 7: (i) the calculation of dot products between 

reference spectra and bacterial spectra and (ii) the application of an EMSC (extended 

multiplicative signal correction) procedure including reference spectra of biomolecules in 

the model. These approaches have an advantage over the ones presented in Chapter 6: 

they take the whole reference spectrum into account to evaluate the presence of a 

compound in a sample. Calculation of dot products is easy, but has the drawback that more 

overfitting can occur compared to the EMSC model, because the last one fits all considered 

reference spectra simultaneously to the bacterial Raman spectra. A third approach, 

illustrated in Chapter 7, is two dimensional correlation spectroscopy, which reveals 

correlating bands in a perturbed dataset. These three techniques were applied in this 

chapter on Raman spectra of Cupriavidus metallidurans LMG 1195 in different metabolic 

states. 

 

In literature, the developers of the EMSC procedure for pre-processing warn for possible 

colinearity problems which can occur for example when similar reference spectra (thus 

spectra from structurally similar biomolecules) are added to the model. To avoid this 

problem, PCA can be applied to these reference spectra and some of the resulting loading 

vectors (orthogonal) can be added as reference spectra to the EMSC model, as illustrated 

in Chapter 8. After applying the EMSC model as described in Chapter 7, information about 

the contribution of the original reference spectra could be obtained by studying the PCA 

scores. In this way, information extraction is possible, although the retrieved information is 

less detailed, as the drawn conclusions concern groups of biomolecules instead of single 

biomolecules. This approach was applied to retrieve information about the fatty acid 

composition of bacteria. The results were in accordance to parallel FAME analyses. 
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In Chapter 9, the potential of Raman spectroscopy for quantitative determination of 

bacterial cell compounds was explored. For this purpose poly-3-hydroxybutyrate (PHB), a 

storage compound, was chosen which shows an intense isolated band at 1734 cm-1 in 

bacterial Raman spectra. When applying appropriate pre-processing, the intensity of this 

band showed a linear relation with the PHB concentration (mg/L culture) in Cupriavidus 

necator DSM 428 retrieved from HLPC analysis. 

 

Chapter 10 demonstrates a case study of the influence of microgravity on Cupriavidus 

metallidurans LMG 1195. Methods that were discussed in Chapter 6 and 7 (difference 

spectra, EMSC procedure) were applied to search for differences between Cupriavidus 

metallidurans LMG 1195 cultured in a RWV (rotating wall vessel) simulating low-shear 

microgravity and a similar control setup. Differences in PHB production and in general 

carbon metabolism could be identified. 

 

In conclusion, Raman spectroscopy is a powerful tool for studying bacterial cell compounds. 

Different processing methods should be applied according to the Raman signal of the 

studied biomolecules in bacterial spectra. These methods provide information on the 

relative concentration of compounds in bacterial cells. As these approaches do not take 

into account the intrinsic Raman activity of the compounds, they should only be compared 

per compound, not between different compounds. The potential of Raman spectroscopy for 

quantitative analysis of bacterial cell compounds has been shown by the study of PHB 

production in C. necator. Raman spectroscopy could be an interesting tool in the microbial 

lab for fast whole cell profiling or for studying specific cell compounds in various cultivation 

conditions. Further research should focus on: (i) the amelioration of reference spectra by 

taking cell conditions into account, (ii) how the EMSC model’s accuracy is influenced by 

using different sets of reference spectra and (iii) calibration of PLS models for quantitative 

determination of compounds. 
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SamenvattingSamenvattingSamenvattingSamenvatting    

 

Ramanspectroscopie is aantrekkelijk voor microbiële analyse omdat slechts kleine staal 

volumes vereist zijn, de staalvoorbereiding minimaal is en de analyse snel is. Bovendien 

bevatten Ramanspectra informatie over alle Raman-actieve componenten in de bacteriële 

cel. Deze techniek werd in het verleden succesvol ingezet voor de identificatie van 

bacteriën tot op het species- en stamniveau. Hierbij worden Ramanspectra enkel als een 

fingerprintpatroon gebruikt. Nochtans bevatten deze spectra ook waardevolle informatie 

over de biochemische samenstelling van de cel. Bacteriële Ramanspectra zijn complex, 

aangezien ze de som zijn van de signalen van alle Raman-actieve bestanddelen in de cel. 

Alhoewel in de literatuur reeds enkele banden werden toegekend aan (specifieke of groepen 

van) biomoleculen, wordt er weinig gerapporteerd over het gebruik van 

Ramanspectroscopie voor de studie van specifieke bacteriële componenten. Het doel van 

dit werk is dan ook om methoden te ontwikkelen die informatie uit complexe bacteriële 

spectra extraheren. 

 

De basis van dit werk is de aanleg van een databank van referentiespectra van 

biomoleculen waarvan de aanwezigheid in bacteriële cellen gekend is (Hoofdstuk 5). Deze 

referentiespectra werden doorheen dit werk gebruikt voor de extractie van informatie over 

biomoleculen uit bacteriële Ramanspectra. 

 

In Hoofdstuk 6 werden sporulerende bacteriën en endosporen, geïsolleerd uit verschillende 

stammen en gecultiveerd onder verschillende condities, geanalyseerd. Omdat de 

bestudeerde celcomponenten intense banden vertonen in bacteriële spectra, kan informatie 

bekomen worden via: (i) vergelijking van referentiespectra en bacteriële spectra, 

(ii) vergelijking van referentiespectra en verschilspectra tussen spectra gecollecteerd van 

verschillende stammen of verschillende cultivatie omstandigheden, (iii) vergelijking van de 

score en loading grafieken bekomen uit PCA. Op deze wijze werd de sporulatie van Bacillus 

licheniformis LMG 7634 gevolgd in functie van de incubatietijd aan de hand van de 

karakteristieke band bij 1018 cm-1 veroorzaakt door calciumdipicolinaat (CaDPA). Sporen, 
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geïsoleerd uit verschillende stammen en gecultiveerd onder verscheidene condities, bleken 

te verschillen in de concentratie aan componenten zoals CaDPA, cysteine, fenylalanine en 

tyrosine. Alhoewel de benaderingen voorgesteld in Hoofdstuk 6 erg geschikt zijn voor de 

studie van bacteriële celcomponenten, zijn ze minder accuraat wanneer de Ramansignalen 

van verschillende biomoleculen overlappen in de bacteriële spectra. 

 

Om het probleem van overlappende banden in bacteriële spectra aan te pakken, zijn meer 

gevorderde technieken nodig zodat informatie verkregen kan worden over individuele 

celcomponenten. Twee mogelijke benaderingen worden geïllustreerd in Hoofdstuk 7: 

(i) de berekening van inproducten tussen referentiespectra en bacteriële spectra en 

(ii) het toepassen van een EMSC (extended multiplicative signal correction) procedure die 

referentiespectra van biomoleculen opneemt in het model. Deze benaderingen hebben een 

belangrijk voordeel tegenover diegene in Hoofdstuk 6: ze houden rekening met het 

volledige referentiespectrum om de aanwezigheid van een component in een staal te 

evalueren. Het berekenen van inproducten is eenvoudig, maar heeft tegenover EMSC het 

nadeel dat er meer gevaar is voor overfitting. De EMSC procedure fit alle beschouwde 

referentiespectra simultaan aan de bacteriële spectra. Een derde benadering die in 

Hoofdstuk 7 geïllustreerd wordt, is twee-dimensionele correlatie spectroscopie die 

gecorreleerde banden aangeeft in een geperturbeerde dataset. Deze drie technieken 

werden in dit hoofdstuk toegepast op Ramanspectra van Cupriavidus metallidurans LMG 

1195 gecollecteerd in verschillende metabolische toestanden. 

 

In de literatuur waarschuwen de ontwikkelaars van de EMSC procedure voor mogelijke 

colineariteitsproblemen die bijvoorbeeld kunnen optreden wanneer gelijkaardige 

referentiespectra (spectra van structureel gelijkaardige biomoleculen) in het model worden 

opgenomen. Om dit probleem te vermijden, wordt in Hoofdstuk 8 de toepassing van PCA 

vòòr EMSC geïllustreerd. Hierbij worden enkele loadingvectoren (orthogonaal) uit de PCA 

gebruikt als referentiespectra in het EMSC model. Nadien kan informatie bekomen worden 

over de bijdrage van de originele referentiespectra via de scores van de PCA. De bekomen 

informatie is minder gedetailleerd, aangezien ze groepen van biomoleculen in plaats van 
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specifieke biomoleculen betreft. Deze benadering werd toegepast om informatie te bekomen 

over de vetzuursamenstelling van bacteriën. De resultaten waren in overeenkomst met deze 

van parallelle FAME analyses.  

 

In Hoofdstuk 9 werden de mogelijkheden van Ramanspectroscopie voor de kwantitatieve 

bepaling van bacteriële celcomponenten verkend. Hiervoor werd poly-3-hydroxybutyraat 

(PHB) gekozen, een component voor koolstof-opslag. Deze vertoont een instense en 

geïsoleerde band bij 1734 cm-1 in bacteriële Ramanspectra. Mits het toepassen van 

geschikte pre-processing, werd een linear verband gevonden tussen de intensiteit van deze 

band en de PHB concentratie (mg/L cultuur) in Cupriavidus necator DSM 428 bekomen 

door HPLC analyse. 

 

Hoofdstuk 10 beschrijft een case study van de invloed van micrograviteit op Cupriavidus 

metallidurans LMG 1195. Methodes voorgesteld in de Hoofdstukken 6 en 7 

(verschilspectra en EMSC) werden toepepast om verschillen te detecteren tussen 

Cupriavidus metallidurans LMG 1195, gecultiveerd in een RWV (rotating wall vessel) die 

lage-wrijvingsmicrograviteit simuleert en in een gelijkaardige controle opstelling. 

Verschillen in PHB-productie en meer algemeen in koolstofmetabolisme werden 

geïdentificeerd. 

 

Als besluit kunnen we stellen dat Ramanspectroscopie een krachtig hulpmiddel is voor de 

analyse van bacteriële celcomponenten. Verschillende verwerkingsmethoden kunnen 

toegepast worden naargelang het Ramansignaal van de bestudeerde componenten in 

bacteriële spectra. Via deze methoden wordt informatie over de relatieve concentratie van 

componenten in bacteriele cellen bekomen. Omdat deze benaderingen geen rekening 

houden met de instrinsieke Raman-activiteit van de componenten, mogen de bekomen 

waarden enkel met elkaar vergeleken worden per component en niet tussen verschillende 

componenten. De mogelijkheden van Ramanspectroscopie voor kwantitatieve analyse van 

bacteriële celcomponenten werd geïllustreerd door de studie van PHB-productie in 

Cupriavidus necator DSM 428. Ramanspectroscopie kan nuttig zijn in microbiële 
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laboratoria voor een snelle screening van bacteriële cellen (whole cell profiling) en voor de 

studie van specifieke celcomponenten in verscheidene cultivatie-condities. Verder 

onderzoek kan zich toespitsen op: (i) het verbeteren van referentiespectra door 

celcondities in rekening te brengen, (ii) de invloed van het gebruik van verschillende sets 

referentiespectra op de accuratesse van  EMSC modellen en (iii) de calibratie van PLS 

modellen voor kwantitatieve analyse van componenten. 
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ouders, zus en grootouders. Leen, jij maakte het eerste deel van mijn doctoraat mee vanuit 

Idaho. Onze telefoontjes en chat-sessies betekenden veel voor mij want als ik het niet 

goed meer wist, zou mijn zus wel raad weten. Opa G., wat jammer dat je dit niet meer kan 

meemaken. Ik weet dat je dit werk met evenveel interesse zou doorbladerd hebben als mijn 

licentiaatsthesis en dat je met evenveel trots op mijn verdediging zou hebben gestaan als 

op mijn proclamaties. 

 

Olivier, ik kan hier onmogelijk vermelden wat je voor mij allemaal hebt gedaan. Het zou 

ook belachelijk zijn om dat te proberen. Het is dat onbeschrijfbare gevoel van iemand die 

achter je staat. Bedankt! 
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