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Chapter I: Introduction 

 
 
 

1 Problem statement and objectives 
 

One of the most frequent, expensive and serious problems facing human health care, 

is the loss or failure of organs or tissues. The medical need for tissue and organ 

substitutes can arise from trauma, infectious, inherited or age-related diseases, or 

organ failure. Estimates of the total U.S. healthcare costs for patients with tissue loss 

or organ failure exceed $400 billion annually.1 Every year, 21 million people in the 

United States suffer from failing tissues that need to be replaced or repaired.2 In 

Europe, nearly 10 people a day die waiting for vital organs. As a result, there is a 

need for new, innovating technologies in the field of regenerative medicine in order to 

overcome these problems.3, 4  

Regenerative medicine comprises different technologies that have a major impact on 

the human body and enable the repair of malfunctioning tissues.5 It is often, however 

not exclusively, applied to treat elderly people. The two major application areas are at 

both ends of life.6 One is at the beginning of life, when the processes of 

embryogenesis and foetal formation go wrong. They deal with how we can 

restructure, reform and rebuild those tissues. The second occurs during aging and 

deals with how we can approach the repair of key functions.  

There are four major disciplines that comprise regenerative medicine, of which one 

discipline is applied in the present work.7  

The first is the use of our own genes, proteins and antibodies to restore failing 

tissues. The latter is the most gentle approach. Namely, the addition or removal of a 

human protein where it is needed.8 A second set of technologies has to do with the 

use of individual adult cells as therapy (i.e. tissue engineering), which will be the topic 

of the present work.9 The third field is embryo research or the use of stem cells for 

medicine.10 The final aspect of regenerative medicine, is the use of prosthetic 

devices to substitute organ or tissue function.  
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The final goal of the present work is to develop porous, biodegradable hydrogel 

scaffolds, possessing specific (pore) characteristics, suitable for a large variety of 

tissue engineering applications.      

 

 

2 Definition and concept of tissue engineering 
 

In literature, tissue engineering has often been defined.11,12 However, a widely 

spread definition of tissue engineering was stated by Langer and Vacanti:13 

 

“Tissue engineering combines the principles and methods of the life sciences with 

those of engineering to elucidate fundamental understanding of structure-function 

relationships in normal and diseased tissues, to develop materials and methods to 

repair damaged or diseased tissues, and to create entire tissue replacements.” 

 

There are three approaches in tissue engineering:14 

 

1) The use of isolated cells or cell substitutes at the location of a defect. 

2) The delivery of tissue-inducing substances, such as growth and differentiation 

factors, to targeted locations. 

3) Growing cells in three-dimensional scaffolds, either in vivo or in vitro. 

 

A common approach is the third one. Specific cells can be isolated through a biopsy 

from a patient. The cells are then grown into a three-dimensional scaffold under 

controlled culture conditions. Subsequently, the construct is delivered to the desired 

site in the patient’s body (figure 1-1).11 

When applying the third approach, a substrate material is required, possessing 

suitable characteristics.15 It should exhibit good biocompatibility, meaning that it 

should not evoke an unresolved inflammatory response, nor demonstrate extreme 

immunogenicity or cytotoxicity. In addition, the mechanical properties of the scaffold 

must be sufficient. The mechanical strength required depends to a great extent on 

the site of the defect. Two tissue categories can be distinguished including hard (e.g. 

bone) and soft (e.g. skin) tissue.  
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Table 1-1 shows an overview of some common tissues with their respective 

mechanical properties as indicated by their elastic moduli.16 Finally, the three-

dimensional scaffolds developed should be easy to sterilize. 

 

HARD TISSUE MODULUS (GPa) SOFT TISSUE MODULUS (MPa) 

Cortical bone 12.8 Skin 0.1 

Cancellous bone 0.4 Intraocular lens 5.6 

Enamel 84.3 Articular cartilage 10.5 

Dentine 11.0 Tendon 401.5 

 

 

Investigations into synthetic and natural inorganic ceramic materials (e.g. 

hydroxyapatite and tricalcium phosphate) as candidate scaffold material have been 

aimed mostly at bone tissue engineering.17-19 Synthetic and natural polymers, 

however, are an attractive alternative and versatile in their applications to the growth 

of most tissues. Aliphatic polyesters such as polyglycolic acid (PGA), polylactic acid 

(PLA) and polycaprolactone (PCL) are the most commonly used synthetic polymers, 

functioning as scaffolds for tissue engineering.20-22 Naturally derived protein or 

carbohydrate polymers have been used as carriers for the growth of several tissue 

types.23, 24 Collagen is, in this regard, the most often used natural polymer.25-27    

 

 

Cells

Scaffold

Signaling molecules

Bioreactor
Tissue engineered 

organ

Cells

Scaffold

Signaling molecules

Bioreactor
Tissue engineered 

organ

Cells

Scaffold

Signaling molecules

Bioreactor
Tissue engineered 

organ

Figure 1-1: The strategy of tissue engineering. 

Table 1-1: Mechanical properties of hard and soft tissues. 
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3 Composition of the extra-cellular matrix 
 

Extracellular matrices (ECM) are made up of an insoluble meshwork of proteins and 

carbohydrates that is deposited by cells and that fills most of the intercellular 

spaces.28 Matrices at different locations in the body consist of different combinations 

of the three major classes of biomolecules: 

 

� Structural proteins: collagen and elastin 

� Specialized proteins: e.g. fibrillin, fibronectin and laminin 

� Proteoglycans, which are composed of a protein core to which 

glycosaminoglycans are attached, forming extremely complex, high molecular 

weight components of the ECM. 

 

Most of the extracellular matrix glycoproteins and collagens that have been identified, 

interact with cells and cellular behaviour often appears to originate in response to 

these interactions.12 The easiest observable result of the interaction of cells with the 

extracellular matrix is cell adhesion.29 The adhesive properties of the extracellular 

matrix proteins can be easily demonstrated in vitro by plating cells on a surface 

coated with extracellular matrix material. The cells will rapidly adhere to such a 

surface and spread on it.30 However, the adhesive proteins not only promote 

adhesion, but they also stimulate cell migration.31  

A more complex way in which ECMs influence cells, is their promotion of cell 

differentiation.32 Probably the most important effect of matrices on cells is illustrated 

by the fact that normal cells require attachment to a substrate to enable survival and 

growth.33 The most abundant components of the ECM are described in the following 

paragraphs.  

 
 

3.1 Fibronectin 

 

Fibronectin is a large multidomain glycoprotein possessing a molecular weight of 

~500,000 Da and an iso-electric point of approximately 6. It is localized in connective 

tissue, on cell surfaces and in plasma and other body fluids.34 Fibronectin interacts 

with a variety of macromolecules, including components of the cytoskeleton and the 
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extracellular matrix35, with blood components36 and with cell-surface receptors on a 

variety of cells including fibroblasts, neurons, phagocytes and bacteria.35, 37 

Fibronectin also forms inter- and intramolecular interactions, forming fibrillar entities 

whose structure is poorly understood.38 In addition, it binds several small molecules 

such as sugars and Ca-ions.39 These diverse recognition functions are located on 

domains, of which many have been expressed in recombinant form or isolated from 

proteolytic digests with retention of specific binding properties. The amino acid 

sequence of fibronectin typically reveals three types of internally homologous repeats 

or modules separated by short connecting sequences. There are 12 type I, 2 type II 

and 15 type III modules.40 Each module constitutes an independently folded unit, 

often referred to as a domain, but not to be confused with ‘functional domains’ that 

frequently contain more than one module. ‘Functional domains’ retain the ability to 

interact with other macromolecules, e.g. collagen, glycosaminoglycans, 

proteoglycans etc (figure 1-2).41 Type I and II modules each contain four conserved 

cysteines comprising two disulfide bonds that are crucial for stability and function.42    

 

 

Figure 1-2: Binding sites, present on fibronectin. 

 
 

A functional domain, responsible for cell-binding activity has been isolated from 

proteolytic fragments and its amino acid sequence has been determined. Synthetic 

peptides, corresponding to different segments of this domain were prepared and 

used to localize the cell-binding activity to a specific tripeptide sequence (Arg-Gly-

Asp, or RGD).43 The RGD sequence is a common motif in a variety of extracellular 

N 
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adhesive proteins and it is recognized by a family of cell-surface receptors that bind 

these proteins.44 Despite the common tripeptide sequence, found at the sites 

recognized by these receptors, each receptor specifically recognizes its own small 

set of adhesive molecules. Thus, receptor binding must also depend on other parts of 

the adhesive protein sequence.45  

Fibronectin is not only important for cell adhesion, but also for cell migration by 

helping cells attach to the matrix.31 The effect must be delicately balanced so that the 

migrating cells get a grip on the matrix without becoming immobilized on it.46  

 

 

3.2 Collagen 

 

Collagen is the major protein comprising the ECM and possesses a molecular weight 

of approximately 300,000 Da. The latter varies significantly according to the collagen 

type and the living species. There are at least 12 types of collagen.47 Types I, II and 

III are the most abundant and form fibrils of similar structure. Type IV collagen forms 

a two-dimensional reticulum and is a major component of the basal lamina. 

Collagens are predominantly synthesized by fibroblasts, but epithelial cells also 

synthesize these proteins.48  

The fundamental structure of collagens is a long and thin diameter rod-like protein.27 

Type I collagen for instance is 300 nm long, 1.5 nm in diameter and consists of three 

coiled subunits, composed of α-chains.49 Each chain consists of 1050 amino acids, 

wound around each other in a characteristic right-handed triple helix.48  

Collagens are also rich in proline and hydroxyproline.50 They are synthesized as 

longer precursor proteins, called procollagens. These pro-domains are globular and 

form multiple intrachain disulfide bonds. The disulfides stabilize the proprotein 

allowing the triple helical section to form.51 Collagen fibres are assembled in the ER 

and Golgi complexes.52       

 

In table 1-2, an overview is presented of the different collagen types and their 

localization.53-60 
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COLLAGEN TYPE LOCALIZATION 

I skin, tendon, bone 

II cartilage, vitreous humor 

III skin, muscle, frequently associated with type I 

IV all basal lamina 

V most interstitial tissue, associated with type I 

VI most interstitial tissue, associated with type I 

VII epithelia 

VIII some endothelial cells 

IX cartilage, associated with type II 

X hypertrophic and mineralizing cartilage 

XI cartilage 

XII cartilage, interacts with types I and III 

 
Table 1-2: Overview of the different collagen types, localized in various tissues. 

 
 

3.3 Glycosaminoglycans and proteoglycans 

 

The most abundant polysaccharides in the body are the glycosaminoglycans 

(GAGs).61 These molecules are long, unbranched polysaccharides, containing a 

repeating disaccharide unit. The disaccharide units consist of N-acetylgalactosamine 

or N-acetylglucosamine and a uronic acid such as glucuronate or iduronate.62 GAGs 

are highly negatively charged, with a large hydrodynamic radius, resulting in viscous 

solutions.63 GAGs are common constituents of cell surfaces and extracellular 

matrices.64 They are characterized by a low compressibility, making them ideal as a 

lubricating fluid in the joints.65 Moreover, their rigidity provides structural integrity to 

cells and pathways allowing cell migration. Biocharacteristics of GAGs include the 

binding and modulation of enzymes, protease inhibitors and cytokines.66 The specific 

GAGs of physiological significance are hyaluronic acid, dermatan sulphate, 

chondroitin sulphate, heparin, heparan sulphate and keratin sulphate.67 Hyaluronan 

is the only GAG that does not contain any sulphate and is not covalently attached to 

proteins forming a proteoglycan.68 It is a component of non-covalently formed 

complexes with proteoglycans in the ECM. Hyaluronic acid polymers are very large 

(100,000 to 10,000,000 Da) and can contain a large volume of water.69 This property 

makes them excellent shock absorbers.70 Heparan sulphate binds to a variety of 
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extracellular matrix and basement membrane components including fibronectin, 

laminin and collagen, and promotes interactions of these components with 

integrins.71 Heparan sulphate also functions as co-receptors for many growth factors 

including fibroblast growth factors and vascular endothelial growth factors.72 These 

biocharacteristics implicate a major role for GAGs in phenomena like cell adhesion, 

migration, proliferation and differentiation.73 

The majority of GAGs in the body are linked to core proteins, forming proteoglycans 

(i.e. mucopolysaccharides) (figure 1-3). The GAGs extend perpendicularly from the 

core in a brush-like structure.62 The linkage of GAGs to the protein core involves a 

specific trisaccharide composed of two galactose residues and a xylulose residue. 

The trisaccharide linker is coupled to the protein core through an O-glycosidic bond 

to an S-residue in the protein.74 

 

 

Figure 1-3: Schematic representation of a proteoglycan. Chains of glycosaminoglycans (GAG) 
are covalently attached to a protein core (PC). The GAG chain is bound to serine residues of 

the PC through a linkage region consisting of a xylosyl group (X), two D-galactose residues (G) 
and one D-glucuronic acid (GA). 

 
 
Proteoglycans and GAGs perform numerous vital functions within the body, some of 

which still remain to be studied. One well-defined function of heparin is its role in 

preventing blood coagulation.75 Heparin is abundant in granules of mast cells that 

line blood vessels. The release of heparin from these granules, in response to injury, 

and its subsequent entry into the serum leads to an inhibition of blood clotting, in the 

following manner. Free heparin complexes with and activates antithrombin III, which 

in turn inhibits all the serine proteases of the coagulation cascade.76    
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4 Hydrogels 

4.1 Definition and properties 

 

Hydrogels are hydrophilic polymer networks, able to absorb a large amount of water 

(i.e. one tenth to thousand times their dry weight).77 Hydrophilic groups or domains, 

which are hydrated in an aqueous dissolution, are present in the network, creating 

the hydrogel structure.78 In order to avoid the dissolution of the hydrophilic polymer 

chains in the aqueous phase, crosslinks need to be incorporated. The introduced 

crosslinks can be either physical or chemical.24 Unstable bonds are often introduced 

in the gels, since it can be advantageous for many applications that the hydrogels are 

biodegradable.79 These bonds can be broken either enzymatically or chemically. In 

the latter case, this mostly occurs via hydrolysis.80  

Physical or reversible gels are formed by secondary forces such as ionic, 

hydrophobic interactions or hydrogen bonds. Irreversible or chemical hydrogels are 

covalently crosslinked networks.81 

Besides biodegradability, biocompatibility also is very important.79 When hydrogels 

are in contact with the body, the degradation products should not be toxic. This 

means that the components formed, should be metabolized into harmless products, 

or that they should be excreted from the body. Consequently, the starting products 

should be selected carefully.82 Interestingly, the irritation of the surrounding tissue is 

also limited because of the soft and rubbery nature of hydrogels.83         

 
 

4.2 Physical hydrogels 

 

Formation of physical hydrogels can occur via different mechanisms.  

 

A first method is crosslinking through ionic interaction. Polycations crosslink via 

anions and vice versa. Alginate is a well-known example of a polymer which can be 

crosslinked by ionic interactions. It is a polysaccharide with mannuronic acid and 

glucuronic acid residues and crosslinking occurs via calcium ions. Hydrogels can 

also be obtained by complexation of polyanions with polycations.84 
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A second procedure is crosslinking by crystallization. When an aqueous solution of, 

for example, poly(vinylalcohol) (PVA) is stored at room temperature, a gel with high 

elasticity is formed gradually. This gel formation is ascribed to the presence of PVA 

crystals, acting as junction zones in the network.85 

 

Alternatively, physical gels can also be prepared from block- and graftcopolymers. 

The mixing of two different polymers and the synthesis of blockcopolymers can lead 

to the formation of interesting gels with good biocompatibility and interesting 

mechanical and swelling properties. The biodegradability of poly(lactic acid) and the 

biocompatibility of poly(ethylene glycol) for example, form a suitable combination.86 

This copolymer is often applied in wound bandages. 

 

There exist also thermally induced networks. Cooling a polymer solution in order to 

form a gel (e.g. agarose or gelatin in water) is occurring most frequently.87 However, 

heating a solution to induce gel formation also exists (e.g. PEO-PPO-PEO 

blockcopolymers in water).79 

 

Several other methods are reported in literature (e.g. protein interactions and 

antigen-antibody interactions).88     

  

 

4.3 Chemical hydrogels 

 

Chemical crosslinking can also be subdivided into different categories.  

 

A first method is the radical polymerization of monomers in the presence of 

crosslinkers (e.g. poly(2-hydroxyethyl methacrylate) (pHEMA). pHEMA is obtained by 

polymerisation of HEMA in the presence of a suitable crosslinker, such as ethylene 

glycol dimethacrylate (figure 1-4).89 
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Figure 1-4: Synthesis of poly(2-hydroxyethyl methacrylate). 

 
 

A large variety of hydrogels can be obtained by applying the same procedure.  

Beside the radical polymerization of mixtures of vinyl monomers, chemical gels can 

also be obtained by radical polymerization of water soluble polymers, derivatized with 

polymerizable side groups (e.g. dextran).90 

 

A second method is the hydrogel formation via chemical reaction of complementary 

groups. Watersoluble polymers owe their solubility to the presence of functional 

groups (especially OH, COOH, NH2), which can be used to synthesize hydrogels. 

Covalent bonds between the polymer chains can arise by the reaction of functional 

groups with complementary reactivity, such as an amine with an aldehyde.77  

 

Alternatively, high energy irradiation can be used to polymerize compounds.91 For 

example, polymers derivatized with vinyl groups, can be transferred into hydrogels. 

Moreover, the presence of vinyl groups is not always necessary to induce gel 

formation. During the irradiation, radicals can be formed on the polymer chain by, for 

example, homolytic splitting of C-H bonds. An example of a polymer that can be 

crosslinked using this method is PVA.92  

 

Finally, crosslinking can also occur by means of enzymes. Interaction of enzymes 

such as transglutaminase with, for instance, PEG can result in hydrogel formation.93      
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4.4 Applications 

 

There exist a large variety of applications for hydrogels because of their interesting 

properties, as already mentioned earlier: 

 

� Drug delivery systems94 

� Contact lenses95 

� Artificial organs96 

� Synthetic cartilage97 

� Coatings for catheters98 

� Wound treatment99 

 
 

5 Building blocks  
 

In the present work, gelatin will be applied as the starting product for the hydrogel 

production. The major goal of the present work was to develop porous hydrogel 

scaffolds, to function as tissue engineering devices. Depending on the specific 

application (i.e. cell type etc.), chondroitin sulphate or hyaluronic acid should be co-

crosslinked within the gelatin hydrogels developed. 

 

 

5.1 Gelatin 

 

Gelatin is derived from the latin word ‘gelatus’, which means ‘frozen’ or ‘thickened’. It 

is a water-soluble protein, composed of a variety of amino acids (table 1-3)100, 

connected via amide bonds, resulting in a linear polymer with a molecular weight 

varying between 15,000 and 250,000 Da.101  

Gelatin is obtained by hydrolysis of collagen, which was already described in 

paragraph 3.2.50  

 

Two types of gelatin can be distinguished according to their production process 

(figure 1-5).102 
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1. Type A gelatin (pH 3.8-6; iso-electric point  (pH at which the net charge of the 

polymer is 0) 6-8) is obtained by acidic hydrolysis of collagen. 

2. Type B gelatin (pH 5-7.4; iso-electric point 4.7-5.3) is produced by alkaline 

treatment of collagen. 

 

Type B gelatin differs from type A by the hydrolysis of the amide groups. By this 

amidolysis, aspartine and glutamine are converted to aspartic acid and glutamic acid. 

The extra acid groups reduce the iso-electric point of gelatin. The iso-electric point of 

type A gelatin is higher than that of type B since amides are converted to 

carboxylate, while this does not happen or slowly happens in acidic medium. Also 

arginine can be hydrolysed to ornithine in alkaline conditions.103    

 

Figure 1-5: Synthesis of gelatin starting from collagen. 
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Gelatin 

 

 

 

 

Amino acid 

 

 

 Type A 

 

 Type B 

 

Type I 

Collagen 

 

alanine 

arginine* 

asparagine 

aspartic acid 

cysteine 

phenylalanine* 

glutamine 

glutamic acid 

glycine 

histidine* 

hydroxylysine 

hydroxyproline 

isoleucine* 

leucine* 

lysine* 

methionine* 

proline 

serine 

threonine* 

tryptophan* 

tyrosine 

valine* 

 

 

10.5 

4.9 

1.6 

2.9 

- 

1.4 

2.5 

4.8 

31.1 

0.5 

0.7 

10.1 

1.0 

2.4 

2.9 

0.5 

14.2 

3.5 

1.8 

- 

0.3 

2.6 

 

11.7 

4.8 

- 

4.6 

- 

1.4 

- 

7.2 

33.0 

0.4 

0.4 

9.3 

1.1 

2.4 

2.8 

0.4 

12.4 

3.3 

1.8 

- 

1.2 

2.2 

 

11.4 

5.1 

1.6 

2.9 

<0.1 

1.3 

2.5 

4.8 

33.2 

0.4 

0.5 

10.4 

1.1 

2.4 

2.8 

0.6 

11.5 

3.5 

1.7 

- 

0.4 

2.2 

  

Table 1-3: The average amino acid composition (mol%) in gelatin and collagen. 
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The principal raw materials used in the gelatin production today are cattle bones, 

cattle hides, and pork skins.104, 105 Substances, such as minerals (in the case of 

bone), fats and albuminoids (found in skin), are removed by chemical and physical 

treatment resulting in purified collagen. These pre-treated materials are then 

hydrolyzed to gelatin (figure 1-6). 

The so-called ‘green bone’ is cleaned, degreased, dried and crushed to a particle 

size of about 1-2 cm. The pieces of bone are then treated with dilute hydrochloric 

acid to remove mineral salts. The resulting sponge-like material is called ossein. 

From this point on in the manufacture of type B gelatin, both cattle hides and ossein 

receive similar treatment. For the production of type B gelatin, both ossein and cattle 

hides are subjected to treatment with an alkali (usually lime) and water at room 

temperature. Depending on the previous treatment, the nature of the material, the 

size of the pieces, and the exact temperature, liming takes 5 to 20 weeks, usually 8 

to 12. The process is controlled by the degree of alkalinity, as determined by titration 

with acid. 

Next, the raw material is thoroughly washed with cold water to remove excess lime. 

The pH is adjusted with acid and the product is extracted with hot water to recover 

the soluble gelatin. 

Pork skin is currently the most significant raw material source for the production of 

edible gelatin in North America. When pork skins are utilized for the production of 

type A gelatin, they are washed with cold water and then soaked in cold dilute 

mineral acid for several hours, until maximum swelling has occurred. Hydrochloric 

acid and sulfuric acid are most commonly employed. The remaining acid is then 

drained off and the material is again washed several times with cold water. The pork 

skins are then ready for extraction with hot water. 

The dilute gelatin solutions from the various hot water extractions are filtered, 

deionized, and concentrated by cross-flow membrane filtration and/or vacuum 

evaporation. The gelatin solution is then chilled and either cut into ribbons or 

extruded, and the gelled material is deposited onto a stainless steel belt. The belt is 

passed through a drying chamber, which is divided into zones in each of which the 

temperature and humidity of the drying air is accurately controlled. Typical 

temperatures range from about 30°C in the initial zone up to about 70°C in the final 

zone.  
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Figure 1-6: Production process of gelatin. 
 

Gelatin is a vitreous, brittle solid that is coloured yellow to white and is nearly 

tasteless and odourless. It contains 84-90% protein, 1-2% mineral salts and 8-15% 

water. 

Gelatin has since long been used in the food industry as clarification agent, stabilizer 

and protective coating material. It is used especially in desserts, candies, bakery 

products, ice cream and dairy products.106 In the pharmaceutical industry, gelatin is 

applied in the manufacture of pharmaceutical capsules, tablets and emulsions.107 

Gelatin also finds application in cosmetics, photography and some specialized 

industries.108  
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5.2 Chondroitin sulphate 

 

Chondroitin sulphate (CS) is a GAG, composed of a chain of alternating sugars (i.e. 

N-acetyl-D-galactosamine and D-glucuronic acid).62 The chemical structure of one 

sub-class of CS is shown in figure 1-7. It is usually found, attached to proteins as part 

of a proteoglycan, as already disussed in paragraph 3.3. CS can consist of over 100 

individual sugars, each of which can be sulphated in variable positions and 

quantities. There exist different types of CS:109-111 

 

� Chondroitin sulphate A is predominantly sulphated at carbon-4 of the N-

acetylgalactosamine (GalNAc) sugar and is also known as chondroitin-4-

sulphate.  

� Chondroitin sulphate B is also referred to as dermatan sulphate. 

Glucuronic acid (GlcA) residues are in this case epimerized into L-iduronic 

acid (IdoA). 

� Chondroitin sulphate C is predominantly sulphated at carbon-6 of the 

GalNAc sugar (chondroitin-6-sulphate).  

� Chondroitin sulphate D is predominantly sulphated at carbon-2 of the 

glucuronic acid and at carbon-6 of the GalNAc sugar (chondroitin-2,6-

sulphate).  

� Chondroitin sulphate E is predominantly sulphated at carbons-4 and -6 of 

the GalNAc sugar (chondroitin-4,6-sulphate).  

 

CS is an important structural component of cartilage and provides much of its 

resistance to compression.112 Furthermore, CS has biocharacteristics that include the 

binding and modulation of growth factors and cytokines, and the inhibition of 

proteases.64 Consequently, the incorporation of CS in scaffolds designed for tissue 

engineering could be extremely valuable.  

 
 

Figure 1-7: Chemical structure of chondroitin sulphate C. 
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5.3 Hyaluronic acid 

 

Hyaluronic acid (HA) is derived from ‘hyalos’ (Greek for vitreous) and ‘uronic acid’, 

because it was first isolated from the vitreous humor and possesses a high uronic 

acid content.113 Hyaluronan is a non-sulphated GAG, distributed widely throughout 

connective, epithelial, and neural tissue.114 It is one of the major components of the 

extracellular matrix and it contributes significantly to cell proliferation and migration.67 

Hyaluronan is a polymer of disaccharides, composed of D-glucuronic acid and D-N-

acetylglucosamine, linked together via alternating β-1,4 and β-1,3 glycosidic bonds 

(figure 1-8).70  

 

 

Figure 1-8: Chemical structure of hyaluronic acid. 

 

 

The molecular weight of hyaluronan can range from 100,000 to 10,000,000 Da in 

vivo.115 Hyaluronan is energetically stable because of the stereochemistry of the 

disaccharides present. Bulky groups on each sugar molecule are in sterically favored 

positions, while the smaller hydrogens are positioned on the less favorable axial 

positions.116 

 

Hyaluronan is synthesized by a class of integral membrane proteins called 

hyaluronan synthases, of which vertebrates have three types: HAS1, HAS2, and 

HAS3. These enzymes increase the length of the hyaluronan chains by repeatedly 

adding glucuronic acid and N-acetylglucosamine to the polysaccharide as it is 

extruded through the cell membrane into the extracellular space.117 

Hyaluronan is naturally found in many tissues of the body such as skin, cartilage, and 

the vitreous humor.118 It is therefore well suited for biomedical applications, targeting 

these tissues.61, 119  
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The first hyaluronan-based biomedical product (Healon) was developed in the 1970s 

and 1980s and is approved for the use in eye surgery (e.g. corneal 

transplantation).120  

Hyaluronan is also used to treat osteoarthritis of the knee.69 It has also been 

suggested that hyaluronan has positive biochemical effects on cartilage cells.66 

Due to its biocompatibility and its presence in the extracellular matrix, hyaluronan is 

often used as a scaffold in tissue engineering research.121 

Hyaluronan is often used as a tumor marker for prostate and breast cancer. It may 

also be used to monitor the progression of the disease. 122, 123 

Hyaluronan may also be used postoperatively to induce tissue healing.68 Current 

models of wound healing propose that HA with higher molecular weight appear to 

physically make room for white blood cells, which mediate the immune response.124 

Hyaluronan also is a common ingredient in skin care products.125 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter I: Introduction 20 

6 PhD outline 
 

The goal of the present work is the development of bio-interactive materials that can 

function as scaffolds for tissue engineering, which represents the second discipline in 

regenerative medicine. The self-structuring biopolymer gelatin will be combined with 

glycosaminoglycans (chondroitin sulphate and hyaluronic acid) and cell-adhesive 

polymers (e.g. fibronectin). Gelatin will introduce mechanical strength and the 

glycosaminoglycans and cell-adhesive polymers will function in cell adhesion, cell 

proliferation and cell migration processes. In order to avoid the dissolution of the 

biopolymers at body temperature, gelatin, chondroitin sulphate and hyaluronic acid 

are modified with functional groups, enabling crosslinking and formation of 

interpenetrating networks (figure 1-9).  

 

 

Figure 1-9: The formation of a chemically crosslinked hydrogel network  
based on modified gelatin and GAGs.  

 
In order to crosslink gelatin, two approaches are selected (figure 1-10). On the one 

hand, polymerizable methacrylamide side chains will be incorporated to enable 

chemical crosslinking. Alternatively, the primary amines of gelatin will be modified 

with thiol side groups, enabling inter- and intramolecular disulfide formation through 

oxidation. The latter concept offers the possibility to prepare hydrogels that can be 

solubilised by reduction, which opens perspectives to isolate cells, cultured in the 

hydrogel carriers. 

The hydrogels will be prepared as films and scaffolds. Bio-interactive hydrogels are 

also of interest to function as cell carrier material, or to combine with materials, less 

suitable for cell culture, yet possessing interesting (mechanical) properties.  

The hydrogels developed will be characterized for their mechanical and physical 

properties and their biodegradability.     
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Figure 1-10: Derivatization of gelatin with crosslinkable side groups. 

 
 
Since it is essential that the cells implanted, are both provided with nutrients and that 

metabolites are removed, a porous structure is introduced into the hydrogels 

developed, via a cryogenic treatment, followed by lyophilization (figure 1-11).      

 

 

Figure 1-11: Cryogenic treatment of gelatin hydrogel, followed by lyofilization.  

 

The synthesis and characterization of the hydrogel precursors will be described in 

depth in chapter 2. Both the modification degree and the molecular weight of the 

derivatives will be determined. Next, the influence of reaction conditions etc. will be 

investigated. 
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In chapter 3, the preparation and characterization of hydrogel films, composed of 

different combinations of modified gelatin and chondroitin sulphate will be discussed. 

For different types of materials, the contributions of both the physical and the 

chemical structuring to the total network strength is investigated. A study on the 

influence of varying parameters (e.g. polymer concentration, modification degree, 

cryogenic treatment) on the properties of the hydrogels developed, is performed by 

means of rheology, texturometry and swelling experiments. 

 

The production of porous gelatin scaffolds by applying a cryogenic treatment, is dealt 

with in chapter 4. The influence of varying parameters including the cooling rate, 

applying a temperature gradient and the gelatin concentration on the pore 

morphology, the pore size and the porosity of the matrices developed, is studied 

using different techniques (e.g. micro-computed tomography, helium-pycnometry, 

scanning electron microscopy, etc).     

 

In chapter 5, hydrogel scaffolds composed of both gelatin and chondroitin sulphate 

are described, since this combination has a potential application for some specific 

applications (i.e. tissue engineering of cartilage). 

 

Next, alternatives in order to crosslink gelatin hydrogels, after lyophilization of the 

cryo-treated gelatin hydrogels are discussed in depth in chapter 6.  

 

Chapter 7 deals with the interaction between gelatin and extracellular matrix 

components. Since cells can only survive when anchored, the interaction between its 

anchorage points (i.e. compounds of the extracellular matrix) and the scaffold 

material (i.e. gelatin) can play a tremendous role on the ability of the matrices to 

function as cell carriers. Moreover, when culturing cells in vitro, often serum, 

containing a variation of proteins is added to the medium. Possibly, the interaction 

between gelatin and some of the serum constituents could also affect the results of 

the cell interaction studies. 

 

In chapter 8, the in vitro biocompatibility of the scaffolds developed is discussed. 

Furthermore, the suitability of hydrogels with different pore characteristics, to function 

as cell carriers, is investigated for a large variety of human cells.  
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Chapter II: 

Synthesis and Characterization of the Hydrogel 

Precursors 

 

 

1 Introduction 
 

The present work deals with hydrogels based on gelatin and glycosaminoglycans to 

function as cell carriers for tissue engineering applications. The materials should be 

crosslinked chemically in order to obtain stable hydrogels with suitable mechanical 

properties at body temperature.  

 

In the following sections, the chemical modification of the individual compounds (i.e. 

gelatin, chondroitin sulphate and hyaluronic acid) with crosslinkable side groups, are 

discussed thoroughly. Preferably, all hydrogel constituents should be co-

crosslinkable, meaning that the incorporated side chains should be identical, since in 

a forthcoming part of the present work, hydrogels composed of different combinations 

of the precursors, are prepared.  

 

Initially, double bonds were selected as crosslinkable side groups. After the 

preparation, the modified polymers were characterized using attenuated total 

reflection infrared spectroscopy (ATR-IR), nuclear magnetic resonance spectoscopy 

(1H-NMR) and size exclusion chromatography (SEC). 

 

In most cases, chemical crosslinking is irreversible. However, since the prepared  

materials will function as cell carriers for tissue engineering, it could be useful to 

implement a reversible crosslinking method (e.g. by incorporation of thiols). In this 

way, cells could be released from the matrix by adding a reduction agent (e.g. 
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dithiothreitol) to cleave disulfide linkages with the formation of thiols. For this reason, 

beside incorporation of double bonds, gelatin was also substituted using thiolating 

compounds. Spectrometric methods were utilized to estimate the degree of 

substitution and SEC experiments led to the determination of the average molecular 

weight of the thiolated gelatin.       

 

 

2 Synthesis and characterization of modified gelatin 
 

Since gelatin has a sol-gel transition temperature of ± 30°C, gelatin hydrogels should 

be crosslinked chemically to avoid dissolution at body temperature.1 Gelatin is a 

protein, which is comprised of a large variety of side chains, that can be modified with 

different components.2 Consequently, a large number of studies was and still is 

devoted to the chemical crosslinking of gelatin hydrogels.3 The choice of potential 

reagents is limited to water-stable ones, since gelatin only dissolves in water and in a 

few alcohols.4 In order to avoid the destruction of gelatin molecules during the 

modification, the reaction temperature should not exceed 80°C, the pH should be in 

the range of 3 to 10 and reaction times should be kept short. In most cases, 

bifunctional reagents such as glutaraldehyde5,6 and diisocyanates7, as well as 

carbodiimides8,9, polyepoxycompounds10 and acyl azides11 are used. The 

derivatization occurs mostly via the amine groups (figure 2-1) of lysine and 

hydroxylysine.12 The guanidinium group of arginine will be protonated in mild basic 

conditions, which makes the reaction (nucleophilic attack) impossible. The imidazole 

group of histidine will react, but with the formation of unstable products.13 Boudet et 

al achieved chemical cross-linking using a thermosensitive reactive copolymer based 

on N-isopropylacrylamide.14 The copolymer consists of acrylic acid units which form 

amide bonds with the amino groups of gelatin in the presence of a water-soluble 

carbodiimide. By setting the temperature above or below the LCST, it is possible to 

switch off or on the reactivity of the system and control the gelation process. Butler et 

al applied a natural crosslinking reagent, namely Genipin.15 The crosslinking 

mechanism of Genipin with gelatin is still under investigation. A proposed mechanism 

is the nucleophilic attack of amines of gelatin inducing ring opening of the 

dihydropyran ring of Genipin. A second amine can then react subsequently with the 
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resulting aldehyde. Another possibility is to obtain chemically crosslinked hydrogels 

through high-energy irradiation, such as ebeam and gamma-ray.16,17 The major 

advantage of the latter technique is that the reaction is reagent- and solvent-free. 

Moreover, sterilization can occur simultaneous during high-energy irradiation.18,19 The 

latter is particularly interesting in view of future applications since the production 

process is then shortened by combining crosslinking and sterilization in one step.  
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Figure 2-1: Building blocks of gelatin consisting of amine groups. 

  

However, the present work is focussing on the modification of amines into 

methacrylamide side groups, since this method enables separate derivatization, 

followed by subsequent crosslinking. Moreover, mechanically stable and 

biocompatible hydrogels were obtained using this approach, as described in the PhD 

and publications of Dr. A. Van Den Bulcke.13, 20  

 

 

2.1 Synthesis of methacrylamide modified gelatin 

 

In the present work, methacrylic anhydride was chosen to modify gelatin (figure 2-2). 

The reaction is performed in aqueous solution (pH 7.5) at 40°C. An excess of 

methacrylic anhydride is added while vigorously stirring, since the reagent does not 

dissolve in water and the reaction is interfacial. After 1 hour, the methacrylamide 

modified gelatin (gel-MOD) is isolated by means of dialysis, followed by freeze-

drying.  
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Figure 2-2: Synthesis of gel-MOD. 
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The amount of crosslinkable side groups can be adjusted by simply varying the 

amount of methacrylic anhydride added.13 

 

 

2.2 Characterization of gel-MOD 

 

Gel-MOD was already characterized extensively in the PhD of Dr. A. Van Den Bulcke 

(i.e. molecular weight, degree of substitution). For this reason, the present work only 

describes one method in order to determine the degree of modification.  

1H-NMR spectroscopy at elevated temperature (40°C) was applied, since the latter 

appeared to be a simple, yet accurate method to determine the methacrylamide 

substituents on the gelatin in D2O. The 1H-NMR spectrum of the synthesized 

methacrylamide gelatin is shown in the figure below. 
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Figure 2-3: 
1
H-NMR spectrum of gel-MOD with a degree of substitution of 86%, recorded in D2O 

at 40°C. 

    

The NMR-spectrum, represented in figure 2-3, is extremely complex since gelatin is 

composed of more than 20 different amino acids, as already described in chapter 1 

Val, Leu, Ile 

Methacrylamide 
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(table 1-2). The structure of these amino acid building blocks is: -NH-CHR-CO-, in 

which the side chain (R) varies and possesses different functional groups. Complete 

analysis of the spectrum was out of the scope of the present study. Only attributing 

one peak to a component, that cannot be modified, was essential in order to 

calculate the degree of substitution.  

The signal at 1.12 ppm could be ascribed to the resonance in the valine (Val), leucine 

(Leu) and isoleucine (Ile) side chain, by recording 1H-NMR spectra of the different 

amino acids. The hydrophobic alkyl side chains of valine, leucine and isoleucine can 

be considered chemically inert. Based on the known composition (0.023 mol Val + 

0.026 mol Leu + 0.015 mol Ile in 100 g gelatin), it can be calculated that the 

integration of this peak (18 protons) corresponds to 0.3836 mol/100g.  

Also the total amount of available amine groups in gelatin (0.0385 mol/100g) needs 

to be considered, since we would like to define the degree of substitution as a 

function of the initial amount of free amine groups in gelatin: 

 

DS (%) = 

0.3836 mol x (integration at 5.7 ppm / integration at 1.1 ppm) x (100 / 0.0385 mol) 

 

In the example, the integration at 1.1 ppm is 1000 and that at 5.7 ppm is 86.71. The 

degree of substitution (DS) is thus 86%. This corresponds to 8 double bonds per 10 

amines (lysine + hydroxylysine). 

 

In addition to 1H-NMR-spectroscopy, the degree of substitution can also be obtained 

using the decrease in amine content after modification with methacrylic anhydride. 

The latter can be obtained spectrometric after reaction of the amines present with 

trinitrobenzenesulfonic acid (TNBS). This method was already evaluated and 

described in depth in the PhD of Dr. A. Van Den Bulcke and the obtained 

modification degrees were in good correlation with the results obtained using 1H-

NMR-spectroscopy.13      
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3 Synthesis and characterization of thiolated gelatin 
 

The disadvantage of most chemical crosslinking procedures is the fact that they are 

irreversible.21,22 This may be unfavourable when applying the materials developed as 

cell carriers in bioreactors.23 Crosslinking via disulfide bond formation by oxidation of 

thiolated compounds could offer a solution for this problem, since this process is 

reversible.24 Cleavage of the disulfide linkages via reducing agents (e.g. dithiothreitol) 

again results in thiolated, soluble reagents.25 

In literature, numerous thiolating agents have been described. Dithioglycolide was 

first introduced by Schöberl.26 However, this reagent has the disadvantage that it 

easily polymerizes to form polythioglycolides. Thiolation of RNAse has been 

investigated in this respect.27 Benesch et al originally employed benzoyl 

homocysteine thiolactone for thiolation.28 However, they eventually selected the 

acetyl derivative because of its greater solubility in water. Klotz et al used sodium 

thioparaconate, but the obtained results were similar to those obtained with 

alternative thiolating reagents.29  

In the present work, two thiolating agents were applied and compared, namely N-

acetylhomocysteine thiolactone and Traut’s reagent.  

Introduction of a sulfhydryl group occurs by aminolysis of the thiolactone bond of N-

acetylhomocysteine thiolactone.30 This method was patented in 1961, after which the 

product was used for the thiolation of numerous amine-containing compounds (e.g. 

ribonuclease).31, 32 

Traut’s reagent or 2-iminothiolane is a cyclic thioimidate compound for sulfhydryl 

addition.33 It reacts spontaneously and efficiently with primary amines at pH 7-9.34 

The reagent can also react with aliphatic and phenolic hydroxyl groups, especially at 

high pH.35 However, the rate of these reactions is 1000-fold less than with amino 

groups and will not occur when amines are present and with reaction times not 

exceeding 24 hours.36  

 

3.1 Synthesis of thiolated gelatin 

 

Gelatin was dissolved at 40°C in degassed buffer (pH 10), in the presence of EDTA. 

The latter was included to chelate divalent metals in the solution that may catalyze 
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thiol oxidation (i.e. formation of disulfide bonds).37,38 Consequently, N-acetyl 

homocysteine thiolactone (figure 2-4) or Traut’s reagent (figure 2-5) was added and 

the reaction proceeded for respectively three hours or 45 minutes under argon 

atmosphere. Purification of the obtained products occurred via dialysis in the 

presence of argon in order to prevent disulfide formation by redox reaction with 

oxygen, followed by freeze-drying.  

 

 

 

 

 

 

 

 

3.2 Characterization of the thiolated gelatin derivatives 

3.2.1 Quantification of the thiol groups 

 

There exist two possible pathways to determine the amount of incorporated thiol 

groups in gelatin, either directly or indirectly.  

The direct approach involves the use of Ellman’s reagent. Already in 1959, Ellman 

introduced 5,5’-dithio-bis-(2-nitrobenzoic acid) (DTNB) as a versatile water-soluble 

compound for quantifying free sulfhydryl groups in solution.39 A solution of this 

compound produces a yellow-coloured product when it reacts with thiol groups. This 

compound possesses a high specificity for thiols at neutral pH values and is 

characterized by a high molar extinction coefficient and short reaction times.40 

Figure 2-4: Reaction scheme to prepare thiolated gelatin by means of N-acetyl-homocysteine 
thiolactone. 

Figure 2-5: Synthesis of thiolated gelatin with 2-iminothiolane as reagent. 
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DTNB reacts with a free sulfhydryl group yielding a mixed disulfide and 2-nitro-5-

thiobenzoic acid (TNB), as depicted in figure 2-6. TNB is the coloured species, 

produced in this reaction and has a high molar extinction coefficient in the visible 

range (14150 M-1cm-1 at 412 nm).41,42 The extinction coefficient of TNB is not affected 

by changes in pH between 7.6 and 8.6, but varies under different solvent 

conditions.42     
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Thiol groups were quantified by comparison with a standard curve obtained from 

solutions containing known concentrations of cysteine. 

 

The indirect method involves the determination of the difference between the amine 

content in gelatin before and after modification.   

The amine concentration was determined spectrometrically by means of ortho-

phthalic dialdehyde or 1,2-benzenedicarboxaldehyde  (OPA) (figure 2-7). Iso-indol 

chromophores originate during the derivatization, which possess a maximum 

absorbance at 335 nm (ε = ± 104 M-1cm-1). The reaction proceeds fast and amine 

concentrations were obtained by comparison with a calibration curve based on n-

butylamine.  

After derivatization with N-acetylhomocysteine thiolactone or Traut’s reagent, the 

amount of free amines in gelatin decreases. Consequently, less amines will be 

available for reaction with OPA, which will lead to lower absorbances at 335 nm. The 

difference in absorbance is proportional with the amount of amines that is modified 

Figure 2-6: Reduction of Ellman’s reagent. 
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with thiol groups. The degree of substitution is defined as the ratio of the amount of 

modified amines to the amount of total amines originally (i.e. before modification) 

present in gelatin. 

In literature, many alternative methods have been described to determine amine 

concentrations in solutions (e.g. 2,4,6-trinitrobenzenesulfonic acid (TNBS) and 

ninhydrin).43,44,45 However, TNBS could not be used since it also reacted with the 

incorporated thiol groups, yielding compounds that showed absorbance at the same 

wavelength as the chromophores originated from the reaction of the amines with 

TNBS.      

 

 

 

 

Both the direct and indirect method were compared, after modification of gelatin with 

N-acetylhomocysteine thiolactone. All experiments were performed in triplicate. The 

results, shown in figure 2-8, demonstrate a significantly higher degree of substitution 
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Figure 2-7: Reaction mechanism of ortho-phtalic dialdehyde with the primary amines of 
gelatin. 
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when using OPA compared to Ellman’s reagent. Hence, less thiol groups were 

detected with Ellman’s reagent than there were present in gelatin. Probably, 

oxidation of some incorporated thiol groups occurred in the presence of oxygen, 

thereby forming disulfide linkages. Since disulfides can not be detected using 

Ellman’s reagent, this method probably underestimates the thiol concentration. OPA 

thus appears to be the best method to determine the degree of substitution of gelatin, 

despite the fact that it is an indirect method.   

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600

N-acetylhomocystein thiolactone (%)

D
S

 (
%

)

 

Figure 2-8: Degree of substitution of gelatin as a function of the amount of added thiolactone  
(n = 3).  

 

The degree of modification is proportional to the added amount of thiolactone. The 

maximum obtainable degree of substitution is 65%, after the addition of five 

equivalents of N-acetylhomocysteine thiolactone.  

 

 

3.2.2 Determination of the average molecular weight of gel-SH 

 

The molecular weight and the molecular weight dispersity of the gelatin derivatives 

were determined by means of size exclusion chromatography (SEC) at 50°C, using 

buffer as eluens. Pullulan standards were utilized for calibration. Gelatin with a 

weight-average molecular weight of 190000 Da and a polydispersity of 2.5 were used 

for the modification reaction. The table below indicates that the molecular weight of 

the thiolated gelatin is significantly higher. In order to investigate whether these 

results were due to crosslinking of incorporated thiol groups, a reducing agent 

dithiothreitol (DTT) was added, followed by SEC. It was observed that the molecular 

OPA 

Ellman’s reagent 
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weight decreased, but still remained higher than the molecular weight of unmodified 

gelatin (i.e. 190,000 Da). There exist different possible explanations for the latter 

phenomenon. The first one is that DTT could not react with all the present disulfides, 

because of the conformation of certain gelatin chains. A second possibility is the 

influence of the thiolation on the hydrodynamic volume of the molecules. The last 

option is related to the purification process. During dialysis, gelatin molecules having 

a molecular weight lower than the molecular weight cut off (MWCO) of the 

membranes, are removed from the solution, resulting in a relatively higher fraction of 

polymers with higher molecular weight. As a result, the polydispersity decreases. 

However, since the polydispersity of the thiolated gelatin is higher than that of 

unmodified gelatin, the latter explanation can be excluded.       

 

 Mw δ 
  + DTT  + DTT 
Gel 190000 Da 190000 Da 2.5 2.5 
Gel-SH (thiolactone) 280000 Da 260000 Da 2.7 2.8 
Gel-SH (Traut’s reagent) 330000 Da 200000 Da 3.2 3.5 

 
Table 2-1: Weight-average molecular weights and polydispersities of gelatin and thiolated 

gelatin.  

 

The increase in polydispersity after modification is also due to the formation of 

disulfides.  

 

 

3.3 Influence of the pH on the degree of substitution 

 

The pH of the reaction buffer plays an important role in the derivatization of gelatin.  

The equilibrium between the free amines of (hydroxy-)lysine and their conjugated 

acid shifts when the pH changes. In less basic media, a smaller amount of primary 

amines is available for the reaction with N-acetylhomocysteine thiolactone, since 

more amines are protonated.  

In addition, the competition with already incorporated thiols should not be 

underestimated either. In this way, the sulfhydryl groups present in gelatin can, at 

elevated pH, react as a nucleophile with the thiolactone and thus compete with the 

primary amines of the polymer. Reaction buffers with three different pH’s (9, 10 and 
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11) resulted in the formation of thiolated gelatin, but the optimal reaction medium 

appeared to be a carbonate buffer (pH 10) (figure 2-9).    
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Figure 2-9: Influence of pH on the degree of substitution of gelatin. 
 

 

3.4 Influence of the reagent on the degree of substitution  

 

As already mentioned in a previous paragraph (§ 3.1), beside N-acetylhomocysteine 

thiolactone, alternative thiolating agents such as Traut’s reagent exist (figure 2-10). In 

the present work, a comparative study was made on the efficiency of both 

compounds. 

 

Figure 2-10: Chemical structure of N-acetylhomocysteine thiolactone (left part) and Traut’s 

reagent (right part).   

 

Varying amounts of both reagents (i.e. 1 and 2 equivalents) were applied and the 

corresponding modification degrees were determined using OPA. The results for 

Traut’s reagent are shown in white and those for thiolactone are depicted in grey 

(figure 2-11).   
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Figure 2-11: Influence of the applied reagent on the degree of substitution of gelatin (Traut’s 
reagent: white; thiolactone: grey).   

 

From the results in figure 2-11, it can be concluded that the reactivity of Traut’s 

reagent is significantly higher than that of thiolactone. When applying one equivalent 

2-iminothiolane, the obtained modification degree is already 70%, compared to 30% 

when using thiolactone. Moreover, the reaction with Traut’s reagent only proceeds for 

45 minutes (pH 8).  

 

     

4 Synthesis and characterization of methacrylate- 
modified chondroitin sulphate 

 

Chondroitin sulphate (CS) is a glycosaminoglycan, which is comprised of alternating 

units of β-1,3-linked glucuronic acid and (β-1,4) N-acetyl-galactosamine and is 

sulphated on either the 4- or 6-position of the N-acetyl-galactosamine residues.46 

Since natural CS is readily water-soluble, a chemical crosslinking step is necessary 

in order to retain CS within hydrogel films and/or scaffolds.47  

In literature, a variety of methods was already described to graft CS onto different 

components. Güdemez et al activated the alcoholic groups within a polyhydroxyethyl 

methacrylate membrane to prepare it for covalent coupling with chondroitin sulphate. 

Epoxy groups were incorporated covalently onto the membrane by the nucleophilic 

reaction between the chloride groups of epichlorohydrin and the hydroxyl groups of 

the pHEMA.48 Kirker et al prepared biocompatible hydrogel films using the adipic 

dihydrazide derivative of chondroitin sulphate, in which a pendant hydrazide 
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functionality permits generation of a gel using a small molecule49 or macromolecular 

crosslinkers50 (e.g. poly(ethylene glycol)-propiondialdehyde).46 The most frequently 

utilized crosslinking reagents are 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide 

(EDC) and N-hydroxysuccinimide (NHS).51,52,53 The crosslinking reaction occurs often 

in the presence of collagen54,55 or other amine-containing reagents (e.g. 1,12-

diaminododecane).56 However, using EDC as crosslinking method often results in 

(partial) matrix collapse when working in aqueous media. This can be (partly) 

prevented if crosslinking is carried out in the presence of ethanol to decrease the 

polymer solubility.57  

Alternatively, thiol groups were incorporated into CS by EDC-mediated condensation 

with dithiobis(propionic acid), followed by dithiothreitol reduction. Next, thiol-modified 

CS was crosslinked with poly(ethylene glycol) diacrylate.58 

Li et al utilized glycidyl methacrylate (GMA) in a homogeneous-phase system 

(DMSO) expecting epoxide ring-opening, but instead transesterification dominated 

the reaction. However, in their study concerning the different solubility of the water-

soluble CS and the water-insoluble GMA, a slow heterogeneous-phase reaction of 

CS with GMA was designed  and performed in aqueous medium regardless of GMAs 

potential side-reaction with water.59      

The optimal strategy, used in the present work is equivalent to the synthesis of gel-

MOD and results in the incorporation of methacrylate side groups. Subsequent light-

induced polymerization of the structure enables co-crosslinking with gel-MOD.  

 

 

4.1 Synthesis of methacrylate – modified chondroitin sulphate 

 

Similar to the derivatization of gelatin, methacrylic anhydride was selected to 

introduce double bonds.47 The synthesis of the methacrylate-modified chondroitin 

sulphate (CS-MOD) precursor is illustrated in figure 2-12. Part of the hydroxyl groups 

of CS were converted into methacrylate groups. As methacrylic acid (MA) is 

generated during the esterification, NaOH was added as neutralizing agent, avoiding 

possible acid catalysed degradation of the polysaccharide. The glycosaminoglycan 

containing crosslinkable methacrylate groups was purified by membrane dialysis 

against double distilled water for several days, followed by isolation via lyophilization. 
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Figure 2-12: Synthesis of CS-MOD. 

 

 

4.2 Characterization of CS-MOD 

4.2.1 Attenuated total reflection – Infrared (ATR-IR) 

 

The successful incorporation of methacrylate side groups on chondroitin sulphate 

was confirmed by ATR-IR. As shown in figure 2-13, the characteristic ester 

absorption band at 1705 cm-1 appeared after modification with methacrylic anhydride. 

The other infrared bands were assigned as follows.60,61, 62  

The broad band in the region 3600-3000 cm-1 is due to the ν(OH) stretching mode 

and partially to the ν(N-H) stretching vibration of the N-acetyl side chain. The band at 

1610 cm-1 is assigned to the amide I mode (mainly C=O stretching coupled with N-H 

bending). The shoulder at 1550 cm-1 can be assigned to the amide II band and the 

feature at 1410 cm-1 originates from the symmetrical COO- vibration, νs(COO-). The 

absorbance in the region 1100-950 cm-1 mainly results from different vibrations of the 

pyranose ring. Additional bands in the spectrum can be attributed to vibrations of the 

C-O-SO3
--fragment. The intense band centred at 1226 cm-1 is due to the 

antisymmetrical stretching mode, νas(SO3
-). A peak at 1124 cm-1 is probably due to 

the antisymmetrical C-O-S stretching.  
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Figure 2-13: ATR-IR spectra of CS (black) and CS-MOD (grey). 

 

Since infrared spectra only give qualitative and semi-quantitative information, an 

alternative method was needed to determine the amount of incorporated 

methacrylate groups (i.e. degree of substitution).63  

 

 

4.2.2 Determination of degree of substitution using 1H-NMR 

 

The methacrylate substitution on CS was quantified using 1H-NMR as shown in figure 

2-14. Two distinctive peaks at 5.76 and 6.19 ppm can be attributed to the two protons 

attached to the double bond (C=CH2) and the peak shown at 1.95 ppm, was ascribed 

to the methyl groups adjacent to the double bonds (CH3-C=CH2). 

The 1H-NMR region from 1.6 to 2.5 ppm was expanded and the peaks corresponding 

to the two methyl groups were deconvoluted and integrated. The peak intensity at 

1.95 ppm to that at 2.04 ppm, corresponding to the methyl groups on native CS, was 

used to calculate the degree of substitution. The degree of substitution was 

expressed as the amount of modified repeating disaccharide units.       
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Figure 2-14: 1H-NMR spectrum of CS-MOD. 

 

 

The degree of substitution was calculated using the following equation: 

 

DS (%) = 100 x (integration at 5.7 ppm) / 

((sum of integrations at 1.95 and 2.04 ppm – 3 x (integration at 5.7 ppm)) / 3)  

 

In the example, the integration at 5.7 ppm is 0.97 and the sum of the integrations at 

1.95 and 2.04 ppm is 10. The degree of substitution is 41% meaning that 41% of the 

repeating disaccharide units are modified, which corresponds with 13.7% of the 

OH’s.  

The degree of substitution can be varied easily by adjusting the amount of added 

methacrylic anhydride. In figure 2-15, a master curve is shown for the modification of 

CS, showing the degree of substitution, obtained after adding different quantities of 

methacrylic anhydride.     

C=CH2 CH3-C=CH2 
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Figure 2-15: Master curve of CS showing the degree of substitution as a function of the amount 

of methacrylic anhydride added.   

 

From the 1H-NMR spectrum (figure 2-14), it can also be concluded that all detectable 

methacrylic acid was removed during dialysis. Otherwise a peak corresponding to the 

methyl group of methacrylic acid would be visible at 1.6 ppm. 

 

 

4.2.3 Determination of average molecular weight 

 

The molecular weight and the molecular weight dispersity of the synthesized 

derivatives were determined by means of size exclusion chromatography (SEC) at 

50°C. Pullulan standards were used for calibration. 

The weight-averaged molecular weight of native chondroitin sulphate was 118,000 

Da with a polydispersity of 1.2. CS-MOD appeared to have a somewhat lower weight-

averaged molecular weight of 111,000 Da and a polydispersity of 1.2.  

 

 

5 Synthesis and characterization of methacrylate- 
modified hyaluronan  

 

Hyaluronan (HA) is an attractive building block for new biocompatible and 

biodegradable polymers, applied in drug delivery and tissue engineering. 
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HA derivatives have physicochemical properties that may significantly differ from the 

native polymer (e.g. improved mechanical properties), but most derivatives retain 

their biocompatibility and biodegradability.  

In literature, a lot of attention has been paid to the modification of HA. Esterified 

hyaluronan has been prepared by alkylation of the tetra(n-butyl)ammonium salt of 

hyaluronan with an alkyl halide in dimethylformamide (DMF).64 At high percentages 

of esterification, the resulting materials became insoluble in water. These polymers 

showed good mechanical strength when dry, but the hydrated materials were less 

robust.  

The chemical modification of the carboxylic functions of hyaluronan with amine-

containing compounds using carbodiimide compounds is generally performed in 

water at pH 4.75. At this pH, the carboxylic acid is protonated, but a small percentage 

of the amine base may remain in nucleophilic form to produce a covalent adduct.65  

Alternatively, hydrazides can also couple to carbodiimide-activated glucuronic acid 

residues of HA at pH 4.75.49 Consequently, the use of dihydrazide compounds, such 

as adipic dihydrazide, can provide multiple pendant hydrazide groups for crosslinking 

agents.  

Other carbodiimide-mediated reactions of hyaluronan employ hydroxylamine-

containing species to obtain hyaluronan-activated esters. 

Furthermore, reactive bisaldehyde functionalities have been generated from the 

vicinal secondary alcohol functions on hyaluronan by oxidation with sodium 

periodate. Consequent crosslinking occurred via reductive coupling with 

multifunctional primary amines. 

Different strategies exist in order to obtain chemically crosslinked hyaluronan-based 

materials.66,67 For example, Intergel® is a hydrogel formulation of hyaluronan, formed 

by chelation with ferric hydroxide. A similar procedure has been the basis of 

synthesis using copper, zinc, calcium, barium and other chelating metals. 

Laurent et al prepared a crosslinked gel in dilute NaOH using bisepoxybutane and 

sodium borohydride, a strategy first developed for crosslinking of agarose.68   

In the present work, photocrosslinking of a methacrylate derivative of hyaluronic acid 

(HA-MOD) will be applied.   
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5.1 Synthesis of HA-MOD 

 

Methacrylic anhydride was selected in order to modify the hydroxyl groups of 

hyaluronic acid with methacrylate groups. The modification procedure applied, was 

similar to that used for the synthesis of CS-MOD. Hyaluronan was dissolved in 

double distilled water. Next, varying amounts of methacrylic anhydride were added, 

followed by adjusting the pH to 8 using NaOH. The reaction scheme is presented in 

figure 2-16. 

 

Finally, the polymer derivatives were purified via dialysis and isolated by 

lyophilisation. 
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5.2 Characterization of HA-MOD 

5.2.1 ATR-IR 

 

The incorporation of methacrylate side groups was demonstrated by means of ATR-

IR (figure 2-17), since a peak around 1720 cm-1 (indicated with an arrow) was 

present in the spectrum after reaction with methacrylic anhydride. Peak assignment 

was already performed in depth in § 4.2.1 for CS-MOD. Since both 

Figure 2-16: Modification of hyaluronic acid with methacrylic anhydride. 
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glycosaminoglycans possess similar structures, beside the absence of sulphate 

groups in hyaluronan, peaks at analogous wavenumbers were expected and 

obtained.69   
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Figure 2-17: ATR-IR spectra of HA (grey) and HA-MOD (black). 

 

 

5.2.2 Determination of degree of substitution using 1H-NMR 

 

The evidence of methacrylate substitution on hyaluronan was also observed by 1H-

NMR as shown in figure 2-18. Two distinctive peaks at 5.78 and 6.21 ppm were 

attributed to the two protons attached to the double bond (C=CH2) and the peak 

shown at 1.98 ppm, was ascribed to the methyl group adjacent to the double bond 

(CH3-C=CH2). 

The 1H-NMR region from 1.7 to 2.3 ppm was expanded and the peaks corresponding 

to the two methyl groups were deconvoluted and integrated. The peak intensity ratio 

at 1.98 ppm to that at 2.06 ppm, corresponding to the methyl groups on native HA, 

were used to calculate the degree of substitution. The degree of substitution was 

expressed as the amount of modified repeating disaccharide units.      
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Figure 2-18: 1H-NMR spectrum of modified hyaluronan. 

 

The degree of substitution can thus be calculated using the following equation: 

 

DS (%) = 100 x (integration at 5.78 ppm) / 

((sum of integrations at 1.98 and 2.06 ppm – 3 x (integration at 5.78 ppm)) / 3)  

 

In the example, the integration at 5.78 ppm is 0.615 and the sum of the integrations 

at 1.98 and 2.06 ppm is 10. The degree of substitution is thus 23%. This implies that 

in average 23% of the repeating disaccharide units are modified, which corresponds 

with 5.8% of the OH’s.  

The degree of substitution can be varied by simply adjusting the amount of added 

methacrylic anhydride. In figure 2-19, a master curve is represented for the 

modification of HA, showing the relation between the degree of substitution and the 

amount of added methacrylic anhydride. All data points are the average of minimum 

three experiments.      
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Figure 2-19: Influence of the amount of methacrylic anhydride added, on the modification 
degree of HA.  

 

From the 1H-NMR spectrum (figure 2-18), it can also be concluded that all 

methacrylic acid was removed during dialysis. Otherwise a peak corresponding to the 

methyl group of methacrylic acid would be visible at 1.6 ppm. 
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6 Conclusion 
 

The present chapter has demonstrated that the polymer precursors can be easily 

prepared in various ways. 

 

Methacrylic anhydride appears to be a very appropriate reagent for the modification 

of gelatin and glycosaminoglycans. The synthesis of all derivatives was performed in 

aqueous solution and the degree of substitution could be easily adjusted by simply 

varying the amount of added methacrylic anhydride. The degree of substitution was 

determined by means of 1H-NMR-spectroscopy. The average molecular weight was 

determined by means of size exclusion chromatography. 

 

An alternative for the derivatization of gelatin is thiolation. Both N-acetylhomocysteine 

thiolactone and Traut’s reagent are suitable for the incorporation of thiol groups in 

gelatin. The degree of substitution was varied by changing the ratio of gelatin and 

thiolating reagent and could be obtained indirectly by determining the difference in 

amine content before and after substitution. Both the pH of the reaction medium and 

the type of thiolating agent can influence the modification degree significantly. Traut’s 

reagent is more efficient since less excess is needed.     
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Chapter III:  

Preparation and Characterization of Hydrogel 

Films 

 

 

1 Introduction 

 
The structure and mechanical behaviour of gelatin gels have already been widely 

studied in the past.1,2 Gelatin normally dissolves in aqueous solutions at 40°C and 

above this temperature, the protein exists as flexible single coils, as demonstrated in 

figure 3-1.3 On recooling, transparent gels are formed, if the concentration is higher 

than the critical gelation concentration.4,5 These gels are formed by physical 

crosslinks, also called ‘junction zones’, originated from a partial transition to ‘ordered’ 

triple helical collagen-like sequences, separated by peptide residues in the 

‘disordered’ conformation. The main evidence for this phenomenon came from optical 

rotation measurements.6,7   

 

Figure 3-1: Thermo-reversible gelation of aqueous gelatin solutions. 
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In most biopolymer systems, including DNA and a number of polysaccharides (e.g. 

agarose), the coil to double helix transition occurs very fast and resembles a true 

first-order phase transition.8,9 For gelatin, however, it is known that there is an initial 

phase (i.e. nucleation), lasting several hours, followed by a much slower process that 

appears to continue for a very long time (i.e. propagation). The latter phenomenon is 

called ‘frustrated renaturation’, since helices never stop growing and the gel state (i.e. 

solid-like) is never in equilibrium.3 

Because of its unique gelation properties, gelatin is interesting to use as a hydrogel 

component.10 The mechanical properties of gel-MOD hydrogels (type I) and thiolated 

gelatin hydrogels (type II) depend on the contributions of both the physical 

crosslinking, as already mentioned before, and the chemical crosslinking, 

respectively between double bonds (type I) and by disulfide formation (type II). 

Above the sol-gel temperature (± 30°C), the gel strength only depends on the 

chemical network, since physical entanglements are then destroyed. 

The contributions of both chemical and physical crosslinking in hydrogels depends 

strongly on the temperature, the storage time and the reaction conditions.11,12 In the 

present chapter, the contributions of both the chemical and the physical crosslinking 

of gelatin hydrogels will be studied in depth by means of rheology, swelling 

experiments and texturometry.     

 

 

1.1 Rheology 

 

Rheology is the study of the deformation and flow of matter under the influence of an 

applied stress. The term was used for the first time by Eugene Bingham in 1920, 

inspired by Heraclitus’s famous expression ‘panta rei’, which is Greek for ‘everything 

flows’.     

In practice, rheology is principly concerned with extending the “classical” principles of 

elasticity and Newtonian fluid mechanics to materials, whose mechanical behaviour 

cannot be described using the classical theories. Rheological behavior is particularly 

observed in materials containing polymer molecules.13,14 
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If a sample is loaded, it will deform. When the load is removed, an ideally viscous 

body (fluid) will remain deformed (damper model). The viscosity of a Newtonian 

(ideally viscous) substance does not depend on the load. The mathematical 

description of the flow curve according to Newton is: 

 

                                                           τ = η x γ̇ 

                                                

with  τ = shear stress 

η = viscosity 

γ̇     = shear rate 

 

After deformation, an ideally elastic body will, upon removal of the load, fully return to 

its initial position (spring model). Ideally elastic substances behave according to 

Hooke’s law: 

τ = G x γ 

 

with τ = shear stress 

            G = shear modulus 

                                                           γ = strain 

 

Visco-elastic fluids will reform with a delay and only partially; in visco-elastic bodies 

the reformation is (nearly) complete, but delayed.15 

 

Oscillatory tests are used to examine all kinds of visco-elastic materials such as low-

viscosity liquids16, polymer solutions17,18, melts19, pastes20, gels21, elastomers22, and 

even rigid solids23. This mode of testing is also referred to as “dynamic mechanical 

analysis”.24 The latter can be performed by means of a rheometer, which consists of 

two basic components, separated by the sample (figure 3-2). Beside the plate/plate 

measuring system, which was applied in the present work, cone/plate and concentric 

cylinder measuring systems also exist. 

Tests with controlled shear strain are applied on visco-elastic materials in the form of 

oscillatory sine functions according to:  

γ(t) = γ0 sin ωt 
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with  γ0 = amplitude 

ω = frequency  

 

The shear stress corresponding to this deformation is a phase-shifted sine function:  

 

τ (t) = τ 0 sin (ωt + δ) 

 

with the phase shift angle δ between the preset and the resulting curve, as illustrated 

in figure 3-2. The phase shift angle is always in the range from 0° to 90°. For 

idealelastic behaviour δ = 0°, for idealviscous behaviour δ = 90° and for visco-elastic 

behaviour 0° < δ < 90°.  

 

Figure 3-2: Preset shear strain function γ(t), and resulting shear stress function τ(t), applied 
during a rheological experiment. 

 

Two important parameters exist, enabling the characterization of visco-elastic 

materials, namely the storage modulus (G’) and the loss modulus (G’’). 

The G’-value is a measure of the deformation energy, stored by the sample during 

the shear process. After the load is removed, this energy is completely available, now 

acting as the driving force for the reformation process, which partially or completely 

compensates the previously applied deformation of the structure. Materials which 

store the whole deformation energy, show completely reversible deformation 

rotor 

stator 

hydrogel

oscillation 
stress or strain 
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behaviour since they occur finally with an unchanged shape after a load cycle. Thus, 

G’ represents the elastic behaviour of a test material: 

 

G’(ω) = τ 0/γ0 cosδ 

 

The G’’-value is a measure of the deformation energy consumed by the sample 

during the shear process and therefore afterwards, it is lost. This energy is spent 

during the process of changing the material’s structure, e.g. when the sample is 

flowing. There exists relative motion between the molecules inducing frictional forces 

between these components and causing frictional heat. Energy is dissipated during 

this process. A part of this energy heats up the test material and another part may be 

lost to the surrounding environment. Energy losing materials are characterized by 

irreversible deformation behaviour, since their final shape is changed after a load 

cycle. Thus, G’’ represents the viscous behaviour of a test material:  

 

G’(ω) = τ 0/γ0 sinδ 

 

The loss factor (or damping factor) gives the ratio between the viscous and the 

elastic behaviour of a material: 

 

tanδ = G’’/G’ 

  

1.2 Texturometry 

 

In contrast to dynamic oscillation measurements, measuring at small deformations25, 

large deformations are also applied in order to have an idea on the mechanical 

properties of a material.26 Usually tensile tests are performed27. However, these are 

less suitable for hydrogels since cracks can occur at the fixation points. 

Consequently, the majority of publications about large-deformation experiments on 

hydrogels is concerned with compression tests.28,29   

In the present work, large deformation experiments were performed by means of a 

texturometer, enabling fast and simple determination of the hydrogel properties.  
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Texturometry analysis is mainly used in the food industry.30, 31 However, nowadays it 

has also proven its use in pharmaceutical industry 32,33 and cosmetics 34,35.   

By means of a plunjer or probe (cylindrical, sphere-shaped, etc.), which compresses 

the sample at a constant rate, a compression force is applied onto the testing 

material. Hydrogel films (1 mm thick) were positioned on a round opening in the 

bottom plate and fixed by the upper plate. (figure 3-3)  

In the present work, different testing procedures were applied. A ‘texture profile 

analysis test’ (TPA-test) was performed in order to examine the ‘recovery’-properties 

of the hydrogels developed after compression. Fatigue and fracture tests give 

additional information on polymer films.36      

  

 

Figure 3-3: Scheme of the texturometer apparatus and the TPA-test procedure. 

 
 
When performing the TPA-test, the sample is compressed twice by the plunjer, 

moving with the same speed. The theoretical curve, depicted in figure 3-4, always 

represents force as a function of time. From the surface areas below the curves and 

from the measured forces, different parameters can be calculated, as shown in table 

3-1.   

mobile arm 

sample 

probe 

table

probe 

hydrogel 

fixation plate 

bottom plate 
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Figure 3-4: Standard TPA-test. 

 

 

 

Parameter Unit Definition 

Hardness N The hardness value is the peak force of the first compression of the 
product.   

Fracturability N When a product fractures, the fracturability point occurs where the plot 
has its first significant peak (where the force falls off) during the probe’s 
first compression of the product. 

Cohesiveness - Cohesiveness is how well the product withstands a second deformation 
relative to how it behaved under the first deformation. It is measured as 
the area of work during the second compression divided by the area of 
work during the first compression. (i.e. Area 2/Area 1)   

Springiness - Springiness is how well a product physically springs back after it has been 
deformed during the first compression. Springiness is typically measured 
by the distance of the detected height of the product after the second 
compression (i.e. Length 2), divided by the original compression distance 
(i.e. Length 1). The original definition of springiness used Length 2 only, 
however, comparison could then only be made among products which 
were identical in their original shape and height.   

Chewiness N Chewiness only applies for solid products and is calculated as 
Gumminess x Springiness.  

Gumminess N Gumminess only applies for semi-solid products and is Hardness x 
Cohesiveness.  

Resilience - Resilience is how well a product “fights to regain its original position”. You 
can think of it as instant springiness, since resilience is measured on the 
withdrawal of the first penetration, before the waiting period is started. (i.e. 
Area 5/Area 4) 

 
Table 3-1: Texturometrical parameters that can be obtained from a TPA-experiment. 

 
 
Fatigue tests are similar to TPA-tests. In contrast with TPA, where only two 

compression cycles are applied, hydrogel films then undergo a large amount of 
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cycles, in order to examine a possible change in mechanical properties after 

repeated loading.37 

In fracture experiments, only one compression cycle is applied until the hydrogel 

breaks. Parameters such as fracture force and fracture deformation are obtained 

after performing these tests. Elastic materials will break fast and suddenly. Plastic 

materials however will break slowly.38 

 

 

2 Gel-MOD hydrogels 

 

The formation of hydrogels based on gel-MOD occurs in two steps. In a first part, 

gelatin is derivatised by the reaction with methacrylic anhydride, as already described 

in the previous chapter (§ 2.1). Next, the water-soluble gel-MOD is crosslinked via 

radical polymerisation. The crosslinking can be initiated by means of redox-

initiators39,40, heat41, UV-treatment42, 43, gamma-irradiation44 or irradiation with high-

energy electron beams45-47.  

The preparation of a chemically crosslinked gel-MOD hydrogel is depicted in figure 3-

5. 

 

 

 

 

 

 

 

 

 

In the present chapter, UV-irradiation in the presence of a water-soluble photo-

initiator will be utilized to perform crosslinking.  

 

Alternative approaches in order to obtain chemically crosslinked hydrogels (e.g. e- 

beam and redox-initiators) will be discussed thoroughly in chapter 6.  

UV-light + 
water-soluble 
photo-initiator 

water-soluble 
redox-initiator 

 

high-energy 
irradiation 

 

Figure 3-5: Chemical crosslinking of gel-MOD hydrogels. 



Chapter III: Preparation and characterization of hydrogel films 69 

Photochemistry is concerned with chemical reactions induced by optical radiation. 

The radiation is most often ultraviolet (200-400 nm) or visible (400-800 nm) light, but 

sometimes also infrared (800-2500 nm) light. Photochemistry can be used to induce 

any number of chemical processes, from initiating a chemical reaction to degrading a 

compound. Two basic steps characterize photo-initiation: the absorption of light to 

excite a compound and the resulting photochemical reaction of the excited 

compound.48  

A photoinitiator is an ingredient that absorbs light and is responsible for the 

production of free radicals in a free radical polymerized system or cations in a 

cationic photoinitiated system. An excited compound (AB*) can dissociate to 

fragments (A + B), react with another compound to yield a new compound (ABC), 

isomerize (BA), luminesce (AB + hν), ionize (AB+ + e-), or decay without radiation 

(AB).49 All these processes are rapid, often occurring on the nanosecond scale.  

For most photoinitiated polymerizations, the excited chromophore dissociates into 

radicals, and these radicals react with monomers to form radical species, which then 

propagate radical polymerization. There are two general classes of photoinitiators: 

� Type I: photoinitiators undergo a unimolecular bond cleavage upon irradiation to       

yield free radicals 

� Type II: photoinitiators undergo a bimolecular reaction where the excited state of 

the photoinitiator interacts with a second molecule (a coinitiator) to generate free 

radicals. 

UV photoinitiators of both type I and type II are available. However, visible light 

photoinitiators belong almost exclusively to the type II class of photoinitiators.  

The choice of photoinitiator is determined by the radiation source, the film thickness 

and the solvent.  

In the present work, Irgacure® 2959 was applied since it is a water-soluble photo-

initiator, having a rather low toxicity.50 Photofragmentation occurs through the α-

cleavage (Norrish type I) with formation of benzoyl radicals and carbon radicals, as 

shown in figure 3-6.51 

The crosslinking degree and rate of the hydrogels developed are influenced by 

different parameters (e.g. polymer and initiator concentration, irradiation time, degree 

of substitution). The influence of various factors on the mechanical properties of the 
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hydrogel films will be studied by means of rheology, texturometry and swelling 

experiments.     

 

Figure 3-6: Photo-initiator: Irgacure ® 2959 (1-[4-(2-Hydroxyethoxy)-phenyl]-2-hydroxy-2-
methyl-1-propane-1-one). 

 

 

Gel-MOD hydrogel films with varying mechanical properties were already described 

in the PhD work of Dr. A. Van Den Bulcke.52 Rheology, texturometry and swelling 

experiments were performed in order to investigate the influence of the degree of 

substitution, the gelatin concentration, the initiator concentration, the irradiation time 

and the storage time on the properties of the gel-MOD hydrogels. From the results, it 

appeared that the hydrogel properties could be adjusted by varying the modification 

degree, the initiator concentration, etc. The hydrogels developed were strong, flexible 

and transparent.52  

Given that the gel-MOD hydrogels were already characterized fully in the PhD of Dr. 

A. Van Den Bulcke, the present work will only briefly summarize these results and 

focus on the in situ crosslinking of gel-MOD gels. 10 w/v% gelatin hydrogels (1 mm 

thick) with varying modification degree were UV-irradiated at 20°C during rheological 

evaluation, as demonstrated in figure 3-7. From the graph, it appeared that both the 

crosslinking degree and rate increased with increasing degree of substitution. 

Moreover, after UV-irradiation, G’ and G’’ still increased, indicating an after-curing 

period of 20 minutes during which the gel strength becomes higher. 
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In figure 3-8, the physical crosslinking is monitored rheologically in the first part, 

followed by UV-induced chemical crosslinking in the second part of the experiment. A 

characteristic ‘cure’ curve of log (G’, G’’) against time was obtained. Typically, this 

had an initial lag time, and both G’’ and G’ increased, but with G’ increasing faster 

than G’’, so that at a given time there was a ‘cross-over’ (i.e. gelation point), which is 

indicated with an arrow (figure 3-8).53,54 Subsequently G’ continued to increase until a 

plateau value of the modulus was obtained.  
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Figure 3-7: Rheological evaluation of gel-MOD with varying modification 
degree (DS 65% in blue and DS 25% in red) (1 Hz, 0.1% strain, FN = 0.1 N). 

Figure 3-8: Physical crosslinking, followed by UV-irradiation of 10 w/v% 
gel-MOD hydrogels (DS 65%) (1 Hz, 0.1% strain, FN = 0.1 N). 

Cross-over 
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In a second part of the experiment, the physically crosslinked hydrogel was UV-

irradiated. From figure 3-8, it appears that the contribution of the chemical 

crosslinking was higher than that of the physical entanglements.     

 

 

3 Hydrogels based on thiolated gelatin 

 
In the previous paragraph, chemical crosslinking was introduced by UV-irradiation of 

gel-MOD. The disadvantage of the latter approach is that the process is irreversible, 

as already mentioned before. Type II hydrogels, however, can be crosslinked 

reversibly via a two-step synthesis. First, thiol groups are incorporated into the gelatin 

side chains by the reaction with either N-acetyl homocysteine thiolactone or Traut’s 

reagent, as already described in chapter 2 (§ 3.1). In a second step, disulfide bond 

formation can occur under mild conditions by air oxidation or with dilute oxidants 

(H2O2, NaIO4, I2).
55,56 Alternatively, thiol polymers can also be crosslinked using 

visible light as the initiator in the presence of certain dyes (e.g. eosin, fluorescein, 

methylene blue) as sensitizers.57         
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Figure 3-9: Formation of gelatin intermolecular disulfide bonds.  

 
 

A disulfide bond is formed between free thiol groups under oxidizing conditions 

(figure 3-9). These covalent bonds are much stronger than hydrogen bonds, Van der 

Waals interactions and electrostatic interactions. However, they are weaker than the 

C-C bonds, formed in type I hydrogels (250 kJ/mole versus 350 kJ/mole). Disulfide 

bonds play an important role in increasing the stability of many native proteins.58 

Disulfide crosslinking are cleavable in a reducing environment (e.g. dithiotreitol).59 
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In the present work, dithiotreitol and hydrogen peroxide were used respectively as 

reducing and oxidizing agents. The influence of both additives on the physical 

gelation of gelatin was investigated by rheology. Next, the influence of the 

modification degree and the storage time on the mechanical properties of the 

hydrogels developed, was examined by means of rheology, texturometry and 

swelling experiments. 

     

 

3.1 Preparation and characterization of thiolated gelatin films 

 

The gelatin-disulfide hydrogels were prepared and evaluated as thin films (1 mm 

thick). This conformation was chosen in order to simplify rheological measurements. 

Moreover, hydrogel membranes can also be used as coatings in tissue engineering 

applications.60,61 

The hydrogel films were prepared by mixing an aqueous solution of thiolated gelatin 

(at 40°C) with hydrogen peroxide, followed by injection of the mixture between two 

silanized glass plates, separated by a 1 mm-thick silicone spacer.      

Quantitative information on the visco-elastic and rheological properties of the 

materials can be obtained by measuring the mechanical response of the hydrogels 

on the applied deformation. In general, the storage modulus G’ and the loss modulus 

G’’ are measured.   
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Figure 3-10: Mechanical spectrum of a type II hydrogel recorded at 20°C.  
The hydrogel (DS 70%, 15 w/v%) was stored at 5°C for 2 weeks (0.1% strain, gap = 900 µm).   

 

In the mechanical spectrum (figure 3-10), G’ and G’’ are plotted as a function of the 

frequency. Both moduli display a pronounced plateau value in the frequency region 
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studied. Moreover, G’ is about two orders of magnitude higher than G’’, which is 

indicative for the formation of a well established network.62 

In a further experiment, the influence of dithiotreitol and hydrogen peroxide on the 

gelation properties of unmodified gelatin was examined rheologically.  
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Figure 3-11: Influence of additives (DTT and H2O2) on G’ of gelatin hydrogels (15 w/v%), stored 
at 5°C for 2 days (0.4% strain, gap = 900 µm, 21°C). 

 

From the results in figure 3-11, it could be concluded that hydrogen peroxide 

influences the physical crosslinking of gelatin to some extent. However, this effect 

can be neglected since during crosslinking the triple-helix formation is disturbed 

anyhow. That is, the time span during which disulfide bond formation occurs, is a lot 

shorter than the time needed to enable physical crosslinking, as discussed in the 

following paragraph (§ 3.2). 

 

    

3.2 Influence of the degree of modification of thiolated gelatin on 
the hydrogel network properties 

 

The characteristics of type II hydrogels can also be fine tuned by the correct selection 

of parameters influencing the properties of the hydrogels developed.  

An important factor affecting the mechanical strength is the degree of substitution of 

the thiolated gelatin. The modification degree (DS) was defined as the ratio of amine 

groups that was modified with sulfhydryls to the total amount of amines, present in 

gelatin (0.385 mmol/g), before the derivatization. 
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Thiolated gelatins with various modification degrees were prepared, as described in 

chapter 2 (§ 3.2.1). Next, hydrogel films composed of these gelatins were evaluated 

rheologically and compared with a hydrogel based on unmodified gelatin. 

From figure 3-12, it appears that the storage modulus increases with increasing 

degree of substitution. The oxidation of thiol groups by hydrogen peroxide resulted in 

intermolecular and intramolecular disulfide bond formation. Interestingly, G’ of 

unmodified gelatin is slightly higher than the storage modulus of gelatin with a degree 

of substitution of 15%. The chemical bonds were introduced by addition of an oxidant 

to the polymer solution in ‘random state’. The oxidant was mixed with gelatin in the 

sol state. Consequently, no physical gelation could occur before the start of the 

chemical crosslinking. In literature, it was described that gelatin solutions, kept at 

room temperature, are rather slow structuring systems. Long induction periods are 

necessary in order to induce helix formation.63 The chemical modification of gelatin 

with sulfhydryl groups will even prolong this induction time. The formation of disulfide 

bonds will further hinder the physical structuring. Consequently, it can be concluded 

that the physical contribution mainly originates from the storage at 5°C, after 

chemical crosslinking.        

 

0

5000

10000

15000

20000

25000

30000

0 2 4 6 8 10

Frequency (Hz)

G
' 
(P

a
)

Gel Gel-SH, 15% Gel-SH, 25%

Gel-SH, 40% Gel-SH, 60%  

Figure 3-12: Influence of the degree of substitution on G’ (0.1% strain, gap = 900 µm, 20°C). 

 
 

In order to have an idea on the contributions of both physical and chemical 

crosslinking to the total gel strength, dynamic mechanical analysis was performed on 

the hydrogels developed, both at room temperature and above the sol-gel transition 

temperature (at 50°C).  
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Figure 3-13: Effect of the modification degree on the temperature dependence of G’. Gel-SH 
hydrogels (15 w/v%) were stored for 3 days at 5°C (0.1% strain, gap = 900 µm). 

 

 

When measuring at 21°C, the gel strength of the hydrogels developed, is influenced 

by both the physical and the chemical crosslinking (figure 3-13). However, when 

measuring at 50°C, thus above the sol-gel transition temperature, there is no 

contribution of physical entanglements, consequently only the disulfide bonds 

contribute to G’. From figure 3-13, it can be concluded that the physical contribution 

decreases with increasing modification degree. In hydrogels composed of highly 

modified gelatin, more chemical bonds are formed. A network with high density and 

high G’, preserving its network properties above the transition temperature, is 

obtained. The decrease in storage modulus at elevated temperatures is more 

pronounced for hydrogels with lower degrees of substitution. The latter decrease can 

be ascribed to the destruction of the physical entanglements of the polymer chains. 

The amount of reactive thiol groups has thus a large impact on both the chemical and 

the physical contributions, although in an opposite way. For all gels (DS 15%, 25%, 

40% and 60%), the contribution of the chemical crosslinking was sufficient to ensure 

strong materials, even at elevated temperatures.  

When comparing type I and type II hydrogels, it seems that the physical contribution 

to the storage modulus of type I hydrogels is higher than that of type II hydrogels. 

This observation can be clarified as follows. Type I hydrogels are crosslinked 

chemically by UV-irradiation, after a 24 hours-storage period during which the triple-

helix formation can occur. In case of type II hydrogels, an oxidant is added to the 

polymer solution, so disulfide bond formation occurs already above the sol-gel 

temperature, before physical entanglements can take place.      
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In figure 3-14, the impact of the modification on the crosslink phenomenon is 

presented schematically. When an unmodified gelatin solution undergoes a coil-helix 

transformation, a strong physical network is formed. Both a large amount of thiol side 

groups and the immediate disulfide bond formation will hinder the origin of a physical 

network, thus hydrogels with a limited physical contribution to the mechanical 

properties will be obtained. The network junctions are of physical origin (e.g. 

hydrogen bonds) and are thus subject to changes in temperature, pH, ion strength, 

etc. (i.e. ‘non-permanent crosslinks’). 

In case of a low modification degree, both physical and chemical crosslinking can 

occur. After heating, the helices will dissolve, while the stable, chemical bonds form 

an unsolvable network. By the temperature increase, the portion of physically 

structured gelatins will melt; consequently the molecular weight between the 

junctions will increase. The latter will result in a higher mobility of the gelatin chains 

and a decrease of the storage modulus at elevated temperatures. In case of higher 

modification degrees, the chemical network formation will compete with the possible 

helix formation. Rheological measurements have confirmed that the presence of 

many covalent bonds (i.e. high DS) can hinder the subsequent physical structuring at 

cooling. Consequently, G’ of the concerning hydrogels will remain constant when 

heating above the transition temperature (figure 3-13).  
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Figure 3-14: Schematic representation of the influence of the synthesis route on the formation 

of the gelatin network. 

 
 
The swelling properties of the hydrogels developed, were examined by incubating the 

gels in double distilled water at 37°C. After predetermined time periods, the swollen 

polymer films were removed from the medium, dipped with a tissue and weighed. 
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The results are expressed as swelling percentage or water level and are calculated 

according to the following formulas: 

 

swelling (%) = [ ( Wht – Wd0 ) / Wd0 ] x 100% 

water level (%) = [ ( Wht – Wd0 ) / Wht ] x 100% 

 

with  Wd0 = weight of dry gel at initial time 

          Wht = weight of hydrated gel at time t 

 

Other important parameters when characterizing hydrogel networks are the gel and 

sol fraction. By means of the dry weight after swelling, gel and sol fractions can be 

calculated. These can be defined as respectively the percentage of dry polymer, 

remaining in the hydrogel after swelling and the ratio of polymer dissolving during 

incubation. In general, a higher gel fraction, thus improved crosslinking, suppresses 

the swelling capacity. The calculation of the gel and sol fraction occurs by means of 

the following formulas: 

 

gel fraction (%) = ( Wde / Wd0 ) x 100% 

sol fraction (%) = 100% - gel fraction 

 

with Wde = dry weight after swelling 

          Wd0 = dry weight before swelling 

 

For all hydrogels studied, equilibrium swelling was reached after incubation overnight 

(data not shown). Both the swelling at equilibrium and the gel fraction are 

represented in figure 3-15. With increasing degree of substitution, the equilibrium 

swelling decreased drastically. The degree of derivatization thus influences the 

swelling properties to a large extent.         
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Figure 3-15: Swelling at equilibrium and gel fraction of thiolated gelatin hydrogels with 
increasing degree of substitution. The thiolated gelatin hydrogels (15 w/v%) were stored  

for 10 days at 5°C. 

 
 
 

Since the hydrogels were stored at 5°C after disulfide bond formation, physical 

structuring of free gelatin chains could occur. Subsequent incubation at 37°C will 

cause destruction of the physical network. The changes in mass measured, could 

thus be ascribed to both water uptake and loss of gelatin fractions.  

 

The insolubility of the type II hydrogels is caused by three-dimensional network 

formation, via interchain crosslinking. The gelatin fraction, which is not anchored 

chemically through disulfide bonds, will dissolve at 37°C by the melting of the 

physical entanglements. The unsolvable weight fraction of the initial hydrogel is the 

gel fraction. The polymer fraction that leaches out, is called ‘sol fraction’. 

 

The gel fraction increases with increasing degree of derivatization (figure 3-15). In 

order to obtain high gel fractions (i.e. 90%), at least 8 crosslinkable side groups 

should be present per 1000 amino acids. This corresponds to a degree of 

substitution of 25%. 
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Figure 3-16: Influence of the modification degree on texture parameters. 15 W/v% gelatin 
hydrogels were stored for 2 days at 5°C. Texturometrical parameters: test rate = 20 mm/min, 

trigger = 0.1 N, 100% compression, T = 21°C. 

 
 

In figure 3-16, some texture parameters of the crosslinked gelatin hydrogels, 

obtained by means of TPA, are plotted. Hardness 1 and hardness 2 represent the 

maximum force during respectively the first and the second compression. The 

springiness index is the ratio of the distance over which the sample recovers after the 

first compression in comparison with the distance at maximum compression. The 

parameter is an indication of the recovery properties of the material. A value of 1 

implies that the material has fully returned to its original position after one 

compression cycle. 

With increasing modification degree of the thiolated gelatin hydrogels, the hardness 

also increases, while the springiness index barely changes (figure 3-16). The texture 

changes in the hydrogels are probably caused by the increased amount of chemical 

bonds in the hydrogel matrix. These measurements demonstrate that the 

modification degree of thiolated gelatin influences the intermolecular bonds of the 

hydrogel network directly, as a result of which the force needed for hydrogel 

deformation changes. The springiness index of about 0.9 implies that the hydrogels 

almost recover completely. A small decrease of the force, necessary to compress the 

gel a second time (hardness 2 in comparison with hardness 1), indicates a small 

weakening of the hydrogel structure, as a result of the compression. 

From the results in figure 3-16, it can also be concluded that the hardness of type I 

hydrogels is higher than that of type II hydrogels. A possible explanation for the latter 

phenomenon is the disulfide exchange in type II hydrogels, which was already 

observed before in literature.64,65 For type I hydrogels, interchain bond formation 
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occurs randomly and indefinitely, possibly giving rise to more brittle structures 

compared to type II hydrogels in which disulfide bonds are broken and restored 

randomly after the crosslink procedure.          
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Figure 3-17: Force-deformation curve of type I and type II gelatin hydrogels with increasing 
degree of substitution (15% to 60% DS) (test rate = 20 mm/min, T = 21°C). 

  

 
 
In figure 3-17, the force-deformation curves of type I and type II gelatin hydrogels are 

plotted. All samples display a typical curvature with a nice fracture. The plots were 

obtained by a compression-until-fracture setup, in which deformations exceeding 

100% are possible. With increasing derivatization degree, an increase in force at 

fracture was observed. Hydrogels, based on thiolated gelatin with a low degree of 

substitution display a large deformation at fracture, indicating their flexibility. Gelatin 

films, possessing a higher modification degree, display lower deformation properties 

in contrast to their higher fracture force. Consequently, these hydrogels are more 

brittle. The observation that type II hydrogels were less brittle than type I materials, is 

again confirmed by the force-fracture setup (figure 3-17). The deformation at fracture 

of type II hydrogels is about the double of that for the type I hydrogels.     

   

3.3 Influence of the storage time on the mechanical properties 

 
In figure 3-18, the storage modulus of gelatin hydrogels, stored at 4°C after chemical 

crosslinking, is plotted against the storage time. Unmodified gelatin hydrogels were 

compared with type I and type II hydrogels.  
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Figure 3-18: The influence of the storage time after chemical crosslinking on the mechanical 
properties of the hydrogels (15 w/v%) developed (0.1% strain, gap = 900 µm, 20°C). 

 
 
From the graph, it can be concluded that the physical crosslinking increases with 

increasing storage time, since G’ of unmodified gelatin increases with time. For 

thiolated gelatin hydrogels, the improvement in mechanical properties is more 

pronounced compared to type I hydrogels and unmodified gelatins. Consequently, 

both the chemical and the physical contributions to the gel strength increase. The 

latter can be ascribed to disulfide exchange, occurring during the storage time, as 

already mentioned earlier.65 Conversely, carbon-carbon bonds, formed during UV-

irradiation of type I hydrogels cannot be broken and reformed afterwards. As a result, 

the chemical contribution to the mechanical properties of type I hydrogels cannot 

increase when stored longer. In that case, only extra triple-helices, formed during the 

storage time, influence the shift in G’ during storage.          

  

 

4 Hydrogels based on CS-MOD 

 
Proteins of the extracellular matrix (ECM) such as collagens (i.e. starting product of 

gelatin synthesis) and glycosaminoglycans (GAGs) are among the most abundant in 

the body. They are widely utilized to fabricate scaffolds, serving as an active 

analogue of native ECM.66 Collagen-GAG scaffolds have been used extensively for 

in vitro studies of cell-ECM interactions and as a platform for tissue biosynthesis 

including in vivo studies of tissue or organ regeneration.67, 68 Favourable 

characteristics of scaffolds from these natural materials encourage host cells to 
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repopulate and form new tissues that closely simulate the native organization.69, 70 

Additionally, they enhance biological interactions with cells and speed up tissue 

regeneration by introducing cell-specific ligands or extracellular signalling molecules, 

such as peptides and oligosaccharides.71  

In the present work, collagen was replaced by gelatin, its soluble derivative. It has 

been successfully used for a range of applications, including burn dressings, 

cardiovascular surgery and 3D scaffolds for tissue engineering of skin, bone, 

cartilage, and other tissues.72 The combination of gelatin and GAGs is often used in 

skin regeneration since gelatin or GAGs alone cannot heal full thickness wounds.73 

GAGs have also been reported to significantly affect cellular response, morphology 

and stiffness of the combination scaffolds.74, 75  

Since type I hydrogels were prepared by UV-irradiation of gel-MOD (§ 2), it was 

convenient to utilize CS-MOD, enabling co-crosslinking within the gelatin hydrogels. 

In a first step, the derivatization of chondroitin sulphate occurs by the reaction with 

methacrylic anhydride, as described in chapter 2 (§ 4.1). Subsequent crosslinking 

takes place by UV-irradation of the aqueous CS-MOD solution, in the presence of 

Irgacure® 2959. Alternatively, mixtures of gel-MOD and CS-MOD can also be 

crosslinked by UV-irradiation in the presence of a water-soluble photoinitiator (figure 

3-19).  

The crosslinking degree and rate of the hydrogels developed, depend on different 

factors such as the polymer concentrations, the modification degree of the polymer 

precursors applied, etc. The effect of different parameters on the resulting hydrogel 

properties were evaluated by means of rheology.     

   

 

Figure 3-19: Chemical crosslinking of gel-MOD (black)  
and CS-MOD (blue).   
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®
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4.1 Preparation and characterization of CS-based films 

 

Both the combination hydrogels and the hydrogels composed of only CS-MOD were 

prepared and evaluated as thin films, similar to the previously studied type I and type 

II hydrogels. The hydrogel films were prepared by mixing an aqueous solution of the 

hydrogel precursors (at 40°C) with the photoinitiator, followed by injection between 

two silanized glass plates, separated by a 1 mm silicone spacer. Chemical 

crosslinking occurred via UV-irradiation (279 nm). First, the linear visco-elastic region 

of the hydrogels developed was determined, by means of an amplitudescan (i.e. 

rheology) (data not shown). Next, mechanical spectra were recorded, from which it 

could be concluded that well-structured networks were obtained by the applied 

procedure (data not shown).  

 

 

4.2 Influence of the modification degree on the mechanical 
properties  

 

CS-MOD hydrogels with varying modification degrees were crosslinked in situ during 

rheological evaluation. In contrast to gelatin-based hydrogels, where the total 

hydrogel network strength is the sum of both the physical and the chemical 

crosslinking, the strength of chondroitin sulphate hydrogels only depends on the 

chemical contribution, since CS has no gelling properties. However, by derivatization 

and subsequent irradiation, hydrogels with storage moduli up to 20,000 could be 

obtained (figure 3-20).  

 
Figure 3-20: Influence of the modification degree of CS-MOD on the mechanical properties of 

the hydrogels developed (0.5% strain, 1 Hz, FN = 0.01 N, T = 21°C). 
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The mechanical strength of the combination hydrogels (gelatin and chondroitin 

sulphate) was also studied using rheology. In this case, the total hydrogel network 

strength was the sum of the following contributions: 

 

� The physical gelation of gelatin as a consequence of the presence of triple 

helices, 

� The chemical network strength caused by gelatin, modified with 

methacrylamide side groups, 

� The chemical network strength due to CS-MOD. 

 

The last two factors can also be described as the total chemical network strength, 

which is thermostable, since no distinction can be made between double bonds in 

protein or glycosaminoglycan side chains during the crosslinking process. 

A large variety of gelatin and chondroitin sulphate derivatives with different 

modification degrees can be synthesized, enabling the production of a broad 

selection of hydrogel materials with varying mechanical properties. An overview of 

the polymer films developed and their resulting storage moduli are presented in table 

3-2. 

 

When comparing the results, it can be concluded that: 

With constant gelatin concentrations, having identical modification degrees, an 

increase in derivatization of the chondroitin sulphate component (DS 5% versus 40%) 

results in a high increase of the storage modulus (G’ x 2). 

All hydrogels developed were crosslinked very efficiently. The moduli remained the 

same at elevated temperatures (40°C) (data not shown), implying that the physical 

contribution to the hydrogel network strength was reduced to a minimum. Dr. A. Van 

Den Bulcke already showed in her PhD work that the presence of covalent bonds 

hinders the physical structuring of gelatin. G’ of 15 w/v% gelatin hydrogels (DS 40%) 

already remained constant upon heating the hydrogels to temperatures higher than 

the sol-gel transition temperature. 52    
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Composition 

Gel-MOD CS-MOD 

 

G’ (20°C) Pa 

 

10 w/v%, DS 65% 

 

0.5 w/v%, DS 40% 

 

17540 

10 w/v%, DS 65% 2 w/v%, DS 40% 42275 

10 w/v%, DS 65% 5 w/v%, DS 40%  98141 

 

10 w/v%, DS 65% 

 

0.5 w/v%, DS 5% 

 

9737 

10 w/v%, DS 65% 2 w/v%, DS 5% 15844 

10 w/v%, DS 65% 5 w/v%, DS 5% 44599 

 

7 w/v%, DS 65% 

 

5 w/v%, DS 40% 

 

89420 

10 w/v%, DS 65% 5 w/v%, DS 40% 101463 

15 w/v%, DS 65% 5 w/v%, DS 40% 190018 

 

7 w/v%, DS 65% 

 

5 w/v%, DS 5% 

 

27883 

10 w/v%, DS 65% 5 w/v%, DS 5% 39370 

15 w/v%, DS 65% 5 w/v%, DS 5% 61666 

 
Table 3-2: Composition of the gelatin-chondroitin sulphate hydrogels and their mechanical 

strength, obtained by means of rheology (0.5% strain, 1 Hz, FN = 0.01 N, T = 21°C). 

 
 

4.3 Influence of the polymer concentration on the mechanical 
properties 

 

In figure 3-21, the in situ crosslinking of CS-MOD hydrogels, composed of varying 

polymer concentrations is monitored using rheology. From the results, it appeared 

that both the crosslinking degree and rate increased with increasing concentration. 

However, the increase in mechanical strength was higher than expected, based on 

the increase in CS concentration, in comparison with type I hydrogels. The latter 

phenomenon was also observed for the combination hydrogels composed of gelatin 

and chondroitin sulphate (table 3-2).      
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Figure 3-21: Influence of the glycosaminoglycan concentration on the storage modulus  
(0.5% strain, 1 Hz, FN = 0.01 N, T = 21°C).  

 

The higher the polymer concentration, the more pronounced the influence of the 

modification on the rheological properties becomes. 

 

 

5 Influence of cryogenic treatment 

 

Cryotropic gelation is a specific type of gelation, taking place upon cryogenic 

treatment of gel-forming systems. A requirement for the processes resulting in the 

formation of cryogels, is crystallisation of the bulk of the low-molecular-weight liquid 

present in the initial system.76 Due to the crystallisation of the pure solvent, the total 

volume of the non-frozen liquid microphase (NFLMP) is lower than the initial reaction 

volume. Consequently, the concentration of polymer or monomer in the NFLMP is 

higher than the initial concentration. The polymer gel phase can be formed during 

one of the stages of cryogenic treatment: during freezing of the initial system, during 

storage of the samples in the frozen state or during thawing of the frozen 

specimens.76-79 

Recently, the structuring of different polymers by cryogenic treatment has attracted a 

lot of attention. This is illustrated below with some examples. For a thiol-containing 

poly(acryl amide) derivative, the conditions were optimized in order to obtain an 

insoluble gel after freezing-thawing. The gel retained the shape of the cryo-mould. A 

solution of this polymer kept at room temperature remained liquid.80 The reaction rate 

and yield to transform macromolecular thiols into the corresponding disulphides were 
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increased by freeze-thawing of aqueous solutions of thiol-containing polymers in the 

presence of oxidants.81 

The processes of cryo-induced association and aggregation of β-glucans resulted in 

the formation of soft or hard matter depending on the amount of applied freeze-thaw 

cycles.82 Multiple freezing cycles also influenced the structure of poly(vinyl alcohol) 

(PVA) hydrogels in such a way that secondary crystallites were superimposed on 

primary crystallites which were formed after one temperature cycle. This resulted in 

materials with improved mechanical properties.83 

 

Cryogels have a broad application field.84 Macroporous PVA cryogels were proposed 

as cell immobilizing carriers via cell entrapment techniques.85-88 Agarose cryogel 

sponges were evaluated as scaffolds for culturing both isolated pancreatic islets and 

insulinoma cells.85 Blends of poly(vinyl alcohol) with different biological 

macromolecules, such as hyaluronic acid, dextran and gelatin were used to produce 

bioartificial hydrogels functioning as potential tissue engineering scaffolds.89 

Macroporous gels, based on agarose, poly(acrylamide) or polymethacrylates were 

patented as separation media for application within the field of chromatography.90, 91 

Poly(vinyl alcohol) cryogels were proposed as temperature sensors, making them 

applicable for monitoring the temperature distribution induced by a heat source used 

for hyperthermic therapy.92 

In the present work, we applied the principle of cryogelation on gelatin. Some 

preliminary evidence for such behaviour was described earlier.93 However, the 

present study aims an in depth rheological investigation of the influence of freeze-

thaw cycles, by evaluating possible effects of the number of cryogenic cycles, the 

cooling rate and the thawing rate on the mechanical properties of the resulting 

cryogels.  

A profound understanding of the cryogenic parameters affecting the final material 

properties is of great importance, since in a subsequent part of the present work, a 

cryogenic treatment will be applied in order to develop porous scaffolds, suitable for 

tissue engineering purposes.   

To distinguish between physical and chemical cross-linking phenomena, the 

cryogelation of gelatin and gel-MOD were also compared.  
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5.1 Experimental procedure 

 

Using a novel cryo-setup, developed in our laboratory, the temperature of freezing 

and the cooling rate were programmed automatically (figure 3-22).  

 

 

Figure 3-22: Schematic overview of the programmable cryo-unit. 

 

Under the bottom of the mold, a Peltier element (also known as thermo electric 

cooler, TEC) was positioned. Thermoelectric modules are solid-state heat pumps that 

operate on the Peltier effect. A thermoelectric module consists of an array of p- and 

n-type semiconductor elements, heavily doped with electrical carriers. The array of 

elements is electrically connected in series and thermally connected in parallel. This 

array is then attached to two ceramic substrates, one on each side of the elements 

(figure 3-23). Heat transfer occurs as electrons flow through one pair of n- and p-type 

elements (often referred to as a "couple") within the thermoelectric module as follows: 

Electrons can travel freely in the copper conductors but not so freely in the 

semiconductor. As the electrons leave the copper and enter the hot-side of the p-

type, they must fill a "hole" in order to move through the p-type. When the electrons 

fill a hole, they drop down to a lower energy level and release heat in the process. 

                 
   

 
‘Hot’ side ‘Cold’ side TEC 

aluminum heat exchanger, cooling liquid @ T 

sample gel 

   aluminum heat exchanger, cooling liquid  @ T 
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hinge Julabo 
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Essentially the holes in the p-type are moving from the cold side to the hot side. 

Then, as the electrons move from the p-type into the copper conductor on the cold 

side, the electrons are bumped back to a higher energy level and absorb heat in the 

process. Next, the electrons move freely through the copper until they reach the cold 

side of the n-type semiconductor. When the electrons move into the n-type, they 

must bump up an energy level in order to move through the semiconductor. Heat is 

absorbed when this occurs. Finally, when the electrons leave the hot-side of the n-

type, they can move freely in the copper. They drop down to a lower energy level and 

release heat in the process. 

In summary, heat is always absorbed at the cold side of the n- and p- type elements. 

The electrical charge carriers (holes in the p-type and electrons in the n-type) always 

travel from the cold side to the hot side, and heat is always released at the hot side of 

thermoelectric element. The heat pumping capacity of a module is proportional to the 

current and is dependent on the element geometry, number of couples, and material 

properties. 

 

 

 

Figure 3-23: Working principle of thermo-electric coolers (i.e. Peltier elements). 
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The Peltier element enables a temperature gradient of maximum 30°C to be 

established between the top and the bottom of the mould. For the samples obtained 

by applying a temperature gradient, the temperature at the top of the mould was the 

highest. The temperature gradient was only applied to create porous scaffolds with 

predetermined pore morphologies, which will be discussed in depth in chapter 4. 

 

 

5.2 Cryogenic treatment of gelatin 

5.2.1 Effect of the gelatin concentration 

 
 
In a first part of the work, the influence of the gelatin concentration on the mechanical 

properties of gelatin hydrogels and cryogels was compared. Since knowledge of the 

linear visco-elastic range of a material is required prior to rheological measurements, 

we first performed an amplitude scan of the different gels. The results are 

summarised in figure 3-24.  
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Figure 3-24: Determination of the linear visco-elastic range of an unfrozen 0.5w/v% gelatin 
solution (1 Hz, 5°C, gap 0.5 mm). 

 

 

A strain of 0.5% was selected for all further measurements, since this is the highest 

strain, still part of the linear visco-elastic range. Next, the mechanical spectra of the 

gels were recorded. These tests showed a limited frequency-dependence of the 

storage modulus (figure 3-25).  
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Figure 3-25: Mechanical spectrum of an unfrozen 1w/v% gelatin solution  
(0.5% strain, 5°C, gap 0.5 mm). 

 

 
The influence of the gelatin concentration on the cryogenic treatment was studied by 

applying one freeze-thaw cycle on gelatin samples with concentrations varying from 

0.2 to 2 w/v %. These cryogels were compared with unfrozen hydrogels with the 

same concentration and storage time. Figure 3-26 shows the storage moduli 

corresponding to the different gelatin concentrations. From the results, it can be 

concluded that the storage moduli (G’) of the cryogels (after a single freezing cycle) 

were higher than G’ of the non-frozen hydrogels, irrespective of the applied gelatin 

concentration (0.2 - 2 w/v %).  
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Figure 3-26: Influence of gelatin concentration (w/v%) on G’ (0.5% strain, 0.85 Hz, 5°C, gap 0.5 
mm) for unfrozen gelatin solutions (■) and for gelatin cryogels formed by a single cycle of 

freezing to -30°C (����) (*P < 0.05).    

 

Furthermore, the ratio of the storage moduli of the cryogels and the hydrogels 

revealed a maximum at a gelatin concentration of 0.5 w/v %. This corresponds with a 

cryogel in the “gel” state, as indicated in figure 3-27, and a “hydrogel” in the “sol” 

state. The storage and loss moduli of a 0.5 w/v% hydrogel are very low (i.e. 
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respectively 0.05 and 0.2 Pa), while G’ of the cryogel is three times higher than G’’ 

(see figure 3-27). This indicates that a cryogenic treatment leads to gel formation at 

gelatin concentrations that are below the gelation concentration. It should be noted 

that the observed decrease in gelation concentration is only apparent, since the 

polymer chains are accumulated in the gelation region (non-frozen liquid micro-

phase), resulting in a local increase of the gelatin concentration. This effect has been 

observed for any type of cryotropic gelation.76 The structuring of gelatin upon 

cryogenic treatment is very similar to the freeze-thaw behaviour of cereal β-glucans 

and xanthan.62, 82 The gelatin gels, obtained after the cryogenic treatment, also 

belong to the category of physically crosslinked gels whose three-dimensional 

structure is mainly stabilized by multiple hydrogen bonds and hydrophobic 

interactions in the junction zones of the polymeric network.82 
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5.2.2 Effect of the number of cryogenic cycles 

 
 
In addition to the gelatin concentration, we also investigated the effect of the number 

of cryogenic cycles applied, on the mechanical properties of the obtained cryogels. 

For these measurements, 0.5 w/v % and 2 w/v % gelatin hydrogels were selected. In 

figure 3-28, the storage moduli are plotted as a function of the gelatin concentration 

and the number of freeze-thaw cycles. From the results, it can be concluded that the 

mechanical properties of cryogels can be improved by increasing the number of 

cryogenic cycles. This trend was observed for both gelatin concentrations studied. 

The latter can be explained by the formation of additional cross-links during repeated 

freezing/thawing cycles. The physical gelation of gelatin is a dynamic process in 

Figure 3-27: Temperature scan (0.5% strain, 0.85 Hz, FN 0 N) of a 0.5 w/v% gelatin 
cryogel after applying one freeze-thaw cycle. 
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which bonds are broken and formed continuously. With an increasing incubation 

time, a more stable conformation is formed. However, due to physical limitations, 

equilibrium is never reached. The latter phenomenon is called “frustrated 

renaturation”.3, 94 
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Figure 3-28: Effect of the number of freeze-thaw cycles on G’  
(0.5% strain, 0.85 Hz, 5°C, gap 0.5 mm) for two gelatin concentrations (0.5 and 2 w/v%). 

  

 

With the parameters applied in the present work, a kinetic competition exists between 

the self-gelling process at the sol-gel temperature (± 30°C) and the freezing process 

below 0°C. There are thus two possible explanations for the improved mechanical 

properties of cryo-treated gelatin gels. A first possibility is that the freezing rate is 

faster than the rate of physical gelation. This implies that cryotropic gelation could 

occur on gelatin in the sol-state. A second possibility is that physical gelation takes 

place faster than cryotropic gelation. Sufficient chain mobility apparently remains 

within the hydrogel in order to enable further chain entanglement resulting in a gel 

with improved mechanical properties. Kinetics of the freezing and the self-gelling 

process could also be comparable, however distinguishing both phenomena is very 

difficult, if not impossible. A progressive increase in mechanical properties after 

multiple freezing/thawing cycles has been reported for xanthan62 and poly(vinyl 

alcohol) cryogels.76 This was ascribed to the formation of microcrystalline zones 

acting as junction knots in the supramolecular polymer network. The dimensions of 

the micro crystallites formed, were influenced by the number of applied 

freezing/thawing cycles.76, 95 

The observed variations in mechanical properties could potentially affect the 

degradation behaviour of the scaffolds developed. It can be anticipated that 

increased mechanical properties, related to a more efficient physical crosslinking (i.e. 
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triple helix formation), would adversely affect the degradation rate. This is of 

relevance in the field of tissue engineering, since, ideally, the degradation time of the 

scaffolds should match the time required for new tissue formation.  

 
 

5.2.3 Influence of the cooling rate during the freezing step 

 

Experiments using PVA based cryogels have indicated that over a wide range of 

freezing rates (0.1°C/min to 17°C/min), the effect of the freezing rate on the physical 

characteristics of the gels was relatively low.86 However, for blends of amylopectin 

and amylose, the effect of the freezing rate seemed to have a more pronounced 

influence on the material properties.78 In that study, hydrogel samples were stored at 

different incubation temperatures for similar incubation times and thawed 

subsequently at the same rate. The cryogels developed, could be distinguished by 

their appearance and their swelling properties. However, the observed differences 

were attributed to the storage in the frozen state, despite the fact that a different 

cooling rate was applied during the treatment. 

 

For gelatin, we anticipated that the freezing rate would influence the mechanical 

properties since gelation occurs via triple helix formation. These helices act as 

junction zones within the network.94 A faster cooling process could hinder the triple 

helix formation, and thus the degree of physical gelation.  
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Figure 3-29: Mechanical spectra (0.5% strain, 5°C, gap 0.5 mm) showing the influence of the 
cooling rate on G’ (filled symbols) and G’’ (open symbols) of a 1 w/v% gelatin solution.  

The applied cooling rates were 0.1°C/min (■), 0.3°C/min (����), 0.5°C/min (●) and 1°C/min (▼). 
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From the results (figure 3-29), it can be concluded that for 1 w/v % hydrogels, the 

storage modulus decreased with an increasing cooling rate. A higher freezing rate 

does indeed disturb the formation of chain entanglements and thus the physical 

gelation. A similar trend was observed for 10 w/v % hydrogels indicating that within 

the concentration range investigated, the gelatin concentration does not affect the 

kinetic effects observed at low concentrations (data not shown). 

 

 

5.2.4 Effect of the thawing rate 

 

The above results clearly indicate that the conditions applied for the development of 

cryogels, strongly affect the final material mechanical properties. For the effect of the 

thawing rate, it has been shown that the influence depends on the type of cross-links 

within the hydrogel network.76 For cryogels cross-linked by covalent or ionic bonds, 

the conditions of thawing of specimens usually have little influence on the material 

properties. However, for cryogels in which hydrogen bond formation is the 

predominant cross-linking mechanism, the resulting gels often are sensitive to the 

thawing conditions applied.76 In our work, we have varied the thawing rate from 0.06 

to 1°C/min. The results of the mechanical studies (figure 3-30), indicated a decrease 

in G’ with an increasing thawing rate.  
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Figure 3-30: Effect of the thawing rate on the storage modulus (G’) of 10 w/v% hydrogels  
(0.5% strain, 5°C, gap 0.5 mm). 

 

This trend, observed earlier for PVA, is typical for thermally reversible cryogels in 

which hydrogen bonding is the predominant type of intermolecular contacts, 

stabilising the polymer network junction knots.76, 77, 86     
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5.3 Cryogenic treatment of gel-MOD 

 

From the above results, it can be concluded that the cryogenic treatment enhanced 

the triple helix formation of gelatin chains. In addition to this effect, we also 

anticipated an influence on a subsequent chemical crosslinking step. The latter is 

affected by the separation between the different methacrylamide side groups as well 

as their mobility. In figure 3-31, storage moduli before and after UV-treatment, for a 

10 w/v% non-frozen gelatin hydrogel were compared with those from a cryogel, 

developed by applying one freeze-thaw cycle.  

 

 

 

 

 

 

 

 

 

 

 

In accordance with non-modified gels, G’ of the cryogel before UV-irradiation was 

higher than that of the hydrogel. However, the increase in storage modulus during 

the chemical crosslinking was also higher for the cryogel compared to the non-frozen 

hydrogel. The latter is a first indication that freeze-thawing has a favourable effect on 

the crosslinking efficiency of 10 w/v% gel-MOD. During the cryo-treatment, phase 

separation occurs which probably reduces the distance between neighbouring vinyl 

bonds and thus facilitates the chemical crosslinking. On the other hand, a change in 

gelatin concentration alters the mobility of the polymer chains. Therefore, 15 w/v% 

gelatin hydrogels were also freeze-thawed and their mechanical properties before 

and after UV-curing were compared with non-frozen hydrogels (figure 3-32). 

Figure 3-31: Influence of UV-irradiation and temperature increase on G’ of 10 w/v% unfrozen 
gel-MOD hydrogels (grey) and cryogels formed by one freeze-thaw cycle (black) (0.5% strain, 1 

Hz, gap 1 mm, FN = 0.2 N). 
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Before chemical crosslinking, G’ of both hydrogel types were in the same range. This 

is probably due to a lack of chain mobility below the sol-gel temperature, which 

hinders phase separation below the solvent crystallisation temperature, thus avoiding 

an increase in the concentration of polymer chains within the “non-frozen (yet 

solidified) liquid microphase”. After UV-treatment, the storage modulus of the 

hydrogel is higher than that of the cryogel, which can be explained by a possible 

phase separation of the initiator molecules and the methacrylamide side groups due 

to the cryo-treatment.          
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Figure 3-32: G’ at different time points of 15 w/v% unfrozen hydrogels (  ) and of cryogels after 
applying one cryo-treatment (■). The gels were in situ UV-cured during 10 minutes at 5°C 

(0.5% strain, 1 Hz, gap 1 mm, FN = 0.2 N). 
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6 Conclusion 
 

The present chapter indicates that gelatin is very suitable as polymer precursor for 

hydrogel preparation. The physical structuring, inherent to gelatin, contributes to a 

large extent to the mechanical properties. However, the chemical crosslinking of all 

hydrogel types developed, mostly determines the final properties of the end product 

and can be controlled to a large extent. 

The gelatin gels (type I and II) are flexible, strong and transparent. Since the 

hydrogels are prepared, starting from natural, hydrophilic polymer chains, no 

monomer residues have to be removed before use. Moreover, type I gelatin and 

chondroitin sulphate hydrogels were prepared by means of a two-step production 

process, without the addition of a crosslinker. After modification of gelatin and 

chondroitin sulphate with respectively methacrylamide and methacrylate groups, the 

radical crosslink polymerization can occur. A major advantage of type II hydrogels is 

the fact that the chemical crosslinking is reversible. Disulfide bonds can be reduced 

again to thiol groups by means of a mild reducing agent such as dithiotreitol. The 

latter could be interesting in view of future applications as cell carriers in tissue 

engineering.    

The mechanical properties of the hydrogels developed, depend on many parameters, 

such as the storage time, the polymer concentration, the modification degree etc. 

The final network strength depends on the contribution of two factors: the physical 

gelation and the chemical crosslinking. The effect of the different parameters on the 

respective contributions of the physical and the chemical crosslinking could be 

followed by means of rheology, by measurements above and below the melting point 

of gelatin. From the results, it could be concluded that the physical gelation was 

disturbed more in type II hydrogels compared to type I hydrogels. However, the 

disulfide bond formation resulted in more flexible and less brittle hydrogels (type II) 

than radical polymerisation of double bonds in type I hydrogels.            

 

Gelatin cryogels, developed by freeze-thaw treatments, possess a lower critical 

gelation concentration compared to regular hydrogels, formed at room temperature. 

This implies that lower gelatin concentrations can be applied for developing gels with 

similar mechanical properties. The present work demonstrates that the self-gelling 
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properties of gelatin (below the sol-gel temperature) do not necessarily limit certain 

processing possibilities. Cryogelation of materials can reduce the required amount of 

material to a great extent, which benefits not only the cost, but also offers the 

possibility of decreasing the amount of added initiator. 

The present work also indicates that the concept is limited to gelatin concentrations 

for which the chain mobility below the sol-gel temperature is sufficient to allow phase 

separation and cryo-concentration within the non-frozen liquid microphase.  

The observed findings are of importance in the field of tissue engineering since 

variation of the cryogenic parameters affects the mechanical properties of the 

resulting hydrogels. The latter probably influence the degradation profile of the (cell 

seeded) scaffolds which, ideally, should match the rate of new tissue formation. 

Without any doubt, this process can and will be applied on a large number of 

(natural) polymers.       
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1 Introduction 

 

A frequently applied approach in the domain of tissue engineering, is the 

development of porous scaffolds containing bioactive compounds such as 

glycosaminoglycans and/or growth factors.1-4 Autologous or allogenic cells can be 

seeded and cultured on these materials resulting in newly formed tissue in vitro5 or in 

vivo5, 6.  In the past, a large number of materials, synthetic as well as natural, have 

been proposed as cell carriers. The most frequently used synthetic polymers include 

poly(glycolic acid), poly(DL-lactic acid) and poly(DL-lactic-co-glycolic acid) 

copolymers.7, 8 Common natural cell matrices include chitosan9, 10, collagen10, 11 and 

gelatin12-14. In the present work, gelatin was selected, since it is a self-assembling, 

non-toxic, biodegradable, inexpensive and non-immunogenic material.14 It has been 

widely applied in medicine as a wound dressing and as an adhesive and absorbent 

pad for surgical use.15 Moreover, in previous studies on gelatin-based sponges, it 

was shown that acellular sponges containing gelatin have potential applications in 

the field of tissue engineering.6 The gel-sol transition temperature of gelatin is about 

30°C, as already described in chapter 3. In the present work, gelatin was derivatized 

with methacrylamide side chains enabling chemical crosslinking to avoid dissolution 

at body temperature (37°C), as discussed in chapter 2 (§ 2.1).16    

A material to be applied as scaffold should fulfil certain requirements. First, high 

porosity is required in order to support diffusion of oxygen and nutrients towards the 

cells and drainage of waste products from the matrix. In addition, pore 

interconnectivity is important to promote phenomena such as cell migration and 
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angiogenesis. Secondly, the porous biomaterials should be biocompatible and in 

some cases also biodegradable.12, 17  

The pore size required for cell ingrowth depends on the cell type seeded on the 

matrix.8 For porous silicon nitride scaffolds, endothelial cells bind preferentially to 

scaffolds with pores smaller than 80 µm, while fibroblasts preferentially bind to larger 

pores (>90µm).10 A pore size gradient through the scaffold could be favourable in 

some cases to mimic the complex architectures of tissues. Porous scaffolds with 

spatially variable pore size can influence the location and mechanical properties 

required by tissue interfaces. Pore size gradients can also impact cell migration in 

vitro and in vivo, which is a significant advantage for generating the complex tissue 

interfaces required for functional tissue regeneration.18  

At present, different techniques exist to fabricate porous scaffolds including porogen 

leaching12, 19, phase separation, emulsion freeze drying8, 20, solvent evaporation21, 

gas foaming22 and fibre bonding23.  

One of the most common and straightforward techniques to prepare porous scaffolds 

is the particulate leaching method, which involves the selective leaching of a mineral, 

usually NaCl salt or of an organic compound such as saccharose to generate the 

pores.24, 25    

Phase separation can result in scaffolds with porosities up to 95%.26 Basically, the 

polymer is dissolved in a solvent and phase separation is induced by lowering the 

solution temperature or by adding a non-solvent to the solution. The presence of 

polymer solvent or non-solvent residues in the scaffolds can, however, represent a 

limitation of phase separation techniques.27 In the present work, water is used as 

solvent, so the disadvantage of residual (toxic) solvents, is excluded. 

An alternative, proposed for the fabrication of porous polymer scaffolds, is emulsion 

freeze-drying. Poly(DL-lactic-co-glycolic acid), for example, is dissolved in methylene 

chloride and then distilled water is added to form an emulsion. The polymer/water 

mixture is cast into a mould and quenched by placing it in liquid nitrogen. After 

quenching, the scaffolds are freeze-dried at -55°C, resulting in the removal of the 

dispersed water and polymer solvents. Scaffolds with large porosities (up to 95%), 

but small pore sizes (13-35 µm) have been fabricated using this technique. These 

parameters are very dependent on factors such as the ratio of polymer solution to 

water and the viscosity of the emulsion, as these values influence the emulsion’s 

stability prior to quenching. Therefore, with further adjustment, it is possible that pore 
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size could be increased. However, although this technique is advantageous since it 

does not require an extra washing/leaching step, the use of organic solvents remains 

a concern for the inclusion of cells and bioactive molecules.28   

Solvent casting/particulate leaching involves the casting of a polymer solution and 

dispersed porogen particulates in a mould, the removal of the polymer solvent, 

followed by leaching out the porogen.29, 30 Because of the casting and the solvent 

evaporation step, this technique is only suitable for thin scaffolds. A drawback of this 

technique is the use of organic solvents, which can be difficult to completely remove 

from the scaffolds during the drying process.  

In order to circumvent this problem, several authors proposed to replace solvent 

casting by melt-moulding, resulting in the melt moulding/particulate leaching method. 

Briefly, the melt-moulding step consists of premixing polymer powder and solid 

porogen particulates and hot-pressing them together. The samples are then 

subjected to the same solid porogen leaching step as for the solvent-cast     

samples.31, 32     

Gas foaming is another alternative for the fabrication of porous polymer scaffolds. It 

is carried out by dissolving a gas at elevated pressure (i.e. physical blowing agent) or 

by incorporating a chemical that yields gaseous decomposition products (i.e. 

chemical blowing agent). The foaming technique generally leads to pore structures 

that are not fully interconnective.27    

Fibre bonding typically requires high temperatures (above the transition temperature 

of the polymer) and is not applicable for the processing of amorphous polymers. The 

high temperatures used in this process also are likely to denature any biologically 

active molecules one might wish to incorporate into the matrix.33    

Unlike the conventional fabrication techniques, solid freeform fabrication has no 

restriction on shape control. The latter is a computerized fabrication technique that 

can rapidly produce highly complex three-dimensional objects using data from 

computer medical imaging equipment such as MRI and CT scans, which will be 

discussed in paragraph 3.1.1. The prototyping material is deposited to build the final 

structure in a layer-by-layer process.34, 35      

 

In the present study, a combination of phase separation and freeze-drying was used 

to induce pore formation within gelatin hydrogels. When an aqueous gelatin solution 

is solidified (i.e. frozen), phase separation occurs between the growing ice crystals 
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and the concentrated gelatin solution (non-frozen liquid micro-phase).36, 37 After 

sublimation of the ice crystals (freeze-drying), a porous scaffold originates. Using a 

novel cryo-setup, developed in our laboratory, as shown in chapter 3 (figure 3-22), 

the cooling rate, the temperature gradient and the final freezing temperature during 

the cryogenic treatment can be varied in a controlled manner. In addition, we also 

varied the gelatin concentration. 

Scanning electron microscopy (SEM), helium pycnometry (He-pycnometry), micro-

computed tomography (µ-CT) and light microscopy analysis were applied in order to 

evaluate the pore size, the pore morphology and the porosity of the gelatin hydrogels 

developed. Next, swelling experiments, dynamic vapour sorption, compression tests 

and in vitro degradation studies were performed on a selection of the scaffolds 

developed.     

 

 

2 Experimental procedure for the preparation of gel-MOD 

scaffolds  

2.1 Influence of the initiator concentration on the hydrogel 

properties 

 

An important parameter, influencing the properties of the hydrogels developed, is the 

initiator concentration. For some applications, it is necessary to obtain sufficient 

chemical crosslinking within a short irradiation time. In this case, higher initiator 

concentrations should be used. An increase in photo-initiator concentration leads to a 

higher energy uptake by the component, which is caused by the increase of the 

optical density. The latter gives rise to an increase of the polymerization degree until 

a constant value is obtained. On the other hand, the amount of recombination 

reactions also increases with higher initiator concentrations.38  

 

Chemically crosslinked hydrogel scaffolds were prepared by adding a predetermined 

amount of initiator, calculated to the amount of methacrylamide side chains present. 

The homogeneous solution was then injected into the mould of the cryo-unit, 
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schematically shown in figure 3-22, after which the solution was allowed to gel for 1 

hour at room temperature. In a final curing step, the hydrogel was exposed to UV-

light (279 nm, 10 mW/cm2) for two hours. The scaffolds obtained, were evaluated by 

swelling experiments and compression tests, since the hydrogel thickness (i.e. 5 mm) 

ruled out the use of rheology (figure 4-1).   
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Figure 4-1: Influence of the initiator concentration on %swelling and gel fraction. 

 

From the data, depicted in figure 4-1, it appeared that initiator concentrations, 

exceeding 2 mol% did not result in hydrogel scaffolds, possessing higher gel 

fractions. Consequently, an initiator concentration of 2 mol% was utilized for further 

experiments.  

By means of texturometry, the influence of the initiator concentration on the 

compression modulus was also studied. From figure 4-2, it was observed that the 

compression modulus, in contrast to the gel fraction, increased for the entire initiator 

concentration range applied. The latter can be explained by the higher crosslinking 

degree of the top layer when applying higher initiator concentrations. A similar effect 

was, in contrast to what we anticipated, not observed for the gel fraction. The limited 

penetration depth of UV-light can result in heterogeneous crosslinking (i.e. between 

surface and bulk) of the scaffolds at elevated initiator concentrations. The increase in 

crosslinking at higher initiator concentrations is probably limited to the hydrogel 

surface, as demonstrated by compression tests (figure 4-2). Depth-dependent UV-

penetration was already observed previously for dextran-methacrylate hydrogels. 

Even though the concerning hydrogels were thinner in that work (3 mm versus 5 

mm), they were thick enough to produce differential UV-penetration through the 

material.39, 40        
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Figure 4-2: Influence of the initiator concentration on the compression modulus (20% strain, 
21°C, sample size = 10 mm x 10 mm). 

 

 

2.2 Influence of the irradiation time on the hydrogel properties 

 
Beside the initiator concentration, the irradiation time also influences the strength of 

photo-crosslinked hydrogels.41  

In order to investigate the effect of the irradiation time on the properties of the 

hydrogels developed, swelling experiments were performed, followed by determining 

the gel fraction (figure 4-3). 

The gel fraction increased with increasing irradiation time, up to 1.5 hours UV-

irradiation. When further increasing the irradiation time up to 5 hours, the gel fraction 

decreased slightly. The latter is probably due to the degradation of gelatin when 

exposed to UV-light for longer time periods. This phenomenon was already observed 

for a variety of polymers.42, 43 Consequently, an irradiation time of two hours was 

selected to perform all further experiments.   
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Figure 4-3: Effect of the irradiation time on the swelling properties and the gel fraction. 
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2.3 Cryogenic treatment 

 

In a next part, porous gelatin scaffolds were generated by a cryogenic treatment of a 

chemically crosslinked gel-MOD hydrogel. The reaction mixture, containing gel-

forming agents (i.e. gelatin) is frozen at temperatures below the solvent (i.e. water) 

crystallization point. The frozen system, despite its appearance as a single solid 

block, remains essentially heterogeneous and contains so-called unfrozen liquid 

microphase (UFLMP) along with the crystals of the frozen solvent (figure 4-4).36, 37  

 

 

Figure 4-4: Cryogenic treatment of gelatin hydrogel, followed by lyofilization. 

 

 

Gel-forming reagents are concentrated in the UFLMP, that is, cryoconcentration 

takes place, as already discussed in the previous chapter (§ 5). Since the UFLMP 

presents only a small portion of the total initial volume in which the concentration of 

gel precursors has increased dramatically, gel-formation is promoted. In fact, due to 

cryoconcentration, the gel formation in such frozen systems proceeds sometimes 

faster than in liquid medium, when using the same initial concentration of 

precursors.44, 45  

 

The crystals of frozen solvent perform as pore-forming agents. When melted or 

freeze-dried, they leave voids or macropores. The surface tension between the 

solvent and the gel phase rounds the shape of the pores, making the pore surfaces 

smoother. During freezing, solvent crystals grow until they meet other crystals, so 

after thawing/lyophilization, a system of interconnected pores arises inside the gel.  

gelatin water 

initiator 

ice crystal 

non-frozen liquid microphase 

pore 

scaffold freezing lyofilization 
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The dimensions and shape of the pores depend on many factors, of which the most 

important are the precursor concentrations and the freezing regime.    

 

In table 4-1, an overview is presented, showing a variety of materials, able to form 

cryogels with their respective applications. 

 

Gel-forming reagents Application 

polyacrylamide46, 47 bioseparation37, 48, 49 

poly(N-isopropyl-acrylamide) drug release50 

poly(vinyl alcohol)51-54 

poly(acrylic acid) 

drug delivery, cell matrix55, 56 

drug delivery57 

cellulose45 food 

β-glucans58 food preparations59  

xanthan60 food thickener61  

agarose cell carrier62 

amylose/amylopectin63 food 

collagen medicine and food64 

 
Table 4-1: Fields of application of cryotropic gelation processes and materials based on 

polymeric cryogels. 

   

 

In the present work, porous structures were obtained by lyophilization. For the 

development of different porous hydrogels, a special designed cryo-unit was applied. 

The setup, as depicted in figure 3-22 (chapter 3), enabled us to vary different 

parameters during the cryogenic treatment: cooling rate, temperature gradient and 

final freezing temperature. In addition, also the effect of the gelatin concentration on 

the material properties was studied. The materials were analyzed for their pore size, 

pore geometry and their overall porosity by µ-CT, He-pycnometry, SEM and optical 

microscopy. Both µ-CT and SEM have been widely applied before for evaluating 

porous, 3D scaffolds.7, 19, 65, 66 
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2.4 Procedure in order to avoid skin formation 

 

We noticed by SEM of freeze-dried scaffolds of cryogenically treated hydrogels, that 

the treatment resulted in the formation of hydrogels with a less porous skin with a 

thickness of 100-200 µm (figure 4-5). The latter is a problem for cell ingrowth studies. 

Therefore, a simple and novel technique enabling the elimination of skin formation 

was elaborated. The hydrogels, prepared as described above (§ 2.1), were coated on 

top and bottom side by a 0.5 mm thick layer of uncrosslinked gelatin. After cryogenic 

treatment, the uncrosslinked top and bottom layers were dissolved by incubation in 

water (40°C, 5 hours). 

 

 

 
 

Figure 4-5: Skin formation on lyophilized scaffolds, visualized by SEM.  

 

 

 

Microscopic analysis of freeze-sections (cross-sections) of hydrogel scaffolds, 

incubated at 37°C, clearly demonstrated that this approach allowed to avoid the 

problem of skin formation (figure 4-6). This procedure was then adapted as standard 

treatment in the preparation of all cryogenic hydrogels described in this work. 
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Hydrogel with skin 

 

Hydrogel without skin 

 

Figure 4-6: Optical microscopy visualisation of hydrogel freeze sections obtained using a 
microtome. The left and right panel represent a hydrogel respectively with and without a non 
porous skin. The skin present on the left hydrogel is indicated by the white arrow. The scale 

bars represent 100 µm. 
 

 

3 Characterization of the porous scaffolds  

3.1 Techniques 

3.1.1 Micro-computed tomography (µCT) 

 
Radiography is the recording of a shadow image of an optically opaque object, using 

penetrating radiation and a recording medium.67  

 

Tomography is an extension of radiography. In general terms, it is a non-destructive 

technique to investigate the inner structure of an object in 3D. Basically, the 3D 

object is reconstructed, based on a set of 2D projections (or radiographies), taken 

from different angles by rotating the sample around a defined axis (figure 4-7).68 The 

original mathematical framework was developed by Radon in 1917. It provided the 

solution for the reconstruction of a distribution of a given parameter based on its 

projections, taken with a parallel beam of penetrating radiation.67 

 

More recently, X-ray tomography has become an important technique for non-

destructive testing in various research fields, such as biology, geology, archaeology, 

industry, etc.69 Over the years, the resolution of CT imaging systems has steadily 

improved. Modern medical scanners now have a resolution of a few hundred 
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microns. The reason for this limitation is the fact that for medical purposes the 

radiation dose has to be as low as possible and the radiation energy is generally 

limited to about 100 keV, resulting in relatively large detector elements. Non-medical 

devices do not suffer from dose or energy restrictions. Resolving powers below 1 

micron have already been achieved.67   

             

 

 

 
 
 
 
 
 
 
 
 

 

 
In the present study, a “Skyscan 1072” X-ray micro-tomograph was used. This 

compact desktop system, consisting of an X-ray shadow microscopic system and a 

computer with tomographic reconstruction software, generates high-resolution 

images for small samples (7 mm diameter). During a measurement, both the X-ray 

source and the detector are fixed while the sample rotates around a stable vertical 

axis (figure 4-7). Random movement and multiple-frame averaging were used to 

minimise the Poisson noise in the images. The spot size of the Hamamatsu micro-

focus tube limits the spatial resolution of the reconstructed slices to 10 µm in the X, Y 

and Z directions. During acquisition, X-ray radiographs are recorded at different 

angles during step-wise rotation between 0° and 180° around the vertical axis. The 

attenuation of the X-rays passing through a sample when scanning is performed, 

depends on the atomic number of the material and its density. These two features 

are crucial in the resulting contrast of the images. 

After reconstruction of the 2D cross-sections, 3D software µCTanalySIS was used in 

order to segment the images and determine their 3D porosity and pore size 

distribution.70, 71 For the determination of the pore size distribution, each pore was 

filled with the largest sphere possible (the so-called ‘maximum opening’). The total 

Figure 4-7: Overview of µ-CT setup. 
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volume filled by this maximum sphere, was determined during the analysis. 

Subsequently, the software filled the total volume of each pore with a smaller sphere, 

while its total filling volume was determined. This process continued until the total 

volume of each pore was comprised with the smallest inscribed sphere, with a size of 

one voxel (figure 4-8). From this analysis, data of all pores were acquired.      

 

 

Figure 4-8: Principle of the pore analysis performed by µCTanalySIS. 

Another software program (Octopus), was also used to analyse certain images and to 

show the similarity with micrographs generated using SEM.72, 73 Octopus is a 

server/client tomography reconstruction package for parallel and cone beam 

geometry. 

 

 

3.1.2 Helium pycnometry 

 

A pycnometer allows to measure the volume and the density of solid objects in a non-

destructive manner. The latter is accomplished by employing Archimedes’ principle of 

fluid displacement and Boyle’s law of volume-pressure relationships respectively for 

liquid and gas pycnometers.74 Archimedes' principle is that an object totally or 

partially immersed in a fluid, is lifted up by a force, equal to the weight of the fluid that 

is displaced. 

Ideally, a gas is used as the displacing fluid since it penetrates the finest pores, 

allowing maximum accuracy. That is why helium is used preferentially, since its small 

atomic dimension enables entry into pores approaching one Ängström (10-10 m). Its 

behaviour as an ideal gas is also desirable. Other gases such as nitrogen could also 

be used, often with no measurable differences. 
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In the present work, a ‘constant-volume’ gas pycnometer was used (figure 4-9).75 The 

latter is composed of a sample chamber, a tank and an absolute pressure 

transducer, which is positioned in a thermostatically controlled environment.   

 

 

Figure 4-9: Diagram of a constant-volume gas pycnometer.  

 
 
In order to determine the volume of a sample, the following procedure is applied: 

1. the sample is positioned in the sample chamber  

2. valves ‘Z’ and ‘M’ are opened and the pycnometer is filled with gas 

3. valve ‘M’ is closed and the absolute pressure transducer is used to measure 

the initial gas pressure in the pycnometer (Pi) 

4. valve ‘Z’ is closed to isolate the sample chamber 

5. valve ‘M’ is opened and some gas is introduced into the tank (or removed 

from it) 

6. valve ‘M’ is closed again and the gas pressure into the tank is measured (Pj) 

7. valve ‘Z’ is opened so that the gas can expand from the tank to the sample 

chamber (or vice versa) 

8. the final gas pressure is measured (Pf) when the gas expansion is finished 

 

Based on the hypotheses that the gas behaves ideally and that the expanding gas 

quickly reaches equilibrium, the following equation can be deduced: 
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Vs = Vc + Vt (Pf - Pj) / (Pf – Pi) 

 

with   Vs = sample volume 

Vc = sample chamber volume 

Vt = tank (i.e. reservoir) volume 

 

Pycnometers are used for research and quality control in a broad application field, 

such as ceramics, petrochemicals, fibers, pharmaceuticals, cosmetics, etc.76, 77     

 

 

3.1.3 Dynamic Vapour Sorption Analysis 

 

A dynamic vapour sorption (DVS) apparatus regulates the temperature and humidity 

of the environment surrounding a sample, allowing any weight changes in a sample 

due to sorption or desorption of water vapour to be accurately measured (figure 4-

10).  

 

 

Figure 4-10: Overview of the dynamic vapour sorption apparatus. 

 

 

The DVS utilizes a dry carrier gas (i.e. nitrogen). Precise control of the ratio of 

saturated and dry carrier gas flows is enabled with mass flow control. Samples can 

be subjected to a controlled cycle of changing relative humidity, beginning with an 

initial drying phase at 0% relative humidity. Mass changes can be measured by 

means of a recording ultra-microbalance, which measures the weight change caused 

by sorption or desorption of the vapour molecule. 
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A DVS is a valuable tool to measure sorption/desorption isotherms and kinetics, 

surface energies, diffusion coefficients, amorphous content in polymers, etc. It is 

often used for the analysis of pharmaceuticals78, food components79 and    

polymers80, 81.  

 

 

3.2 Influence of parameter variations on the pore size and porosity 

3.2.1 Influence of the gelatin concentration 

 

As a first variable for the preparation of hydrogels, the gelatin concentration 

(expressed as w/v%) was varied. The conditions used for the hydrogel preparation, 

as well as the pore analysis data obtained using µ-CT, He-pycnometry and SEM are 

listed in table 4-2. The pore size of hydrogel types GIa and GIc, as visualized by µ-CT 

and SEM analysis are shown in figure 4-11. 

 

Sample Type GIa Type GIb Type GIc 

Gelatin concentration  5 w/v% 10 w/v% 15 w/v% 

Cooling rate 

Final freezing temperature  

0.15°C/min 

-30°C 

0.15°C/min 

-30°C 

0.15°C/min 

-30°C 

Temperature gradient 0°C 0°C 0°C 

Porosity (µ-CT) 86 ± 0.68% 83 ± 2.63% 82 ± 1.33% 

Average pore diameter (µ-CT) 160 µm 135 µm 105 µm 

Average pore diameter (SEM) 

Porosity (Pycnometry) 

147 ± 41 µm 

96 ± 0.4% 

117 ± 37 µm 

91 ± 0.7% 

70 ± 24 µm 

78 ± 0.6% 

 
Table 4-2: Experimental parameters and pore analysis data of scaffolds type GIa, GIb and GIc. 

 

From the results, it can be concluded that both the porosity and the pore size 

decreased with an increasing amount of gelatin. There are two possible explanations 

for the observed findings. 
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First, a higher gelatin concentration could result in an increasing nucleation rate and 

thus in a larger number of pores. Nucleation depends on the instability of the liquid 

phase and on the diffusion of atoms into clusters. The former increases with 

decreasing temperature, the latter increases with increasing temperatures. A higher 

gelatin concentration resulted in a decrease of the freezing temperature of the 

solvent (in this case water). As a consequence, the mobility of the atoms to diffuse 

into clusters was higher and the nucleation rate increased. 

 

Secondly, comparing the 5-15 w/v% scaffolds, the more concentrated hydrogels 

could possess a decreased heat and protein transfer and thus result in smaller pores. 

A combination of both is most likely the most plausible explanation.  

 

 

The pore sizes, measured using SEM were somewhat lower than the pore sizes 

obtained using µ-CT (table 4-2, figure 4-11). This is due to the fact that, in the case of 

µ-CT, pore diameters are calculated based on the amount of pixels present on the 

pore diameter. Thus, when taking into account the pixels of the pore wall itself, the 

pore size obtained will be at least 20 µm higher (since one pixel corresponded with 

10 µm), depending on the pore wall thickness.  

 

 

A combination of different techniques, both with its advantages and disadvantages 

(destructive (SEM) versus non-destructive (µ-CT), objective (SEM) versus subjective 

(choice of thresholding parameters using µ-CT), 100 nm resolution (SEM) versus 10 

µm resolution (µ-CT), 2-D (SEM) versus 3-D imaging (µ-CT)), is thus essential to 

obtain a complete material analysis.  

 

 

The difference in porosity between the scaffolds was studied by He-pycnometry and 

µ-CT analysis. The µ-CT data showed a smaller variation between the porosities of 

the samples compared to pycnometry-measurements (table 4-2). In our opinion, the 

porosities obtained from pycnometry experiments are more realistic. The latter 

technique is not limited to a resolution of 10 µm since it is based on the intrusion of 

helium in the porous scaffolds. In the present work, we have selected the µ-CT 
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tresholding parameters in such a way that no scaffold material was excluded. The 

disadvantage of the latter approach was that some noise voxels were then 

considered as material, leading to a lower decrease in porosity. The higher porosity 

of the 5 w/v% gelatin compared to the 15 w/v% gelatin, is clearly illustrated in figure 

4-11 (first and second row). 

 
 Type GIa Type GIc 

µ-CT 

(2D) 

  

µ-CT 

(3D) 

  

SEM 

  

Figure 4-11: µ-CT (2D and 3D) and SEM analysis of the 5 w/v% (Type GIa) and the 15 w/v% 
gelatin (Type GIc). For the µ-CT (3D) pictures, the pores are coloured red and the material is 

grey transparent. The scale bars represent 1000 µm (µ-CT) and 500 µm (SEM). 

 

An important prerequisite for a scaffold to be applied as a biomaterial is the fact that 

the material should possess interconnecting pores. Pore interconnectivity can be 

studied by µ-CT. 
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To analyse the reconstructed images, double thresholding based on the greyvalue 

histogram of the images, had to be performed using µCTanalySIS.68 After 

thresholding, each pore detected inside the binary images was labelled and analysed 

in 3D. Based on the maximum opening of each pore, the binary images were then 

rewritten, labelling each pore with a certain greyvalue corresponding to a certain 

maximum opening. The grey value of a pore in the 2-D segmentations (figure 4-11, 

top row) indicated the diameter of the largest inscribed sphere in the concerning pore 

network. Figure 4-11 illustrates two cross-sections after analysis with µCTanalySIS. 

A low contrast between the material borders and the pores, in combination with small 

amounts of noise, containing similar greyvalues as the material borders, led to small 

errors in the resulting thresholded images. Figure 4-11 (top left) suggested that the 

pores of the 5 w/v% scaffold were interconnecting. The complete pore network was 

labelled in white, thus either belonging to the same pore network or belonging to 

different pore networks with the same maximum opening. In the 15 w/v% gelatin 

(figure 4-11, top right) more individual pores were detected, each belonging to a 

different pore network. 

 

 

3.2.2 Influence of the cooling rate  

 

In addition to the gelatin concentration, the cooling rate of the gelatin solution was 

also varied. Literature data describes the influence of the cooling rate on the 

nucleation and growth of ice crystals and thus on the resulting pore size.10-14 In most 

studies, the samples were incubated in a freezer for several hours at different 

temperatures. These studies indicated that the pore size decreased with a 

decreasing freezing temperature.10, 12, 13 Whether the underlying cause of this 

phenomenon was the actual final freezing temperature, the cooling rate, or a 

combination of both has never been studied before. The present work demonstrates 

that the underlying cause is actually the phenomenon of undercooling. In another 

publication, a complex setup was used to control the cooling rate of a collagen 

solution.11 In that study, it was shown that the pore size in collagen matrices 

decreased with an increasing cooling rate.  

 



Chapter IV: Preparation & Characterization of Gelatin Scaffolds  127 

Our study aimed to implement a procedure to examine the effect of the cooling rate 

on the pore size and morphology in gelatin scaffolds. The experimental conditions 

applied in the present work and the results obtained are summarized in table 4-3. For 

these experiments, a gelatin concentration of 10 w/v% was selected.  

 

Sample Type GIb Type GIIb 

Gelatin concentration  10 w/v% 10 w/v% 

Cooling rate 

Final temperature of freezing  

0.15°C/min 

-30°C 

0.83°C/min 

-30°C 

Temperature gradient 0 0 

Porosity (µ-CT) 83 ± 2.63% 84 ± 1.73% 

Average pore diameter (µ-CT) 135 µm 65 µm 

Average pore diameter (SEM) 

Porosity (Pycnometry) 

117 ± 37 µm 

91 ± 0.7% 

48 ± 6 µm 

89 ± 3% 

 
Table 4-3: Experimental parameters and pore data of matrices type GIb and GIIb. 

 

Summarising the results (table 4-3), it can be concluded that a decrease of the 

cooling rate from 0.83°C/min to 0.15°C/min resulted in an increase in average pore 

diameter from 65 µm to 135 µm. The difference in median pore size between the 

rapidly and the slowly cooled gelatin, as analysed by µ-CT and SEM, is shown in 

figure 4-12. Thus, the slower the cooling rate, the lower the undercooling (difference 

between the freezing temperature and the actual temperature of the material) and the 

nucleation rate and the higher the rate of heat and protein transfer. This leads to a 

lower amount of large pores.10  

 

The porosity of both types of hydrogels were identical as shown by µ-CT and He-

pycnometry. Again, the porosity values, obtained by µ-CT, were lower compared to 

He-pycnometry (respectively ± 80% versus ± 90%). 

 

From figure 4-12 (top row), it can also be concluded that the pore interconnectivity 

was not influenced by the cooling rate. The pores of both types of hydrogels were 

interconnected, since all pores were labelled in white after performing a 3-D analysis. 

A 3-D image of the rapidly cooled gelatin (figure 4-12, centre right), visualized very 
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clearly a central sample region where the porosity decreased. This corresponded 

with the zone where the two cooling surfaces (started from top and bottom of the 

sample) coincide. A plausible explanation for the observation that the pore diameters 

in the central region are smaller is a decreased heat and protein transfer. Ice crystals 

are normally formed in the direction of heat transfer.82 Since the resolution of the µ-

CT technique is 10 µm, small pores in the central region were not detected, giving 

rise to a local decrease in porosity (data not shown).  

 

 
 Type GIb Type GIIb 

µ-CT 

(2D) 

  

µ-CT 

(3D) 

  

   

SEM 

  

Figure 4-12: Images of the rapidly cooled gelatin (Type GIIb) and the slowly cooled gelatin (Type 
GIb), obtained using µ-CT and SEM. The scale bars represent 1000 µm (µ-CT), 100 µm and 500 

µm (SEM). 
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The 3-D reconstruction for the slowly cooled hydrogel type was similar compared to 

the rapidly cooled gelatin, except that no zone was observed where the porosity 

decreased (figure 4-12, centre left). Probably, the effect of the coinciding cooling 

surfaces on the pore structure is more pronounced for the rapidly cooled scaffold, 

since the undercooling is higher in the latter case.     

 

 

3.2.3 Effect of applying a temperature gradient 

 

Using the cryogenic unit, developed in our laboratory (figure 3-22, chapter 3), it was 

also possible to establish a temperature gradient between the top and the bottom of 

the mould during the freezing step. During the applied temperature gradients, the 

temperature at the top of the mould was the highest. In the present work, two 

gradients were applied and compared (10°C and 30°C). The results are summarized 

in table 4-4.  

 

Sample Type GIVb Type GIIIb 

Gelatin concentration  10 w/v% 10 w/v% 

Cooling rate 

Final freezing temperature  

0.15°C/min 

-30°C 

0.15°C/min 

-30°C 

Temperature gradient 10°C 30°C 

Porosity (µ-CT) 76 ± 4.67% 75 ± 3.54% 

Average pore diameter          top 

(µ-CT)                              bottom 

116 µm 

20-30 µm 

330 µm 

20-30 µm 

Average pore diameter (SEM) 

Porosity (Pycnometry) 

96 ± 10 µm 

92 ± 1.4% 

283 ± 48 µm 

94 ± 0.2% 

 
Table 4-4: Experimental parameters and pore analysis data of the low (type GIVb) 

and high (Type GIIIb) gradient scaffolds. 

 

From the data in table 4-4 and figure 4-13, it can be concluded that the high 

temperature gradient (∆T = 30°C) resulted in a pore size gradient throughout the 

scaffold. The pore morphology of the hydrogel is shown in the 3-D µ-CT 

reconstruction and the SEM picture in figure 4-13 (top right and bottom right picture). 
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The pictures clearly indicate the presence of transversal pore channels in the 

direction of heat transfer. From the data (table 4-4), it can be concluded that the pore 

size decreased from 330 µm to 20-30 µm when moving through the scaffold from top 

to bottom. The smallest pores were formed at the side exposed to the lowest 

temperature (i.e. the bottom of the mould). As discussed in § 3.2.1, this is related to 

an increased nucleation and reduced heat and protein transfer phenomena. 

 

 
 Top view Bottom view Side view 

µ-CT 

    

SEM 

  

Figure 4-13: µ-CT and SEM analysis of the top, the bottom and the side of the scaffold exposed 
to a temperature gradient of 30°C (type GIIIb). The scale bars represent 1000 µm (µ-CT), 500 µm 

and 2 mm (SEM). 

 

The applied temperature gradient also resulted in a decrease in porosity, when 

moving from top to bottom of the scaffold, from 82% to 61%.     

When applying a temperature gradient of 10°C, the effect on the pore size and the 

porosity was less pronounced compared to the high temperature (30°C) gradient. 

The pore size decreased from top (116 µm) to bottom (20-30 µm) without altering the 

porosity. A few cracks were visualized both in the 3-D reconstruction and the SEM 

image (figure 4-14, right), which resulted in a local increase of the porosity.  
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Top view 

 
Side view 

 

µ-CT 

 
 

 
 

SEM 

  
   

Figure 4-14: Top views and side views of the low gradient scaffold (type GIVb) obtained using 
µ-CT and SEM. The scale bars represent 1000 µm (µ-CT), 500 µm and 2000 µm (SEM). A crack 

present in the scaffold is indicated with an arrow. 

 

In contrast to the pore size, the porosity of the materials was not affected by the 

applied temperature gradient. The porosity of both scaffolds, as measured by µ-CT 

and He-pycnometry was in the range of 75% and 90% respectively (table 4-4). The 

porosities for both types of hydrogels, were similar since the same amount of water 

was removed through lyophilization. In our opinion, this is the first time that porous 

gelatin hydrogels were prepared by applying a controlled temperature gradient during 

the freezing step. This enabled us to develop porous materials containing a pore 

morphology and pore size that can be fine-tuned by the cryogenic parameters.  

Up to now, pore size gradients were created by the spatial arrangement of porogen 

size. Porous silk gradient systems, for example, were obtained by arranging the 

porogens from smallest to largest size in a container. After adding the silk solution 

and removing the solvent, the porogens were dissolved, creating a scaffold with a 

pore gradient system.18 The latter approach, however, is rather labour intensive and 

impractical, consequently the cryo-approach, utilized in the present work, could be 

used as an interesting alternative. 
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3.2.4 Influence of final freezing temperature 

 

As a last cryo-parameter, we varied the final freezing temperature (-10°C versus -

30°C) while keeping the cooling rate constant (0.2°C/min). The results, as shown in 

table 4-5, indicated that the final freezing temperature did not significantly influence 

the hydrogel pore size and porosity.  

 

Sample Type GVb Type GVIb 

Gelatin concentration  10 w/v% 10 w/v% 

Cooling rate 

Final temperature of freezing  

0.2°C/min 

-10°C 

0.2°C/min 

-30°C 

Temperature gradient 0°C 0°C 

Porosity (µ-CT) 85 ± 3.67% 83 ± 2.65% 

Average pore diameter (µ-CT) 138 µm 147 µm 

Average pore diameter (SEM) 

Porosity (Pycnometer) 

181 ± 60 µm 

92 ± 2% 

182 ± 47 µm 

89 ± 0.9% 

 
Table 4-5: Experimental parameters and pore data of hydrogels type GVb and type GVIb. 

 

 

The pores were homogeneously distributed in the scaffold that was treated 

cryogenically to a final freezing temperature of -10°C, as shown in figure 4-15. 

Similar results were obtained for the hydrogel that was cooled to -30°C (data not 

shown).  

SEM µ-CT (3D) 

 
 

Figure 4-15: Effect of final freezing temperature on the scaffold structure as visualized by µ-CT 
and SEM. The structures represent the gelatin scaffold using a final freezing temperature of  

-10°C (Type GVb). The scale bars represent 1000 µm. 
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The data indicate that, of all the parameters varied, the gelatin concentration, the 

cooling rate and the applied temperature gradient have the largest effect on the pore 

size and geometry. The final freezing temperature has a negligible effect. 

The gelatin concentration, the cooling rate and the temperature gradient affect the 

pore diameter, whereas the pore geometry and the overall porosity depend mostly on 

the applied temperature gradient and the gelatin concentration respectively. 

 

 

3.3 Study of physico-chemical properties of scaffolds developed  

 

Next, a detailed study was performed on the correlation between the cryogenic 

parameters applied and the physico-chemical properties of the materials. This is 

relevant since a clear correlation between the structure and the physico-chemical 

properties of different types of hydrogels was reported before.28, 83 Lee reported on 

porous scaffolds composed of gelatin and β-glucan as a wound dressing.6 The 

average pore size was in the range of 90-150 µm and the swelling capacity of the 

material increased with decreasing pore size/porosity. The latter was due to a 

decrease in gelatin/β-glucan ratio. In contrast to those results, Kang found that the 

water uptake of porous gelatin matrices increased with an increasing pore size.84 

Another group reported on a scaffold concentration dependant maximum in water 

absorption of chitosan-gelatin scaffolds.85  

 

 

These contradictory results indicated the need to perform a study to establish the 

relation between the pore size and the overall porosity of gelatin scaffolds and their 

water uptake. In addition, possible effects of the pore-inducing method (i.e. cryogenic 

treatment) on the mechanical properties were also considered. As a last part of the 

structure/properties relation, the effect of the porous structure on the in vitro 

degradation in the presence of collagenase was studied. 
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Hydrogel 

Type 

 
Pore size (porosity) 

 

 5 w/v %(a) 10 w/v %(b) 15 w/v %(c) 

 
Pore morphology 
 

GIII _ 
330 → 20 µm 

(94%) 
_ 

cone, pore size decreasing 
from top to bottom   

GI 
160 µm 
(96%) 

135 µm 
(91%) 

105 µm 
(78%) 

spherical, uniform pore size 
throughout entire scaffold 

GII _ 
65 µm 
(89%) 

_ 
spherical, uniform pore size 
throughout entire scaffold 

 
Table 4-6: Summary of the hydrogel characteristics (pore size, pore morphology and porosity) 
of the developed hydrogels as studied by µ-CT (pore size and morphology) and He-pycnometry 

(porosity). 
 

 

The physico-chemical evaluation of a series of porous gelatin cryogels to be applied 

in the field of tissue engineering was performed. Hydrogels with varying pore size, 

pore geometry and porosity were prepared as reported earlier (§ 3.2) and compared 

in terms of their physico-chemical properties including swelling, water vapour uptake, 

mechanical properties and in vitro degradation behaviour. A summary of the 

materials included in this study, as well as their pore size/morphology characteristics 

are summarised in table 4-6. Type GIII hydrogels contain top bottom transversal 

channels with a decreasing pore size from top to bottom (330-20 µm). Type GI and 

type GII scaffolds contain spherical pores in the range from 65-160 µm, depending 

on the freezing parameters and the gelatin concentration applied. 

 

 

3.3.1 Water uptake capacity 

 

Since the developed scaffolds are intended to be used as cell carriers for tissue 

engineering applications, it is important to study the swelling capacity of the 

hydrogels. Therefore, the different scaffold types developed were immersed in double 

distilled water at 37°C. At regular time points, the swelling degree of the hydrogels 

was determined. 

The pictures in figure 4-16 represent type GIIIb hydrogels at different immersion times 

(0 minutes, 15 minutes and 1 day). The maximum swelling (equilibrium swelling) was 

obtained after 1 day. The volume increase of the hydrogels during swelling was 

rather limited (14% swelling).  
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Figure 4-16: Type GIIIb hydrogels (10 w/v%) in dry state (part A), after 15 minutes immersion in 
double distilled water at 37°C (part B) and at equilibrium swelling (1 day, part C). 

 

 

As a first parameter, the influence of the gelatin concentration on the swelling 

capacity was investigated by immersing type GI scaffolds with varying w/v % (5, 10 

and 15 w/v %) in water. From the obtained results (figure 4-17), it can be concluded 

that the swelling ratio decreases with increasing gelatin concentration. The gelatin 

concentration affects two parameters of the hydrogel. First, the gelatin concentration 

is related to the degree of cross-linking. The higher the w/v % gelatin, the higher the 

amount of cross-linkable groups and the lower the swelling ratio of the resulting 

hydrogel.86-89 Secondly, the gelatin concentration affects the porosity (table 4-6). The 

higher the w/v % gelatin, the lower the porosity and thus the lower the swelling ratio. 

Both effects are thus synergistic.  
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Figure 4-17: Swelling ratio as a function of time for type GI scaffolds with gelatin 
concentrations of 5 w/v% (■), 10 w/v% (▲) and 15 w/v% (●). 
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In addition to the effect of the gelatin concentration, a possible effect of the pore size 

and pore geometry on the water uptake was also investigated. Type GIb, GIIb and 

GIIIb hydrogels were immersed in water and the swelling ratios were determined at 

regular time points. The results, shown in figure 4-18, demonstrate that type GIIIb 

hydrogels possessed the highest degree of swelling. This can be attributed to the 

pore geometry and pore size of type GIIIb scaffolds, consisting of top-bottom 

honeycomb structured pores with a diameter decreasing from 330 µm to 20-30 µm 

when moving from top to the bottom of the scaffold.73 This pore geometry (i.e. 

channel) thus clearly facilitates the water uptake, resulting in a higher degree of 

swelling.  

Next to the effect of the pore geometry, a possible influence of the pore size on the 

swelling properties was also investigated. Since type GIb hydrogels possess larger 

pores compared to type GIIb scaffolds (135 versus 65 µm), a reduced water uptake 

capacity for type GIIb hydrogels was anticipated. However, the water uptake at 

equilibrium was similar for both systems (figure 4-18 and inset). This can most likely 

be ascribed to two counterbalancing effects. A smaller pore size indeed leads to a 

lower swelling degree for type GIIb hydrogels. However, the faster cooling applied for 

preparing GIIb hydrogels, results in less gelatin chain entanglements, giving rise to a 

lower degree of physical cross linking. The latter results in a higher water uptake 

capacity for type GIIb hydrogels.90 Due to these counterbalancing effects, both 

scaffolds possess a similar swelling degree.  

 

 
Figure 4-18: Degree of swelling as a function of time for 10 w/v% hydrogels type GIIIb (▲), type 

GIb (■) and type GIIb (����). 

 

Similar results were obtained for the 5 and 15 w/v% hydrogels (data not shown).   
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For some applications, not only the swelling capacity is important, but also the 

swelling rate can influence the applicability of materials. For certain in vivo 

applications, knowledge of the swelling rate is important since it provides information 

on how quick a certain defect can be filled during or after a surgical procedure.91 

Therefore, the swelling kinetics of the hydrogels developed, were also investigated.  

Although the change in swelling rate rapidly decreases over time for all hydrogels 

developed (see figures 4-17 and 4-18), the experimental data could not be fitted 

using simple power law expressions. A suitable alternative was provided by the Voigt 

model, which consists of a spring and a dashpot in parallel (figure 4-19).92-94 The 

spring and dashpot respectively provide the immediate elastic and delayed viscous 

strain responses to an externally applied stress. Any number of arrangements of 

these elements can be applied to simulate a particular kind of time dependence. In 

molecular terms, the elastic responses are the fast, reversible changes in bond 

length, shape and orientation which occur when stress is applied to a polymer chain. 

The viscous responses are the slower, irreversible, energy dissipating processes 

which occur as a result of the molecular movements.  

 

Figure 4-19: Elongation of a Voigt-element as a function of time. 

         

In this case, there is no externally applied stress. Instead, stress is exerted on the 

gelatin network by interaction with water.  

When a stress σ0 is applied at time t0, the strain response ε of the model with Young’s 

modulus E is given at time t by the following expression:  

 

ε(t) = σ0/E[1-exp{(t0-t)/τ0}] 

 

σ 

ε 

time 
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where τ0 is known as the retardation time and determines the influence of the 

dashpot.92 The system differs fundamentally from the stretching of a dry rubber in 

that the volume drastically increases and the number of chain entanglements 

decreases with time. Consequently, the modulus in the equation mentioned above, 

cannot have the same significance for absorbents, although Flory referred to an 

inverse relationship between the equilibrium swelling of a rubber by a solvent and the 

modulus of the rubber. However, the time dependence of swelling was not 

discussed.92  

 

The experimental swelling data follow a typical exponential relationship which has 

two characteristic constants, i.e. σ0/E and τ0. The quantitative value of the former can 

be estimated from the values of the steady state swelling of the individual samples, 

since the water transport is diffusion-controlled.93 For the latter, minus the reciprocal 

value of the slope of the plot of ln[1-St/S∞] against time was used (S∞ is equilibrium or 

steady state swelling). Since such a plot possesses a typical first order relationship, 

the slope is a measure of the characteristic time (τ0) for the individual scaffolds (figure 

4-20). The Voigt-based equation can thus be rewritten as follows:94  

 

St = Se(1-e-t/τ) 

 

where St is swelling at time t, Se is equilibrium swelling and τ stands for the rate 

parameter. 
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Figure 4-20: Determination of τ as derived from the linear relationship between ln[1-St/S∞] and 
time for type GIb hydrogels. 
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Starting from this model, the rate parameter τ for a hydrogel matrix, which is a 

measure for the swelling rate, can be determined.  

The rate parameters of the different scaffold types are shown in table 4-7, clearly 

indicating that both the gelatin concentration (i.e. the porosity and pore size) and the 

cryogenic parameters applied (i.e. the pore geometry and the pore size) influence τ. 

From the results, it can be derived that τ decreases with an increasing gelatin 

concentration. The latter effect is similar to what was reported earlier for absorbent 

polymers for which the swelling kinetics were significantly influenced by the particle 

size of the absorbents.95 Using these materials, a lower particle size resulted in a 

higher water uptake rate. Based on these results, an increase in the absorption rate 

would be expected from the increase in surface area with decreasing particle size of 

an absorbent. For the hydrogel developed in the present work, this implies that with 

an increasing surface area (and thus with an increasing gelatin concentration), the 

rate parameter decreases, as demonstrated in table 4-7. A similar effect was 

observed changing the cryogenic parameters (i.e. going from type GIIIb to type GIIb 

hydrogels). 

 

Hydrogel Type τ (min) Surface area (m2/g) 

Type GIIIb 179 0.010 

182 0.031 

108 0.037 

Type GIa 

Type GIb 

Type GIc 84 0.048 

Type GIIb 52 0.077 

 
Table 4-7: The rate parameters and the surface areas of the gel-MOD hydrogels studied. 

 

 

Although the swelling behaviour of gelatin-based hydrogels was already described 

previously by various models, the Voigt-based model, applied before for gelatin-graft-

poly(sodium acrylate-co-acrylamide) and acrylic-based polymers, turned out to be the 

most suitable for the cryogenic treated scaffolds in the present work.96, 97    
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3.3.2 Dynamic vapour sorption analysis 

 

In a first part, the influence of the gelatin concentration on the water vapour uptake 

was studied at 25°C. Increasing hydrogel masses during sorption were recorded as a 

function of the relative humidity (table 4-8). The water vapour uptake increased with 

decreasing gelatin concentration irrespective of the applied humidity. The latter can 

be attributed to the higher porosity of hydrogels prepared using low gelatin 

concentration.  

 

Mass change (%) during sorption 
Target RH (%) 

Type GIa Type GIb Type GIc 
0 0 0 0 
20 7.42 6.60 5.56 
40 12.11 11.19 9.92 
60 17.41 16.26 14.63 
80 28.20 26.97 24.19 

 
Table 4-8: Effect of gelatin concentration on the water vapour sorption of type GI hydrogels. 
Mass change (%) during sorption is expressed as a function of the relative humidity (RH, %). 

 

Secondly, the effect of the pore geometry and pore size on the water vapour uptake 

was studied at 25°C at constant gelatin concentration (10 w/v %) (table 4-9). In 

contrast to what was anticipated, no differences were observed comparing the three 

hydrogel types. Apparently, the porosity and not the pore geometry nor the pore size, 

is the most important factor determining the water vapour uptake capacity.  

 

Mass change (%) during sorption 
Target RH (%) 

Type GIIIb Type GIb Type GIIb 

0 0 0 0 
20 6.36 6.60 6.79 
40 10.68 11.19 11.34 
60 15.67 16.26 16.26 
80 26.39 26.97 26.45 

 
Table 4-9: Effect of pore size and pore morphology on the water vapour sorption of 10 w/v% 

gel-MOD scaffolds. 

 

Next, samples were also subjected to multiple sorption and desorption cycles (figure 

4-21). However, no variation in dynamic vapour sorption profiles was found between 

the first and the second cycle indicating that the DVS measurements were extremely 

reproducible.  
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Figure 4-21: Dynamic vapour sorption study of type GIc hydrogel at 25°C. 

 

 

Interestingly, differences between sorption and desorption behaviour were observed 

in the isotherm plots (figure 4-22), clearly demonstrating hysteresis phenomena. This 

can be attributed to a structural change promoted by the distribution of water 

molecules among the polymer chains.98 This plasticization effect limits the desorption 

of H2O vapour due to a permanent deformation in the polymeric structure.99 The role 

of water in modifying the properties of biopolymers has been studied extensively in 

the past. The hydration behaviour of proteins is of great relevance since it affects the 

protein secondary structure formation, as well as the chemical and enzymatic 

reactivities.100 
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Figure 4-22: Water sorption (▲) and water desorption (■) isotherms of a type GIc scaffold for 
two consecutive cycles (The open symbols represent the first cycle, the second cycle is 

represented by the closed symbols) at 25°C. 
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Finally, the influence of the temperature on the water vapour uptake was studied. 

From figure 4-23, it can be derived that the moisture uptake decreased with 

increasing temperature (37°C versus 25°C). The observed decrease can be 

attributed to the contribution of the physical entanglements, which are not present 

above the gel/sol temperature (± 30°C). 

 

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90

Target RH (%)

C
h

a
n

g
e
 I

n
 M

a
s

s
 (

%
) 

- 
D

ry
Sorption, 37°C Desorption, 37°C Sorption, 25°C Desorption, 25°C

 

Figure 4-23: Influence of the temperature (25°C versus 37°C) on the water vapour uptake 
capacity of type GIIIb hydrogels. 

 

 

3.3.3 Mechanical testing 

 

Irrespective of their final biomaterial application, the hydrogels developed should 

possess mechanical properties suited for a specific application. Hydrogels, implanted 

in vivo or applied as micro-carrier in a bioreactor are subjected to certain loads.101, 102 

The mechanical properties of the different scaffolds were studied by compression. 

Using the slope of the initial linear part of the stress-strain curves obtained, the 

compression moduli were calculated (figure 4-24). It can be concluded that the 

compression moduli increased with an increasing gelatin concentration. Furthermore, 

using the type Gb hydrogels we studied possible effect of the pore geometry and pore 

size on the mechanical properties. Type GIIIb hydrogels possessed the lowest 

compression modulus (P < 0.05). This is due to the geometry of the pores, i.e. 

aligned parallel to the direction of compression.  
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Figure 4-24: Effect of the gelatin concentration and the scaffold type on the compression 
modulus (20% strain, 21°C). 

 

Comparing type GIb and GIIb hydrogels, no statistically significant differences in 

compression moduli were observed (P = 0.46).  This is most likely due to the small 

differences in pore size between type GIb and GIIb scaffolds (135 versus 65 µm, table 

4-6).  

When comparing the obtained compression moduli (see figure 4-24) with the 

mechanical properties of tissues (see table 1-1), it can be concluded that the 

obtained values are more than a ten-fold lower. The mechanical properties of the 

hydrogels developed could be improved by for example adding synthetic polymers 

including polyesters, possessing higher compression moduli. However, this approach 

was beyond the scope of this PhD work.       

 

 

3.3.4 Determination of effective network density 

 

The suitability of hydrogels as biomedical materials and their performance in a 

particular application depend to a large extent on their bulk structure. The most 

important parameters used to characterize the network structure of hydrogels are the 

polymer volume fraction in the swollen state (v2,s), the molecular weight of the 

polymer chain between two neighbouring crosslinking points (Mc) and the 

corresponding mesh size (ξ). These parameters, which are interrelated can be 

determined through the use of the equilibrium-swelling theory and the rubber-

elasticity theory.103, 104 Since the rubber-elasticity theory is utilized in the present 

work, a short introduction to the model is presented below.  
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Rubber elasticity theory 

 

Hydrogels resemble natural rubbers in their remarkable property to elastically 

respond to applied stresses. A hydrogel, subjected to a relatively small deformation 

(i.e. less than 20%) will fully and rapidly recover to the original dimensions. This 

elastic behaviour of hydrogels can be used to elucidate their structure by utilizing the 

rubber-elasticity theory. Interestingly, rubber-elasticity theory has been used not only 

to analyze chemically and physically crosslinked hydrogels, but also hydrogels 

exhibiting temporary crosslinks due to hydrogen bonding.105  

In the present work, only the form of the rubber-elasticity theory used to analyze the 

structure of hydrogels prepared in the presence of a solvent is presented. Detailed 

derivations can be found in literature.106 The equation correlates the applied stress 

with the network junctions.   
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Here, τ is the stress applied to the polymer sample, ρ is the density of the polymer, R 

is the universal gas constant, T is the absolute experimental temperature and Mc is 

the molecular weight between crosslinks. The hydrogel structure can thus be 

investigated using the rubber-elasticity theory, which requires tensile testing 

experiments to be performed.  
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Figure 4-25: Log G versus log Q plot of hydrogel types used in the experiment. 

 

ρ 

α2 



Chapter IV: Preparation & Characterization of Gelatin Scaffolds  145 

The applicability of the Gaussian model to the hydrogels developed, was investigated 

by studying a possible linear correlation between the log of the compression modulus 

(G) and the log of the equilibrium swelling (Q) (see figure 4-25), according to the 

following equation:107 

 

G = cRT/Mc(1-2Mc/Mn)Q
-1/3 

 

The mechanical properties of hydrogels are strongly related to their swelling degree, 

which is related to the crosslink density of the hydrogels.108 The effective network 

density of some of the hydrogel scaffolds developed (table 4-10), was determined by 

measuring the modulus of elasticity in compression as described earlier for other 

hydrogel systems.107, 108 For these experiments, the hydrogels were incubated in 

double distilled water at 37°C for one day, followed by determining their equilibrium 

heights at various compressive stresses, using a texturometer. The elasticity 

modulus at equilibrium was derived using the following equation: 

 

F/A = -G(λ-λ-2) 

 

F/A = compressive stress applied,  

G = equilibrium elasticity modulus,  

λ = the relative compression l/l0,  

l0, l = height of respectively original and deformed gel.  

 

The elasticity modulus (G) was obtained from the slope of the linear plot of F/A 

versus -(λ-λ-2). Using the value of the elasticity modulus, the effective network density 

was calculated using the following equation:104 

 

ve = G/(RTv2,s
1/3<α>2) 

 

ve = effective network density (mol/m3),  

R = universal gas constant,  

T = absolute temperature,  

v2,s = polymer volume fraction of the hydrogel at equilibrium swelling,  

<α> = isotropic dilation factor (~ v2,r
1/3),  
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v2,r = polymer volume fraction in the relaxed state.  

 

Since this equation also requires the density of the individual scaffolds, pycnometry 

measurements were performed. The effective network densities and related 

parameters for the different hydrogels are summarized in table 4-10.  

 

Hydrogel Type v2,s G (Pa) ve (mmol/cm3) 

Type GIIIb 0.046 ± 0.001 18630 0.138 ± 0.001 

0.027 ± 0.001 6100 0.078 ± 0.001 

0.062 ± 0.005 21770 0.120 ± 0.003 

Type GIa 

Type GIb 

Type GIc 0.086 ± 0.003 38000 0.156 ± 0.002 

Type GIIb 0.063 ± 0.003 21450 0.118 ± 0.002 

 

Table 4-10: Network parameters for the hydrogels developed. 

 

 

From table 4-10, it can be concluded that the crosslink density increases with 

increasing gelatin concentration. A higher concentration of polymer precursors, 

obviously corresponds to a higher amount of available crosslinkable side groups. 

When comparing type GIIIb, GIb and GIIb scaffolds, type GIIIb hydrogels have a 

significantly higher crosslink density compared to type GIb and GIIb hydrogels (i.e. 

0.138 mmol/cm3 versus 0.118-0.120 mmol/cm3) (P < 0.05). The similar crosslink 

density for type GIb and type GIIb hydrogels was also reflected by the similarities in 

swelling and mechanical properties of both types of scaffolds (see § 3.3.1 and 3.3.3). 

However, the crosslinking density of 0.138 mmol/cm3, observed for type GIIIb 

hydrogels was not anticipated based on the highest equilibrium swelling degree 

obtained for those scaffolds (see  § 3.3.1). The channel-like pore morphology, 

observed for these scaffolds, leading to a high water uptake, thus compensates for 

the high crosslink density, which would normally lead to lower swelling capacities. 

The amount of junction knots, calculated from the above equation, are lower 

compared to the amount of double bonds available for crosslinking (i.e. 0.118-0.138 

mmol/cm3 versus 0.255 mmol/cm3 for 10 w/v% gelatins). The observed experimental 

values are lower than the theoretically calculated numbers since it can be anticipated 
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that a fraction of the double bonds present in the gelatin side groups are crosslinked 

during UV irradiation.       

 

 

3.3.5 In vitro degradation experiments 

 

To study possible differences in the degradation profile of the materials, the scaffolds 

were immersed in PBS in the presence of collagenase. At regular time intervals, the 

samples were removed and both the compression modulus and the gel fraction were 

determined. Possible effects of the gelatin concentration, the pore size and the pore 

geometry were investigated.  

 

3.3.5.1 Effect of w/v% gelatin 

 

The degradation profiles of type GI scaffolds with varying w/v % gelatin are shown in 

figure 4-26. It can be observed that the degradation time increased with increasing 

gelatin concentration. At higher gelatin concentrations, the degree of cross-linking 

increases, which slows down the degradation process. The penetration of 

collagenase into the hydrogel network is thus hindered by a higher number of cross-

links between the gelatin molecules. A reduced enzyme penetration causes a distinct 

decrease of the surface which is available for enzymatic degradation.  
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Figure 4-26: In vitro degradation behaviour of 5 w/v%(a) (●), 10 w/v%(b) (■) and 15 w/v%(c) (▲) 
type GI gelatin scaffolds. The degradation was studied at 37°C in the presence of collagenase. 
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3.3.5.2 Effect of pore size and geometry 

 

Next, possible effects of the pore geometry and pore size on the degradation of the 

scaffolds (10 w/v%) were investigated. Again, the compression modulus and the gel 

fraction were determined at regular time intervals. The data are summarized in 

figures 4-27 and 4-28.  
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Figure 4-27: Influence of in vitro degradation on the gel fraction of hydrogels type GIIIb (▲), 
type GIb (■) and type GIIb (����) (* P < 0.01). 

 

 

From the gel fraction data (figure 4-27), it can be concluded that type GIIIb hydrogels 

possess the fastest degradation profile. This can again be attributed to the elongated 

pore structure throughout the scaffold, enabling a faster influx of fluids. This 

assumption is supported by the higher swelling rate and swelling degree observed for 

these materials (see § 3.3.1). 

Comparing type GIb and GIIb hydrogels, no difference in degradation rate was 

observed (figure 4-27), what can be related to the similar swelling properties for both 

types of scaffolds (see § 3.3.1). 
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Figure 4-28: Influence of in vitro degradation on the compression modulus of hydrogels type 
GIIIb (▲), type GIb (■) and type GIIb (����) (* P < 0.01). 
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Figure 4-28 represents the compression moduli of type GI-GIII hydrogels as a 

function of time. In contrast to what we anticipated, no differences in compression 

moduli during degradation were observed comparing the different scaffolds. The 

latter effect can presumably be explained by considering the possible degradation 

mechanisms involved.109 Two different degradation mechanisms can be 

distinguished: heterogeneous degradation (i.e. surface degradation) and 

homogeneous degradation (i.e. bulk degradation). In the former case, the polymer 

matrix preserves its original geometrical shape, but decreases in size as a function of 

time. In the latter case, the degradation reaction occurs randomly. For bulk 

degradation, the scaffold size will remain similar during a relatively long time period. 

In case of surface erosion, the polymers are expected to preserve their mechanical 

properties (reflected by their compression moduli) longer. Most likely, surface 

degradation occurs to a large extent for all hydrogel types, since the observed 

decreases in compression moduli are relatively slow, all showing a similar slope. This 

assumption is also supported by the appearance of the hydrogels (i.e. decreasing 

dimensions) as a function of time.      
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4 Conclusion 

 

Scaffold porosity was induced by a combination of phase separation and freeze-

drying. The novel cryo-unit enabled us to produce, in a controlled manner, three-

dimensional porous scaffolds in which the pore size, the pore geometry and the 

porosity can be easily fine-tuned by variation of the cryogenic parameters. In 

addition, the pore characteristics induced by applying a cryogenic treatment on 

chemically crosslinked hydrogels are sustained after re-swelling. Three experimental 

conditions influenced the characteristics of porous gelatin scaffolds: (1) the cooling 

rate, (2) the polymer concentration and (3) the implemented temperature gradient. 

The problem of skin formation during cryogenic treatment was solved by applying a 

soluble layer of uncrosslinked gelatin onto the preformed hydrogel, prior to cryogenic 

treatment. The formed skin can be easily removed by aqueous treatment above the 

gel-sol transition temperature of gelatin. 

The results obtained in the present study will be a valuable tool for research on 

porous scaffolds, including pore creation techniques as well as non-destructive 

structure analysis techniques.   

It was also observed that an increasing w/v % gelatin results in a decrease of the 

degradation and the swelling ratio and in an increase of the compression modulus of 

the resulting hydrogels. However, when studying the influence of the pore size on 

these parameters, we found that the correlations were less straightforward than 

expected based on literature data. We found that a cryogenic treatment influenced 

both the pore size and the extent of gelatin cross-linking. Obviously, the latter 

significantly influences the physico-chemical properties of gelatin scaffolds.  

From the results, it was also shown that the water uptake of the porous gelatin 

scaffolds developed, could be fitted to a Voigt-based model. The latter offers valuable 

information regarding swelling kinetics. 

Based on the theory of rubber elasticity, it was also demonstrated that type GIIIb 

hydrogel scaffolds possessed the highest crosslink density in comparison with type 

GIb and type GIIb matrices. The latter was not anticipated, based on the swelling 

experiments. Consequently, a large variety of experimental techniques needs to be 

applied to perform an in depth study of material characteristics. 
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Chapter V:  

Scaffolds Based on  

Gelatin and Chondroitin Sulphate 

 

 

1 Synthesis of scaffolds composed of gelatin and 

chondroitin sulphate 

 

A key issue in the development of biomaterials is the design of a material that mimics 

the natural environment of cells. In the present chapter, we have therefore developed 

hydrogel materials that contain both a protein (gelatin) and a glycosaminoglycan 

(chondroitin sulphate) component. 

Gelatin-chondroitin sulphate hydrogels were already applied as controlled release 

systems for antibacterial proteins.1 Incorporation of chondroitin sulphate in 

crosslinked gelatin gels significantly increased the protein loading capacity of the gels 

and extended the release time.2 Alternatively, gelatin-chondroitin sulphate-

hyaluronan tri-copolymer scaffolds were, after crosslinking with EDC, applied in order 

to mimic natural cartilage.3, 4 It was observed that the presence of chondroitin 

sulphate promoted the secretion of proteoglycan and type II collagen.4 Bilayer 

gelatin-chondroitin sulphate-hyaluronan biomatrices were also studied for wound 

treatment. The results showed that in addition to reforming a permanent coverage 

with histologically normal and adequately differentiated epithelial tissue, a well-

defined dermal-epidermal junction as well as collagen network in the dermis was 

present. As a result, the skin substitute had a positive effect on the promotion of the 

wound healing process and could be used to help the regeneration of full-thickness 

skin defects.5, 6 Another application of the tri-copolymer scaffold is the regeneration of 

the human nucleus pulposus.7 Furthermore, both microcarriers and membranes, 
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composed of gelatin and chondroitin sulphate, were prepared in view of different 

therapeutic strategies.8-14 

Based on the broad application field of materials composed of gelatin and chondroitin 

sulphate, the incorporation of CS into the porous gelatin scaffolds, described in the 

previous chapter, could be useful since the final goal of the present work was to 

prepare a tissue engineering device, applicable for the regeneration of a large variety 

of human cells (e.g. chondrocytes). 

In the present chapter, we have developed and compared different types of 

hydrogels based on gelatin and/or chondroitin sulphate. By combining both protein 

and glycosaminoglycan molecules into one porous hydrogel material, we aimed to 

develop biomimetic hydrogel materials. The materials developed were compared in 

terms of their chemical composition, 3D structure and water (vapour) uptake 

capacity.  

 

Using the hydrogel precursors synthesised (chapter 2), a series of hydrogels was 

prepared by applying a cryogenic treatment on gel-MOD (i.e. reference), CS-MOD or 

combinations of both gel-MOD and CS-MOD (table 5-1).  

 

Hydrogel Type Gel-MOD CS-MOD 

GIIIb 10 w/v% - 

10 w/v% 1 w/v% 

10 w/v% 2 w/v% 

GIIIbCIIIa 

GIIIbCIIIb 

GIIIbCIIIc 10 w/v% 3 w/v% 

GIIIbCIIId 10 w/v% 5 w/v% 

CIIIe - 10 w/v% 

 

Table 5-1: Polymer compositions of the various hydrogels developed. 

 

In what follows, hydrogels containing gel-MOD as biopolymer are indicated as type G 

hydrogels. Hydrogels containing both gel-MOD and CS-MOD are indicated as type 

GC hydrogels. Hydrogels composed of CS-MOD only are indicated as type C 

hydrogels. All hydrogels were formed by gelation of (mixtures of) aqueous 

biopolymer solutions at room temperature, followed by radical UV-induced photo-

crosslinking (photo-initiator: Irgacure 2959). Then, the chemically crosslinked 
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hydrogels were subjected to a cryogenic treatment. The different materials developed 

are summarised in table 5-1.  

 

 

2 Scaffold characterization  
 

In the present chapter, the characterization of hydrogels composed of gelatin and/or 

chondroitin sulphate is described. The materials are compared in terms of their 

(physico)chemical properties using micro-computed tomography (µ-CT), optical 

microscopy, atomic force microscopy (AFM), X-ray photo-electron spectroscopy 

(XPS), swelling experiments and dynamic vapour sorption measurements.  

 
 

2.1 Hydrogel visualization  

 

The scaffolds developed were characterized using µCT and optical microscopy to 

obtain information about the pore architecture and the pore size. Micro-CT 

measurements demonstrated that type GIIIb hydrogels contained top bottom 

transversal channels with a decreasing pore size from top to bottom (330-20 µm) 

(figure 5-1, left column). The applied temperature gradient resulted in hydrogel 

materials with a pore size gradient.  

In contrast to what was anticipated, a similar cryogenic treatment applied to 

hydrogels containing only CS-MOD (type CIIIe hydrogels) lead to materials with 

deviating pore geometry: a curtain-like geometry consisting of 200 µm spaced 

parallel plates was observed, as indicated in figure 5-1 (right column). This is most 

likely due to the parallel stacking of the water-binding glycosaminoglycan chains, as 

depicted schematically in figure 5-2. Indications supporting this assumption were 

already described previously in literature.15, 16 To the best of our knowledge, such 

well-defined scaffold architectures have so far only been obtained using rapid 

prototyping techniques.17-19   
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    Type GIIIb Type GIIIbCIIIc Type CIIIe 

µ-CT 

(2D) 

 

 

 

µ-CT 

(3D) 

 

 

 

Optical  

Microscopy 

  

 

* 

 

Figure 5-1: µCT (2D and 3D) and optical microscopy analysis of gel-MOD (Type GIIIb), CS-MOD (Type CIIIe) and a hydrogel containing gel-MOD and 
CS-MOD (Type GIIIbCIIIc). The scale bars represent 1000 µm (µ-CT) and 100 µm (optical microscopy). * = No data available (hydrogel bursted 

during swelling). 
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Figure 5-2: Overview demonstrating possible interactions existing between CS and water 
molecules. 

 

 

The latter technique consists of various steps. A data processing system processes a 

designed scaffold model and converts it into a layered process tool path. The motion 

control system is driven by the layered manufacturing technique. The system can 

continuously lay down material in the form of line structures to create the desired 

model by moving the tip over a substrate in the designed path. This process can be 

repeated layer by layer to obtain the desired matrix.20 However, the latter technique 

is rather expensive while, in the present work, the scaffolds were designed by 

selecting gel-MOD and/or CS-MOD, followed by applying a cryogenic treatment (with 

simultaneous temperature gradient) and lyophilization.  

Porous materials with ordered hole structure have received increasing interest in 

recent years because of their potential application in the fields of electronics, 

photonics and life sciences.21 There exist various strategies to produce porous 

structures via templating methods based on self-assembly.22 These methods include 

using ordered arrays of colloidal crystals23, 24, microphase separated block 

copolymers25, 26, polymers with rod coil architecture that form honeycomb structures27 

and templating using emulsions28 etc. The application of the porous block 

copolymers as templates is possible due to the formation of ordered periodic phases 

after microphase separation of the block copolymer. The simplest form of ordered 

morphology is the lamellae phase. It is typically formed when an incompatible diblock 

copolymer is annealed as a thin film and each type of polymer segregates into an 
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alternate layer stacked on top of each other. However, the latter is only achievable at 

nanometre scale.  

The presented results clearly show that depending on the biopolymers applied, 

biomimetic materials with varying pore geometries can be easily developed. This 

unique curtain-like design offers potential for cell sheet engineering. If required, the 

‘curtains’ could be coated in a separate step using cell-interactive peptides or 

proteins enabling specific cell-material interactions. 

For hydrogels containing both gel-MOD and CS-MOD (type GIIIbCIIIc hydrogels), a 

curtain-like architecture was also obtained. However, in contrast to type CIIIe 

hydrogels, no parallel plates were observed. It could be anticipated that the observed 

differences were due to the lower amount of CS-MOD in type GIIIbCIIIc hydrogels 

compared to type CIIIe hydrogels.  

 

In a subsequent part of the work, the scaffold structures were visualised after 

incubation in double distilled water at 37°C. In this way, we could investigate whether 

the scaffold architectures were preserved after in vivo or in vitro application. 

Unfortunately, µCT imaging on swollen hydrogels lead to blurred images due to the 

full hydration of the polymer chains at equilibrium swelling. This could be ascribed to 

differences in density or atomic number which were too small to enable visualisation 

by µCT. To solve this problem, freeze-sections of the swollen matrices were stained 

and visualized by optical microscopy (figure 5-1, bottom part). Type GIIIb and type 

GIIIbCIIIc hydrogels were sectioned respectively longitudinal and transversal. From 

the freeze-section images, it could be concluded that the scaffold architectures (i.e. 

elongated channels for type GIIIb hydrogels and curtain-like for type GIIIbCIIIc 

scaffolds) were preserved after incubating the hydrogels at body temperature. 

Moreover, no significant changes in pore size were observed upon comparing the 

freeze-dried scaffolds with the freeze-section images of swollen hydrogels. Type CIIIe 

hydrogels were not freeze-sectioned because of their very high swelling potential, 

often resulting in scaffold cracking. The latter was due to the presence of sulphate 

groups in CS-MOD, which are able to retain large amounts of water. In addition, type 

GIIIb and GIIIbCIIIc hydrogels contained gelatin, a physical structuring polymer, which 

was absent in type CIIIe materials.29     
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Since scaffold staining using various dyes (Alcian blue, Rhodamine B, dextran blue, 

Ninhydrin) did not enable a selective visualization of neither gelatin nor chondroitin 

sulphate, AFM was applied to study possible phase separation phenomena between 

both biopolymers. This might explain the mechanisms leading to the curtain-like pore 

architecture for type II hydrogels. 

The measurements were performed on spincoated gel-MOD/CS-MOD solutions 

since preliminary AFM measurements indicated the requirement of flat surfaces. In 

addition to the globular domains of gel-MOD (figure 5-3, left part), mixtures of gel-

MOD and CS-MOD contained smaller regions of phase-separated CS-MOD (figure 

5-3, right part). We anticipated that both phase separation between gel-MOD and 

CS-MOD and the parallel stacking of the water-binding CS-MOD chains were 

responsible for the curtain-like scaffold architecture obtained by combining both 

biopolymers.  

 

Figure 5-3: Height images of gel-MOD (left) and gel-MOD + CS-MOD films (right), obtained 
using AFM. 

 

2.2 X-ray photo-electron spectroscopy (XPS) 

 

The observed differences in pore geometry between type GIIIb and GIIIbCIIIc 

hydrogels were a first indication that both gel-MOD and CS-MOD were introduced in 

type GIIIbCIIIc hydrogel networks. To further confirm these findings, a series of XPS 

measurements were performed (see table 5-2, figure 5-4). The sulphur signal 

appearing in all type GIIIbCIIIc hydrogels confirmed the presence of CS in the 

developed materials. This characteristic signal was not observed for type GIIIb 

hydrogels containing only gel-MOD. Type GIIIb hydrogels exhibited higher nitrogen 

(10%) and no sulphur compared with type CIIIe hydrogels (3% and 4% respectively). 

This could be ascribed to the fact that the amount of sulphur-containing amino acids 

CS 
gelatin 
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in gel-MOD is too low (0.4% of all amino acids are methionine) to be detected by 

XPS, which made it a useful technique for indicating the presence of CS in the newly 

developed hydrogels.  

 
 Atomic composition (%) 

sample C N O S 
Type GIIIb 72 ± 3 10 ± 3 18 ± 1 - 

Type GIIIbCIIIc 60± 3 9 ± 1 30 ± 3 1 ± 1 
Type GIIIbCIIIc (inc.) 60 ± 1 11 ± 1 25 ± 1 1 ± 1 

Type CIIIe 57 ± 3 3 ± 1 35 ± 5 4 ± 1 
 

Table 5-2: Elemental composition of the samples determined by XPS. 

 
 
 

 

 
Figure 5-4: Widescan spectra of type GIIIb hydrogel (A) and type CIIIe scaffold (B) obtained by 

XPS. 
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Furthermore, incubation at 37°C for 24 hours revealed no significant changes in 

chemical composition, further indicating a successful covalent immobilisation of the 

CS-MOD in the type GIIIbCIIIc hydrogel networks. 

 
 

2.3 Water uptake capacity 

 

For a tissue engineering scaffold, it is important to absorb body fluids and transfer 

nutrients and metabolites to/from implanted cells.30 The water uptake capacity of 

scaffolds is significant in view of their application. Swelling could allow the pore size 

to increase, making the movement of cells and nutrients within the scaffolds easier.31 

On the other hand, cell adhesion could be hindered. Moreover, the gel swelling and 

therefore the amount of bulky water, not only depends on the porosity but also on the 

pore architecture, on the degree of interconnectivity and on the mechanical 

properties of the gel.32  

Therefore, we studied the water uptake capacity of type GIIIbCIIIx hydrogels by 

incubation in double distilled water at 37°C, while monitoring the water uptake at 

regular time points.  

 

The polymer concentration of porous scaffolds influences the swelling capacity in two 

opposite ways. First, with increasing polymer concentration, the porosity decreases 

and the degree of crosslinking increases, both having a de-swelling effect on the 

scaffolds developed, as already mentioned earlier in the previous chapter (§ 3.3.1). 

On the other hand, the amount of chondroitin sulphate present is in proportion with 

the water-binding capacity.33, 34 Consequently, two opposing effects arise from the 

increase in chondroitin sulphate concentration.  

 
Figure 5-5 indicates that the water uptake capacity at equilibrium swelling decreased 

with an increasing amount of CS-MOD in the hydrogels. Since CS-MOD contained a 

higher amount of functional groups that could be crosslinked compared to gel-MOD, 

a higher amount of CS-MOD in the hydrogels lead to materials with a higher crosslink 

density and thus a lower water uptake capacity.  

In order to evaluate the effect of the CS incorporation in type GIIIbCIIIx hydrogels, 

while excluding the influence of the polymer concentration, the water uptake of type 
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GIIIc hydrogels was compared with type GIIIbCIIId hydrogels. From figure 5-5, it could 

be concluded that the incorporation of chondroitin sulphate into gelatin-based 

scaffolds resulted in an increase of the water uptake capacity, due to the presence of 

the CS sulphate groups. This was further confirmed by comparing the equilibrium 

swelling degree of a type GIIIbCIIIa scaffold with a type GIIIb hydrogel (i.e. 1300% 

versus 1000%).35  
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Figure 5-5: Influence of the chondroitin sulphate concentration (1 – 5 w/v%) on the hydration 
properties of type GIIIbCIIIx hydrogels and comparison with the water uptake capacity of type 

GIIIb and GIIIc hydrogels.     
 
 

2.4 Dynamic Vapour Sorption Analysis 

 

Parameters related to water vapour sorption are very important from both a scientific 

and commercial points of view.36, 37 The role of water vapour in modifying the 

properties of biopolymers has been studied extensively in the past.38-40 The hydration 

behaviour of proteins is of great relevance since it affects the protein secondary 

structure formation, as well as chemical and enzymatic reactivities.41 Knowledge of 

the water vapour sorption behaviour of the scaffolds developed, is required in case of 

commercialization. Processes including drying and packaging mainly depend on the 

product water activity. In many cases, the obtained isotherm can represent the 

sorption data for the whole range of water activities.36, 42 The sorption behaviour of 

the scaffolds developed is also relevant in view of future incorporation of bio-active 

molecules (e.g. growth factors, fibronectin) within the porous matrices. 
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2.4.1 Influence of the polymer concentration 

 

The influence of the CS-MOD concentration on the water vapour uptake capacity of 

type GIIIbCIIIx scaffolds was studied (table 5-3).  

   

Change in Mass (%) 
Target 
RH (%) 

GIIIbCIIIa GIIIbCIIIc GIIIbCIIId 

0 0 0 0 

20 5.69 5.50 4.85 

40 9.50 9.07 8.70 

60 14.57 13.95 14.45 

80 23.68 24.25 24.86 

    
Table 5-3: Influence of CS-MOD (DS 30%) concentration on water vapour uptake capacities of 

type GIIIbCIIIx hydrogels. 
 

 

In contrast to what we anticipated based on the hydration properties (§ 2.3), it was 

observed that no significant difference in water vapour uptake capacity occurred 

between the hydrogels studied. From chapter 4 (§ 3.3.2), it was already concluded 

that the porosity was the most important factor influencing the water vapour uptake 

capacity. Consequently, scaffolds consisting of 5 w/v% CS-MOD (i.e. type GIIIbCIIId) 

were expected to possess the lowest water vapour uptake compared to the 

hydrogels possessing lower CS-MOD concentrations (i.e. type GIIIbCIIIa and 

GIIIbCIIIc). However, the presence of a higher amount of sulphate groups probably 

compensated for the porosity decrease.      

 

 

2.4.2 Influence of the modification degree 

 

Next, the influence of the modification degree of CS-MOD on the water vapour 

uptake was studied at 25°C. Increasing hydrogel masses during sorption were 

recorded as a function of the relative humidity (table 5-4). 
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Change in Mass (%) 
Target 
RH (%) 

10% 30% 40% 

0 0 0 0 
20 4.57 4.85 5.63 
40 8.47 8.70 9.06 
60 13.43 14.45 13.74 
80 25.10 24.86 23.31 
    

Table 5-4: Influence of modification degree of CS-MOD on the water vapour uptake capacities 
of type GIIIbCIIId hydrogels. 

  
 

The water vapour uptake decreased with increasing modification degree when 

applying a relative humidity of 80%. When applying a lower humidity, no significant 

difference in sorption behaviour was observed between the various scaffolds studied.      

 
 

2.5 Compression tests 

 

As reported earlier, the goal of tissue engineering is the development of replacement 

tissues with compositions similar to those of native tissues, with the goal of mimicking 

the mechanical properties of a given native tissue.43 Consequently, compression 

tests needed to be performed in order to obtain information on the mechanical 

properties of the materials developed.          

At present, synthetic biodegradable polymers commonly used for scaffolds in tissue 

engineering have a limited range of mechanical properties. This limitation is a 

challenge to in vivo tissue engineering, as the cell-scaffold construct is expected to 

maintain or restore normal tissue biomechanics during new tissue formation.44  

By varying the amount of added CS-MOD in combination scaffolds with gel-MOD, the 

mechanical properties can also be adjusted according to the application. In figure 5-

6, the compression moduli of the combination scaffolds are presented as a function 

of the concentration CS-MOD.   
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Figure 5-6: Influence of the chondroitin sulphate concentration on the compression modulus of 

type GIIIbCIIIx scaffolds.   
 

 
The compression moduli were obtained by means of a texturometer. A constant force 

was applied onto equilibrium swollen scaffolds with a cylindrical probe. From the 

slope of the initial, linear part of the stress-strain curves, the different compression 

moduli were obtained.  

As anticipated, the compression moduli increased with increasing polymer 

concentration and thus with increasing degree of crosslinking. A fivefold increase in 

the CS-MOD concentration corresponded with a threefold increase in compression 

modulus.  
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3 Conclusion 
 

In the present chapter, highly porous biomimetic hydrogels based on a combination 

of gelatin and chondroitin sulphate (CS) have been developed and characterized.  

It was shown that variation of the hydrogel composition (i.e. increasing the amount of 

CS), lead to a modulation of the scaffold architecture. For gelatin based hydrogels, a 

channel-like pore morphology was obtained. CS-based hydrogels and hydrogels 

containing both gelatin and CS possessed a curtain-like pore architecture. We 

anticipated that both phase separation between gel-MOD and CS-MOD as indicated 

by AFM analysis and the parallel stacking of the water-binding CS-MOD chains were 

responsible for the curtain-like scaffold architecture. To the best of our knowledge, 

materials with such well defined pore geometries have not yet been reported. The 

materials composed of parallel plates offer a potential for a variety of applications 

e.g. as cell carriers. Moreover, the material can be coated with cell-interactive 

peptide sequences to stimulate selective cell interactions. Furthermore, it could also 

be applied in membrane technology to enable the transfer of only specific, preset 

geometrical shapes.  

 

The scaffolds developed, both pure CS-MOD and combination scaffolds with gel-

MOD, were visualized using µCT. Next, freeze-sections obtained from hydrogels, 

swollen to equilibrium in double distilled water at 37°C, were studied by means of 

optical microscopy. From the freeze-section images, it appeared that the scaffold 

architecture was maintained during incubation at body temperature. 

 

Finally, the physico-chemical properties of the scaffolds developed were examined.  

XPS-measurements before and after incubation at 37°C demonstrated the presence 

of chondroitin sulphate into the hydrogels. Furthermore, both the swelling capacities 

and the mechanical properties could be easily varied by changing either the polymer 

concentration or the modification degree of CS-MOD.           
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Chapter VI:  

Alternative Crosslinking Methods 

 

 

1 Introduction 

 

In literature, three mechanisms for cryogel production have been distinguished:1 

 

1) Freezing before gelation 

2) Freezing after gelation 

3) Simultaneous freezing and gelation 

 

 

In the present work, the hydrogel gelation can be subdivided into two categories. 

During hydrogel crosslinking, both physical entanglements inherent to gelatin and 

covalent bonds are introduced. 

Since the water-gelatin system is rather fast-gelling, especially at polymer 

concentrations above 5 w/v%, it is a complicated task to perform a real cryotropic gel 

formation (i.e. the gel formation within the unfrozen liquid microphase). For such fast-

gelling mixtures, one deals with the kinetic competition between the freezing and the 

‘self-gelling’ processes during cooling.2 Since the physical gelation of a 10 w/v% 

gelatin solution cannot be avoided when applying a cryogenic treatment, performing 

‘freezing before physical gelation’ is impossible. As a consequence, the present 

chapter will deal with the chemical crosslinking of gelatin after freezing or lyofilization. 

Up to now, the chemical crosslinking step (i.e. UV irradiation) was performed before 

the cryogenic treatment. As a consequence, freezing occurred after chemical 

crosslinking. Plieva et al. demonstrated that polyacrylamide gels prepared by freezing 

after gelation possessed different mechanical properties compared to cryogels 

developed by freezing before gelation.1 In the present chapter, we wanted to study 
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whether ‘freezing before chemical gelation’ would result into scaffolds possessing 

larger pore sizes compared to the gels, produced by ‘freezing after gelation’. 

 

In a first part, uncrosslinked, freeze-dried scaffolds prepared as described earlier 

(see chapter 4) were irradiated with UV-light (279 nm, 1 hour). Next, the crosslinking 

degree was evaluated by incubating the samples at 37°C in double distilled water. 

Since the hydrogels dissolved completely during this incubation period, alternative 

approaches were elaborated.     

 

There exist different methods to crosslink polymers, as already mentioned in chapter 

3 (see § 2). High energy irradiation, including gamma-, ion- and electron-beam were 

already applied often to crosslink polymers, for the curing of coatings and inks and to 

modify surfaces with reactive groups.3  

In the present work, the effect of e-beam, redoxinitiators and 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide hydrochloride (EDC) on the crosslink efficiency of 

the 3D scaffolds developed, was evaluated. 

       

 

2 E-beam 

 

2.1 E-beam after lyophilization 

 

Hydrogels produced by high-energy electron irradiation possess various 

advantages:4 

 

� Sterilization and crosslinking occurs in one step.  

� Physical properties can be easily controlled by varying the applied dose. 

� The electron penetration profile (i.e. the crosslink density depends on the 

electron penetration depth) enables the production of hydrogels possessing a 

soft surface, but having better mechanical properties at the opposite site, 

making them suitable for wound treatment applications.   
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First, the influence of the irradiation dose on the mechanical properties of the 

hydrogels, was evaluated by means of compression tests. The compression moduli 

were obtained from the slope of the initial, linear part of the stress-strain plots. In 

figure 6-1, the compression moduli are plotted as a function of the irradiation dose. 

From the results, it appeared that the compression moduli increased linearly with 

increasing irradiation dose applied. The e-beam treatments were performed in the 

absence of oxygen since the latter functions as a crosslink inhibitor.    
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Figure 6-1: Compression moduli of type GIIIb scaffolds, as a function of the irradiation dose 
applied. 

 
 

After e-beam irradiation, the hydrogels were incubated at 37°C in double distilled 

water. Both the equilibrium swelling degree and the gel fraction of the incubated 

gelatin samples were determined and plotted as a function of the applied dose (figure 

6-2).    
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Figure 6-2: Equilibrium swelling degree and gel fraction of incubated hydrogels (type GIIIb) as a 
function of the applied dose.    
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From the results in figure 6-2, it was concluded that applying an irradiation dose of 25 

kGy to the freeze-dried gelatin samples, resulted in scaffolds possessing a gel 

fraction of ± 50%. The latter implies that 50% of the polymer chains dissolved after 

incubation in double distilled water at 37°C. The applied dose (i.e. 25 kGy) was not 

increased further, based on current international standards, EN 552 and ISO 11137, 

recommending an irradiation dose of 25 kGy as a reference dose for terminal 

sterilization.5, 6  

 

 

2.2 E-beam before lyophilization 

 

Petrov et al already described the UV-irradiation of moderately frozen cellulose 

derivatives. In that study, the mechanical properties of samples, UV-treated at room 

temperature or irradiated at -30°C were compared. The higher crosslink efficiency 

after UV-irradiation at -30°C was ascribed to the polymer accumulation in the 

NFLMP. Due to the non-frozen solvent, the NFLMP remained liquid and the polymers 

retained sufficient segmental mobility to enable crosslinking.7  

Since hydrogels possessing a gel fraction of 50%, were obtained after applying e-

beam (25 kGy) on freeze-dried samples (see § 2.1), the effect of e-beam on frozen 

samples was also evaluated at -5°C and at -30°C. 

 

Applying high-energy irradiation at -30°C did not result in a gel fraction increase.   

Probably, segmental mobility was partly excluded at -30°C, which hindered sufficient 

crosslinking. Moreover, beside crosslinking, degradation of polymer chains also 

occurs during e-beam treatment, as already described earlier.8, 9  

 

When the crosslinking reaction was performed at -5°C, high gel fractions ranging 

from 85% to 99% were accomplished, even in the presence of oxygen. This 

confirmed the previous statement that sufficient segmental mobility is necessary to 

induce chemical crosslinking of the polymer chains. The scaffolds developed were 

visualized after lyophilization using µCT (see figure 6-3).     
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Figure 6-3: µCT image of an e-beam-treated type GIIIb scaffold after freeze-drying.  
The scale bar represents 1000 µm. 

 

 

From figure 6-3, it was observed that the pore size was in the same range compared 

to scaffolds prepared by ‘freezing after gelation’ (i.e. 330 µm ± 48 µm, see chapter 4). 

However, more irregularities were present within the e-beam-treated cryogels, as 

indicated with an arrow (see figure 6-3). 

 

In a subsequent part of the present work, redox-initiating systems were introduced. 

 

   

3 Crosslinking by use of redoxinitiators 
 

A very effective method to generate free radicals under mild conditions is by one-

electron transfer reactions, such as redox initiation.10 A large variety of redox 

systems was already applied before to crosslink polymer systems.11, 12  

In the present work, three redox systems (i.e. cerium ammonium nitrate, a 

combination of ammonium persulphate and TEMED and Fenton’s reagent) will be 

applied and compared in order to crosslink gel-MOD scaffolds after implementation of 

a cryogenic treatment.     
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3.1 Cerium ammonium nitrate 

 

Ceric salt was already applied earlier to initiate the polymerization of acrylamide.13 

The mechanism was explained by a radical process based upon Ce4+-coordinated 

acrylamide. As a result, cerium ammonium nitrate (CAN) was evaluated as initiator 

for the polymerization of gel-MOD. Uncrosslinked gel-MOD hydrogels were treated 

cryogenically, followed by lyophilization. In a subsequent step, the freeze-dried 

scaffolds were swollen in an aqueous solution containing various ceric salt 

concentrations (5 - 10 mol%). Since the resulting scaffolds dissolved, an NMR-

spectrum of gel-MOD was recorded after addition of 10 mol% CAN to study the effect 

of CAN on the double bonds present. From the spectrum (data not shown), it could 

be concluded that only 5% of the double bonds had reacted. The latter can be 

explained since gelatin possesses a large variety of functionalities (e.g. hydroxyls) 

which are sensitive to CAN.14    

 

 

3.2 Ammonium persulphate + TEMED 

 

Ammonium persulphate (APS) is typically used for polyacrylamide gel 

electrophoresis (PAGE). A mixture of acrylamide and bisacrylamide can form a 

chemically crosslinked polymer network in the presence of APS.                   

N,N,N’,N’-tetramethylenediamine (TEMED) functions as an accelerator for the 

polymerization reaction. Since incubating freeze-dried gelatin scaffolds in aqueous 

solutions, containing various ratios of APS and TEMED, did not result in chemical 

crosslinking, an alternative approach was elaborated and evaluated.  

 

As already described earlier (§ VI.1), we wanted the chemical crosslinking to occur 

after the cryogenic treatment.  

Consequently, APS and TEMED were added in various concentrations (5 – 40 mol%) 

and ratios to two series of samples, of which the first were incubated at 5°C and the 

second cryogenically treated, followed by incubation at -30°C. The concentrations 

were selected based on literature data describing the synthesis of polyacrylamide 
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gels at subzero temperatures.1, 15, 16 After the lyophilization, the samples were 

incubated in double distilled water at 37°C to determine the crosslink efficiency. In 

table 6-1, chemically crosslinked (cryo)gels are indicated by ‘x’, while the 

uncrosslinked samples are marked by ‘-‘.             

 

Concentration APS 5°C -30°C 

5 mol% - - 

10 mol% - x 

20 mol% x x 

30 mol% x x 

40 mol% x x 

 
Table 6-1: Formation of chemically crosslinked gelatin (cryo)gels. 

 

From the results, it can be concluded that 10 mol% initiator is sufficient to enable 

chemical crosslinking at -30°C. Moreover, incubating these samples at 5°C did not 

result into the formation of chemically crosslinked hydrogels. As a consequence, a 

concentration of 10 mol% was selected to enable ‘freezing before gelation (i.e. 

chemical crosslinking)’ and/or ‘simultaneous freezing and gelation’. The obtained gel 

fraction (i.e. 76%) was similar to the value obtained before, when applying a 

cryogenic treatment to chemically crosslinked gel-MOD hydrogels (chapter 4). 

A disadvantage of this approach was that the obtained scaffolds sometimes 

collapsed. Moreover, the reproducibility was rather low, resulting in scaffolds 

possessing lower gel fractions compared to the conventional matrices.        

    

 

3.3 Fenton’s reagent 

 

The metal catalysed Haber-Weiss reaction, also called Fenton reaction, has already 

been applied earlier for the free-radical polymerisation of hydrogel systems.17 This 

redox system involves the combination of H2O2 and ferrous salt to generate 

radicals.18 The mechanism involves a one-electron transfer from the ferrous ion to 

the peroxide with the dissociation of the oxygen-oxygen bond and the generation of 

one hydroxyl radical and one hydroxyl ion:10 
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Fe2+ + H2O2 → [HO˙-OH]Fe3+ 
→ Fe3+ + OH- + OH˙  

 

In a subsequent step, the hydroxyl radicals can initiate the polymerization of vinyl-

substituted gelatin.  

 

Freeze-dried gelatin scaffolds were incubated during different time periods              

(1-24 hours) in aqueous solutions containing various amounts of initiator (2-10 mol%) 

in the absence or in the presence of ascorbic acid, functioning as catalyst. Since all 

hydrogels studied dissolved when incubating them at 37°C, it could be concluded 

that the scaffolds were not crosslinked chemically by the applied redox system.  

 

In order to investigate the effect of the initiator system on the double bonds 

incorporated, NMR-spectra were recorded before and after addition of Fenton’s 

reagent to gel-MOD. From the spectra, it could be concluded that only 5% of the 

double bonds present had reacted after addition of the redox system (data not 

shown).19 Probably, the latter can be explained since gelatin possesses many other 

functionalities being sensitive for the redox system applied.20  

      

 

4 Crosslinking with N-(3-dimethylaminopropyl)-N’-ethyl-

carbodiimide (EDC)  

 

Chemical crosslinking agents can be classified into non zero-length and zero-length 

crosslinkers.21  

Non-zero length agents introduce poly- and bifunctional crosslinks into the network 

structure by bridging free amine groups of lysine and hydroxylysine, or free carboxylic 

acid residues of glutamic and aspartic acid of the protein molecules.  

Zero-length crosslinkers introduce crosslinks without incorporation of foreign 

substances into the polymer, for example, by activation of the carboxylic acid groups 

with EDC, enabling the reaction with free amines.22 N-Hydroxysuccinimide (NHS) is 

often added to the reaction mixture to improve the crosslink efficiency by reducing 
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side-reactions.23-25 Crosslinking of gelatin with EDC and NHS takes place according 

to the mechanism in figure 6-4.      
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Figure 6-4: Reaction scheme for the crosslinking reaction of gelatin with EDC and NHS.   

 

The carbodiimide activates carboxylic acid residues of aspartic and glutamic acid, 

with the formation of O-acylisourea groups. Next, amine groups of lysine and 

hydroxylysine residues can nucleophilicly attack the activated carboxylic acids, with a 

urea derivative as a leaving group. In order to diminish possible side reactions, such 

as hydrolysis and rearrangement to a stable N-acylurea, NHS can be added. All 

residues are water soluble and can be easily washed out after the crosslinking 

procedure.  

 

It was already described earlier that the incubation of uncrosslinked gelatin-based 

scaffolds in aqueous solutions often resulted in matrix collapse.26, 27 As a 

consequence, a mixture of acetone and water (9:1) was selected as reaction 

medium. Gelatin scaffolds were incubated overnight in the presence of various 

EDC/NHS concentrations. After washing in double distilled water, the crosslinked 

hydrogels were freeze-dried and characterized using SEM and µ-CT (figure 6-5).  



Chapter VI: Alternative Crosslinking Methods  186 

From the SEM image, it was observed that the pore walls showed higher roughness 

compared to conventional hydrogels. Small pores seemed to be present on the 

surface of larger pores (figure 6-5, upper left). An average pore diameter of 123 µm 

(± 10 µm) was calculated, based on 10 pores randomly selected throughout the 

scaffold.  

Unfortunately, from µ-CT analysis various inhomogeneous structures were observed 

within the 3D scaffolds (figure 6-5, bottom). The average pore diameter was 244 µm 

(± 75 µm), based on 10 pores randomly selected throughout the entire scaffold. The 

pore size, obtained using µCT was higher compared to the pore diameter calculated 

from SEM images. The latter can be attributed to the presence of large fractures, 

visualized using µCT. The relatively high deviation (i.e. 75 µm) of the pore diameter, 

obtained by µCT supports this explanation.       

        

  

SEM 

(left) 

µ-CT  

(right) 
  

µ-CT 

(3D) 

  

   

Figure 6-5: Images of the EDC-crosslinked gel-MOD scaffolds obtained with SEM and µ-CT. 

 
 
The gel fraction of the scaffolds developed was 70%, thus somewhat lower compared 

to conventional hydrogels.    
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5 Conclusions 

 

In the present chapter, alternative approaches were elaborated to enable chemical 

crosslinking of the frozen or freeze-dried scaffolds developed.  

 

E-beam did not enable chemical crosslinking of lyophilized gel-MOD scaffolds nor 

frozen cryogels at -30°C. The lack of sufficient segmental mobility hindered the 

reaction of the double bonds present on the gelatin backbone. However, when 

performing the high-energy irradiation at -5°C, apparently enough segmental mobility 

within the non-frozen liquid microphase was retained enabling the chemical 

crosslinking after performing the cryogenic treatment.    

 

Next, various redoxinitiators were added and their crosslink efficiency was evaluated.  

Cerium ammonium nitrate and Fenton’s reagent were unable to chemically crosslink 

gel-MOD sufficiently.  

Alternatively, adding ammoniumpersulphate and TEMED often resulted in the 

formation of scaffolds with a sufficient gel fraction (75%). However, poor 

reproducibility and matrix collapse indicated the need for alternative crosslink 

procedures.      

 

Finally, EDC and NHS were found suitable to efficiently crosslink freeze-dried gelatin 

matrices. Nevertheless, the presence of inhomogeneous structures within the 

crosslinked 3D-scaffolds made us decide to prefer for further use of the conventional 

crosslinking method.    
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Chapter VII:  

Interaction between Gelatin and Extra-Cellular 

Matrix Components  

 

 

1 Applied techniques for studying biomolecular 

interactions 

 

Since the initial cell attachment is primarily affected by the binding of adhesion 

molecules1 and their subsequent mediation between the cells and the material 

surface, a different level of cell attachment on multiple scaffolds developed, could be 

related to the involvement of adhesion proteins, such as fibronectin and vitronectin 

present in the serum.2-5 The latter was already observed when comparing the in vitro 

osteoblast response to gelatin/hydroxyapatite nanocomposites and the cell behaviour 

on conventionally mixed gelatin/hydroxyapatite composites.6 The alkaline 

phosphatase activity and the osteocalcin, produced by the cells, were significantly 

higher on the nanocomposite scaffolds than on the conventional composite scaffolds. 

These improved responses are considered to result from serum protein adsorption on 

the nanocomposites. Similar results were obtained for poly(L-lactide-co-

caprolactone), coated with fibronectin.7    

Fibronectin is the most extensively characterized adhesive serum protein and has 

been generally thought to be the main cell attachment-promoting protein in serum.8, 9 

However, apparently bovine serum and plasma contain two major cell attachment-

promoting proteins. Besides fibronectin, they also contain vitronectin, of which the 

latter accounts for more of the cell attachment-promoting activity than fibronectin.2 

 

In the present work, the interaction between the scaffold material, gelatin, and the 

most abundant components of foetal calf serum (table 7-1) will be studied.   
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Component Concentration in FCS Iso-electric point 

γ-globulin 0.1 mg/ml 6.9 

lactate dehydrogenase   51.83 mU/ml - 

transferrin 0.285 mg/ml 5.3 - 5.6 

albumin 3.8 mg/ml 4.7 

fibronectin 0.03 mg/ml 5.5 - 6.3 

 
Table 7-1: Overview of the most abundant components in foetal calf serum, with their 

respective concentrations and iso-electric points (for proteins). 

 

Protein adsorption measurements are a necessary step in the evaluation of 

biomaterials. Several techniques have been used to study protein adsorption onto 

biomaterial surfaces, including Fourier transform infrared spectroscopy, enzyme-

linked immunosorbent assay, SDS-PAGE with immunoblotting, radiolabelled 

proteins, atomic force microscopy, X-ray photo-electron spectroscopy (XPS), 

ellipsometry, surface plasmon resonance (SPR), etc.10, 11 Each technique has its own 

advantages and disadvantages and their mechanisms for detecting adsorbed 

proteins can greatly influence their sensitivity. XPS, for example, is a useful 

technique for the evaluation of adsorbed protein films due to its surface sensitivity 

(i.e. 80-100 Å) and quantitative analysis.12 However, XPS does not have the 

chemical specificity to identify different adsorbed proteins. 

In the present work, multiple techniques (i.e. SPR, quartz crystal microbalance 

(QCM) and radiolabelling) will be utilized in order to determine the interaction 

between gelatin and some of the most abundant components of both the extracellular 

matrix and foetal calf serum. 

 

 

1.1 Surface Plasmon Resonance 

 

At the interface between two optically transparent media of different refractive 

indices, light is reflected back into the medium of higher refractive index, if the angle 

of incidence exceeds a certain critical angle. The latter phenomenon is called total 

internal reflection. Although the incident light is totally internally reflected, an 

electromagnetic field component of the light (i.e. the evanescent wave), penetrates a 

short distance into the medium of lower refractive index. The wave may excite 
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molecules close to the interface in this medium. If the light is monochromatic and p-

polarized and the interface between the media is coated with a thin layer of a free-

electron metal (e.g. gold), a reflectance minimum appears in the reflected light at a 

specific incident angle (figure 7-1). The latter is called surface plasmon resonance 

(SPR).13  

 

 
 

Figure 7-1: Monitoring the SPR response signal from the shift in minimum reflected intensity.   

 
 

The resonance angle is very sensitive to changes in the refractive index of the thin 

layer, coated onto the metal surface. For example, when components adhere to a 

polymer film, immobilized onto a sensor chip, the resonance angle shifts to higher 

values (figure 7-1). The SPR response depends on the mean refractive index 

change, caused by the interaction of injected molecules with the substrate, coated on 

the gold surface. 
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SPR measurements can be utilized for a variety of applications14, 15, such as in 

pharmaceutical industry16, 17, to monitor antigen-antibody interactions18-20, in 

medicine21-23, for industrial applications24, 25, in food science26, 27, etc. 

 

  

1.2. Quartz Crystal Microbalance 

 

The quartz crystal microbalance (QCM) has been used for a long time to monitor 

thin film deposition in vacuum or gas. After it was shown that the QCM could also be 

used in the liquid phase,28 the number of applications for the QCM has increased 

tremendously (e.g. antigen/antibody interaction, environmental screenings, 

polymer/protein interaction, etc.).29-31 

 

A QCM consists of a thin quartz crystal, positioned between a pair of electrodes 

(figure 7-2). Due to the piezoelectric properties of quartz, it is possible to excite the 

crystal to oscillation by applying an AC voltage across its electrodes.32  

 

 
Figure 7-2: Schematic illustration of an AT-cut crystal at resonance and the decay curve of a 

rigid (A) and a viscoelastic sample (B). 
 
 
The resonance frequency (f) of the crystal depends on the total oscillating mass, 

including water coupled to the oscillation. When a thin film is attached to the sensor 

crystal, the frequency will decrease. If the film is thin and rigid, the decrease in 

frequency is proportional to the film mass. In this way, the QCM operates as a very 

sensitive balance.  

The mass of the adhering layer is calculated by means of the Sauerbrey relation: 

A B 
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∆m = -
n

fC
 

 

with  C = 17.7 ng Hz-1 cm-2 for a 5 MHz quartz crystal 

n = 1, 3, 5, 7, etc. = the overtone number 

 ∆f = the frequency shift, caused by the deposition of material on the sensor. 

 

The thickness of the adherent layer can be calculated according to the following 

equation: 

d = 
m

 

with  ρ = the effective density of the attached layer 

 ∆m = the mass deposited onto the sensor surface. 

 

However, it also occurs that the adsorbed layer is not rigid, so the Sauerbrey relation 

becomes invalid. A viscoelastic film will not fully couple to the oscillation of the 

crystal, thus the Sauerbrey equation will underestimate the mass at the surface.33 

 

A viscoelastic film dampens the crystal’s oscillation (figure 7-2, part B). The 

dissipation of the oscillation of the quartz crystal gives an idea on the viscoelastic 

properties of the attached layer. The dissipation is determined according to the 

following equation: 

D = 
stored

lost

E

E

2
 

 

with  Elost = energy dissipated (i.e. lost) during one oscillation cycle 

 Estored = total energy stored in the oscillator. 

 

The dissipation of a crystal can be measured by recording the response of a freely 

oscillating crystal, vibrating at its resonance frequency. The latter also offers the 

opportunity to work at both the fundamental frequency and at the overtone 

frequencies (e.g. 15, 25 and 35 MHz). By measuring at multiple frequencies and 

applying the Voight model, the adhering film can be characterized in detail.  

∆ 

∆ 

ρ 

π 
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1.3. Radiolabelling 

 

Modification of proteins and other molecules with a radioactive element provides a 

means of detection that is extremely sensitive for assay, localization and imaging 

applications. Among the most common radiolabels for biological studies are 14C, 32P, 

35S, 3H, 125I and 131I. In literature, fibronectin was already labelled before with iodine-

125.34, 35 Iodine-125 decays by electron capture followed by γ emission. Because 

125I is not a particulate emitter, its use in vivo for imaging applications limits radiation 

damage to surrounding proteins, cells and tissues. It is a widely used radionuclide 

with a half-life of 59.4 days, emitting x-rays with a maximum energy of 35 keV. These 

factors make 125I the most suitable iodine label for radiolabelling of  biological 

molecules. It is produced by irradiating Xenon-124 to create Xenon-125 which then 

decays to form Iodine-125. 

Iodine-125 is used in a variety of applications, ranging from medical research and 

diagnostics to medical treatment. 

 

There are two main methods of radioiodination, commonly employed to modify 

proteins and other molecules: 

 

1. direct labelling of the desired protein or other target molecule in the presence 

of an oxidizing agent 

2. indirect labelling of the component by first labelling an intermediate compound, 

which is then used to perform the final modification. 

 

 

In the present work, the direct labelling method is applied. The general procedure for 

the direct coupling of 125I to a compound occurs by using an oxidizing agent. The in 

situ preparation of an electrophilic radioiodine species is essential in order to modify 

certain reactive sites within the desired molecules. There exist different oxidizing 

derivatives of N-haloamine, such as N-chlorotoluenesulfonamide (chloramine-T) or 

1,3,4,6-tetrachloro-3α,6α-diphenylglycouril (IODO-GEN).36-38 In most cases, such 

compounds do not harm the proteins being labelled, although reaction times should 

be controlled to prevent overlabelling or oxidative damage. A second methodology to 

create an oxidative effect is the use of an enzyme-driven system. The glucose 
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oxidase/lactoperoxidase reaction creates reactive iodine by the production of 

hydrogen peroxide from glucose with the subsequent reaction of peroxidase to form 

I2 from I-. 

 

Formation of the electrophilic halogen species leads to the possibility to induce rapid 

reaction with target compounds, containing strongly activating groups such as 

activated aryl compounds. Particularly, substances containing aromatic ring 

structures, that have substituents on the ring that are electron-donating, can 

sufficiently activate the carbons on the ring to undergo electrophilic substitution 

reactions. Therefore, phenols, aniline derivatives, etc. are very susceptible to 

iodination. In proteins, this corresponds with tyrosine and histidine groups.39 Tyrosine 

can be modified with two iodine atoms, whereas histidine can incorporate one iodine.  

The addition of a radioactive iodine atom to a protein molecule typically has little 

effect on the resultant protein activity, unless the active centre is modified in the 

process. The size of an iodine atom is relatively small and does not result in many 

steric problems with large molecules.       

 

In the present work, IODO-GEN was applied for the radiolabelling of fibronectin. The 

compound is insoluble in aqueous solution, therefore making it a type of solid-phase 

radioiodination reagent. IODO-GEN is deposited on the inside surface of a reaction 

tube, prior to iodination.  

 

The reaction of IODO-GEN with an iodine ion in solution, results in oxidation with 

subsequent formation of a reactive halogen species, ICl (figure 7-3). The ICl then 

rapidly reacts with any site within the target compound that can undergo an 

electrophilic substitution reaction. Since IODO-GEN is insoluble and plated on the 

surface of the reaction tube, it is possible to stop the reaction by simply removing the 

aqueous phase.  
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Figure 7-3: Overview of the radiolabelling of tyrosine and histidine compounds in gelatin by 
means of IODO-GEN. 

 
 

2. Study of fibronectin - gelatin interaction 

2.1. Surface Plasmon Resonance 

 

Beside the fact that fibronectin, present in serum, could influence the cell-matrix 

interactions when adherence between fibronectin and the gelatin matrix would occur, 

there is a second reason, why the affinity between both proteins is studied in the 

present work.  

Since the scaffolds are intended to be used as matrices for cell culture or for tissue 

engineering applications, the material should possess sufficient cell-interaction 

properties. Therefore, we investigated to what extent fibronectin could be combined 

with the hydrogels developed. Due to the natural gelatin binding sites on  
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fibronectin40-42, an approach in which gelatin was coated with a top layer of 

fibronectin, was selected. The coating process was first studied by surface plasmon 

resonance, a technique which is very sensitive and enables real time measurement 

of adhesion phenomena at interfaces.43 To study the fibronectin-gelatin interaction, 

gel-MOD was spincoated on an SPR sensor. In order to verify the presence of gel-

MOD onto the sensor surface, ATR-IR spectra were recorded before and after 

spincoating (figure 7-4).  

 

Figure 7-4: ATR-IR-spectra of a non-coated sensor chip (Au) and a gel-MOD spincoated 
sensorchip (Au + Gel-MOD) after incubation in running buffer at 25°C. 

 

It was concluded that upon spincoating, the typical protein peaks (1650 cm-1, 1540 

cm-1) appeared in the spectrum, indicating the deposition of a gelatin layer on the 

surface of the sensor chip. Stability studies further revealed that the coating applied 

was stable against the running buffer of the SPR experiment.  

Contact angle measurements further revealed the presence of a gelatin layer on the 

SPR chip after spincoating with a 5 w/v% gel-MOD solution (figure 7-5).  

 

 

Figure 7-5: Contact angle measurements on gold and on a sensor chip, coated with gel-MOD. 

 

The contact angle of an uncoated gold chip was 102° and that of a chip, previously 

spincoated with gel-MOD was 40°. The decrease in contact angle is an indication of 

an increased hydrophilicity of the sensor chip, after spincoating with gelatin, 

demonstrating the presence of the protein layer on the surface. Since surface 
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plasmon resonance is limited to surfaces with a thickness of ±300 nm, scanning 

electron microscopy was performed on a cross-section of a gold chip, coated with a 

gelatin layer. From figure 7-6, the film thickness was estimated to 60 nm, enabling 

SPR measurements to be performed.  

   

 

Figure 7-6: SEM image of a cross-section of a gold chip, after spincoating with gel-MOD.  

 
After spincoating, the gelatin-coated chip was inserted in the apparatus and flushed 

with different concentrations of fibronectin (1-200 µg/ml). In a subsequent step, a 

fibronectin-antibody was passed over the surface.  
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Figure 7-7: SPR-sensorgrams of the gelatin (type B)-fibronectin interaction as a function of the 
fibronectin concentration. The concentrations indicated in the graph are expressed in µg/ml. 

Upon stabilisation of the signal after fibronectin injection, anti-fibronectin was passed over the 
fibronectin coated surfaces (0.05 mg/ml). 

 

From the sensorgrams, shown in figure 7-7, it can be concluded that the amount of 

adsorbed fibronectin increased with an increasing fibronectin concentration. This 

implies that the amount of adsorbed fibronectin on the gelatin hydrogels can be 

easily adjusted by varying the applied fibronectin concentration (e.g. by dip coating). 

We also observed a fibronectin-concentration related increase in the amount of 
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fibronectin that bound non-specifically and which was removed during the washing 

step. This effect was due to an increasing saturation on the surface.  

In figure 7-8, the SPR response after dissociation of the gelatin-fibronectin complexes 

is plotted against the fibronectin concentration, which was injected. From the linear 

plot, it is possible to calculate the SPR response signal for other fibronectin 

concentrations injected onto a gelatin-coated surface.    
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Figure 7-8: SPR response as a function of fibronectin concentration for type B gelatin. 

 

Interestingly, the response of the anti-fibronectin did not increase significantly with 

the amount of fibronectin adsorbed on the surface (see figure 7-7, second signal 

increase). It can be anticipated that, with an increase in adsorbed fibronectin on the 

surface, the adopted protein orientation changed. This affected the subsequent 

antibody binding. 

It should be considered that for SPR measurements, 2D surfaces are evaluated. 

 

Study of the kinetics of the fibronectin – gelatin interaction  

 

Association kinetics 

 

The formation of a surface-bound complex between analyte A and surface-bound 

ligand B can be described by the following scheme: 

 

 

 

 

Asurface + B Abulk AB 

ka 

kd 

km 

km 
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with  km = the rate constant for mass transport towards and away from the surface 

 ka = the rate constant for association (i.e. complex formation) 

 kd = the rate constant for dissociation (i.e. complex rupture) 

 

At the beginning of the association phase, the interactions are limited by mass 

transport because of the large amount of binding sites, available at the surface. 

If mass transport is much faster than the interaction-controlled association 

(ka[B]<<km), the analyte concentration at the surface is equal to its concentration in 

bulk and the association and dissociation constants measured, approach the 

constants of the interaction kinetics. Under these conditions, the reaction equation 

can be written as:44 

dt

ABd
= ka[A][B] – kd[AB] 

 

The concentration of free ligand [B] equals the difference between the total amount of 

ligand at the surface [B]0 and the amount of complex formed: 

 

[B] = [B]0 – [AB] 
 

After substitution of [B] in the rate equation for the formation of AB, the following is 

obtained: 

dt

ABd
= ka[A]([B]0 – [AB]) – kd[AB] 

 

When the total amount of ligand [B]0 is expressed as a function of the maximum 

analyte binding capacity of the surface, all concentrations can be expressed as SPR 

response in RU: 

dt

dR
 = kaC(Rmax-R) -kdR 

 

with  dR/dt = rate at which the SPR signal changes 

 C = concentration of the analyte 

 Rmax = maximum analyte binding capacity in RU 

 R = SPR-signal in RU at time point t    

 

[ ] 

[ ] 
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The equation can then be rewritten to: 

 

dt

dR
 = kaCRmax-(kaC+kd)R 

 

Rate constants can be determined by plotting dR/dt as a function of R for different 

analyte concentrations. Furthermore, the slope of each curve (i.e. for the different 

concentrations) is plotted as a function of the analyte concentration. Both ka and kd 

can be obtained from this linear plot.      

 

Dissociation kinetics 

 

After rinsing the analyte over the surface, the complex dissociates according to a 

zero-order reaction, when presuming that reassociation of dissociated analyte can be 

neglected: 

dt

dR
= -kdR 

 

After reordering and integration, the following equation is obtained: 

 

ln
t

R

R0 = kd(t-t0) 

 

with  Rt = response at time t 

 R0 = response at initial time t0 

 

The plot of ln(R0/Rt) as a function of (t- t0) thus results in a linear plot with slope kd. 

The association and dissociation constants, depicted in table 7-2, were calculated by 

means of the BIAevaluation software, version 3.1.  

 

ka (M
-1s-1)  kd (s-1) KA (M

-1) 

2.76 x 105 5.21 x 10-4 5.31 x 108 

 

Table 7-2: Association and dissociation constants for the interaction between gelatin and 
fibronectin. 
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The association constant of 5.31 x 108 M-1 is in correspondence with the association 

constant of 2 x 108 M-1, corresponding to the association of fibronectin with a 

fibronectin-binding peptide, present in gelatin.45 Moreover, it also corresponds to the 

association constant (4 x 108 M-1) for the affinity between fibronectin and denatured 

collagen.46    

Since type B gelatin and fibronectin have iso-electric points of about respectively 5 

and 6, only hydrophobic interactions can occur between both proteins at 

physiological pH. However, there exists also an alternative gelatin type A, possessing 

an iso-electric point of about 8, as already mentioned in chapter 1 (§ 5.1). In addition 

to the hydrophobic interactions, electrostatic interactions can also occur between 

type A gelatin and fibronectin since these proteins are charged oppositely at 

physiological pH. That is why an SPR interaction study was also performed by 

injecting fibronectin onto a sensor chip, previously spincoated with type A gelatin. 

Again, experiments were performed first to verify the presence and the stability of the 

spincoated gelatin type A layer on the SPR chip (data not shown). Afterwards, 

varying concentrations of fibronectin were injected onto the gelatin-coated gold chips 

and the corresponding response signal was monitored, followed by injection of an 

antibody specific for fibronectin (figure 7-9).      
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Figure 7-9: SPR-sensorgrams of the gelatin (type A)-fibronectin interaction as a function of the 
fibronectin concentration. The concentrations indicated in the graph are expressed in µg/ml. 

Upon stabilisation of the signal after fibronectin injection, anti-fibronectin was rinsed over the 
fibronectin coated surfaces (0.05 mg/ml).  

 
 
The sensorgrams (see figure 7-9) indicate that the amount of adsorbed fibronectin 

again increased with an increasing fibronectin concentration. We also observed a 

fibronectin-concentration related increase in the amount of fibronectin that bound 
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non-specifically and which was removed during the washing step, similar to the 

results of type B gelatin. 

In figure 7-10, the SPR response after dissociation of the gelatin-fibronectin 

complexes is again plotted against the fibronectin concentration. As could be 

anticipated, it was observed that the injection of fibronectin onto a type A gelatin 

coating resulted in a higher response signal compared to rinsing the protein over a 

chip, coated with type B gelatin.     
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Figure 7-10: SPR response as a function of fibronectin concentration for type A gelatin. 

 

 

From the results, it could be concluded that, based on the amount of fibronectin that 

should be incorporated, both the gelatin type and the fibronectin concentration can 

be varied. That is, both parameters influence the amount of incorporated fibronectin.     

 

ka (M
-1s-1)  kd (s-1) KA (M

-1) 

252 2.03 x 10-8 1.24 x 1010 

 

Table 7-3: Association and dissociation constants for the interaction between gelatin type A 
and fibronectin. 

 

From table 7-3, it appears that the association constant KA for the interaction between 

type A gelatin and fibronectin is 1.24 x 1010 M-1, which is higher than KA for the 

system fibronectin and type B gelatin (i.e. 5.31 x 108 M-1). 
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2.2. Quartz crystal microbalance 

 

An alternative technique to examine the interaction between gelatin and fibronectin is 

QCM. The advantage of the latter approach is that both the weight and the thickness 

of the deposited fibronectin layer can be determined. 

 

Similar as for the SPR measurements (§ 2.1), QCM crystals were spincoated with 

gelatin type A and type B solutions (5 w/v%). Next, varying fibronectin concentrations 

(1 and 25 µg/ml) were passed over the sensors, when monitoring frequency and 

dissipation response, as depicted in figure 7-11. The results indicate that, for the low 

fibronectin concentration, fibronectin and anti-fibronectin adsorbed, where fibronectin 

adsorption lead to a smaller frequency and dissipation response, compared to anti-

fibronectin.  

 

 
Figure 7-11: Frequency and dissipation response for three selected frequencies when injecting 

1µg/ml fibronectin and 0.051 g/l anti-fibronectin on a type A gelatin-coated crystal.   
 

 

In figure 7-12, the dissipation shift is plotted as a function of the frequency shift for 

the 5th overtone frequency. The plot gives an idea about the visco-elastic changes 

throughout the adsorption process. The increase in slope after injection of anti-

fibronectin indicates that for the low fibronectin concentration, the initial fibronectin 

adsorption leads to a relatively stable product, whereas the antibody adsorption 

induces more visco-elasticity. The latter is also indicated by the higher dissipation 

values for anti-fibronectin.    
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Figure 7-13 shows the frequency and dissipation response for three selected 

frequencies when injecting 25 µg/ml fibronectin onto a crystal, coated with gelatin 

type A, followed by rinsing with the antibody. The first adsorption starts after 600 

seconds, followed by a flushing step with PBS at 1700 seconds. Finally, anti-

fibronectin is injected at 2000 seconds.  

 
 

 
 

 
When rinsing with the higher fibronectin concentration (i.e. 25 µg/ml), the frequency 

and dissipation response to the fibronectin uptake is higher than the response 

caused by the presence of the antibody onto the QCM crystal. The visco-elastic 

changes throughout the adsorption process were also studied for the higher 

fibronectin concentration (data not shown). Compared to the 1 µg/ml fibronectin, 

there was no significant difference between initial and following adsorption. In this 

case, the initial film formed by deposition of fibronectin was already much softer 

compared to the layer formed after rinsing with a 1 µg/ml fibronectin solution.   
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Figure 7-12: ∆D versus ∆f plot for the 5

th
 overtone frequency  when injecting 1µg/ml 

fibronectin and 0.051 g/l anti-fibronectin on a type A gelatin-coated crystal. 

Figure 7-13: Frequency and dissipation response for three selected frequencies when 
injecting 25 µg/ml fibronectin and 0.051 g/l antibody on a type A gelatin-coated sensor. 

Fn 
anti-Fn 
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For all measurements, Sauerbrey and Voight masses were calculated (data not 

shown) and compared. The Sauerbrey mass was calculated by means of the 

Sauerbrey constant of 17.7 ng cm-2 Hz-1, multiplied by the frequency shift. The Voight 

mass could be calculated by multiplying the modelled film thickness with the density. 

In the present work, we assumed the density to a reasonable value of 1050 kg/m3, 

which is close to the density of water. Depending on the visco-elastic characteristics, 

both masses can differ in value, with the Sauerbrey mass always being lower than 

the Voight mass. Especially for visco-elastic films, the calculations for the Sauerbrey 

masses can differ quite a lot between the frequencies applied. The different 

responses in frequency and dissipation are an indication of the visco-elastic 

behaviour, since in ideal Sauerbrey films all frequencies and dissipations are 

identical.     

 

In table 7-4, an overview of film thicknesses and Voight masses of all components, 

adsorbed on the sensor crystal, after spincoating with either gelatin type A or B, is 

presented. Film thicknesses and masses, represent the values in hydrated state, 

consequently the mass values include water, taken up by the material, after 

adsorption onto the QCM sensors. 

 

 Type A gelatin Type B gelatin 
 1 µg/ml 25 µg/ml 1 µg/ml 25 µg/ml 

Fn 
thickness (nm) 
mass (ng/cm2) 

0.7  
73 

18 
1837 

0.3 
31 

1 
105 

anti-Fn 
thickness (nm) 
mass (ng/cm2) 

3 
241 

22 
472 

1.2 
126 

1.4 
147 

 
Table 7-4: Overview of QCM results, obtained by rinsing fibronectin and anti-fibronectin over 

sensor crystals, after spincoating with type A or type B gelatin. 

 
 
Table 7-4 indicates that the amount of deposited fibronectin increases with an 

increasing fibronectin concentration. Moreover, the fibronectin adsorption is higher on 

type A gelatin than on type B gelatin. The latter was anticipated based on the SPR 

results (see § 2.1).  

 

In some cases, the values obtained for the layer thickness is lower than the size of 

fibronectin itself. This can be attributed to the fact that the QCM results obtained, are 
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an average for the entire chip. When the chip is not completely coated, QCM 

underestimates the thickness of these regions of the chip which are coated. 

 

QCM was also utilized to determine the dry mass of the spincoated gelatin. We have 

therefore recorded the baseline of two crystals in air, before and after coating. The 

difference between the frequency values is an indication of the deposited mass. All 

frequency values (overtones etc.) were in excellent agreement (data not shown). The 

deposited mass can be easily calculated using the Sauerbrey constant of 17.7 

ng/cm2/Hz, which resulted in a mass of 18 µg/cm2 for type A gelatin and in a mass of 

16 µg/cm2 for type B gelatin.      

 
 

2.3. Size exclusion chromatography 

 

Size exclusion chromatography (SEC) was performed both on gelatin (type B) 

solutions and on solutions consisting of gelatin (type B) and fibronectin. The samples 

were dissolved in buffer and the calibration was performed by means of pullulan 

standards.  

The resulting chromatograms are plotted in figure 7-14. 
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Figure 7-14: SEC chromatograms of gelatin (type B) (black) and the combination of gelatin 
(type B) and fibronectin (grey). 

 

Beside the peak of pure gelatin, a second peak, having a lower retention time and 

thus a higher molecular weight, is present in the chromatogram, recorded from the 

solution with both gelatin and fibronectin. Consequently, it can be concluded that 

complex formation occurred between a part of the gelatin and the fibronectin added. 
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Since the peak intensity gives an indication of the concentration, the amount of both 

components in the complex can be determined. 

 

 SAMPLES 

 Gel Gel + Fn 

Gel 7 mg/ml 7 mg/ml 

Fn 0 mg/ml 1 mg/ml 

 
Table 7-5: Overview of the concentrations of the individual compounds, present in the 

samples. 

 

In table 7-5, the concentrations of the individual compounds, present in the samples 

are given. From figure 7-14, it can be concluded that 20% of the total gelatin 

concentration is complexed with fibronectin. This implies that 1.4 mg/ml gelatin can 

bind 1 mg/ml fibronectin. The latter is, of course, an estimation since SEC is a 

technique, based on the hydrodynamic volume, which is strongly influenced by the 

conformation of the polymer chains.       

 

 

2.4. Radiolabelling experiments 

 

Since QCM and SPR are dealing with interactions on surface level and SEC is 

concerned with protein solutions, an alternative method was utilized to study the 

fibronectin incorporation into the porous gelatin scaffolds, namely radiolabelling. In a 

first part, the fibronectin affinity for spincoated gelatin films was evaluated in order to 

enable correlation with the results obtained from SPR (§ 2.1) and QCM (§ 2.2) 

measurements. In a subsequent experiment, gelatin-based hydrogel films (1 mm 

thick) were prepared and their affinity for fibronectin was evaluated. Finally, the effect 

of pores present in the 3D-scaffolds (types GIIIb and GIb) developed on the 

fibronectin uptake was monitored.    

The experiments were performed using radiolabelled fibronectin. 
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2.4.1. Fibronectin affinity for spincoated gelatin films 

 

In a first part, glass plates were spincoated with gelatin type A and type B solutions in 

order to mimic the sensor chips, applied for the SPR and QCM experiments. Next, 

the coated glass plates were incubated with varying fibronectin concentrations (1-20 

µg/ml) in PBS at room temperature. The results are shown in figures 7-15 and 7-16.  
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Figure 7-15: Mass of radiolabelled fibronectin deposited onto the glass plates, coated with 
gelatin type A and type B, as a function of the fibronectin concentration.    
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Figure 7-16: Percentage of fibronectin, bound to the gelatin-coated glass plates, of the total 

amount of added protein. 
 
  

 

Figures 7-15 and 7-16 indicate that the interaction between fibronectin and type-A 

gelatin is higher than the affinity of type-B gelatin for fibronectin, which corresponds 

to the obtained SPR and QCM results. 
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However, the absorbance of radioactivity by the glass should also be taken into 

account. 

 
 

2.4.2. Fibronectin affinity for gelatin-based hydrogel films 

 

In a subsequent part of the present work, hydrogel films (Ø 6 mm x 1 mm), 

composed of 10 w/v% gel-MOD (type A and type B), were incubated for 1 hour in 

PBS at ambient temperature, in the presence of radiolabelled fibronectin (1-200 

µg/ml). Next, the polymer films were washed three times in PBS. Finally, the 

radioactivities of the initial incubation fluid, of all washing liquids and of the gelatin 

pellets themselves were obtained. All experiments were performed in triplicate and 

the mean values are presented in the graphs below.  

 

In figure 7-17, the mass of fibronectin, bound to the pellets, is plotted as a function of 

the fibronectin concentration, added to the incubation buffer. 
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Figure 7-17: Mass of fibronectin, bound to type A and type B gelatin pellets when adding 
multiple fibronectin concentrations.  

 
 

Figure 7-17 indicates that type A hydrogel films absorb more fibronectin compared to 

type B hydrogels, as anticipated. In figure 7-18, the percentage of fibonectin, bound 

per pellet, is plotted against the fibronectin concentration applied. From the results, it 

can be seen that in case of type B gelatin, a maximum exists at a fibronectin 

concentration of 50 µg/ml. Afterwards, the bound fraction decreases with increasing 
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fibronectin concentration. For type A gelatin, the bound fraction decreases 

logarithmically with increasing fibronectin concentration.     
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Figure 7-18: Fraction of fibronectin, bound to gelatin type A and type B pellets as a function of 
the fibronectin concentration added. 

 

 
In table 7-6, both QCM and radiolabelling results are depicted. The mass of bound 

fibronectin is shown as a function of the gelatin type and the fibronectin 

concentration. SPR results are not included in the table below since SPR is rather a 

qualitative technique than a quantitative method.   

 
 Type A gelatin Type B gelatin 
 1 µg/ml 25 µg/ml 1 µg/ml 25 µg/ml 

QCM 73 1837 31 105 Mass 
(ng/cm2) Radiolabelling 239 1636 15 739 

 

Table 7-6: Overview of adsorbed fibronectin masses obtained using QCM and radiolabelling 
experiments. 

 

Table 7-6 indicates that the obtained results differ according to the technique applied. 

A first parameter influencing the results, is that the conformation of spincoated gelatin 

(cfr. QCM) differs from that of gelatin, present in hydrogel films (cfr. radiolabelling).  

In addition, the deposited mass of fibronectin onto the QCM crystals, is obtained 

using an estimated density of 1050 kg/m3 for the fibronectin layer.   

 

In many cell interaction studies, reported in literature, pre-adsorbed fibronectin 

surfaces were observed to enhance cell attachment.47, 48 Moreover, the effect of 

different pre-adsorbed fibronectin concentrations on cell attachment was observed to 
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be significantly different.49 In one study, Ti surfaces, pre-adsorbed with a fibronectin 

concentration of 0.21 µg/mm2, were observed to significantly increase cell attachment 

in comparison to uncoated surfaces and Ti surfaces, pre-adsorbed with 0.023 

µg/mm2 or 0.65 µg/mm2 fibronectin.50 It was suggested that fibronectin affects cell 

attachment by binding through cell surface receptors such as RGD and mediating 

adhesive interactions. It was also reported that fibronectin unfolded into an inactive 

conformation at a low concentration. However, at high concentrations, the unfolding 

was prevented by molecule packing requirements, thereby suggesting that the 

conformation of proteins played an important role in cell attachment.50, 51  

In another study, adsorbed fibronectin densities enabling cell attachment on culture 

plastic were approximately 10-15 ng/cm2.8 

Consequently, the amount of fibronectin that can be incorporated through dipcoating 

should be sufficient to obtain scaffolds, able to support cell attachment and 

proliferation.   

 

 

2.4.3. Fibronectin affinity for porous gelatin 3D-scaffolds 

 

The water uptake experiments (chapter 4, § 3.3.1) indicated that the pore 

morphology and the pore size of the scaffolds developed, have an important 

influence on their water uptake capacity. Consequently, the fibronectin 

absorption/adsorption could also be affected by the structure properties of the porous 

scaffolds.  

Two scaffold types, obtained by applying different cryogenic treatments, were 

examined for their interaction with fibronectin. Type GIIIb scaffolds consisted of cone-

shaped pores, with a pore size decreasing from top to bottom (330 to 20 µm) and 

type GIb hydrogels were composed of spherical pores, possessing a diameter of 135 

µm (table 4-7). Type A and type B gel-MOD were applied subsequently in order to 

prepare hydrogels possessing respectively an overall positive and an overall negative 

charge.   

 

Hydrogel scaffolds (Ø 6 mm x 5 mm, 10 w/v%) consisting of gel-MOD, were 

incubated for 1 hour in PBS at room temperature, in the presence of radiolabelled 
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fibronectin (1-200 µg/ml). Additionally, the scaffolds were washed three times in PBS, 

followed by determining the radioactivity of the initial incubation fluid, of the washing 

liquids and of the scaffolds themselves.  

The experiments were performed twice or in triplicate, depending on the fibronectin 

concentration applied.      

In figure 7-19, the mass of fibronectin, bound to the scaffolds, is plotted as a function 

of the fibronectin concentration for the various scaffold types and gelatin types 

studied. 

The results indicated that type GIIIb scaffolds contain more fibronectin than type GIb 

scaffolds. The latter was anticipated since the pore size of type GIIIb hydrogels at the 

top surface is higher than the pore size of type GIb scaffolds. Moreover, the 

fibronectin uptake in type GIIIb hydrogels is facilitated because of the more 

accessible, channel-like pore morphology. Similar results were obtained when 

performing swelling studies on both hydrogel types, as already discussed in chapter 

4 (§ 3.3.1).  

 

When comparing matrices, composed of type A gel-MOD with those, consisting of 

type B gel-MOD, it appears that type A based hydrogels contain less fibronectin than 

matrices, based on type B gelatin. The latter observation was not anticipated, based 

on previous obtained results (§ 2.4.2).    
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Figure 7-19: Mass of fibronectin bound to the hydrogels, as a function of the fibronectin 

concentration for the various scaffold types and gelatin types studied. 
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An important parameter influencing the fibronectin uptake, is the water uptake 

capacity of the scaffolds developed. Consequently, swelling experiments were 

performed on the scaffolds, applied in the dipcoating process (figure 7-20). The 

results indicated that the swelling capacity of type A gelatin scaffolds was lower than 

the water uptake of type B gelatin hydrogels. The latter is related to differences in 

processing conditions. As already described in the introduction (chapter 1), two types 

of gelatin can be distinguished depending on their pre-treatment. Gelatin A is 

processed by acidic treatment while gelatin B is processed by alkaline treatment. The 

alkaline pre-treatment converts glutamine and aspargine residues into glutamic acid 

and aspartic acid, which results in a higher carboxylic acid content for gelatin B 

(118/1000 amino acids) than for gelatin A (77/1000 amino acids).52 The swelling 

results may be explained by the fact that at the experimental pH (7) (which is above 

the isoelectric point 5), gelatin B possesses a net negative charge due to –COO- 

groups in the molecule. These groups, present along the gelatin chains repel each 

other, thus producing a greater relaxation in the scaffold. This obviously results in a 

larger swelling of the hydrogels. Consequently, less fibronectin was incorporated into 

type A scaffolds compared to the type B derivatives.    
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Figure 7-20: Degree of swelling as a function of time for 10 w/v% hydrogels: gel-MOD B, type 
GIIIb (▲), gel-MOD B, type GIb (■), gel-MOD A, type GIIIb (����) and gel-MOD A, type GIb (x). 

 

 

The latter observation was in agreement with several studies from literature.53-56 For 

example, Bajpai et al investigated the effect of the gelatin type on the release profile 

of sulphamethoxazole by loading the drug onto both gelatin A and B nanoparticles. 

The results indicated that the fractional release of the drug was much higher in the 

case of type B than that by type A. The latter was ascribed to the larger swelling of 
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the type B nanoparticles.53 Similar results were obtained for the release of 

chloroquine phosphate from gelatin nanoparticles.56  

In figure 7-21, the amount of fibronectin, bound per scaffold, is plotted as a function 

of the fibronectin concentration, present in the incubation liquid. From the results, it 

can be concluded that, in most cases, a maximum value appears, followed by a 

decrease in bound fraction with increasing fibronectin concentrations. 
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Figure 7-21: Fibronectin fraction, bound per scaffold as a function of the concentration, 
present in the incubation medium.  

 

 

3. Study of glycosaminoglycan - gelatin interaction 
 

Since glycosaminoglycans are major components of the extracellular matrix, their 

interaction with the main scaffold material (i.e. gelatin) could possibly affect the 

behaviour of the cells, seeded on the matrix. That is why both chondroitin sulphate 

and hyaluronic acid are investigated for their interaction with gelatin by means of 

surface plasmon resonance. The structure and properties of both polysaccharides 

were already described in chapter 2 (§ 4, § 5).  

 

In literature, the interaction between proteoglycans and extracellular matrix molecules 

has been reported before.57  
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ECM proteins Glycosaminoglycans 

 HA Ch CS-A CS-C CS-D CS-E DS HS Hep 

Fiber-forming collagens          

   Type I collagen - - - - - ± - - - 

   Type II collagen - - - - - + - - - 

   Type III collagen - - - - - ± - - - 

   Type V collagen - - - - - + ± - + 

FACIT collagen          

   Type IX collagen - - - - - ± - - + 

Sheet collagens          

   Type IV collagen - - - - - - - - - 

   Type VIII collagen - - - - - - - - - 

   Type X collagen - - - - - - - - - 

Other collagens          

   Type VI collagen - - - - - - - - - 

   Type VII collagen - - - - - + - - - 

Other ECM proteins          

   Fibronectin - - - - - - - - + 

   Laminin - - - - - - - - + 

   Vitronectin - - - - - - - - + 

 
Table 7-7: Interaction of glycosaminoglycans with extracellular matrix proteins (Ch, 

chondroitin; DS, dermatan sulphate; HS, heparin sulphate; Hep, heparin). 

    

 

Most of the interactions appeared to be ionic and probably mediated by highly 

charged glycosaminoglycan chains of the proteoglycans. In table 7-7, an overview is 

presented of the interaction between glycosaminoglycans and various extracellular 

matrix proteins.58  

 

In the present work, SPR sensor chips were coated with gelatin, followed by the 

injection of the glycosaminoglycan studied. The response signal, plotted in the 

sensorgram gives an idea on the interaction between the protein and the 

polysaccharide.  
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3.1. Chondroitin sulphate 

 

It was already described in literature that chondroitin sulphate E has specific affinity 

for type V collagen.58 The binding requires a sequence of repeating units, consisting 

of one glucuronic acid and one N-acetyl-galactosamine, sulphated at carbon-4 and 

carbon-6. Alternative oligosaccharides, consisting of other sequences, however 

possessing the same charge, do not interact with type V collagen.59 The latter 

demonstrates that the interaction between chondroitin sulphate and gelatin depends 

on various parameters. Consequently, the interaction between gelatin and two types 

of chondroitin sulphate (i.e. type A and C) was studied by means of SPR.     

In a first part of the experiment, varying concentrations of chondroitin sulphate A 

were injected onto a sensor chip (100-1000 µg/ml), previously spincoated with gelatin 

type B. In a second part, an antibody specific for chondroitin sulphate was injected in 

order to verify that the response was really due to the deposition of the 

polysaccharide onto the gelatin-coated SPR chip.     
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Figure 7-22: Sensorgram showing the interaction between gelatin and chondroitin sulphate A.   

 

From figure 7-22, it appears that the affinity of chondroitin sulphate A for gelatin is 

rather low. However, the amount of adsorbed polysaccharide increases slightly with 

increasing CS concentration CS. The limited response was anticipated based on the 

iso-electric point of the gelatin applied (i.e. 5). Consequently, both gelatin and 

chondroitin sulphate were negatively charged, excluding ionic interactions. It was 

already reported before that there exists a weak interaction between collagen and 

chondroitin 4-sulphate.60  
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Apparently, the adsorbed amount of glycosaminoglycans still enabled interaction with 

CS antibodies, which was demonstrated by the increase in response signal after the 

second injection (figure 7-22). 

From the results, it could also be concluded that the chemical modification (chapter II, 

§ 4.1) and co-crosslinking of chondroitin sulphate within the gelatin hydrogels 

(chapter III, § 4.2), was essential to enable incorporation into the polymer scaffolds.    

 

In a second part of the present work, an alternative type of chondroitin sulphate was 

evaluated for its interaction with the scaffold material (i.e. gelatin) (figure 7-23).  
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Figure 7-23: Sensorgram showing the interaction between gelatin and chondroitin sulphate C. 

 

When comparing both types of chondroitin sulphate, type A appears to possess a 

somewhat higher affinity for gelatin compared to type C. However, the difference in 

response signal is not significant. From the results, it can also be concluded that the 

antibody has more affinity for chondroitin sulphate C than for CS-A.     

 

 

3.2. Hyaluronic acid 

 

In literature, there were already some indications that hyaluronic acid could bind with 

gelatin.61 However, very few publications report specifically on the interaction 

between gelatin and HA. In the present work, the interaction between both polymers 

was investigated by means of surface plasmon resonance.  
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Figure 7-24: Sensorgram showing the interaction between gelatin and hyaluronic acid.   

 

SPR sensors were again spincoated with gelatin type B, followed by rinsing the 

surface with various hyaluronic acid concentrations (100-1000 µg/ml). From figure 7-

24, it can be seen that the interaction between gelatin and HA is rather low, similar to 

the interaction between gelatin and chondroitin sulphate. However, there was some 

HA deposition on the surface, indicated by the water uptake in the second part of the 

plot.   

 
 

4. Study of gelatin affinity for serum components 

4.1. Introduction 

 

Protein adsorption from surrounding tissue fluids is the first phenomenon occurring 

after biomaterial implantation that may lead to implant integration or rejection.62 

Immediately upon contact with physiological solutions, many proteins adsorb to the 

implant surface, subsequently promoting nearby cells to interact with the material.63-66 

This also applies for the in vitro situation. Survival and growth of many cells in vitro, 

require attachment to a substratum. One of the functions of serum in culture media, is 

to provide adhesive proteins that mediate such attachment.2 Studies have further 

demonstrated that an adsorbed protein layer usually is responsible for mediating the 

cell-material interaction, if cellular adhesion occurs to a synthetic material.67 In 

literature, it was already described earlier that adsorption of albumin and fibrinogen 

onto scaffolds, composed of various polymers, improved cellular responses.68 For 

example, nano-fibrous poly(L-lactic acid) scaffolds coated with fibronectin and 

HA 

1 mg/ml 
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vitronectin, allowed >1.7 times of osteoblastic cell attachment than uncoated 

scaffolds.69   

In order to interpret the cellular responses on the scaffolds developed, interaction 

studies were performed between the scaffold material and the major components of 

foetal calf serum (FCS) by means of surface plasmon resonance.  

 

In figure 7-25, an overview is presented of the SPR response signals due to the 

injection of the most abundant components of foetal calf serum. The applied 

concentrations were the same as their concentration in the serum. Besides the 

constituents of FCS, the culture medium, which was used to perform in vitro 

biocompatibility studies and the medium, previously enriched with FCS, were also 

studied for their gelatin affinity.   
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Figure 7-25: Overview of the SPR responses of the most abundant components, present in 
FCS, of the medium applied for the in vitro biocompatibility studies and of the medium 

enriched with FCS.  

 

Figure 7-25 indicates that the interaction between gelatin and transferrin is higher 

than between gelatin and fibronectin. However, the injected concentration of 

fibronectin is about ten times lower than the concentration of transferrin (i.e. 0.03 

versus 0.285 mg/ml). Consequently, when comparing all components of FCS, gelatin 

possesses the highest affinity for fibronectin. There was no baseline shift observed 

after injection of M199 medium, which was anticipated since the culture medium 

mainly contains some inorganic salts, amino acids and vitamins.  
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Since gelatin shows a rather high affinity for various proteins, present in the serum, it 

could be anticipated that, when incubating the porous scaffolds in cell culture 

medium, absorption of different FCS components would occur. In this case, the 

protein molecules would not only adsorb onto the hydrogel surface but could also 

diffuse into the hydrogel, as reported earlier for similar systems.70   

 

4.2. γ-Globulin 

 

Gamma globulins are a group of globularly shaped proteins in human blood plasma, 

including most antibodies. These antibody substances are produced as a protective 

reaction of the body’s immune system to the invasion of disease-producing 

organisms.71  

The interaction between γ-globulin and gelatin was evaluated by means of surface 

plasmon resonance. Various concentrations (0.025-0.2 mg/ml) of γ-globulin were 

rinsed over the SPR sensor surface, previously coated with gelatin. Next, the 

corresponding responses were recorded and plotted in a sensorgram, as 

demonstrated in figure 7-26. 
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Figure 7-26: Sensorgram showing the response after injecting different concentrations of γ-

globulin (0.025-0.2 mg/ml) over a gelatin-coated sensor chip. 
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When plotting the final response as a function of the globulin concentration, a linear 

plot was obtained, characterized by the following equation (data not shown): 

 

R = 724c + 17 

  

where R is the response signal (RU) and c equals the globulin concentration (mg/ml).  

Based on the kinetics theory discussed in § 2.1, a dissociation constant KD of 5.23 x 

10-8 M was obtained for the system gelatin/γ-globulin by means of the BIAevaluation 

software, version 3.1. In a final part of this chapter, an overview will be presented on 

the interactions between gelatin and the various FCS components (§ 4.5).  

 

 

4.3. Transferrin 

 

Transferrin is a glycoprotein, which binds iron very tightly but reversibly. It has a 

molecular weight of around 80,000. The interaction between transferrin and other 

proteins such as gelatin, has not been described previously in literature.  
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Figure 7-27: Sensorgram showing the response after injecting different concentrations of 

transferrin (0.007-0.285 mg/ml) over a gelatin-coated sensor chip. 
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Various transferrin concentrations (0.007-0.285 mg/ml) were injected onto a gelatin-

coated sensor chip and the resulting sensorgrams are plotted in figure 7-27. 

When plotting the final response as a function of the transferrin concentration, a 

linear plot was obtained, characterized by the following equation (data not shown): 

 

R = 3077c + 77 

  

where R is the response signal (RU) and c equals the transferrin concentration 

(mg/ml).  

Based on the kinetics theory discussed in § 2.1, a dissociation constant KD of 9.12 x 

10-8 M was obtained for the system gelatin/transferrin by means of the BIAevaluation 

software, version 3.1.  

 

 

4.4. Human Serum Albumin 

 

Albumins are a group of proteins, constituting 60% of the proteins in blood plasma. 

They are important in regulating blood volume by maintaining the osmotic pressure of 

the blood compartment and for transporting fatty acids, hormones and other 

substances in the bloodstream. 

 

In literature, it was stated before that gelatin cannot be adsorbed by albumin in 

solution.72 The latter was based on the fact that gelatin did not influence the rate of 

albumin denaturation of albumin by shaking, at gelatin concentrations up to the 

gelling point.73 If, however, albumin was initially present at a solid surface, gelatin 

could be adsorbed.72 Based on those results, interaction between gelatin and 

albumin was anticipated, since albumin was rinsed over a gelatin-coated SPR-

sensor.       
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Figure 7-28: Sensorgram showing the response after injecting different concentrations of 
albumin (0.19-3.8 mg/ml) over a gelatin-coated sensor chip. 

 

 

Various albumin concentrations (0.19-3.8 mg/ml) were applied and the resulting 

sensorgrams are plotted in figure 7-28. 

When plotting the final response as a function of the albumin concentration, a linear 

plot was obtained, characterized by the following equation (data not shown): 

 

R = 91c + 18 

  

where R is the response signal (RU) and c equals the albumin concentration (mg/ml).  

Based on the kinetics theory discussed in § 2.1, a dissociation constant KD of 4.36 x 

10-7 M was obtained for the system gelatin/albumin by means of the BIAevaluation 

software, version 3.1.  

 

 

4.5. Overview 

 

In table 7-8, an overview of the most abundant proteins in foetal calf serum (FCS) is 

presented, with their respective dissociation constants (KD), iso-electric points (IEP) 

and slopes, obtained after plotting the SPR response, as a function of the protein 

concentration (mg/ml) applied on a gel-MOD coated SPR sensor. 

 

 

 

0.19 
0.54 
0.76 
3.8 
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 Fibronectin γ-Globulin Transferrin Albumin 

KD (M) 1.88 x 10-9 5.23 x 10-8 9.12 x 10-8 4.36 x 10-7 

Slope (RUml/mg) 32693 724 3077 91 

IEP 5.5-6.3 6.9 5.3-5.6 4.7 

 

Table 7-8: Overview of the major proteins in FCS with their respective dissociation constants, 
slopes, when plotting the response as a function of the concentration, and iso-electric points.  

 

Fibronectin possesses the lowest dissociation constant and highest slope, 

consequently gelatin has the highest affinity for fibronectin. The latter was 

anticipated, based on the fact that fibronectin possesses gelatin-binding sites, as 

already discussed earlier (§ 2).41, 74, 75 The interactions are mainly of hydrophobic 

nature. Electrostatic interactions are more or less excluded, based on the iso-electric 

points of fibronectin and type B gelatin.  

Albumin is characterized by the lowest slope and the highest dissociation constant, 

thus possesses the poorest interaction with gelatin. Since the iso-electric point (i.e. 

4.7) is similar to that of the gelatin type applied, no electrostatic interactions were 

anticipated. Moreover, in literature a few studies report on only a slight interaction 

between both proteins.72, 73 

When comparing transferrin and γ-globulin, transferrin appears to have a somewhat 

higher affinity for gelatin. Based on its iso-electric point, the interaction will be mostly 

hydrophobic, in contrast to the interaction between gelatin and γ-globulin, showing 

mainly ionic interactions.  
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5. Conclusions 
 

In the present chapter, we demonstrated that gelatin interacts with various proteins, 

present in foetal calf serum. The latter observation is valuable since, after incubating 

gelatin scaffolds in culture medium, enriched with FCS, protein adsorption/absorption 

will occur, influencing the subsequent cell adhesion and spreading on the scaffolds 

developed.  

 

A variety of techniques such as surface plasmon resonance, quartz crystal 

microbalance and radiolabelling experiments were utilized to perform the interaction 

studies. From the results, it can be concluded that various techniques lead to 

different results. The trend remained the same, yet the obtained values differed. 

Consequently, the use of different measuring techniques to evaluate a particular 

interaction, is essential. Moreover, when comparing the affinity for a thin gelatin 

coating with that for a gelatin scaffold, also differences can arise. Namely, protein 

diffusion within a hydrogel scaffold can occur, which is impossible for thin, coated 

gelatin layers. In the latter case, merely adsorption onto the surface exists.    

 

We also demonstrated that gelatin hydrogels can be coated with cell-interactive 

proteins such as fibronectin. The studies revealed that the fibronectin-concentration 

on the hydrogel surface can be easily fine-tuned, by varying the fibronectin-

concentration of the dipcoating solution. 

 

Finally, we also observed that gelatin has a limited affinity for glycosaminoglycans 

such as chondroitin sulphate and hyaluronic acid. Consequently, the chemical 

modification and subsequent co-crosslinking of the polysaccharides with gelatin was 

essential in order to incorporate these polymers into the gelatin hydrogels developed 

earlier. 
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Chapter VIII:  

Biological Evaluation 

 
 
 

1 Introduction 
 

When body tissue or an organ is severely injured, partly lost, or functions 

inaccurately, it is clinically treated with reconstruction surgery or organ 

transplantation. However, the shortage of donor organs remains a major obstacle for 

clinical transplantation.1 Reconstruction surgery almost always depends on 

biomaterials or biomedical devices that have been artificially prepared. One often 

used strategy is to construct bioartificial tissues in vitro from cells and a support 

matrix and to implant the construct into the body. The cells can be autogeneic, 

allogeneic or xenogeneic, depending on the type of construct and the donor 

availability. The advantage of allogeneic or xenogeneic cells is that they can be 

cultured and banked in advance for use in cases in which there is not enough time to 

expand a patient’s own cells to construct the tissue, but allogeneic and xenogeneic 

cells will elicit rejection if detected by the immune system.2 It is necessary for tissue 

regeneration to increase the number of cells constituting the tissue as well as 

reconstruct a structure of extracellular matrix (ECM) to support the proliferation and 

differentiation of cells for regeneration induction.3 Each tissue represents a different 

challenge in its production by tissue engineering. Therefore, the properties measured 

will vary. For example, because the blood vessel must sustain the blood pressure 

readily after grafting, the measurement of the mechanical resistance will be 

important.4  

In vitro systems used in tissue engineering span a wide area of subject matter, from 

pumps and bioreactors to constructs intended for tissue or organ replacement.5  
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Gelatin-based materials have already been applied frequently in the past for tissue 

engineering applications. A non-exhaustive overview of the most recent publications, 

subdivided alphabetically by application, is summarised in the table below (table 8-1). 

 

Application Type of gelatin Reference 

Adipose tissue gelatin sponge 6 

Blood vessel gelatin grafted poly(ε-caprolactone) nanofibers, VEGF 

immobilised gelatin, polyethylene-glycol diacrylate cross-

linked gelatin, chitosan/gelatin blends, gelatin grafted 

PET nanofibers, gelatin coated PES fibers 

7-12 

Bone hydroxyapatite chitosan/gelatin composite, gelatin coated 

poly(α-hydroxy acids), glutaraldehyde crosslinked gelatin, 

hydroxyapatite/gelatin composite, β-tricalcium phosphate/ 

gelatin composite, gelatin/poly(ε-caprolactone) blended 

nano-fibers 

13-20 

Cartilage gelatin/chondoitin-6-sulfate/hyaluronan tri-copolymer, 

plasmid DNA immobilised chitosan-gelatin, gelatin 

microparticle embedded OPF hydrogels, gelatin 

microparticle embedded poly(D,L-lactide-ε-caprolactone) 

21-25 

General transglutaminase cross-linked gelatin, proanthocyanidin 

cross-linked chitosan gelatin, gelatin coated poly(D,L-

lactide), electrospun gelatin fibers, PHBHHx/gelatin 

blend, PVA/gelatin blend, PNIPAM grafted gelatin, 

gelatin- and fibronectin-coated PE multilayer nanofilms 

26-34 

Heart gelatin coated polyurethane films 35 

Intervertebral 

disc 

gelatin/chondoitin-6-sulfate/hyaluronan tri-copolymer, 

gelatin, glutaraldehyde cross-linked gelatin/chondroitin-6-

sulphate 

36-38 

Liver cross-linked sodium alginate/gelatin 39 

Muscle gelatin grafted PCL nanofibers 40 

Nerve photo cross-linkable gelatin 41 

Pancreas gelatin grafted agarose 42 

Skin glutaraldehyde cross-linked gelatin 43 

 

Table 8-1: Overview of biomedical applications of gelatin. 
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The table, based on a literature search in PubMed using gelatin and tissue 

engineering as keywords, clearly indicates that gelatin has a wide application range 

within the field of both soft and hard tissue engineering. The extensive data available 

on the application of gelatin as a biomaterial, however, is very scattered. Different 

research groups have separately evaluated gelatin-based biomaterials which differ in 

the applied gelatin type, crosslinking agent, additives (in case of composites), pore 

size, pore geometry and pore distribution.5-42 In addition, only a limited number of cell 

types have been included in most studies. This makes a meaningful understanding of 

how one type of (gelatin) scaffold with its specific properties can be applied as a 

suitable substrate for a variety of cell types rather difficult.  

 

 

2 Blood compatibility studies 
 

Evaluating the influence of modified polymers on red blood cells is important before 

using it in blood-contact applications. Although the contact with blood is rather 

limited, every intervention at the site of a tissue defect, is always related with 

bleeding. The release of haemoglobin was used to monitor the haemolytic properties 

of the scaffolds developed.44 Triton X-100 (1%) and HEPES buffer were used to 

provide respectively the 100 and 0% values. A selected number of porous scaffolds 

developed were allowed to interact with the RBC for 24h. All experiments were 

performed in triplicate. 

 

According to ASTM F 756-00, materials can be classified as follows (table 8-2):45   

 

Haemolysis (%) above negative control Haemolytic grade 

0-2 Non-haemolytic 

2-5 Slightly haemolytic 

>5 Haemolytic 

 
Table 8-2: Classification of haemolytic grade of samples according to their haemolysis (%). 

 

The gelatin scaffolds can be classified from non-haemolytic to slightly haemolytic, 

since their haemolytic indices are lower than 5% (figure 8-1).    
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Figure 8-1: Haemolysis values of the gelatins developed.  

 
 

Haemolysis is regarded as a significant screening test, since it provides quantification 

of small levels of plasma haemoglobin which may not be measurable under in vivo 

conditions. As reported in literature, it is not possible to define a universal level of 

acceptable or unacceptable amounts of haemolysis.45 A blood-compatible material 

should be non-haemolytic by definition, however, in reality, several medical devices 

cause haemolysis. In this case, clinical benefits should overcome the risks and 

haemolysis values should be kept as low as possible.  

 

Haemolysis values of CS-based scaffolds were within the same range compared to 

pure gelatin matrices (data not shown). 

 

 

3 In vitro cell interaction studies 
 

In the present work, a limited number of porous gelatin based scaffolds was 

screened using a panel of different human cells. The scaffolds were developed as 

described earlier (chapter 4, cryogenic treatment in combination with an applied 

temperature gradient), enabling the production of scaffolds with elongated channels 

throughout the material.46 Two hydrogel types developed (i.e. type GIIIb and type GIb) 

were evaluated for their potential as cell carriers. The adhesion, spreading and 

proliferation of human cells on the porous gel-MOD hydrogels were evaluated by 
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confocal microscopy visualisation of calcein-acetoxy methyl ester (CAM) labelled 

cells. 

 

Confocal microscopy is a microscopic technique that enables three dimensional 

imaging and resolution. The 3D resolution is obtained because all the light which is 

not coming from an in-focus plane is being blocked. The latter is achieved because 

there is a pinhole positioned in front of the detector (figure 8-2).  

 

 

Figure 8-2: The light pathway in confocal microscopy. 

 

In this way, all the light originating from an in-focus plane will pass freely through the 

pinhole, whereas light coming from an out-of-focus plane will largely be blocked by 

the pinhole. The light coming from the laser passes a pinhole and is reflected by a 

dichroic mirror and focussed by a microscope objective to a small spot on the 

sample. A dichroic mirror has the property that it reflects one wavelength while 

transmitting others. Specific dichroic mirrors can be applied for the relevant 
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wavelength regions of excitation and emission. When the sample is excited, it will 

start to emit light in a random direction.  

 

A fraction of the emitted photons is collected by the microscope objective and imaged 

onto the detector. The position of the pinhole in front of the detector is such that it is 

in a conjugate plane with both the plane of focus of the microscope objective and the 

point of excitation of the laser, which is defined by the excitation pinhole. The effect 

of blocking out the out-of-focus contributions is also known as optical sectioning. It 

permits the imaging of separate (axial) slices within the specimen.47  

 

The acetoxymethyl (AM) ester derivatives of fluorescent indicators and chelators 

make up one of the most useful groups of compounds for the study of living cells. 

Modification of carboxylic acids with AM ester groups results in an uncharged 

molecule that can permeate cell membranes. Once inside the cell, the lipophilic 

blocking groups are cleaved by non-specific esterases, resulting in a charged form 

that leaks out of cells far more slowly than its parent compound. In the case of 

calcein AM, the AM ester is colourless and non-fluorescent until hydrolyzed (figure 

8-3).48  

 

 

Figure 8-3: Structure of calcein acetoxymethyl ester. 
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3.1 Cell seeding on the hydrogels 

 
 
To evaluate to what extent the induced differences in pore size and geometry 

affected the interaction with cells, we performed an initial in vitro screening of both 

types of scaffolds using a panel of human cells from different organ tissue origin: 

endothelial cells (human umbilical vein endothelial cells, HUVEC), osteoblasts (MG-

63 and CAL-72), human foreskin fibroblasts, glial cells (U373-MG) and epithelial cells 

(HELA). For this study, more cell lines compared to primary cells were selected, 

since cell lines are reproducible from lab to lab. In addition, they exhibit many of the 

phenotypic markers of the primary cells they represent. Primary cells show donor to 

donor variation, are more difficult to culture and phenotype may vary from passage to 

passage and from lab to lab. Control pictures of the different cell types seeded on 

tissue culture plastic are shown in figure 8-4. 
HUVEC 

 

MG-63 

 

CAL-72 

 
 

foreskin fibroblasts 

 

 

U373-MG 

 

 

HELA 

 
 

Figure 8-4: Visualisation of tissue culture plastic (TCP) seeded HUVEC, MG-63, CAL-72, 
foreskin fibroblasts, U373-MG and HELA. For HUVEC, the TCP was pre-coated with gelatin. 

Cells were stained with calcein-AM (1 µg/ml) and visualised (20X magnification) using confocal 
microscopy. 
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3.2 Cell survival and organisation on/within type GIIIb hydrogels 

 

At different incubation times after cell seeding, the cells were stained using calcein-

AM as vital stain. Using this stain, only vital cells are stained. This enabled a 

visualisation of the cells and analysis of adhesion, spreading and proliferation after 

seeding on the hydrogels. The results are summarised in figures 8-5 (5x magnified) 

and 8-6 (10x magnified). For these preliminary experiments, cell visualisation was 

performed on the same side of the scaffold on which the cells were seeded. Up to 3 

days after cell seeding, most HUVEC show a rounded-up morphology, whereas only 

a minor part of individual endothelial cells were spread out on the scaffolds. 

However, after one week, all cells had attached and spread-out cell morphology and 

the formation of cell clusters was observed. Within the hydrogel, three different types 

of cellular organisation could be distinguished as indicated by the numbered arrows 

in figure 8-6. Part of the hydrogel was covered with confluent cell layers (arrow 1 in 

figure 8-6). For endothelial cells, close cell-cell contacts are a requirement since 

these contacts control the permeability of the blood vessel wall forming a barrier for 

solutes, macromolecules and leukocytes.49 In other areas of the hydrogels, HUVEC 

formed aligned cell entities along the pores of the hydrogels (arrow 2 in figure 8-6). 

Finally, in addition to the confluent cell layers and the cells aligned along the pores, a 

small number of single cells were also observed on the hydrogels (arrow 3 in figure 

8-6).  

 

After longer incubation times on the porous gelatin scaffolds (> 1 week), the cell 

density on the scaffolds gradually increased. Dividing cells spread out to cover most 

of the available surface area and formed nearly confluent monolayers with cell-cell 

contacts. As a result of the cell proliferation on the material, only confluent cell layers 

and aligned cell entities appeared on the material whereas the number of isolated 

single cells decreased. These in vitro studies have shown that endothelial cells 

remained viable for at least four weeks on the hydrogels. A further evaluation of the 

potential of these hydrogels for long term culturing of endothelial cells, revealed that 

culturing periods up to seven weeks were feasible (data not shown). The latter could 

have important applications in the field of bioreactor technology. 
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 Figure 8-5: HUVEC, MG-63 and CAL-72 visualisation (5X) on type GIIIb hydrogels at different time points after cell seeding. 
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 Figure 8-6: 10X magnification of the data represented in figure 8-5. 
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From the examination of the cell organisation on the structures (figures 8-5 and 8-6), 

it could be concluded that with an increasing incubation time the endothelial cells 

nearly covered all the available hydrogel surfaces without bridging the pores within 

the hydrogel structure. In those areas where pores were present, endothelial cells 

aligned along the pore. Additionally, further studies were also performed to determine 

to what extent endothelial cells have on the ability to grow into the pores of the 

scaffolds with time. Preliminary results indicated that HUVEC indeed grow into the 

pores of the scaffolds developed (figure 8-7). 

 

 

Figure 8-7: Visualisation of HUVEC on type GIIIb hydrogels, 3 days after cell seeding.  
Cells were stained with calcein-AM (1 µg/ml) and visualised using confocal microscopy  

(2.5X magnification).  

 
 
Compared to cell seeding on gelatin-coated cell culture flasks, the attachment and 

spreading of endothelial cells on the hydrogels was much slower. Endothelial cells 

adhered and spread on gelatin-coated cell culture plastic within 1-2 hours. Most 

cell seeding 

cell visualisation 

1 2 3 

1 2 3 
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likely, these differences could be ascribed to the 3D character of the porous 

scaffolds. Upon cell seeding, the endothelial cells were not in contact with a flat 

polymer surface but with a complex 3D porous hydrogel. More steps may be involved 

in the attachment and spreading to the hydrogels compared to attachment on flat cell 

culture flasks which was favoured by gravity. This may explain the slower attachment 

and spread on the 3D materials.  

In literature, it was already demonstrated that HUVEC showed different morphology 

on 2D chitosan surfaces than on 3D matrices. In addition, 3D cultures showed higher 

cell survival relative to 2D cultures. Probably, there were different factors affecting 

this cell behaviour.10 In 2D substrata, cells are restricted to spread on a flat plane and 

the important factor affecting cellular activity is whether the substrate contains cell 

adhesion binding domains or not. On the contrary, 3D matrices provide spatial 

advantages for cell-cell and cell-matrix adhesion as well as support for cell traction. 

In addition, many factors such as the compliance50, stiffness51, hydrophilicity52 and 

surface topography53 affect various cellular processes. In 2D culture, cells are 

cultured on rigid surfaces coated with thin layer of matrices and stiffness that 

matrices possess may be primarily contributed by the surface. However, in 3D 

cultures, the stiffness of the scaffolds will be different than glass/TCP surfaces and 

may directly influence cell adhesion.10 

   

For MG-63 osteoblasts, similar results were observed in terms of cell adhesion and 

spreading as were observed with HUVEC. Up to 3 days after cell seeding, MG-63 

cells showed a rounded morphology (see figures 8-5 and 8-6). After longer 

incubation times, cells started to spread out and proliferate, covering the entire 

scaffold surface. In contrast to HUVEC-seeded hydrogels, MG-63 cells mainly 

formed confluent cell layers after two weeks of incubation. After four weeks in vitro, 

the number of aligned cell entities increased slightly. 

 

In contrast with the results obtained for HUVEC and MG-63, CAL-72 cells adhered 

and spread on the porous gelatin hydrogels within three days after cell seeding 

(figures 8-5 and 8-6). The cell behaviour after longer incubation times was similar to 

HUVEC. 
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In addition to endothelial cells and osteoblasts, type GIIIb hydrogels were also 

screened for the growth of human foreskin fibroblasts, glial cells (U373-MG) and 

epithelial cells (HELA). The results after 4 weeks incubation, as summarised in figure 

8-8, clearly indicate that the porous gelatin scaffolds were an excellent candidate 

material for the (long-term) culturing of these cell types also, and the hydrogels are 

thus an excellent substrate for a large variety of human cells. It should be mentioned 

that, in contrast to the other cell types studied, human foreskin fibroblasts bridged the 

hydrogel pores in some areas after four weeks incubation (see arrows in figure 8-8, 

first column). Most likely, this can be ascribed to the high amount of extra-cellular 

matrix produced by these cells on the scaffolds.54 

 

 

5X 
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Figure 8-8: Visualisation of foreskin fibroblasts, U373-MG and HELA on type GIIIb hydrogels, 
4 weeks after cell seeding. Cells were stained with calcein-AM (1 µg/ml) and visualised using 

confocal microscopy. 
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3.3 Cell survival and organisation on/within type GIb hydrogels 

 

Since it is well known that both differences in surface chemistry and surface 

topography affect the interaction with cells55, we were interested in investigating to 

what extent differences in pore size and pore geometry within gelatin scaffolds with 

the same surface chemistry, would affect the cell interaction. Type GIIIb and type GIb 

gelatin hydrogels were both developed starting from type B gel-MOD. Variation of the 

parameters used for cryogenic treatment lead to variations in pore geometry and 

pore size between the two scaffold types without altering the scaffold chemical 

composition (figure 8-1 and table 8-2). 

 

HUVEC 

 

 

MG-63 

 

CAL-72 

 

foreskin fibroblasts 

 

U373-MG 

 

HELA 

 

 

Figure 8-9: Cell visualisation (5X magnification) on type GIb hydrogels, 4 weeks after cell 
seeding. Cells were stained with calcein-AM (1 µg/ml) and visualised using confocal 

microscopy. 

 

The same panel of cells as described above was also seeded on gelatin hydrogels 

with spherical pores (135 µm in diameter, type GIb hydrogels). The results for the 
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different cell types after 4 weeks incubation are summarised in figure 8-9. It was 

concluded that type GIb scaffolds possessed similar properties compared to type 

GIIIb hydrogels in terms of cell attachment, spreading and proliferation on the 

material.  

After cell seeding, the complete hydrogel surface was covered with an increasing 

incubation time. It should be noted that CAL-72 osteoblasts did not show the very 

bright and sharp calcein-AM staining as observed for all other cell types. At present 

these phenomena are further being investigated, but our preliminary data indicate 

that mineralisation occurs at four weeks post-seeding. Namely, calcein was added to 

the medium, followed by measuring possible fluorescence related to calcification in 

the hydrogel using confocal microscopy. The results, shown in figure 8-10, clearly 

indicate regions were nodules can be observed. The mineralisation process might 

have an effect on the calcein-AM staining of cells embedded in the hydrogel. 

 

 

Figure 8-10: Calcified regions in type GIIIb hydrogels are visualized using confocal microscopy 
after 4 weeks of cell seeding. 

 

The comparative data obtained for both types of hydrogels suggested that the pore 

geometry and pore size of the matrix did not affect the adhesion, spreading and 

proliferation of cells, at least in the pore size and geometry range investigated in the 

present work. This could be concluded since the same type of gelatin (gel-MOD, type 

B) was used for the production of both scaffold types. The good cell-interactive 

properties of both types of porous gelatin hydrogels were not unexpected, since type 

B gelatin was obtained by alkaline denaturation of collagen, one of the components 

of the extra-cellular matrix. Chemical modification of gelatin, by derivatisation of the 

ε-lysine amines with methacrylamide functions and subsequent crosslinking into a 3D 
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network, did not affect (or at least not to a great extent) the cell-interactive properties 

of the material. In addition, both types of gelatin hydrogels developed, were highly 

porous. Preliminary results indicate that this property favours cell ingrowth and cell 

migration throughout the scaffold.  

 

 

4 Cell differentiation 
 

4.1 Introduction 

 
 

Differentiation is a continuously regulated process and interactions between the cell 

and its environment play a major role in maintaining stable expression of 

differentiation-specific genes. An important component of the cellular environment is 

the extracellular matrix (ECM). Cells may be completely surrounded by ECM, as is 

the case for chondrocytes, or may contact the ECM only at one surface, as 

exemplified by epithelial and endothelial cells.56 

Besides the interaction between endothelial cells and extracellular matrix molecules 

to enable cell adhesion and proliferation, the integrity of the endothelial layer is also 

strongly dependent on the junctions established between adjacent endothelial cells.57 

Such cell-cell adhesion is also crucial for vessels to sprout and the elongation 

process is mediated by a distinct series of cell surface receptors that includes 

PECAM-1 and VE-cadherin.58  

Platelet endothelial cell adhesion molecule-1 (PECAM-1) is a 130-kD member of the 

immunoglobulin (Ig) superfamily that is expressed on the surface of circulating 

platelets, monocytes, neutrophils and selected T cell subsets. It is also a major 

constituent of the endothelial cell intercellular junction, where up to 106 PECAM-1 

molecules are concentrated. With a few minor exceptions, PECAM-1 is not present 

on fibroblasts, epithelium, muscle or other nonvascular cells.59 

PECAM-1 is a key participant in the adhesion cascade leading to extravasation of 

leukocytes during the inflammatory process.59 It also establishes homophilic binding 

between neighboring endothelial cells and interacts with the underlying cytoskeleton. 
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Another important aspect is that the F-actin assembly is regulated at the cell 

periphery in association with changes in cell shape and spreading.10  

 

The recruitment of leukocytes from the blood into the peripheral tissues in 

inflammation is mediated through the concerted action of different leukocyte-

endothelium cell-adhesion molecules in response to various stimulatory factors (e.g. 

lipopolysaccharide). E-selectin, which is absent in resting endothelium, is involved on 

endothelial cells. Upon release of cytokines, a proinflammatory phenotype is induced 

in the endothelium in which a wide variety of genes, including those encoding for E-

selectin, are transcribed. Selectins are thought to be responsible for the ‘rolling’ of 

leukocytes along the blood vessel wall, caused by transient and reversible 

interactions. The leukocyte is then guided to the site of infection by a gradient of 

chemoattractants. Later on, the expression levels of the different adhesion molecules 

decline to their original values.60, 61     

 

In the present work, possible material related effects on the phenotype of seeded 

cells were evaluated by immunofluorescent analysis. The gene expression profile of 

hydrogel seeded endothelial cells for two endothelial cell selective markers (PECAM-

1 and E-selectin) was compared with that of tissue culture plastic seeded cells. 

 

 

4.2 Expression of endothelial cell selective markers 

 

We investigated to what extent endothelial cells preserved their normal gene 

expression profile after seeding on the hydrogels. Unless intended (e.g. application of 

stem cells), cells seeded on a biomaterial should preserve their normal gene 

expression profile. For these studies, HUVEC were seeded on type GIIIb and type GIb 

hydrogels. At different time points, cells were fixed in MeOH/EtOH and incubated 

with anti-PECAM-1 or anti-E-selectin. Intra-cellular or inter-cellular localisation of both 

markers was studied by confocal microscopy after incubation of the hydrogels in an 

Alexa Fluor labelled secondary IgG antibody. It should be noted that preliminary 

experiments in which paraformaldehyde (4%) was used as fixation agent, were not 

successful. This can be ascribed to the reaction of the residual gelatin amine 
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functions with paraformaldehyde, in this way preventing successful crosslinking of 

the cellular proteins.  

 

In a first series of experiments, HUVEC seeded on the hydrogels were screened for 

the expression of PECAM-1. This protein is a transmembrane cell adhesion molecule 

and is a major component of the endothelial cell intercellular junctions. For 

endothelial cells, close cell-cell contacts are a requirement since these contacts 

control the permeability of the blood vessel wall forming a barrier for solutes, 

macromolecules and leukocytes.  

As control, TCP seeded HUVEC were evaluated for their PECAM-1 expression. 

From the results in figure 8-11, it could be concluded that PECAM-1 was mainly 

localised at intercellular junctions.  

 

 
Figure 8-11: Visualisation of tissue culture plastic (TCP) seeded HUVEC, showing PECAM-1 

expression. The TCP was pre-coated with gelatin. Cells were stained with DAPI and visualised 
using confocal microscopy. 

 

The expression profiles observed for both types of scaffolds (figure 8-12), 

corresponded very well with the control samples (figure 8-11). One week after cell 

seeding, PECAM-1 was expressed and mainly localised at intercellular junctions.  

It should be mentioned that the hydrogels studied possess a complex 3D (i.e. not flat) 

geometry. The number of cells shown in a picture represent the cells located in one 

focal plane. This number was sometimes lower than the actual number of cells 

present in this area, due to the fact that the scaffolds were not flat.  

The data for the hydrogels confirmed those obtained during the cell attachment 

studies, as described in the previous paragraph (§ 2), revealing several areas of 

20X 40X 
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confluent cells in which close cell-cell contacts were formed. At longer incubation 

times (up to 4 weeks), the PECAM-1 expression profile remained unaffected and 

similar to TCP seeded HUVEC. 

1 week 

 

2 weeks 

 

4 weeks 

 

 

 

 

 

 

 
 

Figure 8-12: Visualisation of PECAM-1 on type GIIIb hydrogels (top row) and type GIb hydrogels 
(bottom row) (magnification 40X).  

 

Although very promising, these results were somewhat surprising. Firstly, despite the 

very large differences in pore size and pore geometry between type GIIIb and II 

scaffolds, HUVEC formed confluent cell layers with close cell-cell contacts and 

expressed PECAM-1. It was anticipated that the differences in 3D geometry would 

affect endothelial cell arrangement and potentially also the expression of cell 

adhesion molecules. 

 

Secondly, up to three days after cell seeding HUVEC seeded on the biomaterials 

showed a rounded morphology. It is therefore remarkable that one week after cell 

seeding, confluent cell layers are formed with PECAM-1 as one of the constituents of 

the intercellular junctions. These results indicated that the chemical composition of 



Chapter VIII: In vitro biocompatibility 253 

the hydrogels, which is the same for type GIIIb and II, was more important than the 

geometry and the size of the induced pores.  

It should be noted that the HUVEC ‘interconnectivity’ is distorted due to the fixation 

procedure in MeOH/EtOH causing a dehydration of the cell layers. 

A second endothelial cell selective marker that was included in the present work, was 

E-selectin. E-selectin is a glycoprotein that is expressed in activated (stimulated) 

endothelial cells and binds various immune response related cells. E-selectin is a 

pro-inflammatory marker which is not expressed in unstimulated cells. As positive 

control, TCP and hydrogel seeded HUVEC which were stimulated using 

lipopolysaccharide  (LPS,  a  component  of  the  bacterial wall). The results indicated 

that stimulated cells, seeded on TCP or the hydrogels, exhibited high levels of E-

selectin expression (figures 8-13 and 8-14). Nearly 100% of HUVEC grown on TCP 

and gelatin expressed the pro-inflammatory marker. This induction effect was 

observed for both types of gelatin scaffolds. In unstimulated cells, typically 2% of the 

cells expressed E-selectin. 

 
 

 

 

 

20X 

+LPS 

 

-LPS 

 

 
 

 

 

40X 

 

 
 

 
 

Figure 8-13: Visualisation of tissue culture plastic (TCP) seeded HUVEC, showing E-selectin 
expression when stimulated with LPS. The TCP was pre-coated with gelatin. Cells were stained 

with DAPI and visualised using confocal microscopy. 
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Figure 8-14: Visualisation of E-selectin expression on type GIIIb hydrogels (top row) and type GIb hydrogels (bottom row).  
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5 Conclusion 
 

Two types of porous gelatin hydrogels were screened for their interaction with a 

panel of human cells. We have shown that both types of gelatin scaffolds, differing in 

their pore geometry and pore size, supported the attachment and growth of human 

cells over longer time periods.  

 

 

Summarising the gene expression results, it can be concluded that HUVEC seeded 

on the different biomaterials preserve a normal phenotype as compared to TCP 

seeded cells. HUVEC also maintain their functional properties as exhibited by the 

strong induction of E-selectin expression in the presence of LPS. 

 

 

Finally, blood compatibility studies were performed on both gelatin- and CS-based 

scaffolds. Haemolysis indices of all materials developed remained within acceptable 

limits (<5).  
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General Conclusions 
 

The objective of the present work was to develop bio-interactive hydrogels 

functioning as cell carriers with the aim to induce cell migration, adhesion and 

proliferation. In order to fulfil these requirements, the materials developed should 

meet some criteria. First, highly porous materials are required to support diffusion of 

oxygen and nutrients towards the cells and drainage of waste products from the 

matrix. Second, pore interconnectivity is crucial to enable cell migration and if 

required angiogenesis. Finally, the interconnecting porous biomaterials should be 

biocompatible and, depending on the application, also biodegradable.  

 

In the present work, gelatin was selected as a starting material since its 

biocompatibility and biodegradability were already demonstrated in a previous 

research thesis by Dr. A. Van Den Bulcke. Since gelatin is characterized by a sol-gel 

transition temperature of about 30°C, crosslinkable side groups (i.e. methacrylamides 

and thiols) were incorporated to enable chemical crosslinking. In addition to gelatin, 

chondroitin sulphate and hyaluronic acid were also modified with double bonds using 

methacrylic anhydride, as these glycosaminoglycans are important components of 

the extracellular matrix. The hydrogel precursors synthesized were characterized in 

depth using various techniques including 1H-NMR spectroscopy, size exclusion 

chromatography and ATR-IR spectroscopy. Using the synthesis route elaborated, a 

series of hydrogel precursors possessing various modification degrees was prepared. 

 

In a subsequent part of the present work, hydrogel films composed of the polymer 

precursors synthesized and combinations thereof were prepared and characterized 

using rheology, texturometry and water uptake experiments. The mechanical 

properties of the hydrogels developed were affected by various parameters including 

the storage time, the polymer concentration and the modification degree.  

In addition to hydrogel formation at room temperature, gelatin cryogels were 

prepared by applying a cryogenic treatment. The results indicated that the 

implementation of successive freeze-thaw cycles induces a decrease of the critical 

gelation concentration.  
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In order for the hydrogels to be applied in the field of tissue engineering, porosity was 

induced using a cryogenic unit, followed by lyophilization of the frozen material. 

Some preliminary data on this topic were already described by Dr. I. De Paepe in her 

PhD thesis. The cryogenic unit developed, enabled us to vary different parameters 

during the cryogenic treatment (i.e. cooling rate, temperature gradient and final 

freezing temperature). In addition, also the effect of the gelatin concentration on the 

material properties was studied using micro-computed tomography, helium-

pycnometry, scanning electron microscopy and optical microscopy. The results 

indicated that the pore size, the pore geometry and the porosity of the scaffolds 

developed could be easily finetuned by varying the (cryo-)parameters applied. The 

results obtained in the present work will be a valuable tool for research on porous 

scaffolds, including pore creation techniques as well as non-destructive structure 

analysis techniques. 

 

In addition to radical polymerisation using a UV-active photo-initiator, alternative 

crosslink procedures including ebeam and redox-initiating systems were evaluated to 

enable chemical crosslinking of the freeze-dried scaffolds developed. The results 

indicated that sufficient segmental mobility was essential to obtain efficient 

crosslinking.  

 

Since the final objective of the present work was to develop a widely applicable tissue 

engineering device, the incorporation of cell-interactive proteins including fibronectin 

in gelatin-based hydrogels was evaluated. Quartz crystal microbalance (QCM), 

surface plasmon resonance (SPR) and radiolabelling experiments indicated that 

fibronectin shows a high affinity for gelatin. In addition, the amount of incorporated 

fibronectin can be easily finetuned by varying the fibronectin concentration applied. 

Depending on the gelatin type applied (type A versus type B), hydrophobic or 

electrostatic interactions or a combination thereof existed. 

In view of in vitro biocompatibility studies in the presence of serum-enriched medium, 

the affinity of various serum compounds including γ-globulin, transferrin and albumin 

for gelatin was also evaluated. QCM and SPR results indicated that gelatin interacts 

with various serum proteins potentially affecting the subsequent cell adhesion and 

spreading on the gelatin scaffolds developed. 
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We also observed a limited gelatin affinity for different glycosaminoglycans including 

chondroitin sulphate and hyaluronic acid. 

 

A final important part of the present work was the evaluation of the various scaffolds 

prepared to function as cell carriers. Two types of porous gelatin hydrogels were 

screened for their interaction with a panel of human cells. The results indicated that 

both scaffold types, differing in their pore geometry and pore size, supported the 

attachment and growth of human cells over longer time periods. In addition, the gene 

expression profile of endothelial cells was preserved, which is a first indication that no 

cell differentiation occurred.  

 

The hydrogels developed are a very promising class of biomaterials. In addition, the 

procedure elaborated in the present work to induce pores possessing specific pore 

sizes and pore geometries can be extended to other (bio)polymers to be applied as 

tissue engineering devices.               
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Chapter IX:  

Experimental Part 

 
 
 

1 Materials  
 

• Gelatin (type B), isolated from bovine skin by an alkaline process, was kindly 

supplied by Rousselot, Ghent, Belgium. Gelatin samples with an approximate iso-

electric point of 5, a Bloom strength of 257 and a viscosity (6.67%, 60°C) of 4.88 

mPa.s were used.  

• Gelatin (type A), pharmaceutical grade, isolated from porcine skin, was obtained 

from Rousselot, Ghent, Belgium. Gelatin samples with an approximate iso-electric 

point of 8.8, a Bloom strength of 202 and a viscosity (6.67%, 60°C) of 2.97 mPa.s 

were used.  

• Methacrylic anhydride (MAA), Aldrich (Bornem, Belgium).  

• Dialysis membranes Spectra/Por® 4 (MWCO 12,000-14,000 Da), Polylab 

(Antwerp, Belgium).  

• Dialysis membranes Spectra/Por® 3 (MWCO 3,500 Da) were obtained from 

Polylab (Antwerp, Belgium).  

• Pullulan standards (Shodex standards P-50, P-100, P-200 and P-400), S.D.K. 

(Showa Denko K.K.). 

• 1-[4-(2-Hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propane-1-one (Irgacure® 

2959) was a kind gift from Ciba Speciality Chemicals N.V. (Groot-Bijgaarden, 

Belgium).  

• Sodium phosphate (dibasic, anhydrous, p.a.), Acros (Geel, Belgium).  

• Potassium hydrogen phosphate, Acros (Geel, Belgium). 

• Sodium hydroxide, Merck (Darmstadt, Germany). 

• Titrisol buffer pH 10, boric acid/potassium chloride-sodium hydroxide solution, 

tube for 500 ml buffer solution, Merck (Darmstadt, Germany).  
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• N-butylamine, Acros (Geel, Belgium). 

• Ellman’s reagent (5,5’-dithio-bis-(2-nitrobenzoic acid)), Pierce, Perbio Science 

(Erembodegem, Belgium).  

• 2-Iminothiolane hydrochloride (Traut’s reagent), Aldrich (Bornem, Belgium). 

• DL-N-Acetylhomocysteine thiolactone, Acros (Geel, Belgium). 

• 1,2-Phthalic dicarboxaldehyde, Acros (Geel, Belgium). 

• 2-Mercaptoethanol, Merck (Darmstadt, Germany). 

• L-Cysteine.HCl.H2O, Pierce, Perbio Science (Erembodegem, Belgium). 

• Hydrogen peroxide, 50 wt% solution in water, Aldrich (Bornem, Belgium). 

• Dichloromethylsilane, Aldrich (Bornem, Belgium). 

• Chondroitin sulphate C, sodium salt, from shark cartilage, Sigma (Bornem, 

Belgium).  

• Chondroitin sulphate A, sodium salt, from bovine trachea, Sigma (Bornem, 

Belgium). 

• Hyaluronic acid sodium, from human umbilical cord, Sigma (Bornem, Belgium). 

• Calcium chloride (dihydrate, 77-80%), Acros (Geel, Belgium).   

• Tris(hydroxymethyl)aminomethane (99,9%, ultra pure grade), Acros (Geel, 

Belgium).  

• Sodium azide (99%), Avocado Research Chemicals Ltd. (Karlsruhe, Germany).  

• Ethylene diamine tetraacetic acid (tetra sodium salt tetrahydrate), Fluka 

BioChemica (St. Gallen, Switzerland).  

• Ammonium cerium (IV) nitrate (99%), Avocado Research Chemicals Ltd. 

(Karlsruhe, Germany). 

• Vitamin C = Ascorbic acid, Fluka BioChemica (St. Gallen, Switzerland). 

• Iron (II) D-gluconate dehydrate (98%), Aldrich (Bornem, Belgium).  

• N-(3-Dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride, Aldrich (Bornem, 

Belgium). 

• N-Hydroxysuccinimide (98%), Acros (Geel, Belgium). 

• Collagenase (EC 3.4.24.3) Type IV of Clostridium histolyticum with collagen 

activity 428 U/mg (collagen digestion), Sigma Chemical Co. (St. Louis, MO, VS).  

• Fibronectin from bovine plasma (0.1% solution, 1 mg/ml in 0.5 M NaCl, 0.05 M 

Tris and pH 7.5), Sigma-Aldrich (Bornem, Belgium).  
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• Polyclonal rabbit anti-human fibronectin solution (5.1 g/l), DakoCytomation 

(Heverlee, Belgium).    

• L-Lactate dehydrogenase, Sigma (Bornem, Belgium). 

• γ-Globulins, human: from cohn fraction II, III, Sigma (Bornem, Belgium). 

• Albumin, human, ORHA, Behringwerke (Marburg, Germany). 

• Transferrin, human, partially iron-saturated, Sigma (Bornem, Belgium). 

• Monoclonal anti-chondroitin sulphate, clone CS-56, from mouse ascites fluid, 

Sigma (Bornem, Belgium).  

 

 

2 Methods 

 

Freeze-drying 

Freeze-drying of the polymer derivatives occurred by means of a Christ freeze-dryer 

alpha I-5. 

 

Size exclusion chromatography 

The molecular weights were determined by means of size exclusion chromatography 

with a Millipore-Waters 510 pump. The detection occurred with a Waters 410 

Differential Refractometer. For all polymers developed, Waters Ultrahydrogel 

columns 250-500-1000 (300 x 7.8 mm) at 80°C (internal temperature: 50°C) were 

used. Phosphate buffer (pH 7.4; 0.2 g KH2PO4 + 1.15 g Na2HPO4 / 1l H2O) was 

applied as eluens. A flow rate of 0.75 ml/min was chosen. Calibration occurred by 

means of pullulan standards (10 mg/ml).  

 

UV-analysis 

UV-analysis was performed with an Uvikon XL spectrophotometer (Bio-Tek 

Instruments, BRS, Drogenbos, Belgium). 
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Nuclear Magnetic Resonance 

1H-NMR-spectra of the gelatin derivatives were recorded at 50°C in deuterated water 

with a Bruker WH 500 MHz instrument. The chemical shift was expressed in ppm as 

a function of tetramethylsilane as internal standard.  

1H-NMR-spectra of the chondroitin sulphate and the hyaluronic acid derivatives were 

recorded at room temperature in deuterated water using the same equipment as for 

the gelatin derivatives.    

 

ATR-FTIR measurements  

Attenuated Total Reflection Infrared analysis was performed by means of a Biorad 

FT-IR spectrometer FTS 575C. 

 

UV-irradiation 

An LWUV-lamp model VL-400L (Vilber Lourmat, Marne La Vallée, France), with an 

intensity of 10 mW/cm2 and a wavelength range of 250-450 nm, was used for sample 

curing.   

      

Rheology 

The mechanical properties of the hydrogel films were evaluated using a rheometer 

type Physica MCR-301 (Anton Paar, Sint-Martens-Latem, Belgium).  

 

Texturometry 

Texturometrical tests were performed with a Lloyd TA500 Texture Analyser, 

equipped with a 100 N load cell. Hydrogel films were positioned on a flat bottom 

plate, having a round opening (Ø 25 mm). In order to perform different tests (e.g. 

TPA, fracture), a cylindrical probe (Ø 3 mm) was applied.  

 

Optical microscopy 

Optical microscopy was performed using an Axiotech 100 Reflected Light 

Microscope (Carl Zeiss), with reflected-light brightfield for Köhler illumination. 
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Scanning electron microscopy 

The morphology of gold-sputtered samples was examined using the scanning 

electron micrographs obtained on a Fei Quanta 200F (field emission gun) scanning 

electron microscope.  

 

Helium-pycnometry 

Porosities were studied using a He-pycnometre type Accupyc 1330, Norcross, GA, 

USA. Each measurement was performed in duplicate. 

 

Micro-computed tomography 

A “Skyscan 1072” X-ray micro-tomograph was used. This compact desktop system, 

consisting of an X-ray shadow microscopic system and a computer with tomographic 

reconstruction software, generated high-resolution images for small samples (7 mm 

diameter). During a measurement, both the X-ray source and the detector were fixed 

while the sample rotates around a stable vertical axis. Samples were scanned at a 

voltage of 130 kV and a current of 76 µA. Random movement and multiple-frame 

averaging were used to minimise the Poisson noise in the images. The spot size of 

the Hamamatsu micro-focus tube limited the spatial resolution of the reconstructed 

slices to 10 µm in the X, Y and Z directions. During acquisition, X-ray radiographs 

were recorded at different angles during step-wise rotation between 0° and 180° 

around the vertical axis.  

After reconstruction of the 2D cross-sections, 3D software µCTanalySIS was used in 

order to segment the images and determine their 3D porosity and pore size 

distribution. Octopus, a server/client tomography reconstruction package for parallel 

and cone beam geometry, was also used for analysis. 

 

Dynamic Vapour Sorption 

The influence of the hydrogel structure on the degree of water vapour sorption was 

examined using a Dynamic Vapour Sorption apparatus (DVS-1, Surface 

Measurement Systems, London, UK). The apparatus consists of a Cahn 

microbalance placed in a temperature-controlled housing.  
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Contact angle measurements 

Static contact angle measurements were performed using a OCA 20 from 

Dataphysics (distributed by Benelux Scientific) equipped with a Hamilton syringe 

(500 µl). For each measurement, 1 µl of double distilled water was placed on the 

hydrogel surface.  

 

X-ray photo-electron spectroscopy 

The chemical composition of the different scaffold surfaces was determined using  

“FISONS S-PROBE”, a dedicated XPS (X-ray photoelectron  

spectroscopy) instrument designed to give the ultimate in performance, while  

providing a high sample throughput. The fine focus Al-Ka source with a quartz  

monochromator, developed by Fisons Instruments Surface Science ensures lower  

background and higher sensitivity than conventional twin anode sources. All  

measurements were performed in a vacuum of at least 10-9 Pa. Wide and  

narrow-scan spectra were acquired at pass energy of 158 and 56 eV respectively.  

The binding energy was calibrated by the C 1s peak at 284.6 eV. The spot size  

used was 250 µm on 1mm. Data analysis was performed using S-PROBE software. 

The measured spectrum was displayed as a plot of the number of electrons (electron  

counts) versus electron binding energy in a fixed, small energy interval. Peak  

area and peak height sensitivity factors were used for the quantifications. 

 

Atomic Force Microscopy 

AFM-studies were performed with a Nanoscope IIIa Multimode (Digital Instruments, 

Santa Barbara, California, USA) applying ‘tapping mode’ in air. 

 

Quartz Crystal Microbalance 

Measurements were done using the QCM-D technique (Q-Sense E4, Q-Sense AB, 

Göteborg, Sweden). The Q-Sense software was used to acquire experimental data. 

The main feature of this package was the possibility of a mathematical fit based on a 

model developed by Voinova. Within the Voigt model for a viscoelastic element, this 

model calculated the acoustic response of the system to an applied stress.  

Multiple frequency and dissipation data, preferably from three frequencies, were 

required for the accurate modelling.   
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The applied quartz crystals (5 MHz) were AT-cut and possessed a gold-coated 

electrode.   

 

Surface Plasmon Resonance 

The interaction between gelatin and a variety of ECM and FCS components was 

measured by surface plasmon resonance (SPR) measurements. The apparatus used 

was a Biacore-X (GE Healthcare Europe, Diegem, Belgium) equipped with an 

internal 500 µl Hamilton syringe.  

 

Statistical analysis 

Statistical analysis was performed using the student t-test. Two values were 

considered to be significantly different when p < 0.05. 

 

3 Chapter II: Synthesis and characterization of the 

hydrogel precursors 

 

Synthesis of gel-MOD 

 
After swelling of 100 g gelatin (35 mmol ε-amine-sidegroups of lysine and 

hydroxylysine) in 1 l phosphate buffer (pH 7.8) for one hour, the solution was heated 

to 40°C. When a homogeneous gelatin solution was obtained, one equivalent of 

methacrylic anhydride (5.66 ml, 0.038 mol) was added. The reaction mixture was 

stirred vigorously for one hour at 40°C. Next, the mixture was diluted with 1 l double 

distilled water and transferred in dialysis membranes (Spectra/Por® 4, MWCO 

12,000-14,000 Da). After one day of dialysis in water at 40°C, the obtained derivative 

was freeze-dried.  

 

Gel-MOD with other modification degrees was obtained by analogous synthesis with 

different concentrations of methacrylic anhydride.   
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Characterization of gel-MOD 

 
1H NMR-spectra of modified gelatin were recorded at 40°C in deuterated water. The 

degree of substitution can be obtained after comparison of the integrations of the 

characteristic peaks of the methacrylamide-substituent (5.62 ppm and 5.85 ppm) and 

the integration of a peak of amino acids, which are not involved in the modification 

(e.g. Val + Leu + Ile at 1.12 ppm). Based on the known amino acid composition of the 

gelatin applied, the degree of substitution can be calculated, as indicated by the 

following equation: 

 
DS (%) = 

0.3836 mol x (integration at 5.7 ppm / integration at 1.1 ppm) x (100 / 0.0385 mol) 

 

Synthesis of thiolated gelatin 

 
After swelling of 5 g gelatin (1.75 mmol ε-amine-sidegroups of lysine and 

hydroxylysine) in 50 ml carbonate buffer (pH 10), the solution was heated to 40°C. 

When a homogeneous gelatin solution was obtained, 1 mM EDTA (0.015 g) was 

added in order to complex any metals present, to avoid catalysis of the oxidation 

reaction. Next, an excess of N-acetyl-homocysteine thiolactone (5 equivalents, 1.51 

g) was added. The reaction mixture was stirred vigorously for three hours at 40°C. 

Subsequently, the mixture was diluted with 50 ml double distilled water and 

transferred in dialysis membranes (Spectra/Por® 4, MWCO 12,000-14,000 Da). After 

one day of dialysis in water at 40°C, the thiolated gelatin was freeze-dried. 

Both the reaction and the dialysis were performed under argon atmosphere.Gelatin-

SH with lower modification degrees were obtained by analogous synthesis with lower 

concentrations of N-acetyl-homocysteine thiolactone.  

Alternatively, thiolation of gelatin (5 g) also occurred by adding traut’s reagent (2 

equivalents, 0.523 g) to gelatin, previously dissolved in phosphate buffer (pH 8) at 

40°C. The reaction proceeded for 45 minutes, followed by dialysis and lyophilization.  
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Characterization of thiolated gelatin 

Determination of modification degree 

 
Direct method 

 
First, a stock solution was prepared, composed of 4.5 mg Ellman’s reagent in 1 ml 

phosphate buffer (pH 8), containing 1 mmol EDTA. For the preparation of the 

thiolated-gelatin solutions, freeze-dried samples were applied. Protein suspensions 

(1 mg/ml double distilled water) were heated for 2 hours at 40°C until a 

homogeneous solution was obtained. To 250 µl heated protein solution (250 µl H2O 

for blank), 50 µl stock solution and 2.5 ml reaction buffer were added successively. 

After mixing thoroughly, the solution was incubated at 35°C for 15 minutes. Finally, 

the absorption was measured at 412 nm and 37°C. All experiments were performed 

in triplicate.  

Similar measurements were performed, in which the gelatin solutions were replaced 

by a series of solutions with known concentrations of thiol groups. A calibration 

curve, based on a dilution series (0.25 mM to 1.5 mM) of cysteine, was formulated.       

 

Indirect method  

 

20 mg ortho-phthalic dialdehyde (OPA) was dissolved in 10 ml ethanol. Next, the 

mixture was diluted to 50 ml with double distilled water. A second stock solution, 

containing 25 µl 2-mercaptoethanol in 50 ml borate buffer (pH 10) was then 

prepared. To 50 µl heated gelatin solution (1 g / 40 ml double distilled water), 950 µl 

double distilled water, 1500 µl mercaptoethanol solution and 500 µl of the second 

stock solution were added subsequently, followed by vigorously mixing. Finally, the 

absorbance at 335 nm was measured compared to a blank (i.e. mixture with water in 

stead of gelatin) at 37°C. All measurements were performed in triplicate. 

 

Analogous measurements were performed with n-butylamine (0.002 M to 0.01 M) 

standards to obtain a calibration curve. Calculation of the amount of free amine 

groups, remaining after the modification, enabled the determination of the 

modification degree of gelatin-SH.  
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Determination of average molecular weight 

 

Seven mg thiolated gelatin was dissolved in 1 ml phosphate buffer (pH 7.4) at 40°C. 

The average molecular weight and the molecular weight dispersity were obtained by 

means of size exclusion chromatography (SEC) at 80°C. Calibration occurred by 

means of pullulan standards.  

     

Synthesis of CS-MOD 

 
Chondroitin sulphate (1 g, 2 mmol disaccharide repeating units, 6 mmol hydroxyl 

functions, type C, Sigma-Aldrich) was dissolved in 50 ml double distilled water at 

room temperature. Subsequently, an excess methacrylic anhydride (8.94 ml, 60 

mmol, Sigma-Aldrich) was added dropwise. Simultaneously, the pH of the reaction 

mixture was adjusted to 8, by adding NaOH (5 N). The methacrylic acid/NaOH ratio 

was 1. The mixture was then stirred at room temperature for 2 hours. Finally, the 

solution was diluted with 50 ml double distilled water and transferred to a dialysis 

membrane (Spectra/Por® 3, Polylab, MWCO 3500 Da, 3 days), followed by 

lyophilization.  

 

CS-MOD with lower modification degrees was obtained by adding lower amounts of 

methacrylic anhydride.   

     

Characterization of CS-MOD 

Determination of degree of substitution 

 

The 1H-NMR spectrum of CS-MOD was recorded at room temperature in deuterated 

water using a Bruker WH 500 MHz. The degree of substitution was calculated 

comparing the integrations (I) of the characteristic peaks of the methacrylate-

substituent (I1.95 ppm, I5.76 ppm and I6.19 ppm) and the methyl group from the CS N-acetyl 

group (I2.04 ppm) using the following equation:  

 

DS (%) = 3 x 100 x I5.7 ppm / (I1.95 ppm + I2.04 ppm – 3 x I5.7 ppm) 
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Determination of average molecular weight 

 

Ten mg chondroitin sulphate methacrylate was dissolved in 1 ml phosphate buffer 

(pH 7.4) at room temperature. The average molecular weight and the molecular 

weight dispersity were obtained by means of size exclusion chromatography (SEC) 

at 80°C. Calibration occurred by means of pullulan standards.  

 

 

Synthesis of HA-MOD 

 

0.05 g hyaluronic acid was dissolved in 10 ml double distilled water at room 

temperature. Next, an excess methacrylic anhydride (10 equivalents, 803 µl) was 

added dropwise. Simultaneously, the pH of the reaction mixture was adjusted to 8, by 

adding NaOH (5 N). The ratio between the added amounts of methacrylic anhydride 

and NaOH was 1 to 1.12. The mixture was then stirred at room temperature for 2 

hours. Finally, the solution was diluted with 10 ml double distilled water and 

transferred to dialysis membranes (Spectra/Por® 4, MWCO 12,000-14,000 Da), 

followed by lyophilization.  

HA-MOD with lower modification degrees was obtained by adding lower amounts of 

methacrylic anhydride.   

 

 

Characterization of HA-MOD  

 

Determination of degree of substitution 

 

1H NMR-spectra of HA-MOD were recorded at room temperature in deuterated 

water. The degree of substitution could be obtained after comparison of the 

integrations of the characteristic peaks of the methacrylate-substituent (1.98 ppm, 

5.78 ppm and 6.21 ppm) and the integration of the characteristic peak corresponding 

to the methyl groups in native HA (2.06 ppm). Consequently, the degree of 

substitution could be calculated, as indicated by the following equation: 
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DS (%) = 100 x (integration at 5.78 ppm) / 

((sum of integrations at 1.98 and 2.06 ppm – 3 x (integration at 5.78 ppm)) / 3) 

 

 

4 Chapter III: Preparation and characterization of hydrogel 

films  

 

Hydrogel preparation 

 

Gel-MOD hydrogels 

 

Room temperature 

Gel-MOD DS 65% (1 g) was dissolved in 10 ml double distilled water at 40°C. Next, 

the photoinitiator Irgacure® 2959 (5 µmol, 2 mol% to the methacrylamides) was 

added, followed by injection of the mixture between two parallel glass plates, 

separated by a 1 mm thick silicone spacer (figure 9-1).    

 
 
 
 
 
 
 
 
 
 
 
 

Finally, the hydrogel was irradiated with UV-light (276 nm, 10 mW/cm2) for 20 

minutes on both sides. Crosslinked hydrogels were stored at 5°C until their 

evaluation.    

 

Cryogels 

Aqueous gelatin solutions with varying concentrations (0.2 - 2 w/v %) were prepared 

by adding double-distilled water to gelatin at 40°C. One freeze-thaw cycle included 

storage in the freezer at -30°C during 24 hours, followed by 24-hours storage in the 

rubber spacer 
glass plate 

filling gap 

 Figure 9-1: Cast for the preparation of 1 mm thick hydrogel films. 
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fridge at 5°C. As controls, non-frozen hydrogels were kept in the fridge at 5°C for the 

same incubation time.  

For the cryogels developed, possible effects of the cryogenic parameters applied 

(cooling rate, freezing temperature, thawing rate) were also evaluated. 

The cooling rate and freezing temperature were programmed using a Julabo, type 

FP40-ME (Julabo, Seelbach, Germany). In order to evaluate the influence of the 

cooling rate on the cryogels developed, all materials were cooled from 21°C to -20°C 

at a certain speed (0.1 - 1°C/min). Next, the samples were heated to 5°C at a 

thawing rate of 0.5°C/min. Finally, the scaffolds were stored in the fridge overnight at 

5°C. 

Gels with a varying thawing rate were prepared by freezing them first for 30 minutes 

at -20°C. Next, the cryogels were thawed to 2°C with a varying speed (0.06 – 

1°C/min) and stored overnight in the fridge at 5°C.  

Beside the physically crosslinked cryogels, chemically crosslinked cryogels were also 

prepared. To an aqueous solution of gel-MOD (DS 60%), 2 mol% photo-initiator 

Irgacure® 2959, as calculated to the methacrylamide side chains, was added. Gels 

were UV-cured in situ, during rheology, using a Novacure 2100 spot curing system 

(EXFO Photonic Solutions Inc., Hampshire, UK).  

 

 

Hydrogels based on gel-SH 

 

Gel-SH DS 70% (1.5 g) was dissolved in 10 ml double distilled water at 40°C. Next, 

hydrogen peroxide (0.5 equivalents, 14 µl) was added, followed by injection of the 

mixture between two silanized glass plates (figure 9-1).  

Silanization occurred by incubating the glass plates overnight into an aqueous 

solution of 2 v/v% H2SO4/HNO3, followed by an overnight incubation in toluene, 

containing 10 v/v% trimethylsilylchloride.   

Disulfide crosslinked gelatin hydrogels were stored at 5°C until their evaluation.  
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Hydrogels based on CS-MOD 

 

Chondroitin sulphate methacrylate (0.1-1g) with various modification degrees (5%- 

40%) was dissolved in 20 ml double distilled water at room temperature. Next, the 

photoinitiator Irgacure® 2959 (2 mol% to the methacrylates) was added, followed by 

injection of the mixture between silanized glass plates (figure 9-1). Finally, the 

hydrogel was irradiated with UV-light (276 nm, 10 mW/cm2) for 20 minutes on both 

sides or crosslinked in situ during rheology.  

Crosslinked hydrogels were stored at 5°C until their evaluation.    

 

 

Hydrogel characterization 

 

Dynamic oscillation measurements 

 

The visco-elastic properties of the hydrogels were evaluated by means of dynamic 

oscillation measurements at small deformations according to the following 

procedures: 

  

Deformation scan: The linear visco-elastic range was determined by isothermal 

measurements (20°C) of the elasticity and viscosity modulus G’ and G’’ as a function 

of the deformation (γ = 0.01 →1) and at constant frequency (1 Hz). 

Frequency scan: Mechanical spectra were recorded at a constant deformation of 

0.1% strain in the frequency range of 0.1-10 Hz at 20°C. 

Time scan: The gelation of the polymer mixture was followed as a function of time 

and temperature. The other parameters (1 Hz, 0.1% strain and FN = 0.1 N) were kept 

constant. 

Temperature scan: The temperature dependence of the elasticity modulus G’ or the 

viscosity modulus G’’ was measured by oscillation shear measurements during 

heating or cooling in the range of 20°C to 60°C (rate = 3.9°C/min). These 

measurements were performed at a constant frequency (1 Hz) and at a constant 

deformation (0.1% strain).  
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Cryogels were evaluated according to the following procedure. Oscillation 

measurements were performed using two parallel plates, with the upper plate having 

a diameter of 50 mm. Amplitude scans were performed at 5°C, at a frequency of 1 Hz 

and with a gap of 0.5 mm. Mechanical spectra were obtained at 5°C, using a strain of 

0.5% and a gap of 0.5 mm. G’ and G’’ were measured by means of oscillation 

rheology.   

 

Swelling experiments 

 

Hydrogel films (1 mm thick, Ø 32 mm) were, after weighing, incubated in 80 ml 

double distilled water, containing NaN3, at 37°C. At regular time points, the swollen 

discs were removed, dipped gently with paper and weighed. The measurements 

were expressed as %swelling and calculated, based on the following formula: 

 

swelling (%) = [ ( Wht – Wd0 ) / Wd0 ] x 100% 

 

Wd0 is the weight of dry gel at the initial time 0, Wht is the weight of hydrated gel at 

time t. 

 

If the hydrogels are utilized directly from the cast and the swelling studies are thus 

started with hydrated hydrogel films, extra discs, taken from the respective hydrogels, 

needed to be dried. The dry weight Wd0 at time 0, needed for the calculation of the 

swelling percentage, could be obtained based on this second hydrogel series. 

After equilibrium swelling (e.g. overnight), the hydrogel discs were removed, freeze-

dried and weighed again. The loss of dry mass of the hydrogel during incubation at 

37°C, enabled the calculation of the polymer gel fraction. The equation is based on 

the mass of the dry gel after incubation (= Wde) and the initial mass of the dry gel 

before incubation (= Wd0). Swelling experiments always were performed in triplicate. 

 

gel fraction (%) = ( Wde / Wd0 ) x 100% 
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Texturometrical analysis 

 

The hydrogel films (5 cm x 5 cm x 1 mm thick) were applied in the centre of the flat 

bottom plate with round excision (Ø 25 mm). The polymers were fixed onto the plate 

by applying a second plate with round excision (Ø 25 mm) on the gelatin films. The 

measurements were generally performed in triplicate at 21°C. 

 

When performing ‘texture profile analysis’ tests (TPA-test), the hydrogel was 

compressed twice with a cylindrical probe (Ø 3 mm) over a distance of 3 mm with a 

rate of 20 mm/min.  

When performing fracture tests, the cylindrical probe compressed the gel once until 

fracture occurred (20 mm/min). In the present work, fracture was defined as a 

decrease of the maximum force with 20%.   

 

     

5 Chapter IV: Preparation and characterization of gelatin 

scaffolds 

 

Scaffold preparation 

 

Gel-MOD with a degree of substitution of 60% was selected. As an example, the 

synthesis of 10 w/v% gelatin is given. In a typical experiment, 1 g modified gelatin 

was dissolved in 10 ml distilled water at 40°C, containing 2 mol% photo-initiator 

Irgacure® 2959 as calculated to the methacrylamide side chains. The solution was 

then injected into the mould of the cryo-unit (figure 3-22), after which the solution was 

allowed to gel for 1 hour at room temperature. In a final curing step, the hydrogel was 

exposed to UV-light (276 nm, 10 mW/cm2) for 2 hours.  

After placing the chemically crosslinked hydrogel in the cryo-unit, the temperature of 

freezing and the cooling rate were programmed with a Julabo, type FP40-ME. Under 

the bottom of the mould, a Peltier element (also known as thermo electric cooler, 

TEC) was positioned. This device enables a temperature gradient of maximum 30°C 

to be established between the top and the bottom of the mould. The TEC used, was 
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a DuraTec DT12 type from Marlow industries. The aluminum heat exchangers and 

the electronic TEC controller were designed, built and assembled by the technical 

workshop (CWFW) of the Ghent University – Faculty of Sciences. For the samples 

obtained by applying a temperature gradient, the temperature at the top of the mould 

was the highest. After incubating the sample for one hour at the final freezing 

temperature, the frozen hydrogel was transferred to a freeze-dryer to remove the ice 

crystals, resulting in a porous scaffold.     

Gelatin scaffolds with a dissolvable skin were prepared as described earlier. Before 

applying the cryogenic treatment, a 10 w/v % solution of non-modified gelatin was 

injected on the top and the bottom of the chemically crosslinked hydrogel, which was 

positioned in the mould of the cryo-unit. The resulting layer was 0.5 mm in thickness 

on a 5 mm thick hydrogel. After cryogenic treatment and freeze-drying of the 

hydrogels, the samples were incubated in deionised water at 40°C for 5 hours. 

Freeze-sections of the incubated scaffolds were made with a microtome and studied 

using optical microscopy. 

 

 

Scaffold characterization 

 

Water uptake capacity 

 

Freeze-dried gelatin samples (1 x 1 x 0.5 cm3) were weighed and then immersed in 

80 ml double distilled water at 37°C, in the presence of sodium azide to prevent 

bacterial growth. At regular time points, the hydrogels were removed from the 

solution, dipped gently with paper and weighed again. The degree of swelling was 

calculated, as described earlier in the present chapter. 

All data points are the mean of three separate measurements.  

 

 

Dynamic vapour sorption analysis  

 

The influence of the hydrogel structure on the degree of water vapour sorption was 

examined using a Dynamic Vapour Sorption apparatus. All experiments were 
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performed at 25°C or at 37°C. Dry nitrogen was passed through water in order to 

give 100% relative pressure of the solvent. The relative pressure of water flowing via 

the sample was controlled via a computer program which controls the appropriate 

flow to the wet (100% relative pressure water) and dry side (dry nitrogen).  

 

 

Mechanical testing of hydrogels  

 

The mechanical properties of the hydrogels, swollen to equilibrium, were studied 

using a TA500 Texture Analyser. The samples (1 x 1 x 0.5 cm3) were compressed by 

a cylinder (3 mm diameter) until a strain of 20% was reached. Next, the stress (MPa) 

corresponding to each strain (%) was plotted. The compression modulus was 

calculated from the slope of the initial linear part of the compression curve. Each 

measurement was performed in triplicate.   

 

 

In vitro degradation of hydrogels  

 

The in vitro degradation behaviour of the hydrogels was studied by incubating the 

freeze-dried samples (Ø 0.8 x 0.5 cm) in 0.5 ml Tris-HCl buffer (0.1 M, pH 7.4) in the 

presence of 0.005 % w/v NaN3 and 5 mM CaCl2 at 37°C. After 1 hour, 0.5 ml 

collagenase (200 U/ml), dissolved in Tris-HCl buffer, was added. At different time 

intervals, the degradation was stopped by addition of 0.1 ml EDTA solution (0.25 M) 

and subsequent cooling of the sample on ice. Next, the hydrogels were washed three 

times during ten minutes with ice-cooled Tris-HCl buffer and three times with double-

distilled water. The partially degraded scaffolds were tested for their mechanical 

properties using a texturometer. The corresponding compression moduli were 

calculated and plotted as a function of the degradation time. After texturometry 

analysis, the hydrogels were freeze-dried for the determination of the gel fraction (i.e. 

the polymer fraction that remains after degradation), as described earlier. 
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6 Chapter V: Preparation and characterization of scaffolds 

based on chondroitin sulphate and gelatin 

 

Scaffold preparation 

 

Using the gel-MOD and CS-MOD hydrogel precursors, different types of hydrogels 

were developed. As an example, the 10 w/v% gel-MOD hydrogels (further referred to 

as type I hydrogels) were obtained by dissolving 1 g gelatin type B, previously 

modified with methacrylamide side groups, in 10 ml double distilled water at 40°C 

containing 2 mol% photo-initiator Irgacure® 2959, as calculated to the amount of 

methacrylamide side chains. The solution was then injected into the mould of a cryo-

unit, after which the solution was allowed to gel for 1 hour at room temperature. In a 

final step, the hydrogel was exposed to UV-light (276 nm) for 2 hours, followed by 

applying a cryogenic treatment (cooling range on top side: 21°C until -30°C, cooling 

rate: 0.15°C/min). In addition, a temperature gradient (Ttop - Tbottom = 30°C) between 

top and bottom of the scaffold was applied during the freezing step. After incubating 

the sample for one hour at the final freezing temperature, the frozen hydrogel was 

transferred to a freeze-dryer to remove the ice crystals, resulting in a porous scaffold.  

CS-MOD based scaffolds and hydrogels containing both gel-MOD and CS-MOD 

(further referred to as respectively type III and type II scaffolds) were developed by 

applying the same procedure as for the gel-MOD hydrogels. For type II hydrogels, 

the amount of CS-MOD was varied between 1 - 5 w/v%, while keeping the gel-MOD 

concentration constant (10 w/v%).  

 

 

Characterization 

 

Phase separation phenomena upon mixing gel-MOD and CS-MOD were studied by 

AFM. Glass slides (ø 1 cm) were spincoated with aqueous solutions of 5 w/v% gel-

MOD with or without 1 w/v% CS-MOD during 90 seconds at 6000 rpm. Next, AFM-

studies were performed on the spincoated glass slides with a Nanoscope IIIa 

Multimode applying the ‘tapping mode’ in air. 
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7 Chapter VI: Alternative crosslinking procedures 

 

E-beam 
 

Gel-MOD with a degree of substitution of 60% was selected. 1 g modified gelatin was 

dissolved in 10 ml distilled water at 40°C. The solution was then injected into the 

mould of the cryo-unit, after which the solution was allowed to gel for 1 hour at room 

temperature. Finally, the samples were treated cryogenically as described in the 

previous paragraph.    

Both frozen and freeze-dried samples were irradiated in the absence of oxygen. The 

samples were irradiated with electrons from a 15 MeV linear electron accelerator. 

This accelerator delivered electron beams with a well-defined energy in the range 3-

15 MeV and with an average power up to 5 kW. For electron irradiation, an 80 µA 10 

MeV beam traversed a water-cooled vacuum window and 80 cm of air, so that the 

lateral dose distribution was flattened by scattering. The electrons that interacted with 

the samples had an energy of 8 MeV (that is 10 MeV minus the energy-loss in the 

vacuum window). The average duration for a 25 kGy irradiation was 400 s. Before 

every irradiation, a dosimetric calibration was performed. 

 

 

Crosslinking by use of redoxinitiators 

 

Cerium ammonium nitrate 

 

10 w/v% gel-MOD hydrogels were prepared as described earlier. Freeze-dried 

scaffolds (1 g) were immersed in 20 ml double distilled water in the presence of 10 

mol% (13 mg) cerium ammonium nitrate for varying incubation times (1 – 24 h).  

Alternatively, 10 mol% cerium ammonium nitrate (13 mg) was added to 10 ml double 

distilled water, containing 1 g gel-MOD at 40°C. Finally, a cryogenic treatment was 

applied, followed by lyophilization and 1H-NMR analysis.   
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Ammonium persulphate + TEMED 

 

1.4 g gel-MOD was dissolved in 14 ml double distilled water at 40°C in the presence 

of 10 mol% ammonium persulphate (8 mg) and 26 µl TEMED. Next, a series of 

samples was treated cryogenically as described earlier, followed by overnight 

incubation at -30°C and lyophilization. A second series of samples was incubated 

overnight at 5°C without applying a previous cryogenic treatment.  

Finally, the gel fractions were determined after incubation of the freeze-dried samples 

in double distilled water at 37°C.  

 

 

Fenton’s reagent 

 

Cryo-treated and freeze-dried gel-MOD scaffolds (1 g) were incubated for 1 to 24 

hours in 20 ml double distilled water in the presence of 10 mol% iron (II) D-gluconate 

dihydrate (12 mg) and 7.2 µl H2O2. Additionally, 44 mg ascorbic acid was added in a 

second series of experiments.  

Finally, the gel fractions were determined after incubation of the freeze-dried samples 

in double distilled water at 37°C.  

Alternatively, 10 mol% iron (II) D-gluconate dihydrate (12 mg) and 7.2 µl H2O2 (with 

and without 44 mg ascorbic acid) were added to 10 ml double distilled water, 

containing 1 g gel-MOD at 40°C. Finally, a cryogenic treatment was applied, followed 

by lyophilization and 1H-NMR analysis.   

 

 

Crosslinking with EDC  

 

Cryogenically treated and freeze-dried gelatin scaffolds were incubated overnight in 

9:1 acetone/H2O mixtures (25 ml) in the presence of 45 mg EDC with or without 5.4 

mg NHS. Next, the scaffolds were washed two times in double distilled water, 

followed by freeze-drying and characterization using SEM and µ-CT.      
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8 Chapter VII: Interaction between gelatin and extra-

cellular matrix components 

 

Surface plasmon resonance 

 

The interaction between gelatin and various ECM components was measured by 

surface plasmon resonance (SPR) measurements. All measurements were 

performed at 25°C using phosphate buffer (0.05 M, pH = 7.4). The flow rate was set 

to 50 µl/min. The sensor surface was spincoated using 90 µl of an aqueous 5 w/v% 

gel-MOD (degree of substitution 60%) solution at a speed of 6000 rpm during 90 

seconds. The presence of gelatin on the sensor chip after spincoating and the 

stability of the applied layer after incubation in SPR running buffer, was confirmed by 

ATR-FTIR measurements (Biorad FT-IR spectrometer FTS 575C) and contact angle 

measurements. 

After spincoating, the gelatin coated sensor was inserted into the apparatus. After 

stabilisation of the baseline, 50 µl of various concentrations of a 

protein/glycosaminoglycan solution was injected. In a final step, after stabilisation of 

the signal, 50 µl of an antibody solution (50 mg/l for anti-fibronectin and 200x dilution 

of stock for anti-chondroitin sulphate) was injected. All values reported are relative to 

a reference flow channel.  

 

 

Quartz Crystal Microbalance 

 

Measurements were done using the QCM-D technique (Q-Sense E4, Q-Sense AB, 

Göteborg, Sweden). Multiple frequency and dissipation data, preferably from three 

frequencies, were required for the accurate modelling. QCM crystals were spincoated 

with 90 µl of a 5 w/v% gel-MOD (degree of substitution 60%) solution at a speed of 

6000 rpm during 90 seconds. Next, the gelatin coated sensors were inserted into the 

QCM apparatus. After stabilisation of the baseline (600 s), various fibronectin 

concentrations (1 and 25 µg/ml) were rinsed over the surface during 1100 s. After 
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1700 s, the system was flushed with PBS and after 2000 s, anti-fibronectin (0.051 g/l) 

was injected during 1300 s. All experiments were performed at 25°C.  

 

 

Radiolabelling experiments 

 

The labelled fibronectin (125I-Fn) was obtained by following a specific protocol 

described below.  

Approximately 1 mg fibronectin was incubated with carrier-free 10 µl 125I (1 mCi) in a 

reaction vessel (5 ml) coated with ? µg iodogen for 15 minutes at room temperature. 

The reaction mixture was then removed from the oxidant and free radioactivity was 

removed by gel filtration through PD-10 columns (?) equilibrated with PBS. The 

specific radioactivity obtained immediately after labelling was 1.12 µCi per µg protein. 

The stock solution was finally diluted with PBS to the final concentrations, used in the 

experiments.       

Hydrogel films (Ø 7 mm, type A and type B) and hydrogel scaffolds (0.5 mm 

thickness, Ø 7 mm) were incubated for 1 hour in respectively 500 µl and 1 ml 

phosphate buffered saline (pH 7.4) (PBS), containing various iodine-labelled 

fibronectin concentrations (1-200 µg/ml). Next, the hydrogels were removed and 

washed three times in 500 µl PBS for 5 minutes. Finally, the radioactivity of the 

incubating solution, the three washing solutions and the hydrogels was measured. 

The mass of bound fibronectin was determined based on the counts of the hydrogels 

compared to the total amount of added counts (i.e. from incubating and washing 

solutions). All experiments were performed in triplicate.  

 

 

Water uptake capacity study 

 

Freeze-dried gelatin samples (1 x 1 x 0.5 cm3) were weighed and then immersed in 

80 ml double distilled water at 37°C, in the presence of sodium azide to prevent 

bacterial growth. At regular time points, the hydrogels were removed from the 

solution, dipped gently with paper and weighed again. The hydration properties were 

calculated using the following equation: 
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% Swelling = [(Wt – W0)/W0] x 100% 

 

W0 = initial weight of the dry scaffold 

Wt = weight of the hydrated/swollen hydrogel at time point t. 

 

All data points were the mean of three separate measurements.  

 

 

9 Chapter VIII: Biological Evaluation 

 

Blood compatibility studies 

 

The RBC were isolated from horse blood and washed three times with HEPES buffer 

(20 mM, 150 mM NaCl, pH 7.4) at room temperature. A 2% RBC solution was used 

within 24h after collection. The various scaffolds (Ø 0.5 cm) were added to the RBC 

and the solutions were allowed to stand for 24h at 37°C. The supernatants were 

centrifuged at 4000 rpm for 5 min. Haemolysis was investigated and quantified by 

measuring the haemoglobin release at 545 nm. The readings were compared with 

Triton X-100 (1%) and HEPES buffer which provided respectively the 100 and 0% 

values, so that haemolysis could be assessed according to the formula: 

 

haemolysis (%) = 
haemolysis

blanksample

A

AA

%100

x 100% 

 

Cell cultivation 

 

The in vitro cell biocompatibility of both types of scaffolds was evaluated by applying 

a panel of human cells on the hydrogels: endothelial cells (human umbilical vein 

endothelial cells, HUVEC), osteoblasts (MG-63 and CAL-72), human foreskin 

fibroblasts, glial cells (U373-MG) and epithelial cells (HELA). All cells used were 

typically passaged twice weekly. HUVEC were isolated from umbilical veins as 

described earlier by Jaffe et al. The HUVEC were propagated in M199 medium 

_ 
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(Sigma) supplemented with 20% foetal calf serum (FCS) (PAA), 1% 

Penicillin/Streptomycin (Gibco), 0.34% Glutamax (Gibco), 25 µg/ml endothelial cell 

growth factor (Beckton Dickinson) and 25 µg/ml sodium heparin (Sigma-Aldrich) at 

37°C (5% CO2) on gelatin-coated (Sigma-Aldrich, 0.2 %) cell culture surfaces. All 

experiments were performed with cells in passage 2 or 3. 

MG-63 and U373-MG were cultured in EMEM (Minimum Essential Medium Eagle, 

Sigma) supplied with 10% FCS, 1% Penicillin/Streptomycin (Gibco) and 1% 

Glutamax (Gibco) at 37°C (5% CO2). 

CAL-72 and human foreskin fibroblasts were cultured in DMEM (Dulbecco’s Modified 

Eagle Medium, Sigma) supplied with 10% FCS, 1% Penicillin/Streptomycin (Gibco) 

and 2% Glutamax (Gibco) at 37°C (5% CO2). 

HELA cells were cultured in RPMI medium (Gibco) supplied with 5% FCS, 1% 

Penicillin/Streptomycin (Gibco) and 1% Glutamax (Gibco) at 37°C (5% CO2). 

 

 

Cell seeding on the hydrogels 

 

Prior to cell seeding, the freeze-dried hydrogels were incubated in cell culture 

medium with serum for two hours at room temperature. The swollen hydrogels were 

then cut with a scalpel to 15 mm x 4 mm x 3 mm (L x W x H) cubes. For all 

experiments, the initial number of cells seeded on the biomaterial (L x W x H, 15 mm 

x 4 mm x 3 mm) was 160,000. Cell seeding was performed by drop seeding. For   

type I hydrogels, cells were seeded at the site of the largest pores. To immerse the 

gelatin hydrogels completely with medium and thus to prevent them from floating, the 

hydrogels were ‘fixed’ to the bottom of 6-well plates using silicone flexiPERM rings 

(Vivascience). The amount of medium required to prevent the flexiPERM rings (and 

thus the hydrogels) from floating was 3 ml. After one day, the flexiPERM rings were 

removed and the hydrogel samples were transferred to a 12 well plate, flipped and 

incubated with 2 ml fresh medium. Culture medium was changed twice a week. 
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Cell visualization within the hydrogels 

 

Cells seeded on the hydrogel were visualised within the gelatin hydrogels at different 

time points using confocal microscopy. Cell-seeded hydrogels were first incubated 

with calcein-AM (1 µg/ml) for 5-10 minutes at 37°C in the dark. Calcein-AM is a cell-

permeable compound which is taken up by viable cells and subsequently hydrolysed 

by intra-cellular esterases. Upon hydrolysis, calcein-AM becomes highly fluorescent 

and cell-impermeable which make it suited for vital cell visualisation purposes. After 

the incubation step, the hydrogels were transferred into a petri-dish for confocal 

microscopy analysis (Leica TCS NT). 

 

 

Immunofluorescent staining of cell seeded hydrogels 

 

At different time points after cell seeding, HUVEC were fixed by incubating the cell-

seeded hydrogels in a MeOH/EtOH mixture (2/1) for 10 minutes at room 

temperature. After a washing step with PBS (3 times, 5 minutes in total), the cells 

were incubated with the first antibody (either mouse anti-E-selectin or mouse anti-

PECAM-1, 1:50 dilution in 1% PBS/BSA) for one hour at room temperature. After the 

second washing step with PBS, the cells were incubated with the second antibody 

(goat anti-mouse Alexa 488, 1:1000 dilution in 1% PBS/BSA) for one hour in the dark 

at room temperature. After the third washing step with PBS, cell nuclei were stained 

with DAPI for 5 minutes in the dark at room temperature. After a final washing step 

with PBS, E-selectin or PECAM-1 were visualized using confocal microscopy. For the 

gene expression studies, HUVEC seeded on gelatin coated tissue culture plastic 

were taken as controls. For the E-Selectin expression studies, HUVEC seeded 

hydrogels and HUVEC seeded on gelatin coated tissue culture plastic stimulated for 

4 hours using lipopolysaccharide (LPS, 1:1000 dilution in cell medium from a 1 mg/ml 

LPS stock) were selected as additional controls.  
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