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Evaluating suitability of the least risk path algorithm to support 

cognitive wayfinding in indoor spaces: an empirical study 

Abstract 
Over the last couple of years, applications that support wayfinding in indoor spaces have 

become a booming industry. Finding one’s way in complex 3D indoor environments can still be a 

challenging endeavor, partly induced by the specific indoor structure (e.g. fragmentation, less 

visibility, confined areas). Appropriate algorithms that help guide unfamiliar users by providing 

‘easier to follow’ route instructions are so far mostly absent indoors. In outdoor space, several 

alternative algorithms exist, adding a more cognitive notion to the calculated paths and as such 

adhering to the natural wayfinding behavior (e.g. simplest paths, least risk paths). The aim of 

this research is to extend those richer cognitive algorithms to three-dimensional indoor 

environments. More specifically, the focal point of this paper is the application of the least risk 

path algorithm, i.e. an algorithm developed to minimize the risk of getting lost, to an indoor 

space. This algorithm is duplicated and extensively tested in a complex multi-story building by 

comparing the quality of the calculated least risk paths with their shortest path alternatives. The 

outcome of those tests reveals non-stable results in terms of selecting the least risky edges in 

indoor environments, which leads to the conclusion that the algorithm has to be adjusted to the 

specificities of indoor space. Several improvements for the algorithm are proposed and will be 

implemented as part of future work to improve the overall user experience during navigation in 

indoor environments.  
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1  Introduction 
Finding one’s way in unfamiliar environments can sometimes turn out to be a challenging 

endeavor as people get disoriented and lose their way. Golledge (1999) defines being lost as ‘a 

state which occurs when the wayfinding process fails in some way’. In behavioral and cognitive 

sciences, navigation processes have already been widely studied (both indoor and outdoor) with 

navigation typically defined as cognitively consisting of locomotion and wayfinding components 

(Montello, 2005). Wayfinding is thereby the process of determining and following a route 

between origin and destination and is often guided by external aids (Golledge, 1999). In the 

context of this paper, we focus on these guidance aids that can improve wayfinding and not on 

the cognitive act of wayfinding itself. 

The setting for our research is limited to indoor spaces as wayfinding research in indoor 

environments has repeatedly demonstrated the challenges of successfully performing navigation 

tasks in a complex three-dimensional space (e.g. disorientation after vertical travel, less visual 

routing aid, deficient cognitive map creation) (Hölscher et al., 2009). Appropriate guidance to 

simplify the act of wayfinding is hereby a crucial factor, especially for unfamiliar users that will 

rely more heavily on external indoor navigation aids. Such navigation aids come in various 

forms, but all contain some kind of model of space enhanced with routing instructions and 

localization technology (Nagel et al., 2010). In the last decade, a wide variety of indoor 

navigational models (Brown et al., 2013) have been developed, but a general framework still has 
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to reach full maturity (Nagel et al., 2010). Apart from these typical network models based on 

traditional graph theory, the Space Syntax society opened up research on aspects of visibility 

and connectivity in spatial building configurations and their impact on pedestrian movement 

(e.g. Parvin et al., 2007; Turner et al., 2001). These models will however not be considered in the 

current research. 

Beside navigational models, navigation guidance also relies on appropriate and accurate 

algorithmic support. Algorithms for 3D indoor navigation are currently restricted to Dijkstra 

(1959) or derived shortest path algorithms (e.g. Kwan & Lee, 2005; Thill et al., 2011). However, 

the results of those algorithms often exhibit non-realistic paths (e.g. using complex intersections, 

avoiding main walking areas) in terms of what an unfamiliar indoor wayfinder would need, to 

navigate a building comfortably. To date, few researchers have attempted to approach 

algorithms for indoor routing differently, for example incorporating dynamic events (Musliman 

et al., 2008), or modelling evacuation situations (Atila et al., 2013; Vanclooster et al., 2012). In 

contrast, for outdoor environments, several ‘cognitive’ algorithms (e.g. paths minimizing route 

complexity (Duckham & Kulik, 2003; Richter & Duckham, 2008), hierarchical paths (Fu et al., 

2006)) have been developed that add a more qualitative description to routes by using a more 

cognitive cost heuristic than traditional shortest path algorithms (Table 1). 

Table 1: Comparison of several cognitive algorithms and their cost heuristic 

Algorithm Cost heuristic (minimization criterion) 

Shortest path algorithm (e.g. Dijkstra, 1959) Path length 

Hierarchical shortest path algorithm (Fu et al., 2006) Computational time 

Simplest path algorithm (Duckham & Kulik, 2003) Intersection complexity (number of edges + intersection 

type) 

Simplest path algorithm (Mark, 1986) Path length + intersection complexity 

Simplest instruction algorithm (Richter & Duckham, 

2008) 

Intersection complexity + spatial chunking 

Least risk path algorithm (Grum, 2005) Path length (50%) + Risk value (50%) 

 

These ‘cognitive’ algorithms have the aim to simplify wayfinding by providing routes that are 

easier to follow, more intuitively correct, and in general more adhering to how people 

conceptualize routes to unfamiliar users (Tsetsos et al., 2006). Several cognitive studies have 

indeed indicated that during routing, humans value equally as much the form and complexity of 

route instructions as the total path length (Duckham & Kulik, 2003). These algorithms have not 

yet been implemented in indoor cases, although the need for cognitively rich algorithms is even 

more pronounced in indoor space compared to outdoors. As such, the main goal of our research 

is to translate existing outdoor ‘cognitive’ algorithms to an indoor environment and provide 

indoor route calculations that are more aligned with indoor wayfinding behavior. In a different 

part of our study, the implementation of the simplest path algorithm in indoor environments is 

being considered. 

However, this paper explicitly focuses on the implementation and testing of the least risk 

algorithm of Grum (2005) in a three-dimensional indoor environment. The least risk path 

algorithm, minimizing the risk of getting lost, is especially interesting for indoor application as 

the structure of indoor spaces induces more getting-lost episodes (Hölscher et al., 2006). An 

algorithm lowering the probability of getting lost by taking less complex paths could as such 
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prove valuable in reducing indoor wayfinding difficulties. Specifically, we want to investigate 

whether the results of the least risk path algorithm have the same connotation and importance 

in indoor spaces as in its original outdoor setting. Also, the least risk path algorithm is analyzed 

for its applicability in providing route instructions that adhere better to the natural wayfinding 

behavior of unfamiliar users in indoor space. 

The remainder of the paper is organized as follows: section 2 elaborates on the definition of risk 

in the algorithm and for indoor wayfinding; in section 3, a case study is presented to evaluate the 

algorithm for its suitability in supporting indoor cognitive routing; section 4 discusses the 

conclusions from our study and possible improvements for the algorithm.  

 

2  Defining the risk of getting lost in indoor wayfinding 

2.1  Least risk path algorithm 

The least risk path algorithm as described by Grum (2005) calculates the path between two 

points where a wayfinder has the least risk of getting lost by selecting all edges and intersections 

with a minimal risk value. This risk value is measured at every intersection and is defined by the 

cost for taking a wrong decision at that intersection. The algorithm assumes that (1) the person 

taking the path is unfamiliar with its environment, and (2) when taking a wrong path segment, 

the wayfinder notices this immediately and turns back at the next intersection (Grum, 2005). 

While these assumptions might be quite strict, Grum (2005) also acknowledges that the 

algorithm needs to be tested for its representativeness of the actual behavior of users. 

The formula for the calculation of the risk value at intersection i and the total risk of an entire 

path p is as follows: 

                                            (1) 

              
                           

                   
   (2) 

Equation 2 indicates that the risk value is dependent on the number of edges converging on the 

decision point, combined with the length of each individual segment and is as such a measure of 

average length of a wrong edge at that intersection. The multiplication by two points at the idea 

that, when taking a wrong edge, the user is supposed to return immediately along the same edge, 

traversing that edge twice. By defining the risk value in this way, the algorithm favors paths with 

combined long edges and easy intersections. The formula for the total risk of a path (Equation 1) 

balances the sum of all intersection-based risk values with the length of the actually taken edges. 

Both elements contribute in this case equally to the total risk of a certain path.  

The algorithmic structure of the least risk path algorithm is similar to Dijkstra’s shortest path 

algorithm with a continuous loop over all nodes including the following three consecutive steps:  

1  Detect the next smallest node 

2  Change the selected node to the next smallest node 

3  Adjust cost calculation for adjacent nodes (Fig. 1&2) 

However, in the third step, the least risk path differs significantly from the Dijkstra algorithm 

since the cost value is not only dependent on the length of the edge but also on the risk value of 
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each intersection that is passed which in turn is dependent on the previous route taken and the 

length of its adjacent edges. The following steps in the ‘adjust cost calculation’ are consecutively 

executed: 

Calculate the number of edges leaving from selected node and select each edge 

successively 

CASE A (Endnode of selected edge has not been selected): 

 STEP 1: Calculate total risk values for endnode based on all possible routes 

arriving in selected node 

 STEP 2: Store the minimal value by comparing it with the currently stored 

value in endnode and add the node to the least risk path 

CASE B (Endnode of selected edge has been selected BUT adjacent nodes have not been 

selected): 

 STEP 1: Calculate the number of edges leaving from endnode and select each 

edge successively 

 STEP 2: Calculate total risk values for endnode based on all possible routes 

arriving in selected node and the connection between the selected node and 

its adjacent node 

 STEP 3: Store the minimal value by comparing it with the currently stored 

value and add the node to the least risk path 

Fig. 1: Algorithm for the adjust cost calculation for adjacent nodes 

Fig. 2 shows an example network with two consecutive situations during the execution of the 

‘adjust cost calculation’. Fig. 2 (left) illustrates the case where Node4 is selected as next smallest 

node in the network. Node4 has a least risk path of [Node0-Node2-Node4]. From Node4 all 

edges leaving this node (i.e. edges a, b, c) are consecutively chosen and new total risk values are 

calculated for their respective endnodes (i.e. Node3, 5, 6). To calculate the total risk value for 

Node5 with path [Node0-Node2-Node4-Node5], the risk value of Node4 together with path 

length b is added to the total risk value of Node4. Node5 and Node6 are in this case calculated 

for the first time (Case a). Node3 has been calculated before with path [Node0-Node1-Node3]. 

These previous total risk values are compared with the newly calculated values for the path 

[Node0-Node2-Node4-Node3] and only those values are stored that are the smallest in total cost 

(Case a). 

 
Fig. 2: Two example situations of the implementation of the adjust cost calculations 

algorithm for adjacent nodes 

Fig. 2 (right) illustrates the next situation in the algorithm. From all nodes being calculated but 

not yet selected (i.e. Node3, 5, 6), Node3 has the smallest cost values and is the next selected 

node. His least risk path is hereby defined as [Node0-Node1-Node3]. Again, all neighboring 

edges (a, d) and endnodes (Node7, 4) are chosen. Node7 has not yet been selected nor calculated 

(case a) and will be calculated as a path [Node0-Node1-Node3-Node7]. As Node4 has already 
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been calculated and selected (Case b), Node5 and Node6 are being calculated with previous 

pathnodes [Node0-Node1-Node3-Node4] as this path could possibly be less costly than through 

(the already saved cost of) path [Node0-Node2-Node4]. The total risk values for both 

possibilities are compared in case b and the smallest value is stored. 

Given the fact that the only difference with the Dijkstra algorithm is in the cost calculation, and 

there the additional calculations only affect the amount of edges in the selected node, the 

computational complexity is similar to Dijkstra, being O(n2). 

2.2  Theoretical definition of the risk of getting lost in wayfinding research 

As defined in the previous section, the goal of the least risk path algorithm is to minimize the 

risk of getting lost. However, Grum’s algorithm does not clearly state what a ‘minimal’ risk 

exactly signifies, especially given the complexity of indoor wayfinding for unfamiliar users. 

Several methodologies can be suggested to determine the actual riskiness of paths, ranging from 

physically testing the accurateness with real test persons, to simulating the wayfinding problems 

in an agent-based environment. For this paper, as a benchmark we selected a series of objective 

parameters that have been demonstrated, in previous wayfinding literature, to contribute to the 

risk of getting lost in both indoor and outdoor space.  

It is believed that three factors contribute to the ease of getting lost in buildings during 

wayfinding: the spatial structure of buildings, cognitive maps created during wayfinding and the 

individual strategies and spatial abilities of the user (Carlson et al., 2010; Hölscher et al., 2006). 

At this point, we only account for the structure of the building itself for several reasons. First, 

Hölscher et al. (2006, p. 284) specifically state: ‘many have wayfinding problems because of 

architecture that only rudimentarily accounts for human spatial cognition’. Peponis, et al. (1990) 

agree that the degree of wayfinding is mainly dependent on configurational factors. Second, an 

algorithm that supports wayfinding in various building settings and for various user typologies 

should be independent of specific spatial-cognitive abilities of a certain user. Also, not all users 

of a building are at the same level in terms of ability, strategy selection or experience (Carlson et 

al., 2010). Third, the algorithm is developed for aiding unfamiliar users in their wayfinding tasks. 

The users therefore have not yet built up a cognitive map of the environment. As such, the 

parameters, proposed as benchmark, define the theoretical risk of getting lost during wayfinding 

and all relate specifically to the spatial building structure itself (Table 2). 

Table 2: Benchmark parameter set and their significance for wayfinding 

Benchmark parameter Significance for wayfinding 

Route efficiency Total path length (Hölscher et al., 2011) 

Route complexity Number of turns and streets used (Hölscher et al., 2011), also referred to as step 

depth (Hölscher et al., 2006) 

Number of curves In wayfinding, the direction strategy, often used by familiar users, continuously 

minimizes the angle between destination and current position (Hölscher et al., 2011). 

Less curves help following this strategy and maintain indoor orientation. Unfamiliar 

users, following a planned strategy, also benefit from fewer curves to feel more at 

ease and keep orientation.  

Corridor width Wide streets are considered more salient (Hölscher et al., 2011). Equivalent in indoor 

space, the selection of wider corridors can be important to reduce the risk of getting 

lost. 
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Redundancy I.e. a decrease in decision points that the user has to pass. Fewer nodes along a path 

have proven to decrease wayfinding difficulties (Peponis et al., 1990). 

Integration value Quantifies to what extent each space is directly or indirectly connected to other 

spaces. People naturally move to the most integrated nodes when navigating through 

a building (Peponis et al., 1990). Novices rely even more on following the paths of 

high connectivity and integration (Hölscher et al., 2012). 

Probability of path choice 

at an intersection 

I.e. the weighting of which paths are most likely to be taken. An uneven distribution of 

probability exists at each intersection, especially given the fact that more integrative 

spaces naturally gather more people (Peponis et al., 1990). 

Number of visible 

decision points 

Unfamiliar participants, during the initial exploration of a building, rely mostly on local 

topological qualities, such as how many additional decision points could be seen from 

a given node (Haq & Zimring, 2003). Also, a lack of survey places with open views 

and long lines of sights has shown to enhance stops and hesitations (Hölscher et al., 

2012). Apparent dead ends often lead to misunderstanding and make people less 

reluctant to choose this path (Hölscher et al., 2012). 

These parameters (Table 2) all influence the chances of getting lost during wayfinding and will 

help determine whether the proposed least risk paths coincide with theoretically defined 

parameters of riskiness. However, the individual weighting of these parameters still has to be 

decided on. Therefore, we currently use this benchmark set as a way to analyze several example 

routes that have been calculated (Section 3.3.2). A more elaborate evaluation is planned as 

future work for adjusting the initial cognitive algorithm. 

 

3  Case study 

3.1  Dataset: creation and model 

The applicability of the least risk path algorithm for use in complex indoor environments is 

evaluated by thoroughly testing it in a case study building. The selected indoor environment is 

the ‘Plateau-Rozier’ building of Ghent University. It is a complex multi-story building with 

several wings and sections, arranged over different floor levels, not all of them being 

immediately accessible. It is assumed that the mapped indoor space is complex enough with 

many corners and decision points to assume reasonable wayfinding needs for unfamiliar users. 

Indeed, previous research executed in this building has shown that unfamiliar users can have 

considerate difficulty recreating a previously shown route through the building (Viaene & De 

Maeyer, 2013). 

For application of the least risk path algorithm, the original floor plans have been manually 

converted into a three-dimensional indoor network structure (Fig. 3). Automatic derivation of 

indoor networks has long been focused on as one of the problematic areas for indoor navigation 

applications. Recent efforts have shown possibilities of automatically assigning nodes to each 

room object and connecting them when they are connected in reality (Anagnostopoulos et al., 

2005; Meijers et al., 2005; Stoffel et al., 2008). However, the development of a comprehensive 

methodology for automatic network creation requires a thorough foundation and agreement on 

the appropriate and optimal (i.e. user friendly) network structure of indoor environments which 
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supports the user in his navigation task (Becker et al., 2009). Up to this point and as far as we 

know, this is still missing in indoor navigation research. 

 
Fig.3: Floor plan of the ground floor (left) and first floor (right) with their 3D indoor 

network. 

For this research, only the ground floor and first floor were considered. The network structure is 

chosen to be compliant to Lee’s Geometric Network Model (Lee, 2004) as this structure is widely 

accepted and is currently put forward as indoor network model in the IndoorGML standard 

proposal (OGC, 2013). In this model, each room is transformed into a node, forming a 

topologically sound connectivity model. Afterwards, this network is transformed into a 

geometric model by creating a subgraph for linear phenomena (e.g. corridors), which enables 

network analysis. The position of the node within the rooms is selected to be the geometrical 

center point of the polygons defining the rooms. This premise implies that the actual walking 

pattern will sometimes not be conform to the connectivity relationships in the network inducing 

small errors in the calculations of shortest and least risk paths. We will need to verify whether or 

not this error is significant in the total cost of certain paths. The selection of corridors to be 

transformed into linear features is based on the map text labels indicating corridor functionality. 

These areas also appear to be perceived as corridors when inspecting the building structure 

itself in the field. Obviously, this topic is depending on personal interpretation and choice. 

Therefore, in future research, the dependency of the performance of cognitive algorithms on the 

indoor network topology will be investigated. 

3.2  General results of analysis 

The goal of this case study is to assess the least risk path algorithm for use in indoor 

environments and this by comparing the calculated paths of the least risk path algorithm with 

the results of the shortest path algorithm. More specifically, we want to (1) compare how much 

the least risk paths decrease the risk of getting lost compared to the shortest paths, (2) if the 

least risk path algorithm actually reduces the navigational complexity of the paths and (3) if the 

results of the least risk path calculations indoor have a similar improvement to their shortest 

path equivalents compared to the outdoor case.  

The entire dataset of the case study building consists of more than 600 nodes and more than 

1300 edges. This required a computation of almost 800,000 paths to exhaustively calculate all 

possible paths between all nodes for both the shortest path and least risk path algorithm. This 

will also include trivial paths (e.g. between close neighbors) without any path difference. 

However, we chose to compare all paths instead of defining an arbitrary distance without any 



9 

theoretical foundation. For each path, the total length and risk values for the intermediate nodes 

are calculated in both the shortest and least risk path algorithm.  

3.2.1 Path length and risk value comparison 

Over the entire set of results, on average the difference in path length between least risk paths 

and their respective shortest paths is found to be around 4.5 m with a decrease in risk value of 

15.6 m (i.e. the average sum of the lengths of wrong edges at each intersection along the path). 

These values align with the original definition of both algorithms and their different cost 

minimization criterion. The length of a path described by the least risk path algorithm (total risk 

value minimization) is designed to be equal or longer than its equivalent shortest path (length 

minimization) by providing a less risky detour. The least risk path algorithm will more likely 

calculate routes with fewer intersections, away from the major corridors where many choices 

appear, while the shortest path will go for the most direct option ignoring the complexity of the 

individual intersections.  

Over the entire dataset, a least risk path indoor is on average 4% longer than its respective 

shortest path. Although 53% of least risk paths are longer than their equivalent shortest paths, 

the majority (almost 99%) of paths are less than a quarter longer (Table 3). This indicates that 

while half of all paths seem to deviate from the shortest path to obtain a theoretically less risky 

route (otherwise their lengths would be equal), those deviations are mostly limited in size. 

Taking into consideration that the total path length of both shortest and least risk paths in this 

indoor space are already quite short (109.42 m to 113.89 m with standard deviations of 45.69 m 

and 48.54 m respectively) due to the restricted building size, the found limited path length 

differences are of even less significance. Most deviations from the shortest path will only have a 

single node-edge couple difference. These results point to an at first sight almost equivalent path 

choice by both algorithms, implying that either (1) the shortest path algorithm is already 

selecting paths that are least risky to get lost on or, (2) they give an indication that the least risk 

path algorithm is actually not calculating less risky routes and as such might not be well defined 

for use in indoor spaces. A further examination of both ideas follows in sections 3.2.2 and 3.3. 

Table 3: Classification of path length increase 

Length increase Number of paths Ratio of total paths 

Equal path lengths 160,984 46.64 

]0%-5%] 87,681 25.40 

]5%-10%] 50,773 14.71 

]10%-25%] 41,196 11.94 

]25%-50%] 4,363 1.26 

> 50% 159 0.05 

TOTAL 345,156 100.00 

3.2.2 Navigational complexity analysis 

As the aim of the least risk path algorithm is to lower the total risk of getting lost, the type of 

selected paths and more specifically their navigational complexity should be lowered given an 

increased total path length. Navigational complexity is in this case defined by the number of 

intersections passed and the average number of choices at intersections. Table 4 shows that for 

both the number of intersections and the average number of choices at an intersection the 

results are lower in the case of the least risk path algorithm than for the shortest path algorithm. 
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However, the differences are quite small which demonstrates that the least risk path algorithm 

does not significantly decrease the navigational complexity of the final path. 

Table 4: Summary of the navigational complexity results over the entire dataset 

 Shortest Path algorithm Least Risk Path algorithm 

Number of intersections 18.16 17.84 

Average number of choices at an intersection 3.09 3.03 

A classification of the paths according to length increase (Table 5) shows (1) that for both risk 

value and average number of choices the values gradually decrease for least risk paths with 

increasing path length differences. These results are as expected as for having a significant 

deviation from the shortest path, the least risk path should provide in avoiding significantly 

riskier areas to get lost than the alternative paths. Although even with less complex intersections 

for the least risk path algorithm, the differences are still almost negligible. Remarkably, (2) for 

the number of intersections, least risk paths with large increases in total path length show an 

increase in number of intersections compared to the shortest paths. As the initial point of the 

algorithm is to lower the total risk of getting lost as a whole, even with a path length increase it 

should contain fewer and less complex intersections. This is at this point not the case for the 

number of intersections. Again, all differences appear to be quite small, validating the originally 

raised questions about the applicability of the original least risk path definition for indoor usage. 

Table 5: Differences following the classification in path length increase 

Length increase 
% increase in Risk 

Value 

% increase in number of 

intersections 

% increase in average 

number of choices 

Equal path lengths 0.00 0.00 0.00 

]0%-5%] -0.18 -0.04 -0.02 

]5%-10%] -0.34 -0.04 -0.04 

]10%-25%] -0.51 -0.02 -0.06 

]25%-50%] -0.70 0.05 -0.09 

> 50% -1.05 0.08 -0.21 

3.2.3 Comparison with the outdoor case 

Compared to the results obtained by Grum (2005) in the original outdoor setting, the total risk 

value for the least risk path is minimal and the length is longer than its shortest path. The 

outdoor least risk path is 9% longer than the shortest path, while in our dataset an average 

increase of 4% is detected. However, a true comparison between indoor and outdoor results is 

difficult as the author only calculated a single path in outdoor space. With respect to the results 

of the navigational complexity, the outdoor least risk path has more intersections (14 versus 12 

in the shortest path) but a lower average number of choices at each intersection (3.14 versus 

3.5). These results are also in accordance with the findings in the indoor setting, but again these 

results should be cautiously approached given the limited number of calculations in the outdoor 

variant. 

3.3  Path embedding in indoor space 

This section focusses on the actual paths themselves and their spatial embedding, i.e. the spatial 

location of the edges and nodes. More specifically, we will (1) calculate the correlation between 

shortest and least risk paths and (2) assess the actual riskiness of the paths by relating to the 
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previously defined benchmark parameters. The general aim is to identify how alike or different 

the calculated paths are and if the selected edges are avoiding complex and confusing areas in 

the building to ensure a lower risk of getting lost. 

3.3.1 Correlation between paths 

For calculating the correlation between each shortest and least risk path, the entire path was 

rerun with comparisons edge per edge. For a general path correlation measure, an overlap ratio 

is defined as the sum of all edge lengths that are mutually used in both the least risk and shortest 

path calculations divided by the total path length of the shortest path. On average, over the 

entire dataset, an overlap factor of 80% is found; for the subset of data with paths with different 

spatial embedding an average overlap of 62% is found. This result is in both cases quite high, 

confirming that most paths have a similar spatial embedding between both algorithms. Divided 

over the various classes of path length increase (Fig. 4), it is obvious that with a large path length 

increase for the least risk path algorithm, the overlap between shortest and least risk path 

sharply diminishes as both paths are considerably different in length. With this subset of paths 

with a path length increase, on average 82% of intersections on the shortest paths are located in 

a corridor, while this value is reduced to 78% for the least risk path algorithm. This 

demonstrates that when deviations from the shortest path are made, these mostly occur by 

avoiding main corridor areas. 

 
Fig. 4: Distribution of overlap ratio per class of path length increase 

A second analysis aims to demonstrate the edge use, defined as the number of times all paths 

from a certain source node pass by this edge. This analysis was applied to an example source 

node to maintain visualization clarity, but the calculation is applicable to all source nodes. The 

result is a map showing the use of each edge by varying line thickness, and this for both the 

shortest path and least risk path algorithm. The example source node is located in a room in the 

upper left corner on the first floor, close to a main staircase. Fig. 5 shows a significant difference 

in the resulting embedding of paths between the shortest path and least risk path algorithm, 

even though the average path length and risk value difference is respectively limited to 7.7 m 

and 13.9 m, which is in line with the found limited differences. More in detail, in the Dijkstra 

case, from the source node a large amount of paths stay on the first floor to go to a more 

southern located staircase and deviate from there to the specific rooms. For the least risk path 

algorithm, to access the same nodes in the southern part of the building on the ground floor, a 

large amount of paths immediately descend to the ground floors and choose a specific corridor 

and outdoor area to find their way through the building. Additionally, nodes that have limited 

path choice generally take the same path in both cases (for example the northeast corner and 
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middle/middle-east corridor on 1st floor). Although the conclusions above are specific for this 

example, these results also imply that the location of the stairs is of major importance in the 

selection of the paths. 

 
Fig. 5: Path use of the shortest path and least risk path algorithm (source node 1086) 

3.3.2 Benchmark comparison 

In this section we specifically look at the paths which have a different spatial embedding and 

investigate if the selected least risk path edges in those cases are actually less risky than the ones 

selected by the shortest path algorithm. The edges are examined on their theoretical riskiness, 

as defined by the benchmark parameter set, i.e. parameters that have proven to be influencing 

the risk of getting lost in various wayfinding experiments (Section 2.2). 

The first example relates to the analyses in Fig. 5, as it showed significant path embedding 

differences for certain areas. All paths with start point on the first floor and end point 

somewhere in the grey rectangle on the ground floor are analyzed. The dashed line in Fig. 6 

designates the least risk paths, while the black line visualizes the shortest paths to the grey 

rectangle. 

 
Fig. 6: Path visualization comparing shortest and least risk path (floor 0 left, floor 1 right) 
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With respect to the parameters in the algorithm itself, the results in Table 6 show that the least 

risk paths are significantly less risky (according to its definition) by taking a 21% longer route 

(in this example). The other parameters as defined in the benchmark set show quite similar 

results for both algorithms. The number of turns and curves and the width of corridors are 

equivalent, as is the number of spatial units passed. Regarding general visibility and lines of 

sight along the path, the least risk path algorithm shows slightly better results. It can be 

concluded that both paths are theoretically fairly similar in terms of riskiness. However, in this 

case, the authors would probably suggest the least risk path as path to an unfamiliar user, mostly 

because the edges that are selected traverse major corridors and a very visible staircase. The 

path taken by the shortest path algorithm has to traverse a spatial unit labelled ‘room’ to reach a 

minor staircase on the first floor. The other edges being part of the shortest path are equivalent 

in importance. This example shows that sometimes minor differences determine whether a path 

is suitable to be recommended for unfamiliar users.  

Table 6: Results of the benchmark parameters for the example 

Benchmark parameters Shortest paths Least risk paths 

Risk value of the entire path (m) 103 67 

Total path length 128 155 

No. of turns 9 9 

No. of spatial units passed 8 9 

No. of curves 1 1 

Width of corridors (m) 3.2 3.2 and 5 

No. of decision nodes passed 29 25 

No. of visible decision nodes at each decision node (average) 2 1.5 

A second example shows a shortest and least risk path with both start and end points being 

located on the ground floor (Fig. 7). This example is chosen as it resulted in one of the largest 

differences in path length increase, and the path choice itself is also significantly different. 

 
Fig. 7: Comparison of a typical shortest and least risk path (floor 0) 

Table 7 enumerates on the parameters used in the algorithm itself (first 3 lines) and the selected 

benchmark parameters. For the parameters used in the algorithm itself, the results are as 

expected: a lower total risk value for the least risk path with a considerable lower risk value at 

the individual decision points, by choosing a longer route (43% longer in this case). The other 

parameters, however, show a different side of the coin, with better results for the shortest path 
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algorithm in terms of reducing the risk of getting lost. For example, the shortest path has 7 turns 

in its description, while the least risk path requires 12 turns. Wayfinding literature has 

extensively shown that more turns considerably increase the risk of disorientation and as such 

also the risk of getting lost by taking wrong decisions. The chosen corridors in the least risk path 

algorithm are generally less integrated, with less visibility towards the next decision points (4.68 

versus 5.17) and a higher route complexity (more decision nodes passed on the total route, more 

curves and more spatial units passed). Above result indicates a less comfortable (and much 

longer) route traversing for unfamiliar users compared to the shortest path. In this case, the 

least risk path algorithm performs worse in terms of choosing less risky edges which completely 

undermines the initial intentions of the algorithm. The suggested shortest path will probably be 

closer to the natural wayfinding behavior of unfamiliar users compared to the least risk path 

algorithm. Together these examples demonstrate that even though an accurate route is often 

proposed by the least risk path algorithm, just as often a more risky and uncomfortable route is 

suggested. 

Table 7: Comparison of the parameters between an example shortest and least risk path 

Benchmark parameters Shortest paths Least risk paths 

Risk values of decision points (average; m) 274.27 166.36 

Risk value of the entire path (m) 445.07 411.79 

Total path length 170.80 245.43 

No. of turns 7 12 

No. of spatial units passed 6 13 

No. of curves 0 3 

Width of corridors (m) 3.2 3.2 and 2 

No. of decision nodes passed 29 37 

No. of visible decision nodes at each decision node (average) 5.17 4.68 

 

4  Discussion 

4.1  Summary of the results of the case study 

The case study revealed some interesting results with regard to the applicability of the least risk 

path algorithm in indoor spaces. First, it was shown that on average least risk paths are only 4% 

longer than their respective shortest paths, with 47% of the entire dataset having equal path 

lengths and as such equal spatial embedding. Also, from the paths deviating from their shortest 

path equivalent, 98% has a limited deviation (less than 25% longer path length) of only here and 

there a different side route and this mostly through rooms avoiding main corridor areas. Second, 

the navigational complexity analysis showed again similar results over both algorithms, but the 

least risk paths were often longer with a similar path complexity. If the least risk path algorithm 

decides to deviate from the shortest path alternative, it should be supported by taking less risky 

and complex routes, which is not the case. Third, for paths with a significantly different path 

embedding, the least risk path ended up sometimes less risky when compared to our benchmark 

parameter set, but evenly as many times the shortest path would be preferred as least risky. 

This leads to the main conclusion that the least risk path algorithm does not return stable results 

in terms of selecting the least risky edges in indoor environments. For short path lengths the 
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similarity between both algorithms in terms of path embedding seems reasonable as the density 

of the indoor network (and the importance of staircases in the indoor graph) impedes many 

deviations. However, on longer total path lengths, deviations have been noticeable, sometimes 

for the better, but evenly as many times it resulted in taking theoretically more risky and 

cognitively more difficult routes. Also, the deviations from the main corridor to side rooms are 

running counter to typical wayfinding strategies. Therefore, we are inclined to say that at this 

point for indoor wayfinding, the least risk path algorithm calculates alternative routes between 

two points, without necessarily reducing navigational complexity. This leads us to believe that 

the least risk path algorithm and its definition of risk should be investigated in more detail and 

altered to be more aligned to the specificities of indoor wayfinding. In the following section, we 

will discuss several reasons for this misalignment between algorithm and the specific indoor 

situation and afterwards propose some improvements to the original algorithm. 

4.2  Reasons for misalignment 

4.2.1 Risk value definition 

The minimization criterion of least risk is composed of a path length value and a risk value. For 

most algorithms, the total path length plays in some way a vital role in determining which edges 

get selected. The introduction of the risk value is specific to this algorithm and could be one of 

the reasons for the current inaccurate results. At this point, the risk value takes into account the 

number of streets converging at an intersection and their individual lengths, to obtain a kind of 

average length of a wrong edge at that intersection. In the following paragraphs, the implications 

of defining the risk value in this way are examined in more detail. 

First, the individual lengths of the wrong segments are key in the calculation of the intersection-

based risk value. By only utilizing the length of wrong edges, the algorithm will initially always 

select the edge with the longest individual path length, as this edge would add the most to the 

average wrong path length if not selected. The more equal all edges at an intersection are, the 

more similar the risk values will be. During the entire run of the algorithm, a more balanced 

optimum will be created over time were sometimes edges are selected with a slightly lower risk 

value. However, during the actual wayfinding act the individual lengths and length ratios 

between all edges at an intersection is not necessarily of importance in having more or less 

chances of getting lost during the trajectory. Selecting as many possible long edges is important 

(theoretically less intersections over the total path length), as long as this not results in bumping 

into really complex or confusing intersections. The algorithm actually does provide this selection 

of long edges in its current form. However, selecting an edge with a slightly shorter length but 

with other parameters that reduce navigational complexity (e.g. a long line of sight, wide and 

open corridor …) might often be more important for overall risk reducing than just the length of 

the edge in relation to the other edges alone. 

The second parameter in the formula of the risk value calculation is the number of choices at an 

intersection. This parameter aims to cover the effect of the intersection’s complexity (i.e. the 

amount of edges converging at an intersection) on the risk of getting lost. The analyses in section 

3.2.2 have shown that the average number of choices at an intersection in the least risk path 

algorithm is fairly similar to the results of the shortest path algorithm. This implies that this 

parameter in the calculation of the risk value does not necessarily add much to the final risk 

value. Fig. 8 plots the relationship between intersection complexity and risk value. It shows an 

exponential relationship where with increasing intersection complexity the risk value increases 
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with relatively smaller amounts. This demonstrates that the amount of edges converging 

actually does have an importance on the risk value. However, after a certain point, the relative 

importance of adding more choices at an intersection does not really have a significant effect on 

the final risk value. Even though having a slight increase of possible choices at an intersection 

might not add much more discomfort for the wayfinder itself, his chance of picking the right 

option does actually decrease. 

 
Fig. 8: Relationship between intersection complexity and relative risk value increase 

In conclusion, some aspects in the risk value calculation do seem to make sense helping people 

avoid getting lost and choosing more optimal paths. However, the importance of the intersection 

complexity is not as profound as might actually be necessary in wayfinding. At this point, the 

selection of the longest possible edge gains the upper hand over the intersection complexity. 

This might indicate a possible reason for the wrongful selecting of less risky paths and requires 

adjustment of the original definition of risk value.  

4.2.2 Network definition 

At this point, the least risk path algorithm indoor was tested using a Geometric Network 

structure as defined by Lee (2004). Apart from representing each spatial unit by a single node, 

the key element of this network structure is the transformation of corridor–labelled units to 

linear features. As described in Lee (2007, p. 516) “the 3D GNM is a topological data model 

representing the connectivity relationships among discrete objects and the geometric properties of 

objects in three-dimensional space (e.g., location in 3D space, distance between two rooms, and 

length of a hallway)”. The transformation of corridors into a sub network consolidate hallway 

nodes in the combinatorial network by projecting and connecting door way points onto the 

medial axis of the corridor (Lee, 2004). The goal of this transformation is to upgrade a solely 

topological model of connectivity relationships into a geometric network model representing 

more accurately paths of movement between all units. As an effect, each corridor is often 

subdivided in many nodes in front of each doorway interconnected by short edges (Fig. 9).  

Fig. 9: Topologic connectivity network (left) versus Geometric network (right) 

This particular subdivision creates unrealistic results in our calculations of least risk paths. With 

the creation of these synthetic hallway intersections, more intersections have to be possibly 

passed, with each intersection adding more weight to the total risk value of the path. Also, as 
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discussed previously, the original algorithm selects the longest edge in each intersection in its 

risk calculation. Fig. 10 shows that this can lead to deviations of the final least risk path from the 

main corridor as the longest edge in the intersection leads towards a room on the side having 

two connecting doors to the corridor. This was also confirmed in section 3.3.1 with deviations in 

the least risk paths being mostly through room areas instead of corridors. On top of that, this 

example also demonstrates that avoiding the short edges of the main corridor leads to a lower 

total risk value as the node in the selected room does not cause the calculation of an additional 

risk value (the node has only two edges converging). The exact examination of the influence of 

this particular network type on our results of the least risk path algorithm is subject for future 

work.  

 
Fig. 10: Zoom of the example from path selection in Fig. 7 

This example shows an unrealistic walking pattern as there is no apparent reason in the eyes of 

the wayfinder for this deviation from the straight corridor line. Also, knowing exactly which 

room to enter is more complicated in this case with many doors and rooms on both sides of the 

corridor inducing more options and choices to be made. This illustrates an additional problem 

with this type of network. When having to traverse an entire corridor, the synthetic hallway 

nodes are often not perceived as intersections or decision points by the user. This was also 

proven in wayfinding experiments where participants explicitly stated not requiring any 

landmark checkpoints in a corridor, as only new information was needed when choices had to 

be made about the remainder of the route (Viaene & De Maeyer., 2013). It also underlines the 

difference between outdoor urban networks and the indoor equivalent: in outdoor space each 

intersection represents a formal decision point, while this is not necessarily the case in indoor 

environments. This is especially true when traversing a corridor with only closed doors (often in 

office buildings) leading to private rooms, while the unfamiliar user might only have access to 

the publically traversable corridor. 

4.2.3 Indoor versus outdoor space differences 

Indoor and outdoor spaces are considerably distinct in structure, constraints and usage. 

Although both environments are often consisting of linear structures with obstructions, the 

human perception during navigation is entirely different. Outdoor urban environments have 

mostly a wider view with no covering which is sensed as uncluttered and orderly space, even in 

dense city environments. Indoor environments have often more discontinuities and are totally 

covered, which is perceived as a fragmented, enclosed and clustered environment (Richter et al., 

2011). This difference in human perception has to seep through in the algorithmic support as it 

highly influences the risk of getting lost. This also demonstrates why the risk value for indoor 

application might require a more complex and coherent approach compared to outdoor spaces. 

The transformation into an appropriate network has shown to create some additional problems 

for application of the algorithm. This has its origin in the different network complexity of both 

spaces. Most buildings contain several major corridors with rooms on the side containing only 

one exit, while outdoor street networks are in general more integrated leaving several options 

for path alternatives. This also explains the high similarity in results between least risk and 

shortest paths in our indoor tests. There are often not many options to deviate from the shortest 



18 

path, making the deviations that occur being more important to provide users in an easier 

navigation experience. 

4.3  Possible improvements to the algorithm 

4.3.1 Weight adjustment 

Several options for adjusting the internal weight balance are possible in the algorithm. The most 

straightforward one is altering the relevance given to the parameters in the current algorithm. In 

the original implementation of the least risk path algorithm, both the length of the path as well 

as the sum of the risk values at intermediate decision points add an equal weight in the 

calculation of the overall risk value. Changing this ratio of length versus risk value might result 

in a more cognitively correct selection of least risk paths indoor. To examine this, the original 

definition can be improved by adding two parameters α and β, one for each variable, with their 

mutual sum always equal to 1. 

                                              (3) 

         (4) 

As an example of this process, the weights of the path presented in Fig. 6 are altered with the 

results visualized in Fig. 11. 

 
Fig. 11: Weight adjustment by changing the mutual importance of risk value versus path 

length 

The orange line (α=0.5) visualizes the original least risk path with equal importance to path 

length and risk value. Changing the importance of the length to a lesser amount apparently does 

not change much in the final path choice in this example. Only an additional deviation through 

non-corridor areas (α=0.4) is included as a result of the added importance to the risk value 

calculations, which leads to an even higher avoidance of short edges and intersections. From 

α=0.6, the route starts to coincide more with the shortest path (α=1). However, the route 

deviates to an outdoor courtyard area to later on join the original shortest path again. Even 

though in both cases the path traverses main corridors and outdoor areas, an unfamiliar user 

would probably prefer the shortest route as its least risk path, as it does not require any physical 

changes of spatial unit in contrast with the least risk path (α=0.6) (physically going outside using 

two small doors). This extra attribute might also need to be added to the network. Note that in 
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case of α=0.7 the path deviates once more from the main corridor due to the definition of both 

network and risk value. In this case, given the high weight to path length in favor of risk value, 

the network structure will be the defining variable. A more hierarchical network structure is 

thus highly recommended. This is only an example showing the possibilities of altering the 

mutual relationship of the main parameters defining the total risk value. At this point we cannot 

give any further indication on the best ratio of α and β parameters as it requires comparisons 

between multiple start- and endpoints and even in buildings with a different spatial structure. 

A second possibility of weight adjustments exists in changing the internal definition of risk value 

by adding more parameters relevant to minimizing the risk of getting lost during wayfinding. In 

section 4.2.1, it was already proven that the current definition of risk value is rather limited with 

the selection of the longest possible edge gaining the upper hand over the intersection 

complexity. In Table 2, several other factors were listed as theoretically important in optimizing 

wayfinding situations. The individual weighting of these parameters is up for future research. 

However, we would like to propose a division of the current risk value into an intersection based 

risk value and an edge based risk value (Equation 5). 

                                                               (5) 

The risk value of selected edges is of importance since at this point no aspects denoting the 

overall individual importance of each edge apart from the edge length (e.g. width, number of 

curves, integration value) are yet incorporated in the assessment of risk. These variables are 

tightly linked to the edge structure and completely independent of the intersections themselves. 

On intersection level, other aspects that can influence the edge choice for continuation of the 

path, like the directional orientation of each edge at the intersection, are also not yet considered. 

The intersection-based risk value can also be influenced by the same parameters denoting the 

individual importance of the edge, but on a more local level. For example, the sight of several 

small corridors and a single large corridor at an intersection will highly influence path choice 

and comfort when selecting the widest corridor and not the smallest variant. Experiments with 

defining various risk value definition with more parameters from Table 2, individually weighted, 

are considered as future work. 

4.3.2 Other possible algorithmic improvements 

In this final section, we will suggest some other improvements to the original algorithm which 

will be tested and compared in our future research. 

First, the risk value of a decision point is currently calculated based on the assumption that the 

wayfinder recognizes his mistake at the first adjacent node and returns from there to the 

previous node. The question could be raised whether it is actually realistic that people already 

notice at the first intersection that they have been going wrong. An increasing compounding 

function could be suggested taking into account the possibility of going further in the wrong 

direction. 

Second, given the importance of an appropriate network topology, a more sophisticated 

algorithm could select routes that preferentially use more important or higher classified edges 

to be in line with users hierarchical spatial reasoning. The main question here is which 

hierarchical structure should be used and how should it be defined. In outdoor navigational 

research, the road classification often serves as natural hierarchy. However, this hierarchy is 
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much harder to define for indoor spaces. A possibility could be to discover the latent natural 

hierarchy of the indoor graph by using the reach metric introduced by Gutman (2004). 

Related to this topic is the importance of staircases, as it was proven that they are key elements 

in the indoor path selection. The fact that you have to walk up and down staircases during a 

certain route could be naturally having a greater weight because taking a wrong decision might 

result in walking up and down the stairs twice. On the other hand, chances of making a wrong 

decision by changing floors are likely to be slimmer given the effort required for vertical 

movement. Additionally, it has been found that the number of rotations on a staircase plays a 

major role in keeping stability in the user’s cognitive map. Hölscher et al. (2012) identified many 

getting-lost episodes due to disorientation after leaving a staircase, sometimes even on the 

wrong floor.  

Fourth, Hölscher et al.’s (2009) wayfinding research has proven that people’s strategy choice 

indoors varies with different navigation tasks. Tasks with either a floor change or a building part 

change result in no problems, with the participants first changing to the correct floor or building 

part. However, for tasks with changes in both vertical and horizontal direction, additional 

information is required to disambiguate the path choice. An algorithm that wants to minimize 

the risk of getting lost in a building necessarily needs to account for these general indoor 

wayfinding strategies as they correspond to the natural way of multilevel building navigation for 

all types of participants. 

 

5  Conclusions 
In this paper, the least risk path algorithm as developed by Grum (2005) in outdoor space was 

implemented and tested in an indoor environment to examine its suitability for indoor 

wayfinding. The results of those tests have shown that with a slight increase in path length, 

theoretically less risky paths were calculated. However, further analyses have demonstrated that 

these least risk paths are not necessarily significantly different, nor are they optimal in terms of 

reducing navigational complexity and getting-lost episodes. This leads to the conclusion that a 

dissonance exists between the original definition of the algorithm and its implementation in 

indoor environments. Several suggestions were made to improve the algorithm, ranging from 

changes in the calculation of the risk value, to individual selection and weighting of the 

parameters involved, to the influence of the indoor network topology. The aim for future 

research is to discover the best optimization of the algorithm to make it more compliant with the 

cognitive notion of indoor wayfinding. More generally, this research will aid the development of 

appropriate tools that improve navigation experiences in indoor spaces.  
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