**Abstract:**

In this paper we construct an embedding of holomorphic functions in two complex variables into the unit ball in $\mathbb{R}^3$. This leads to a closed subspace of the $L^2$-functions on the unit sphere spanned by quaternionic polynomials for which we construct orthonormal bases and study the related convergence properties.
Holomorphic approximation of \( L_2 \)-functions on the unit sphere in \( \mathbb{R}^3 \)

Nele De Schepper, Tao Qian, Frank Sommen and Jinxun Wang

**Abstract.** In this paper we construct an embedding of holomorphic functions in two complex variables into the unit ball in \( \mathbb{R}^3 \). This leads to a closed subspace of the \( L_2 \)-functions on the unit sphere spanned by quaternionic polynomials for which we construct orthonormal bases and study the related convergence properties.

**Mathematics Subject Classification (2010).** 33C47.

**Keywords.** Quaternionic analysis, orthogonal polynomials, holomorphic signals, holomorphic polynomials.

1. Introduction

The most widely used approximation for \( L_2 \)-functions on the unit sphere in \( \mathbb{R}^m \) is the approximation by spherical harmonics. In concreto a spherical harmonic of degree \( k \) is a homogeneous polynomial \( S_k(x) \) which is harmonic, i.e. \( \Delta_x S_k(x) = 0 \), \( \Delta_x = \sum_{j=1}^{m} \partial_{x_j}^2 \) being the Laplacian, and every \( f \in L_2(S^{m-1}) \) admits an orthogonal decomposition in spherical harmonics of the form \( f(\omega) = \sum_{k=0}^{\infty} S_k(\omega), \ \omega = \frac{x}{|x|} \in S^{m-1} \).

Clifford analysis forms a refinement of harmonic analysis. It starts with the construction of a Clifford algebra with generators \( e_1, \ldots, e_m \) and relations \( e_j^2 = -1, \ e_j e_k = -e_k e_j, \ j \neq k \) and leads to the Dirac operator \( \partial_x = \sum_{j=1}^{m} e_j \partial_{x_j} \) for which \( \partial_x^2 = -\Delta_x \); solutions of \( \partial_x f = 0 \) are called monogenic functions. Spherical monogenics of degree \( k \) are then defined as homogeneous polynomials \( P_k(x) \) which are monogenic: \( \partial_x P_k(x) = 0 \) and the series \( \sum_{k=0}^{\infty} P_k(\omega) \in L_2(S^{m-1}) \) form the closed subspace of monogenic signals \( ML_2(S^{m-1}) \). For any scalar function \( f \in L_2(S^{m-1}) \) there exists a monogenic signal \( \sum_{k=0}^{\infty} P_k(\omega) = g \) for which \( [g]_0 = f \), \( [ \cdot ]_0 \) denoting the scalar part. The monogenic function theory has a lot of interesting properties; we refer to the extended literature containing the books [2, 4, 5, 7] etc.

One disadvantage is however the fact that the product of monogenic functions is no longer monogenic. This leads us to the idea of constructing an
embedding of holomorphic functions of several complex variables into the unit ball in Euclidean space. In \( \mathbb{R}^3 \), it works as follows: consider Clifford generators \( e_1, e_2 \) with defining relations \( e_1^2 = e_2^2 = -1 \) and \( e_1 e_2 = -e_2 e_1 \). Then the “holomorphic correspondence” is the map from the holomorphic functions in two complex variables \( g(z_1, z_2) = \sum_{p,q=0}^{\infty} z_1^p z_2^q C_{p,q} \) into the corresponding series in \( \mathbb{R}^3 \):

\[
g(z_1, z_2) \mapsto \sum_{p,q=0}^{\infty} (x_0 + \bar{x})^p (x_1 - e_1 e_2 x_2)^q C_{p,q}
\]

with \( x = x_1 e_1 + x_2 e_2 \). This embedding leads to a closed subspace of \( L_2(S^2) \) called the space of holomorphic signals on \( S^2 \).

The first task in this paper (see section 3) is to construct the Gram-Schmidt orthonormal basis that corresponds to the holomorphic polynomials \( (x_0 + \bar{x})^p (x_1 - e_1 e_2 x_2)^q \). In section 4 we also study convergence properties for these holomorphic bases and for \( q \) fixed the series converges for all \( x_0 + \bar{x} \) with \( x_0^2 + |x|^2 < 1 \) (see Proposition 4.1). In case both \( p \) and \( q \) are variable, we are still able to prove convergence for \( x_0^2 + |x|^2 < \sqrt{2} - 1 \) (see Proposition 4.2).

2. Preliminaries

We will work in the algebra \( \mathbb{H} \) of quaternions. Let \( e_1, e_2 \) be two imaginary units of \( \mathbb{H} \), satisfying the multiplication rules \( e_1^2 = e_2^2 = -1 \) and \( e_1 e_2 = -e_2 e_1 \). The conjugation in \( \mathbb{H} \) is determined by \( \overline{e_1} = -e_1 \) and \( \overline{e_2} = -e_2 \). For any \( x = x_0 + \bar{x}, \bar{x} = x_1 e_1 + x_2 e_2 \in \mathbb{R}^3 \) we also write \( x = x_0 + \bar{x} \), where \( \bar{x} = x_1 e_1 + x_2 e_2 \).

Let \( S^2 \) be the unit sphere in \( \mathbb{R}^3 \). The space \( L_2(S^2) \) consists of all functions defined on \( S^2 \), taking values in \( \mathbb{H} \), and being square integrable on \( S^2 \) with respect to the surface area element \( dS \). The inner product on \( L_2(S^2) \) is defined by

\[
\langle f, g \rangle := \frac{1}{4\pi} \int_{\xi \in S^2} \overline{f(\xi)} g(\xi) dS, \quad f, g \in L_2(S^2),
\]

which leads to an induced norm given by \( \| f \| := \sqrt{\langle f, f \rangle} \), \( f \in L_2(S^2) \).

It is known that the set of polynomials is dense in \( L_2(S^2) \). Moreover, we observe that

\[
L_2(S^2) = \text{span}\{x_0^a x_1^b (x_1 - e_1 e_2 x_2)^c : a, b, c \in \mathbb{N}\}.
\]

Since \( 2x_0 = x + \bar{x}, 2\bar{x} = x - \bar{x} \), and on the unit sphere \( \bar{x} = x^{-1}, \) we have

\[
L_2(S^2) = \text{span}\{x^p (x_1 - e_1 e_2 x_2)^q : p \in \mathbb{Z}, q \in \mathbb{N}\}.
\]

In this paper we will restrict ourselves to half of the above generating set, we consider namely the set of holomorphic polynomials

\[
\mathcal{HP} = \{x^p (x_1 - e_1 e_2 x_2)^q : p, q \in \mathbb{N}\}.
\]

The closed formula for the orthonormalization of \( \mathcal{HP} \) will be given. These kind of holomorphic polynomials are in fact closely related to the spherical monogenics. To see this, let us first recall some definitions.
A quaternion-valued function $f$, defined in an open set $\Omega \subset \mathbb{R}^3$, is called left monogenic in $\Omega$ if it is in $\Omega$ a null solution of $D$, i.e. $Df = 0$, where the differential operator $D := \partial_{x_0} + \partial_z = (\partial/\partial x_0) + e_1(\partial/\partial x_1) + e_2(\partial/\partial x_2)$ is the so-called Cauchy–Riemann operator. A left monogenic polynomial of degree $k$ is called a left inner spherical monogenic of degree $k$. The collection of all such monogenic polynomials is denoted by $\mathcal{M}_k$.

A useful tool to construct a monogenic function from a given smooth function $\mathbb{R}^2 \ni \mathbf{x} \rightarrow f(\mathbf{x}) \in \mathbb{H}$ is the Cauchy–Kowalevski (CK) extension (see [2, 9]), given by

$$\text{CK}(f)(\mathbf{x}) = e^{-x_0 \partial_z}f = \sum_{n=0}^{\infty} \frac{(-x_0)^n}{n!} \partial^n_z f(\mathbf{x}).$$

Since for any $p, q \in \mathbb{N}$

$$\partial_z(\mathbf{x}^p(x_1 - e_1 e_2 x_2)^q) \approx \mathbf{x}^{p-1}(x_1 - e_1 e_2 x_2)^q,$$

we arrive at

$$\text{CK}(\mathbf{x}^p(x_1 - e_1 e_2 x_2)^q) = \sum_{j=0}^{p} C_{p,j}^{q} \mathbf{x}^{p-j} x_0^j (x_1 - e_1 e_2 x_2)^q$$

$$= (A_{p,q}(x_0, |\mathbf{x}|) + \mathbf{x} B_{p,q}(x_0, |\mathbf{x}|))(x_1 - e_1 e_2 x_2)^q,$$

where $C_{p,j}^{q}$, $A_{p,q}$ and $B_{p,q}$ are real-valued, and $x \rightarrow A_{p,q}(x_0, |\mathbf{x}|) + \mathbf{x} B_{p,q}(x_0, |\mathbf{x}|)$ is an axial monogenic function ([3, 10]) when $q = 0$. From Proposition 3.1 (see the next section) we conclude that

$$B_k = \{\text{CK}(\mathbf{x}^p(x_1 - e_1 e_2 x_2)^q) : p, q \in \mathbb{N}, p + q = k\}$$

is an orthogonal basis of $\mathcal{M}_k$ with respect to the inner product on $L_2(S^2)$. This construction should be compared with the results in [1, 4].

The study of the projection operator from $L_2(S^2)$ to $\text{span}\mathcal{HP}$ and the related approximation problems will be our next research objectives.

### 3. Orthonormalization of $\mathcal{HP}$

For any $p, q \in \mathbb{N}$, let

$$\alpha_{p,q}(x) = \mathbf{x}^p(x_1 - e_1 e_2 x_2)^q = (x_0 + \mathbf{x})^p(x_1 - e_1 e_2 x_2)^q.$$  

The aim of this section is to orthogonalize this sequence.

For $m \in \mathbb{N}$ and $\gamma > -1$, we have (see [6], p. 372, 3.631, formula 8):

$$\int_0^{\pi} \cos(m\theta)(\sin \theta)^\gamma d\theta = \frac{2^{-\gamma} \pi \cos \left(\frac{m\pi}{2}\right) \Gamma(\gamma + 1)}{\Gamma(1 - \frac{m^2}{2} + \frac{\gamma}{2})\Gamma(1 + \frac{m^2}{2} + \frac{\gamma}{2})}. \quad (3.1)$$

The above result leads to the following proposition.

**Proposition 3.1.** For $p_1, p_2, q_1, q_2 \in \mathbb{N}$: $\langle \alpha_{p_1,q_1}, \alpha_{p_2,q_2} \rangle \in \mathbb{R}$, and when $q_1 \neq q_2$, or $p_1 - p_2$ is odd, we have $\langle \alpha_{p_1,q_1}, \alpha_{p_2,q_2} \rangle = 0$. 

Proof. Assume \( p_1 \geq p_2 \). Using spherical coordinates, set \( x_0 = \cos \theta \), \( x_1 = \sin \theta \cos \beta \) and \( x_2 = \sin \theta \sin \beta \) with \( 0 \leq \theta \leq \pi \), \( 0 \leq \beta < 2\pi \), we get \( \mathrm{d} S = \sin \theta \mathrm{d} \theta \mathrm{d} \beta \), and

\[
\alpha_{p_1,q_1}(x)\alpha_{p_2,q_2}(x)
= (x_1 + e_1 e_2 x_2)^{q_1} (x_0 - x)^{p_1} (x_0 + x)^{p_2} (x_1 - e_1 e_2 x_2)^{q_2}
= (\sin \theta)^{q_1 + q_2} (\cos (q_1 \beta) + e_1 e_2 \sin (q_1 \beta)) (\cos ((p_1 - p_2)\theta)
- \frac{x}{|x|} \sin ((p_1 - p_2)\theta)) (\cos (q_2 \beta) - e_1 e_2 \sin (q_2 \beta))
= (\sin \theta)^{q_1 + q_2} \cos ((p_1 - p_2)\theta) (\cos ((q_1 - q_2)\beta) + e_1 e_2 \sin ((q_1 - q_2)\beta))
- (\sin \theta)^{q_1 + q_2} \sin ((p_1 - p_2)\theta) (\cos (q_1 \beta) + e_1 e_2 \sin (q_1 \beta)) \frac{x}{|x|}
\times (\cos (q_2 \beta) - e_1 e_2 \sin (q_2 \beta))
\]

\[
=(\sin \theta)^{q_1 + q_2} \cos ((p_1 - p_2)\theta) (\cos ((q_1 - q_2)\beta) + e_1 e_2 \sin ((q_1 - q_2)\beta))
- (\sin \theta)^{q_1 + q_2} \sin ((p_1 - p_2)\theta) (e_1 \cos ((q_1 + q_2 + 1)\beta) + e_2 \sin ((q_1 + q_2 + 1)\beta)).
\]

We thus obtain

\[
\langle \alpha_{p_1,q_1}, \alpha_{p_2,q_2} \rangle = \frac{1}{2} \delta_{q_1,q_2} \int_0^\pi \cos ((p_1 - p_2)\theta)(\sin \theta)^{2q_1+1} \mathrm{d}\theta
= \frac{2^{-2q_1-2\pi} \Gamma(2q_1 + 2) \cos \left(\frac{p_1-p_2}{2}\pi\right)}{\Gamma\left(\frac{3}{2} - q_1\right)} = \frac{\delta_{q_1,q_2}}{\Delta_{q_1,q_2}},
\]

where in the last line we have used (3.1). \[\square\]

So, the orthogonalization of \( \mathcal{H}^p = \{\alpha_{p,q} : p, q \in \mathbb{N}\} \) is equivalent to the separate orthogonalization of \( \{\alpha_{2s,q} : s \in \mathbb{N}\} \) and \( \{\alpha_{2s+1,q} : s \in \mathbb{N}\} \) for each fixed \( q \in \mathbb{N} \).

Since by (3.2) it follows that

\[
\langle \alpha_{2s_1,q}, \alpha_{2s_2,q} \rangle = \frac{(-1)^{s_1-s_2}2^{-2q-2\pi} \Gamma(2q + 2)}{\Gamma\left(\frac{3}{2} - s_1 + s_2 + q\right) \Gamma\left(\frac{3}{2} + s_1 - s_2 + q\right)} = \langle \alpha_{2s_1+1,q}, \alpha_{2s_2+1,q} \rangle,
\]

and

\[
\|\alpha_{2s,q}\|^2 = \frac{2^{-2q-2\pi} \Gamma(2q + 2)}{\Gamma\left(\frac{3}{2} + q\right)^2} = \|\alpha_{2s+1,q}\|^2,
\]

we just need to consider the orthogonalization of \( \{\alpha_{2s,q} : s \in \mathbb{N}\} \) with \( q \) being fixed (see also Remark 3.2).

For convenience, we now change notations. Let \( \alpha_{2s,q}(x) = \alpha_{s+1}(x) \), \( s \in \mathbb{N} \). Then according to the Gram–Schmidt orthogonalization process, the sequence \( \{\alpha_n\}_{n=1}^\infty \) can be orthogonalized by setting

\[
\beta_1 := \alpha_1,
\]

\[
\beta_n := \alpha_n - \sum_{i=1}^{n-1} \frac{\langle \alpha_n, \beta_i \rangle}{\|\beta_i\|^2} \beta_i, \quad n \geq 2.
\]

Thus \( \{B_n := \{\beta_n / \|\beta_n\|\} \) becomes an orthonormal polynomial system.
Remark 3.2. The orthogonalization of \( \{ \alpha_{2s+1,q} : s \in \mathbb{N} \} \) with \( q \) fixed, is then given by \( \{ x_\beta n \} \), since \( \langle xf, xg \rangle = \langle f, g \rangle \) as \( \Phi x = 1 \) for \( x \in S^2 \).

By (3.3) and straightforward calculations, one obtains
\[
\beta_1 = \alpha_1, \quad \| \beta_1 \|^2 = \frac{2^{-2q-2\pi(2q+2)}}{\Gamma(\frac{1}{2}+q)^2}, \quad \langle \alpha_2, \beta_1 \rangle = \frac{2q+1}{2q+3},
\]
\[
\beta_2 = \alpha_2 + \frac{2q+1}{2q+3} \alpha_1, \quad \| \beta_2 \|^2 = \frac{2^{-2q-2\pi(2q+3)}}{\Gamma(\frac{5}{2}+q)^2}, \quad \langle \alpha_3, \beta_2 \rangle = -\frac{2(2q+1)}{(2q+5)},
\]
etc.

In fact, we have the following result.

**Theorem 3.3.** Let \( \{ \beta_n \}^\infty_{n=1} \) be defined through (3.4), then for any \( n \in \mathbb{N} \), we have
\[
\beta_n = \sum_{k=1}^{n} \left( \frac{n-1}{k-1} \right) \frac{\Gamma\left( \frac{1}{2}+k+q \right)\Gamma\left( \frac{1}{2}-k+n+q \right)}{\Gamma\left( \frac{1}{2}+q \right)\Gamma\left( \frac{1}{2}+n+q \right)} \alpha_k,
\]
and
\[
\| \beta_n \|^2 = \frac{(n-1)!2^{-2q-2\pi(2q+n+1)}}{(\Gamma(\frac{1}{2}+n+q))^2}.
\]
Moreover, for any \( i, j \in \mathbb{N} \) with \( i > j \), it holds that
\[
\langle \alpha_i, \beta_j \rangle = (-1)^{i-j} \left( \begin{array}{c} n-1 \\ n \end{array} \right) \frac{\Gamma\left( \frac{3}{2}+q \right)\Gamma\left( \frac{1}{2}+j+q \right)}{\Gamma\left( \frac{1}{2}+i+q \right)\Gamma\left( \frac{3}{2}-i+j \right)}.
\]

To prove these results, we need the following lemmas.

**Lemma 3.4.** For all non-negative integers \( s < j \), we have
\[
\sum_{k=0}^{j} (-1)^k \binom{j}{k} k^s = 0.
\]

This lemma has a close connection with the Stirling numbers of the second kind (see e.g. [8]), and is well-known (see for e.g. [6], p. 4. 0.154, formula 3).

**Lemma 3.5.** For any positive integer \( j \), we have
\[
\sum_{k=1}^{j} (-1)^k \left( \begin{array}{c} j-1 \\ k-1 \end{array} \right) \frac{\Gamma\left( \frac{1}{2}+k+q \right)\Gamma\left( \frac{1}{2}-k+j+q \right)}{\Gamma\left( \frac{1}{2}+q \right)\Gamma\left( \frac{1}{2}+n+q \right)} \frac{\Gamma\left( \frac{3}{2}-i+j+q \right)}{\Gamma\left( \frac{3}{2}-i+k+q \right)} \frac{\Gamma\left( \frac{1}{2}+i+q \right)}{\Gamma\left( \frac{3}{2}-i+k+q \right)}
\]
\[
= (-1)^j \frac{\Gamma(2q+j+1)\Gamma\left( \frac{3}{2}+q \right)\Gamma\left( \frac{1}{2}+q \right)}{\Gamma(2q+2)} (i-1)(i-2) \cdots (i-j+1).
\]

**Proof.** We observe that
\[
\frac{\Gamma\left( \frac{3}{2}-i+j+q \right)}{\Gamma\left( \frac{3}{2}-i+k+q \right)} \frac{\Gamma\left( \frac{1}{2}+i+q \right)}{\Gamma\left( \frac{3}{2}+i-k+q \right)}
\]
\[
= \left( \frac{3}{2} - i + (j-1) + q \right) \left( \frac{3}{2} - i + (j-2) + q \right) \cdots \left( \frac{3}{2} - i + k + q \right)
\]
\[
\times \left( \frac{1}{2} + (i-1) + q \right) \left( \frac{1}{2} + (i-2) + q \right) \cdots \left( \frac{3}{2} + i - k + q \right)
\]
is a polynomial in $i$ of degree $(j-k) + (k-1) = j-1$, and so is the case of
the right hand side of (3.5). Thus, it suffices to show that: (a) The left hand
side of (3.5) has roots $i = 1, 2, \ldots, j-1$. (b) The coefficients of $i^{j-1}$ in both
sides are equal, namely,

$$\sum_{k=1}^{j} \binom{j-1}{k-1} \Gamma\left(\frac{1}{2} + k + q\right) \Gamma\left(\frac{1}{2} - k + j + q\right) = \frac{\Gamma(2q + j + 1)\Gamma(\frac{3}{2} + q)\Gamma(\frac{1}{2} + q)}{\Gamma(2q + 2)}.$$  (3.6)

When $i$ is a positive integer and less than $j$, we can see that

$$\frac{\Gamma\left(\frac{1}{2} + k + q\right)\Gamma\left(\frac{1}{2} - k + j + q\right)}{\Gamma\left(\frac{3}{2} - i + k + q\right)\Gamma\left(\frac{3}{2} + i - k + q\right)}
= (\frac{1}{2} + (k-1) + q)(\frac{1}{2} + (k-2) + q) \cdots (\frac{3}{2} - i + k + q)
\times (\frac{1}{2} - k + (j-1) + q)(\frac{1}{2} - k + (j-2) + q) \cdots (\frac{3}{2} + i - k + q)$$

is a polynomial in $k$ of degree $(i-1) + (j-i-1) = j-2$. Hence (a) follows
immediately by Lemma 3.4. Now we prove (3.6) by induction. The case $j = 1$
is clear. Suppose that (3.6) is true for some certain $j$, then for the next integer
$j+1$, we get

$$\sum_{k=1}^{j+1} \binom{j}{k-1} \Gamma\left(\frac{1}{2} + k + q\right) \Gamma\left(\frac{1}{2} - k + (j+1) + q\right)
= \sum_{k=1}^{j+1} \left[ \binom{j-1}{k-1} + \binom{j-1}{k-2} \right] \Gamma\left(\frac{1}{2} + k + q\right) \Gamma\left(\frac{1}{2} - k + (j+1) + q\right)
= \sum_{k=1}^{j} \binom{j-1}{k-1} \left(\frac{1}{2} - k + j + q\right) \Gamma\left(\frac{1}{2} + k + q\right) \Gamma\left(\frac{1}{2} - k + j + q\right)
+ \sum_{k=1}^{j} \binom{j-1}{k-1} \left(\frac{1}{2} + k + q\right) \Gamma\left(\frac{1}{2} + k + q\right) \Gamma\left(\frac{1}{2} - k + j + q\right)
= (1+j+2q) \sum_{k=1}^{j} \binom{j-1}{k-1} \Gamma\left(\frac{1}{2} + k + q\right) \Gamma\left(\frac{1}{2} - k + j + q\right)
= (1+j+2q) \frac{\Gamma(2q + j + 1)\Gamma(\frac{3}{2} + q)\Gamma(\frac{1}{2} + q)}{\Gamma(2q + 2)}
= \frac{\Gamma(2q + (j+1) + 1)\Gamma(\frac{3}{2} + q)\Gamma(\frac{1}{2} + q)}{\Gamma(2q + 2)},$$

where in the second last line we have used the induction hypothesis. \( \square \)

**Proof of Theorem 3.3.** For $n = 1, 2, \ldots$, let

$$\beta_n = \sum_{k=1}^{n} \binom{n-1}{k-1} \frac{\Gamma\left(\frac{1}{2} + k + q\right)\Gamma\left(\frac{1}{2} - k + n + q\right)}{\Gamma\left(\frac{1}{2} + q\right)\Gamma\left(\frac{1}{2} + n + q\right)} \alpha_k,$$
For any positive integer \( n \) and \( q \in \mathbb{N} \), we let
\[
\beta_{n,q}(x) = \sum_{k=1}^{n} \left( \frac{n-1}{k-1} \right) \frac{\Gamma\left(\frac{1}{2} + k + q\right) \Gamma\left(\frac{1}{2} - k + n + q\right)}{\Gamma\left(\frac{1}{2} + q\right) \Gamma\left(\frac{1}{2} + n + q\right)} \alpha_k,
\]
then from the previous section we know that
\[
\bigcup_{q=0}^{\infty} \bigcup_{n=1}^{\infty} \{\beta_{n,q}(x)\} \bigcup \{x\beta_{n,q}(x)\}
\]
consists an orthogonal system on the unit sphere \( S^2 \) in \( \mathbb{R}^3 \).

We have the following result.

\section{Pointwise convergence of the series}

For any positive integer \( n \) and \( q \in \mathbb{N} \), we obtain
\[
\langle \alpha_i, \beta_j \rangle
= \sum_{k=1}^{j} \left( \frac{j-1}{k-1} \right) \frac{\Gamma\left(\frac{1}{2} + k + q\right) \Gamma\left(\frac{1}{2} - k + j + q\right)}{\Gamma\left(\frac{1}{2} + q\right) \Gamma\left(\frac{1}{2} + j + q\right)} \frac{(-1)^{i-k} \pi 2^{-2q-2} \Gamma(2q + 2)}{\Gamma\left(\frac{3}{2} - i + k + q\right) \Gamma\left(\frac{3}{2} + i - k + q\right)}
= (-1)^{i-j}(i-1)(i-2) \cdots (i-j+1) \frac{\pi 2^{-2q-2} \Gamma(2q + j + 1)}{\Gamma\left(\frac{1}{2} + i + q\right) \Gamma\left(\frac{1}{2} + j + q\right) \Gamma\left(\frac{3}{2} - i + j + q\right)},
\]
which implies that \( \langle \alpha_i, \beta_j \rangle = 0 \) for \( i < j \). Since \( \beta_i \) is a linear combination of \( \alpha_1, \ldots, \alpha_i \), we conclude that \( \langle \beta_i, \beta_j \rangle = 0 \) for \( i < j \), and hence it is true for all \( i \neq j \), since \( \langle \beta_i, \beta_j \rangle = \langle \beta_j, \beta_i \rangle \). We also note that
\[
\|\beta_j\|^2 = \langle \beta_j, \beta_j \rangle = \langle \alpha_j, \beta_j \rangle = \frac{(j-1)! 2^{-2q-2} \pi \Gamma(2q + j + 1)}{(\Gamma\left(\frac{1}{2} + j + q\right))^2},
\]
where we have used (3.7).

Therefore, for \( i \geq j \), we have
\[
\frac{\langle \alpha_i, \beta_j \rangle}{\langle \beta_j, \beta_j \rangle} = (-1)^{i-j} \frac{(i-1)}{j-1} \frac{\Gamma\left(\frac{3}{2} + q\right) \Gamma\left(\frac{3}{2} + j + q\right)}{\Gamma\left(\frac{1}{2} + i + q\right) \Gamma\left(\frac{3}{2} - i + j + q\right)}.
\]
Moreover, it is clear that
\[
\alpha_n = \sum_{i=1}^{n} \frac{\langle \alpha_n, \beta_i \rangle}{\|\beta_i\|} \beta_i = \sum_{i=1}^{n} \frac{\langle \alpha_n, \beta_i \rangle}{\langle \beta_i, \beta_i \rangle} \beta_i = \alpha_n + \sum_{i=1}^{n-1} \frac{\langle \alpha_n, \beta_i \rangle}{\langle \beta_i, \beta_i \rangle} \beta_i.
\]
Consequently,
\[
\beta_n = \alpha_n - \sum_{i=1}^{n-1} \frac{\langle \alpha_n, \beta_i \rangle}{\langle \beta_i, \beta_i \rangle} \beta_i,
\]
which means that \( \{\beta_n\}_{n=1}^{\infty} \) is exactly the outcome of the Gram–Schmidt orthogonalization process of (3.4). \( \Box \)
Proposition 4.1. Suppose \( \{\lambda_n\} \in l^2 \) (i.e. \( \sum_{n=1}^{\infty} |\lambda_n|^2 < \infty \)), then for each \( q \in \mathbb{N} \),

\[
\sum_{n=1}^{\infty} \frac{\lambda_n}{\beta_{n,q}} \beta_{n,q}(x) \leq \infty
\]

is convergent in the open unit ball \( \{x : |x| < 1\} \).

Proof. Changing the order of summation, we obtain

\[
\sum_{n=k}^{\infty} \frac{\lambda_n}{\beta_{n,q}} \beta_{n,q}(x) = \sum_{n=1}^{\infty} \lambda_n \sum_{k=1}^{n} \frac{(n-k+q)\Gamma(\frac{1}{2}+k+q)\Gamma(\frac{1}{2}-k+n+q)}{(k-1)!\sqrt{\pi}\Gamma(\frac{1}{2}+q)\sqrt{(n-1)!}\Gamma(2q+n+1)} \alpha_k
\]

where \( C_q = \frac{2^{q+1}}{\sqrt{\pi}1!} \). Observe that

\[
\left| \sum_{n=k}^{\infty} \frac{\Gamma(\frac{1}{2}+k+n+q)}{(n-k)!|n-k|!} \sqrt{\frac{(n-1)!}{\Gamma(2q+n+1)}} \lambda_n \right|
\]

\[
= \left| \sum_{n=0}^{\infty} \frac{\Gamma(\frac{1}{2}+n+q)}{n!\Gamma(2q+n+2)} \sqrt{\frac{(n+k-1)!}{\Gamma(2q+n+k+1)}} \lambda_{n+k} \right|
\]

\[
\leq \sum_{n=0}^{\infty} \frac{\Gamma(\frac{1}{2}+n+q)}{n!\Gamma(2q+n+2)} \sqrt{\frac{n!}{\Gamma(2q+n+2)}} |\lambda_{n+k}|
\]

since \( \frac{(n+k-1)!}{\Gamma(2q+n+k+1)} \) is decreasing in \( k \). Using Cauchy–Schwarz inequality, we find

\[
\left| \sum_{n=k}^{\infty} \frac{\Gamma(\frac{1}{2}+k+n+q)}{(n-k)!} \sqrt{\frac{(n-1)!}{\Gamma(2q+n+1)}} \lambda_n \right|
\]

\[
\leq \left( \sum_{n=0}^{\infty} \frac{(\Gamma(\frac{1}{2}+n+q))^2}{n!\Gamma(2q+n+2)} \right)^{\frac{1}{2}} \left( \sum_{n=1}^{\infty} |\lambda_n|^2 \right)^{\frac{1}{2}}
\]

\[
= \lim_{m \to \infty} \sum_{n=0}^{m} \frac{(\Gamma(\frac{1}{2}+n+q))^2}{n!\Gamma(2q+n+2)} \left( \sum_{n=1}^{\infty} |\lambda_n|^2 \right)^{\frac{1}{2}}
\]

\[
\leq \frac{2}{1+2q} \left( \sum_{n=1}^{\infty} |\lambda_n|^2 \right)
\]

where we have made use of the following identity

\[
\sum_{n=0}^{m} \frac{(\Gamma(\frac{1}{2}+n+q))^2}{n!\Gamma(2q+n+2)} = \frac{4(\Gamma(\frac{3}{2}+m+q))^2}{(1+2q)^2m!\Gamma(2q+m+2)},
\]
which can be proved by induction on $m$, and $\lim_{m \to \infty} \frac{(\Gamma(\frac{3}{2} + m + q))^2}{m! \Gamma(2q + m + 2)} = 1$. Moreover, we note that
\[
\frac{\Gamma(\frac{1}{2} + k + q)}{(k - 1)!} \sim k^{q + \frac{1}{2}} \quad (k \to \infty),
\]
so the series is always convergent in $|x| < 1$. \hfill \Box

Considering also the summation over $q$, we obtain the following convergence result.

**Proposition 4.2.** Let $C = \sum_{q=0}^{\infty} \sum_{n=1}^{\infty} |\lambda_{n,q}|^2 < \infty$, then
\[
\sum_{q=0}^{\infty} \sum_{n=1}^{\infty} \lambda_{n,q} \beta_{n,q}(x) = \sum_{q=0}^{\infty} \sum_{n=1}^{\infty} \beta_{n,q}(x) \frac{\lambda_{n,q}}{\|\beta_{n,q}\|}
\]
is convergent when $|x| < \sqrt{2} - 1$.

**Proof.** Again changing the order of summation, we get
\[
\sum_{q=0}^{\infty} \sum_{n=1}^{\infty} \lambda_{n,q} \frac{\beta_{n,q}(x)}{\|\beta_{n,q}\|} = \sum_{q=0}^{\infty} \sum_{n=1}^{\infty} \left( \sum_{k=1}^{\infty} \frac{(n-1)}{(k-1)} \frac{2^{q+1} \Gamma(\frac{1}{2} + k + q) \Gamma(\frac{1}{2} - k + n + q)}{\sqrt{\pi} \Gamma(\frac{1}{2} + q) \sqrt{(n-1)! \Gamma(2q + n + 1)}} \lambda_{n,q} \right) \alpha_k.
\]
So, similar to the above proof, we find
\[
\left| \sum_{q=0}^{\infty} \sum_{n=1}^{\infty} \lambda_{n,q} \frac{\beta_{n,q}(x)}{\|\beta_{n,q}\|} \right| \leq \sqrt{C} \sum_{q=0}^{\infty} \sum_{k=1}^{\infty} \left( \frac{2^{q+1} \Gamma(\frac{1}{2} + k + q)}{\sqrt{\pi} \Gamma(\frac{1}{2} + q) \Gamma(\frac{1}{2} - k + n + q)} \right) \frac{2}{1 + 2q} |x|^{2k-2} |x_1 - e_1 e_2 x_2|^q
\]
Applying Maclaurin series, we have that
\[
(1 - |x|^2)^{-(q + \frac{3}{2})} = \sum_{i=0}^{\infty} \frac{\Gamma(q + \frac{3}{2} + i)}{\Gamma(q + \frac{3}{2})} \frac{|x|^{2i}}{i!} = \sum_{k=1}^{\infty} \frac{\Gamma(q + \frac{1}{2} + k)}{\Gamma(q + \frac{3}{2}) (k - 1)!} |x|^{2k-2}.
\]
Hence, (4.1) becomes
\[
2 \sqrt{\frac{C}{\pi}} \sum_{q=0}^{\infty} (1 - |x|^2)^{-(q + \frac{3}{2})} (2|x_1 - e_1 e_2 x_2|)^q \leq 2 \sqrt{\frac{C}{\pi}} (1 - |x|^2)^{-(\frac{3}{2})} \sum_{q=0}^{\infty} \left( \frac{2|x|}{1 - |x|^2} \right)^q,
\]
which converges if $|x| < 1$ and $\frac{2|x|}{1 - |x|^2} < 1$, hence if $|x| < \sqrt{2} - 1$. \hfill \Box

**Acknowledgment**

This work was supported by Macao FDCT 056/2010/A3 and research grant of the University of Macau No. UL017/08-Y4/MAT/QT01/FST.
References


Nele De Schepper  
Ghent University - Department of Mathematical Analysis  
Galglaan 2, B-9000 Gent, Belgium  
e-mail: nds@cage.ugent.be

Tao Qian  
University of Macau - Faculty of Science and Technology - Department of Mathematics  
Taipa, Macao  
e-mail: fsttq@umac.mo

Frank Sommen  
Ghent University - Department of Mathematical Analysis  
Galglaan 2, B-9000 Gent, Belgium  
e-mail: fs@cage.ugent.be

Jinxun Wang  
University of Macau - Faculty of Science and Technology - Department of Mathematics  
Taipa, Macao  
e-mail: wjxpyh@gmail.com