Dirichlet type problems in Hermitian Clifford analysis

Ricardo Abreu-Blaya, Juan Bory-Reyes, Fred Brackx, Hennie De Schepper, Tania Moreno-García, Frank Sommen

Abstract

Solvability conditions for some Dirichlet type boundary value problems in the framework of Hermitian Clifford analysis are established.

Keywords. Hermitian Clifford analysis, Boundary value and extension problems for solutions of partial differential equations.

Mathematics Subject Classification (2000). 30G35.

1 Introduction

Euclidean Clifford analysis is a comprehensive generalization to higher dimension of the theory of holomorphic functions in the complex plane. More recently Hermitian Clifford analysis has emerged as a refinement of this orthogonally invariant function theory. It is centred around the concept of so-called h-monogenic functions defined in Euclidean space of even dimension, i.e. null solutions of two first-order vector-valued differential operators, called Hermitian Dirac operators, which are invariant under the action of the unitary group. In order to obtain traditional function theoretic results, such as the Cauchy integral formula, the theory of Hermitian monogenicity had to be transferred to the framework of circulant (2×2) matrix functions, see e.g. [1, 2, 3]. For a thorough study of the h-monogenic function theory, we refer the reader to [5, 4, 6, 12, 13] and the references therein.

In this paper we deal with two Dirichlet type boundary value problems involving H-monogenic matrix functions in \mathbb{R}^{2n}, i.e. null solutions of a matrix Dirac operator \mathcal{D} which will be defined below.

In Section 3 we develop a Hermitian Clifford operator calculus involving the Cauchy, the Teodorescu and the Hilbert transform. Section 4 studies the cited boundary value problems. To make the paper self-contained the basics of Hermitian Clifford analysis are recalled in Section 2.
2 H-monogenic functions theory: the basics

First we recall some definitions and basic properties of a Clifford algebra.

Let \((e_1, \ldots, e_m)\) be an orthonormal basis of the Euclidean space \(\mathbb{R}^m\). Let \(\mathbb{C}_m\) be the complex Clifford algebra constructed over \(\mathbb{R}^m\). The basic multiplication rules in \(\mathbb{C}_m\) are governed by
\[
e_i e_j + e_j e_i = -2 \delta_{ij}, \quad i, j = 1, \ldots, m.
\]

Any element \(a \in \mathbb{C}_m\) may thus be written as
\[
a = \sum A a_A e_A, \quad a_A \in \mathbb{C},
\]
where \(e_A = e_{j_1} \ldots e_{j_k}\) with \(A = \{j_1, \ldots, j_k\} \subset \{1, \ldots, m\}\) is such that \(j_1 < \cdots < j_k\). Additionally, one puts \(e_\emptyset = 1\). The conjugation in \(\mathbb{C}_m\) is given by
\[
a^\dagger = \sum A a^\dagger_A e_A,
\]
where \(\cdot^c\) denotes the complex conjugation and \(\cdot^\dagger\) is the traditional Clifford conjugation, being the anti–involution for which \(e_j^c = -e_j, j = 1, \ldots, m\).

In the even dimensional case \(m = 2n\) the real Clifford vector \(X\) and its twisted counterpart \(X^\dagger\) are given by
\[
X = \sum_{j=1}^n (e_{2j-1}x_{2j-1} + e_{2j}x_{2j}), \quad X^\dagger = \sum_{j=1}^n (e_{2j-1}x_{2j} - e_{2j}x_{2j-1}).
\]

Their respective Fourier duals are the so–called Euclidean Dirac operators, \(\partial_X\) and its twisted version \(\partial_X^\dagger\), given explicitly by
\[
\partial_X = \sum_{j=1}^n (e_{2j-1} \partial_{x_{2j-1}} + e_{2j} \partial_{x_{2j}}), \quad \partial_X^\dagger = \sum_{j=1}^n (e_{2j-1} \partial_{x_{2j}} - e_{2j} \partial_{x_{2j-1}}).
\]

The corresponding fundamental solutions, which may be used as Cauchy kernels in the corresponding integral representation formulae, are given by
\[
E(X) = -\frac{1}{\sigma_{2n}} \frac{X}{|X|^{2n}}, \quad E^\dagger(X) = -\frac{1}{\sigma_{2n}} \frac{X^\dagger}{|X^\dagger|^{2n}},
\]
with \(\sigma_{2n}\) the surface area of the unit sphere in \(\mathbb{R}^{2n}\). The Hermitian Dirac operators \(\partial_Z\) and \(\partial_Z^\dagger\) then are appropriate complex linear combinations of the Euclidean Dirac operators \(\partial_X\) and \(\partial_X^\dagger\):
\[
\partial_Z = -\frac{1}{4} (\partial_X - i \partial_X^\dagger), \quad \partial_Z^\dagger = \frac{1}{4} (\partial_X + i \partial_X^\dagger).
\]

Definition 1 A \(\mathbb{C}_{2n}\)–valued function \(g\) in the open subset \(\Omega\) of \(\mathbb{R}^{2n}\) is said to be (left) h-monogenic if it satisfies in \(\Omega\) the system \(\{\partial_Z g = 0, \partial_Z^\dagger g = 0\}\) or, equivalently, the system \(\{\partial_X g = 0, \partial_X^\dagger g = 0\}\).
Let $D_{(Z,Z^\dagger)}$ be the circulant (2×2)-matrix Dirac operator given by

$$D_{(Z,Z^\dagger)} = \begin{pmatrix} \partial_Z & \partial_{Z^\dagger} \\ \partial_{Z^\dagger} & \partial_Z \end{pmatrix}. \quad (1)$$

Following e.g. [12, 2, 3, 1] we introduce the matrix

$$E = \begin{pmatrix} E & E^\dagger \\ E^\dagger & E \end{pmatrix}$$

where $E = -(E+iE|)$ and $E^\dagger = (E-iE|)$, which may be considered as a fundamental solution of the matrix operator $D_{(Z,Z^\dagger)}$, i.e., $D_{(Z,Z^\dagger)} E = \delta$, with $\delta = \text{diag}(\delta)$, δ being the Dirac delta distribution.

The set of (2×2)-circulant matrices over \mathbb{C}_{2n} will be denoted by $\text{CM}^{2\times 2}$. It is easily checked that for $A, B \in \text{CM}^{2\times 2}$, $A + B$ and AB both belong to $\text{CM}^{2\times 2}$. Moreover, defining for $A = \begin{pmatrix} a & b \\ b & a \end{pmatrix} \in \text{CM}^{2\times 2}$ its Hermitian conjugate A^\dagger componentwise, it clearly holds that $(A^\dagger)^\dagger = A$; $(A^\dagger) = a^\dagger A^\dagger$ for $a \in \mathbb{C}_{2n}$; $(A + B)^\dagger = A^\dagger + B^\dagger$ and $(AB)^\dagger = B^\dagger A^\dagger$. In other words, $\text{CM}^{2\times 2}$ is a right linear associative algebra over \mathbb{C}_{2n}, with an anti-involution.

Definition 2 A $\text{CM}^{2\times 2}$-valued continuously differentiable matrix function

$$G_2^1 = \begin{pmatrix} g_1 & g_2 \\ g_2 & g_1 \end{pmatrix}$$

in the open subset Ω of \mathbb{R}^{2n} is said to be left (respectively right) H-monogenic in Ω if it satisfies in Ω

$$D_{(Z,Z^\dagger)} G_2^1 = O \quad (\text{respectively } G_2^1 D_{(Z,Z^\dagger)} = O)$$

Here O denotes the matrix in $\text{CM}^{2\times 2}$ with zero entries.

From now on, $\text{H}_l(\Omega)$ (respectively $\text{H}_r(\Omega)$) stands for the set of left (respectively right) H-monogenic functions in Ω. Clearly $\text{H}_l(\Omega)$ (respectively $\text{H}_r(\Omega)$) is a right (respectively a left) module over $\text{CM}^{2\times 2}$.

Let Δ denote the Hermitian Laplacian given by

$$\Delta = \begin{pmatrix} \Delta_{2n} & 0 \\ 0 & \Delta_{2n} \end{pmatrix},$$

then it holds that

$$4D_{(Z,Z^\dagger)} (D_{(Z,Z^\dagger)})^\dagger = 4(D_{(Z,Z^\dagger)})^\dagger D_{(Z,Z^\dagger)} = \Delta.$$
In general the H-monogenicity of the matrix function G_{12}^1 does not imply the h–monogenicity of its entry functions g_1 and g_2. However, choosing $g_1 = g$ and $g_2 = 0$, the H-monogenicity of the corresponding matrix $G_0 = \text{diag}(g)$ yet is equivalent with the h-monogenicity of the function g. Moreover one may call a matrix function G_{12}^1 harmonic if and only if it satisfies the equation $\Delta[G_{12}^1] = O$; each H-monogenic matrix function G_{12}^1 thus is harmonic, ensuring that its entries are harmonic functions in the usual sense.

The notions of continuity, differentiability and integrability of a function $G_{12}^1 \in \mathbb{CM}^{2 \times 2}$ have the usual component-wise meaning. In particular we shall need, for any suitable subset E of \mathbb{R}^{2n} and $k \in \mathbb{N} \cup \{0\}$ the following function spaces:

(i) $L_2(E)$, the space of square integrable circulant matrix functions;
(ii) $C^k(E)$, the set of all circulant matrix functions whose entries, together with all their derivatives up to k-th order, are continuous in E;
(iii) the Sobolev spaces $W_2^k(E)$ and their trace spaces, the so–called Slobodetzkij spaces $W_2^{k-\frac{1}{2}}(\partial E)$; note that $W_2^0(E) = L_2(E)$.

Here the trace on ∂E of a $\mathbb{CM}^{2 \times 2}$-function $G_{12}^1 \in W_2^k(E)$ is defined as the limit in $L_2(\partial E)$ given by:

$$\text{tr}_{\partial E} G_{12}^1 \equiv [G_{12}^1]|_{\partial E} := \lim_{n \to \infty} \{G_{12}^1\}_n|_{\partial E},$$

where $\{G_{12}^1\}_n$ is a sequence in $C^1(E)$, which exists by density, converging to G_{12}^1 in the norm of $W_2^k(E)$. We note that the trace operator is not surjective, but maps $W_2^k(E)$ onto the Slobodetzkij spaces $W_2^{k-\frac{1}{2}}(\partial E)$, i.e.

$$\text{tr}_\Gamma : W_2^k(E) \longrightarrow W_2^{k-\frac{1}{2}}(\partial E).$$

For a deeper discussion of Sobolev-Slobodetzkij spaces along classical lines we refer the reader to [14].

In what follows, Ω stands for an open bounded domain in \mathbb{R}^{2n} with a sufficiently smooth boundary Γ; moreover we put $\Omega^+ = \Omega$ and $\Omega^- = \mathbb{R}^{2n} \setminus (\Omega^+ \cup \Gamma)$, and assume that Ω^+ and Ω^- are connected. In Section 4 of this paper we will deal with two Dirichlet type boundary value problems in the context of H-monogenic matrix functions in \mathbb{R}^{2n}. The first boundary value problem is of first order and reads

$$D_{(\mathbb{Z},\mathbb{Z}^*)} \Xi_{12}^1 = F_{12}^1 \quad \text{in} \ \Omega \quad \Xi_{12}^1 = G_{12}^1 \quad \text{on} \ \Gamma \quad (2)$$

The second one is of the second order and is given by

$$D^2_{(\mathbb{Z},\mathbb{Z}^*)} \Xi_{12}^1 = F_{12}^1 \quad \text{in} \ \Omega \quad \Xi_{12}^1 = G_{12}^1 \quad \text{on} \ \Gamma \quad (4)$$
3 Hermitian Clifford operator calculus

Using the matrix function \mathcal{E} we can introduce the following integral operators:

(i) the Hermitian Cauchy integral given, for $G_2^1 \in W^2_2(\Gamma)$, by

$$\mathcal{C}_\Gamma G_2^1(Y) = \int_\Gamma \mathcal{E}(Z - V) N_{(Z,Z^\dagger)} G_2^1(X) \, d\mathcal{H}^{2n-1}, \; Y \in \Omega^\pm,$$

where

$$d\mathcal{H}^{2n-1} = \begin{pmatrix} d\mathcal{H}^{2n-1} & 0 \\ 0 & d\mathcal{H}^{2n-1} \end{pmatrix},$$

with \mathcal{H}^{2n-1} denoting the $(2n - 1)$-dimensional Hausdorff measure.

(ii) the Hermitian Teodorescu transform, given, for $G_2^1 \in L^2_2(\Omega)$, by

$$\mathcal{T}_\Omega G_2^1(Y) = -\int_\Omega \mathcal{E}(Z - V) G_2^1(X) \, dW(Z, Z^\dagger), \; Y \in \mathbb{R}^{2n},$$

where $dW(Z, Z^\dagger)$ is the associated volume element given by

$$dV(X) = (-1)^{\frac{n(n-1)}{2}} \left(\frac{i}{2} \right)^n dW(Z, Z^\dagger).$$

(iii) the Hermitian Hilbert transform given, for $G_2^1 \in L^2_2(\Gamma)$, by

$$(\mathcal{H}_\Gamma G_2^1(U)) := 2 \int_\Gamma \mathcal{E}(Z - W) N_{(Z,Z^\dagger)} G_2^1(X) \, d\mathcal{H}^{2n-1}, \; U \in \Gamma,$$

where the circulant matrix

$$N_{(Z,Z^\dagger)} = \begin{pmatrix} N & -N^\dagger \\ -N^\dagger & N \end{pmatrix}$$

contains the Hermitian projections N and N^\dagger of the unit normal vector $n(X)$ at the point $X \in \Gamma$.

Remark

The following mapping properties hold:

(i) $\mathcal{D}_{(Z,Z^\dagger)} : W^k_2(\Omega) \rightarrow W^{k-1}_2(\Omega), \; k \in \mathbb{N}$

(ii) $\mathcal{T}_\Omega : W^k_2(\Omega) \rightarrow W^{k+1}_2(\Omega), \; k \in \mathbb{N} \cup \{0\}$

(iii) $\mathcal{T}_\Omega : W^{k,loc}_2(\Omega) \rightarrow W^{k+1,loc}_2(\Omega), \; k \in \mathbb{N} \cup \{0\}$

(iv) $\mathcal{C}_\Gamma : W^{k-\frac{1}{2}}(\Gamma) \rightarrow W^k_2(\Omega), \; k \in \mathbb{N}.$

They are a direct translation to our matrix setting of the corresponding properties given in [7, 11] for the corresponding entries of the operators involved.
3.1 Integral formulae for H-monogenic functions

From now on we reserve the notations \(Y \) and \(Y^\dagger \) for Clifford vectors associated to points in \(\Omega^\pm \). Their Hermitian counterparts are denoted by

\[
V = \frac{1}{2}(Y + iY^\dagger), \quad V^\dagger = -\frac{1}{2}(Y - iY^\dagger)
\]

The following fundamental statements are known; for the proof we again refer to [7, 11].

Theorem 1 (Stokes) Let \(F_1^1, G_1^1 \) be arbitrary matrix functions in \(W_2^1(\Omega) \). It then holds that

\[
\int_{\Gamma} [\text{tr} F_1^1] N(Z, Z^\dagger) \, dH^{2n-1} = \int_{\Omega} [(F_2^1 \mathcal{D}(Z, Z^\dagger)) G_1^1 + F_2^1 \mathcal{D}(Z, Z^\dagger) G_1^1] \, dW(Z, Z^\dagger).
\]

By means of the matrix approach sketched above, the following relation between \(\mathcal{D}(Z, Z^\dagger) \), \(\mathcal{C}_\Gamma \) and \(\mathcal{T}_\Omega \) was established.

Theorem 2 (Borel-Pompeiu formula) Let \(G_1^1 \) be a circulant matrix function in \(W_2^1(\Omega) \). It then holds that

\[
\mathcal{C}_\Gamma G_2^1(Y) + \mathcal{T}_\Omega \mathcal{D}(Z, Z^\dagger) G_2^1(Y) = \begin{cases} (-1)^{\frac{n(n+1)}{2}} (2i)^n G_2^1(Y), & Y \in \Omega^+ \\ 0, & Y \in \Omega^- \end{cases}
\]

Corollary 1 Let \(G_2^1 \) be a circulant matrix function in \(W_2^1(\Omega) \cap H_1(\Omega) \). It then holds that

\[
\mathcal{C}_\Gamma G_2^1(Y) = \begin{cases} (-1)^{\frac{n(n+1)}{2}} (2i)^n G_2^1(Y), & Y \in \Omega^+ \\ 0, & Y \in \Omega^- \end{cases}
\]

The following theorem expresses the basic property that the matricial Hermitian Teodorescu transform is the algebraic inverse to the operator \(\mathcal{D}(Z, Z^\dagger) \).

Theorem 3 If \(G_2^1 \in L_2(\Omega) \), then

\[
\mathcal{T}_\Omega \mathcal{D}(Z, Z^\dagger) \mathcal{C}_\Gamma G_2^1(Y) = \begin{cases} (-1)^{\frac{n(n+1)}{2}} (2i)^n G_2^1(Y), & Y \in \Omega^+ \\ 0, & Y \in \Omega^- \end{cases}
\]

Theorem 4 (Plemelj-Sokhotski formulae) Let \(G_2^1 \in W_2^1(\Gamma) \). Then the traces of the Hermitian Cauchy integral \(\mathcal{C}_\Gamma G_2^1 \), for any \(U \in \Gamma \) are given by

\[
\text{tr}_\Gamma \mathcal{C}_\Gamma G_2^1 = (-1)^{\frac{n(n+1)}{2}} (2i)^n \left(\frac{1}{2} \mathcal{I}[G_2^1] + \frac{1}{2} \mathcal{H}_\Gamma[G_2^1] \right),
\]

\[
\text{tr}_\Gamma^\dagger \mathcal{C}_\Gamma G_2^1 = (-1)^{\frac{n(n+1)}{2}} (2i)^n \left(-\frac{1}{2} \mathcal{I}[G_2^1] + \frac{1}{2} \mathcal{H}_\Gamma[G_2^1] \right),
\]

where \(\text{tr}_\Gamma^\dagger \) denotes the trace operator in the exterior domain \(\Omega^- \) and \(\mathcal{I} \) stands for the identity operator.
We now introduce the operators
\[P^\Gamma_+ [G_2^1] = \text{tr}_\Gamma C_\Gamma [G_2^1] \quad \text{and} \quad P^\Gamma_- [G_2^1] = -\text{tr}_\Gamma C_\Gamma [G_2^1] \]
Since it holds that \(P^\Gamma_+ + P^\Gamma_- = I \), \([P^\Gamma_\pm]^2 = P^\Gamma_\pm \) and \(P^\Gamma_+ P^\Gamma_- = P^\Gamma_- P^\Gamma_+ = 0 \), the operators \(P^\Gamma_\pm \) clearly are projections. More precisely \(P^\Gamma_\pm \) is the projection onto the space of all CM\(^2 \times 2 \) matrix functions which are H-monogenically extendable into the domain \(\Omega^\pm \) and vanish at infinity.

For a study of classical versions of the operators \(C_\Gamma, H_\Gamma, P^\Gamma_\pm \) we refer to [1, 2, 3].

3.2 Orthogonal decomposition of the Hermitian Sobolev spaces

Orthogonal decomposition of the Hilbert space of square integrable functions in the context of Euclidean Clifford analysis have been studied by many authors, seen their importance in solving boundary value problems, see [7, 8, 9, 10]. Here we investigate the structure of the Hermitian Sobolev spaces \(W^k \parallel \Omega \), \(k \in \mathbb{N} \cup \{0\} \), with respect to the \((2 \times 2)\) matrix Dirac operator \(D(Z, Z^\dagger) \).

Proposition 1 One has
\[
\left(W^k_2 (\Omega) \cap \text{Ker} D(Z, Z^\dagger) \right) \oplus D(Z, Z^\dagger) \left(W^1_2 (\Omega) \cap W^{k+1}_2 (\Omega) \right) = \{0\},
\]
where \(W^1_2 (\Omega) \) denotes the subspace of all functions in \(W^1_2 (\Omega) \) whose trace on \(\Gamma \) vanishes.

Proof
Let \(U^1_2 \in (W^k_2 (\Omega) \cap \text{Ker} D(Z, Z^\dagger)) \cap D(Z, Z^\dagger) (W^1_2 (\Omega) \cap W^{k+1}_2 (\Omega)) \) and \(U^1_2 \neq 0 \). Then there exists \(V^1_2 \in W^k_2 (\Omega) \cap W^{k+1}_2 (\Omega) \) such that \(U^1_2 = D(Z, Z^\dagger) V^1_2 \) and \((D(Z, Z^\dagger))^\dagger D(Z, Z^\dagger) V^1_2 = 0 \). Thence \(\Delta V^1_2 = 0 \) and the Dirichlet problem for harmonic matrix functions implies that \(V^1_2 = 0 \) in \(\Omega \) and so also \(U^1_2 = 0 \) in \(\Omega \).

The following decomposition is the central idea of the below described solution strategy for the boundary value problem (4)–(5).

Proposition 2 The Hermitian Hilbert Sobolev spaces \(W^k_2 (\Omega) \) show the orthogonal decomposition
\[
W^k_2 (\Omega) = \left(W^k_2 (\Omega) \cap \text{Ker} D(Z, Z^\dagger) \right) \oplus D(Z, Z^\dagger) \left(W^1_2 (\Omega) \cap W^{k+1}_2 (\Omega) \right),
\]
with respect to the CM\(^2 \times 2 \)-valued inner product
\[
\langle U^1_2, V^1_2 \rangle_{L_2} = \int_\Omega [U^1_2]^\dagger V^1_2 \, dW(Z, Z^\dagger)
\]
Proof
For any $U_2 \in W_2^k(\Omega)$ one has that $V_2 = T_2 U_2 \in W_2^{k+1}(\Omega)$ and $\mathcal{D}(\Omega) V_2 = U_2$. Assuming that $U_2 \in \left(W_2^k(\Omega) \cap \text{Ker} \mathcal{D}(\Omega) \right) ^\perp$, then

$$\langle U_2, G_2 \rangle_{L_2} = \int_\Omega \left[\mathcal{D}(\Omega) V_2 \right]^* G_2 \, dW(Z, Z^\dagger) = 0$$

for all $G_2 \in W_2^k(\Omega) \cap \text{Ker} \mathcal{D}(\Omega)$. In particular,

$$\int_\Omega \left[\mathcal{D}(\Omega) V_2 \right]^* \left[\mathcal{E}(Z - V) \right] \, dW(Z, Z^\dagger) = 0,$$

for $Y \in \Omega^{-}$, since obviously $\mathcal{E}(Z - V) \in W_2^k(\Omega) \cap \text{Ker} \mathcal{D}(\Omega)$. The Borel-Pompeiu formula (Theorem 2) then yields

$$0 = \left[\int_\Omega \left[\mathcal{D}(\Omega) V_2 \right]^* \left[\mathcal{E}(Z - V) \right] \, dW(Z, Z^\dagger) \right]^\dagger$$

$$= \int_\Omega \left[\mathcal{E}(Z - V) \right]^* \mathcal{D}(\Omega) V_2 \, dW(Z, Z^\dagger)$$

$$= \int_\Gamma \left[\mathcal{E}(Z - V) \right]^* \mathcal{D}(\Omega) \mathcal{E}(Z - V) \, dW(Z, Z^\dagger)$$

whence also $\mathcal{C}_\Gamma \mathcal{C}_\Gamma [V_2] = 0$ for $Y \in \Omega^{-}$. This last equality yields $\mathcal{C}_\Gamma [V_2] = 0$ and hence $\mathcal{C}_\Gamma V_2 \in \text{im} \mathcal{P}_\Gamma \cap W_2^{k+1}(\Gamma)$. Consequently, there exists a matrix $H_2 \in W_2^{k+1}(\Omega) \cap \text{Ker} \mathcal{D}(\Omega)$ with the property that $\mathcal{C}_\Gamma H_2 = \mathcal{C}_\Gamma V_2$. For

$$Z_2^1 = V_2 - H_2 \in W_2^1(\Omega) \cap W_2^{k+1}(\Omega),$$

one then has $\mathcal{D}(\Omega) Z_2^1 \in \mathcal{D}(\Omega) \left(W_2^1(\Omega) \cap W_2^{k+1}(\Omega) \right)$. Clearly

$$U_2^1 = \mathcal{D}(\Omega) V_2 = \mathcal{D}(\Omega) Z_2^1$$

whence $U_2^1 \in \mathcal{D}(\Omega) \left(W_2^1(\Omega) \cap W_2^{k+1}(\Omega) \right)$. This last result means that

$$\left(W_2^k(\Omega) \cap \text{Ker} \mathcal{D}(\Omega) \right) ^\perp \subset \mathcal{D}(\Omega) \left(W_2^1(\Omega) \cap W_2^{k+1}(\Omega) \right).$$

Conversely, taking $J_2 \in \mathcal{D}(\Omega) \left(W_2^1(\Omega) \cap W_2^{k+1}(\Omega) \right)$, there exists a matrix function $S_2 \in W_2^1(\Omega) \cap W_2^{k+1}(\Omega)$ for which $J_2 = \mathcal{D}(\Omega) S_2$, and thus

$$\int_\Omega \left[U_2^1 \right]^* J_2 \, dW(Z, Z^\dagger) = \int_\Omega \left[U_2^1 \right]^* \mathcal{D}(\Omega) S_2 \, dW(Z, Z^\dagger).$$
By Theorem 1 one then has that
\[
\int_\Omega [U^1_2]^{\dagger} \begin{bmatrix} D(Z, Z^\dagger) \end{bmatrix} S^1_2 \, dW(Z, Z^\dagger) = -\int_\Omega \begin{bmatrix} [U^1_2]^{\dagger} D(Z, Z^\dagger) \end{bmatrix} S^1_2 \, dW(Z, Z^\dagger) = 0
\]
for all \(U^1_2 \in \text{Ker} \, D(Z, Z^\dagger) \), whence
\[
D(Z, Z^\dagger) \left(\mathcal{W}^k_2 (\Omega) \cap \mathcal{W}^{k+1}_2 (\Omega) \right) \subseteq \left(\mathcal{W}^k_2 (\Omega) \cap \text{Ker} \, D(Z, Z^\dagger) \right)^{\perp}
\]
which completes the proof. \(\square \)

The above orthogonal decomposition generates two orthoprojections on the corresponding subspaces, more precisely we have
\[
\mathbb{P} : \mathcal{W}^k_2 (\Omega) \rightarrow \mathcal{W}^k_2 (\Omega) \cap \text{Ker} \, D(Z, Z^\dagger)
\]
\[
\mathbb{Q} : \mathcal{W}^k_2 (\Omega) \rightarrow D(Z, Z^\dagger)(\mathcal{W}^k_2 (\Omega) \cap \mathcal{W}^{k+1}_2 (\Omega)).
\]
Moreover, the operator \(\mathbb{P} \) can be seen as a Hermitian matrix generalization of the classical Bergman projection.

We end this section with an interesting property needed in the sequel.

Proposition 3 Let \(\mathcal{F}^1_2 \in L_2(\Omega) \). Then \(\text{tr} \, \mathcal{T}_\Omega \mathcal{F}^1_2 = 0 \) if and only if \(\mathcal{F}^1_2 \) belongs to \(\text{im} \, \mathbb{Q} \).

Proof
First assume that \(\mathcal{F}^1_2 \in \text{im} \, \mathbb{Q} \), then there exists \(U^1_2 \in \mathcal{W}^k_2 (\Omega) \) such that \(\mathcal{F}^1_2 = D(Z, Z^\dagger)U^1_2 \). The Borel–Pompeiu formula implies that
\[
U^1_2 = \mathcal{C}_1 U^1_2 + \mathcal{T}_\Omega [D(Z, Z^\dagger)U^1_2] = \mathcal{T}_\Omega [D(Z, Z^\dagger)U^1_2] = \mathcal{T}_\Omega \mathcal{F}^1_2.
\]
Because \(U^1_2 \in \mathcal{W}^k_2 (\Omega) \) we have \(\text{tr} \, \mathcal{T}_\Omega \mathcal{F}^1_2 = 0 \).
Conversely, let \(\text{tr} \, \mathcal{T}_\Omega \mathcal{F}^1_2 = 0 \). Now decompose \(\mathcal{F}^1_2 \) according to Proposition 2: \(\mathcal{F}^1_2 = \mathbb{P} \mathcal{F}^1_2 + \mathbb{Q} \mathcal{F}^1_2 \). As always \(\text{tr} \, \mathcal{T}_\Omega \mathbb{Q} \mathcal{F}^1_2 = 0 \). Then \(\text{tr} \, \mathcal{T}_\Omega \mathbb{P} \mathcal{F}^1_2 = 0 \). From the given factorization of the Hermitian Laplacian we have
\[
\Delta \mathcal{T}_\Omega [\mathbb{P} \mathcal{F}^1_2] = 4(D(Z, Z^\dagger)^\dagger [D(Z, Z^\dagger) \mathcal{T}_\Omega [\mathbb{P} \mathcal{F}^1_2]] = 4(D(Z, Z^\dagger)^\dagger [\mathbb{P} \mathcal{F}^1_2] = 0,
\]
which asserts that \(\mathcal{T}_\Omega [\mathbb{P} \mathcal{F}^1_2] = 0 \), due to the uniqueness of the solution of the Dirichlet problem for the Hermitian Laplace equation. Therefore, applying the Hermitian Dirac operator \(D(Z, Z^\dagger) \), we have
\[
0 = D(Z, Z^\dagger) \mathcal{T}_\Omega [\mathbb{P} \mathcal{F}^1_2] = \mathbb{P} \mathcal{F}^1_2,
\]
i.e., \(\mathcal{F}^1_2 \in \text{im} \, \mathbb{Q} \). \(\square \)
4 Main results

In this section we deal with the boundary value problems (2)-(3) and (4)-(5) stated above.

4.1 Necessary and sufficient condition for solvability of the problem (2)–(3)

Theorem 5 Let \(F_1^2 \in W^k_2(\Omega) \) and \(G_1^2 \in W^{k-\frac{1}{2}}_2(\Gamma) \). Then the boundary value problem (2)–(3) has a solution if and only if

\[
P^{-\Gamma}[G_1^2] = \text{tr}_\Omega T_\Omega[F_2^1].
\]

The unique solution \(\Xi^1_2 \in W^{k+1}_2(\Omega) \) admits the representation

\[
\Xi^1_2 = C^\Gamma G^1_2 + T_\Omega F^1_2.
\]

Proof

From the Borel-Pompeiu formula it follows that

\[
T_\Omega F^1_2 = T_\Omega [D(\Xi^2_2)] = \Xi^1_2 = C^\Gamma \Xi^1_2 = \Xi^1_2 - C^\Gamma G^1_2
\]

The Plemelj-Sokhotski formulae now yield

\[
G^1_2 = P^+_\Gamma [G^1_2] + \text{tr}_\Gamma T_\Omega F^1_2
\]

from which the necessary condition (6) follows. Conversely, assume condition (6) to be fulfilled. Then \(C^\Gamma G^1_2 \in H^1(\Omega) \), and using the invertibility of \(D(\Xi^2_2) \) in \(\Omega \) it follows that \(D(\Xi^2_2) \Xi^1_2 = F^1_2 \). The boundary condition (3) then follows from \(P^+_\Gamma + P^-_\Gamma = I \).

4.2 Treatment of the problem (4)–(5)

The aim of this subsection consists in the study of the second-order boundary value problem (4)–(5) by means of the orthogonal decomposition of the Hermitian Hilbert Sobolev spaces and the mapping properties of the operators \(D(\Xi^2_2) \), \(T_\Omega \) and \(C^\Gamma \).

Assume that \(F^1_2 \in W^k_2(\Omega) \) and \(G^1_2 \in W^{k+\frac{3}{2}}_2(\Gamma), k \geq 0 \). First let us investigate the boundary value problem:

\[
D^2(\Xi^2_2) \Xi^1_2 = F^1_2, \text{ in } \Omega, \quad \Xi^1_2 = 0, \text{ on } \Gamma.
\]
Using the mapping properties of \mathcal{T}_Ω we have $\mathcal{T}_\Omega [F^1_2] \in W^{k+1}_2(\Omega)$. We thus get that $Q [\mathcal{T}_\Omega F^1_2] \in W^{k+1}_2(\Omega)$ and, again by the mapping properties of \mathcal{T}_Ω we now obtain that

$$\mathcal{T}_\Omega Q \mathcal{T}_\Omega [F^1_2] \in W^{k+2}_2(\Omega).$$

Now using $D_{(\mathcal{Z}^\dagger)} \mathcal{T}_\Omega = \mathcal{I}$, the Borel-Pompeiu formula and the existence of a matrix function $\Xi^1_2 \in W^1_2(\Omega) \cap W^{k+1}_2(\Omega)$ for which $Q [\mathcal{T}_\Omega F^1_2] = D_{(\mathcal{Z}^\dagger)} \Xi^1_2$, we see that

$$\mathcal{T}_\Omega [Q \mathcal{T}_\Omega F^1_2] = \mathcal{T}_\Omega D_{(\mathcal{Z}^\dagger)} \Xi^1_2 = \Xi^1_2,$$

and therefore $\Xi^1_2 \in W^{k+2}_2(\Omega)$. Finally

$$D_{(\mathcal{Z}^\dagger)}^2 \Xi^1_2 = D_{(\mathcal{Z}^\dagger)} Q \mathcal{T}_\Omega [F^1_2] = D_{(\mathcal{Z}^\dagger)} [\mathcal{I} - \mathbb{P}] \mathcal{T}_\Omega [F^1_2]$$

$$= D_{(\mathcal{Z}^\dagger)} \mathcal{T}_\Omega [F^1_2] - D_{(\mathcal{Z}^\dagger)} \mathbb{P} \mathcal{T}_\Omega [F^1_2] = F^1_2,$$

since $\mathbb{P} \subset \text{Ker} D_{(\mathcal{Z}^\dagger)}$. So $\mathcal{T}_\Omega Q \mathcal{T}_\Omega [F^1_2]$ is a solution of (7)–(8).

Moreover, we can use this result to solve the boundary value problem

$$D_{(\mathcal{Z}^\dagger)}^2 \Xi^1_2 = 0, \quad \text{in } \Omega,$$

$$\Xi^1_2 = G^1_2, \quad \text{on } \Gamma. \quad (9)$$

As $G^1_2 \in W^{k+3}_2(\Gamma)$, there exists a $W^{k+2}_2(\Omega)$–extension, not necessarily unique, with $\text{tr}_\Gamma H^1_2 = G^1_2$. If we put $\Xi^1_2 = J^1_2 + H^1_2$, we have the last boundary value problem transformed into

$$D_{(\mathcal{Z}^\dagger)}^2 J^1_2 = -D_{(\mathcal{Z}^\dagger)} H^1_2, \quad \text{in } \Omega,$$

$$J^1_2 = 0, \quad \text{on } \Gamma. \quad (10)$$

Applying our solution of (7)–(8) one has the representation

$$J^1_2 = -\mathcal{T}_\Omega Q \mathcal{T}_\Omega D_{(\mathcal{Z}^\dagger)}^2 H^1_2.$$

The Borel-Pompeiu formula implies that

$$J^1_2 = -\mathcal{T}_\Omega Q [D_{(\mathcal{Z}^\dagger)} H^1_2] + \mathcal{T}_\Omega Q [C_\Gamma [\text{tr}_\Gamma D_{(\mathcal{Z}^\dagger)} H^1_2]] = -\mathcal{T}_\Omega Q [D_{(\mathcal{Z}^\dagger)} H^1_2]$$

$$= -\mathcal{T}_\Omega D_{(\mathcal{Z}^\dagger)} H^1_2 + \mathcal{T}_\Omega P D_{(\mathcal{Z}^\dagger)} H^1_2 = -H^1_2 + C_\Gamma [G^1_2] + \mathcal{T}_\Omega P D_{(\mathcal{Z}^\dagger)} H^1_2,$$

and so

$$\Xi^1_2 = J^1_2 + H^1_2 = C_\Gamma [G^1_2] + \mathcal{T}_\Omega P D_{(\mathcal{Z}^\dagger)} H^1_2.$$

Note that adding the solutions of both boundary value problems described above, gives a solution of (4)–(5), which leads to the following theorem.
Theorem 6 Let $F_2^1 \in W_k^2(\Omega)$ and $G_2^1 \in W_{k+\frac{3}{2}}^2(\Omega)$, $k \geq 0$. Then the boundary value problem (4)–(5) has the unique solution $\Xi_2^1 \in W_{k+2}^2(\Omega)$ of the form

$$\Xi_2^1 = C_{\Gamma}[G_2^1] + \mathcal{T}_{\Omega}(P[D(Z,Z^\dagger)]H_2^1) + \mathcal{T}_{\Omega}(Q[T\Omega[F_2^1]],$$

where H_2^1 denotes a $W_{k+2}^2(\Omega)$-extension of G_2^1.

Proof
The only point remaining to be proven is the uniqueness of the solution. To that end we remark that the boundary value problem

$$D^2_{(Z,Z^\dagger)}\Xi_2^1 = 0$$

admits the unique solution $\Xi_2^1 = 0$, when invoking the fact that $D^2_{(Z,Z^\dagger)}\Xi_2^1 = 0$ also implies that $\Delta \Xi_2^1 = 0$.

At this point, we are able to prove representation formulae for the orthoprojections P and Q in terms of $\text{tr}_{\Gamma}, C_{\Gamma}, \mathcal{T}_{\Omega}$, similar to those developed in [7]. To this end we first prove a useful result on the existence of an isomorphism between Slobodetzkij spaces.

Proposition 4 Let $k \in \mathbb{N} \cup \{0\}$. Then the operator

$$\text{tr}_{\Gamma}\mathcal{T}_{\Omega}C_{\Gamma} : W_{k+\frac{3}{2}}^2(\Gamma) \cap \text{im} P_\Gamma^+ \rightarrow W_k^{k+\frac{3}{2}}(\Gamma) \cap \text{im} P_\Gamma^-$$

is an isomorphism.

Proof
Using the mapping properties of \mathcal{T}_{Ω} and C_{Γ} we obtain

$$(\text{tr}_{\Gamma}\mathcal{T}_{\Omega}C_{\Gamma})(W_{k+\frac{3}{2}}^2(\Gamma)) \subset W_k^{k+\frac{3}{2}}(\Gamma).$$

The task now is to prove that $\ker (\text{tr}_{\Gamma}\mathcal{T}_{\Omega}C_{\Gamma}) = \{0\}$. Let $\Xi_2^1 \in W_{k+\frac{3}{2}}^2(\Gamma) \cap \text{im} P_\Gamma^+$ with $\text{tr}_{\Gamma}\mathcal{T}_{\Omega}C_{\Gamma}([\Xi_2^1]) = 0$. From the study of the second-order boundary value problem above and since $D^2_{(Z,Z^\dagger)}\mathcal{T}_{\Omega}C_{\Gamma}([\Xi_2^1]) = 0$ we have that $\mathcal{T}_{\Omega}C_{\Gamma}([\Xi_2^1]) = 0$. Hence $D^2_{(Z,Z^\dagger)}[\mathcal{T}_{\Omega}C_{\Gamma}([\Xi_2^1])] = 0$ and it follows that $C_{\Gamma}([\Xi_2^1]) = 0$. We then obtain that $\Xi_2^1 = 0$, since $\Xi_2^1 \in \text{im} P_\Gamma^+$ yields $C_{\Gamma}([\Xi_2^1]) = (-1)^{\frac{n+1}{2}} \frac{2i}{n+1} \Xi_2^1$, in view of Corollary 1.

Now, let $V_2^1 \in \text{im} P_\Gamma^-$, so we have that $C_{\Gamma}([V_2^1]) = 0$. Again, the study of the solution of the second-order boundary value problem enables us to conclude that the problem

$$D^2_{(Z,Z^\dagger)}\Xi_2^1 = 0$$

$$\Xi_2^1 = V_2^1$$

12
has the solution \(\Xi_2^1 = C_\Gamma [V_2^1] + T_\Omega^1 \mathcal{P} \mathcal{D}(\mathcal{Z}, \mathcal{Z}'_1) H_2^1 \), where \(H_2^1 \) denotes a \(W_2^{k+2}(\Omega) \)-extension of \(V_2^1 \), where \(\Xi_2^1 = T_\Omega^1 \mathcal{P} \mathcal{D}(\mathcal{Z}, \mathcal{Z}'_1) H_2^1 \). Corollary 1 now implies that

\[
\Xi_2^1 = \frac{1}{(-1)^{n(k+1)}} T_\Omega C_\Gamma \mathcal{P} \mathcal{D}(\mathcal{Z}, \mathcal{Z}') H_2^1
\]

From this we conclude that \(\Xi_2^1 \in \text{im}[\text{tr} T_\Omega C_\Gamma] \), which completes the proof. \(\square \)

Theorem 7 Let \(\Xi_2^1 \in W_2^k(\Omega), k \geq 1 \). Then the orthoprojections \(\mathcal{P} \) and \(\mathcal{Q} \) have the respective algebraic representations

\[
\begin{align*}
\mathcal{P}[\Xi_2^1] &= C_\Gamma(\text{tr} T_\Omega C_\Gamma)^{-1} \text{tr} T_\Omega [\Xi_2^1] \in W_2^k(\Omega), \\
\mathcal{Q}[\Xi_2^1] &= (\mathcal{I} - C_\Gamma(\text{tr} T_\Omega C_\Gamma)^{-1} \text{tr} T_\Omega)[\Xi_2^1] \in W_2^k(\Omega).
\end{align*}
\]

Proof

Assume \(\Xi_2^1 \in W_2^k(\Omega) \) and put \(\mathcal{P}_* = C_\Gamma(\text{tr} T_\Omega C_\Gamma)^{-1} \text{tr} T_\Omega \). Then we have that \(T_\Omega [\Xi_2^1] \in W_2^{k+1}(\Omega) \), which yields \(\text{tr} T_\Omega \Xi_2^1 \in W_2^{k+\frac{3}{2}}(\Gamma) \). From \(\text{tr} T_\Omega \Xi_2^1 \in \text{im} \mathcal{P}_\Gamma \) we have, by Proposition 4, that \((\text{tr} T_\Omega C_\Gamma)^{-1} \text{tr} T_\Omega \Xi_2^1 \in W_2^{k-\frac{1}{2}}(\Gamma) \). Consequently, applying the mapping properties of \(C_\Gamma \) we obtain

\[
\mathcal{P}_*[\Xi_2^1] \in W_2^k(\Omega) \cap \text{Ker} \mathcal{D}(\mathcal{Z}, \mathcal{Z}').
\]

It is easily verified that \(\mathcal{P}_*^2 = \mathcal{P}_* \). Also \(\mathcal{I} - \mathcal{P}_* \) is a projection onto the subspace \(W_2^k(\Omega) \cap \mathcal{D}(\mathcal{Z}, \mathcal{Z}')(W_2^1(\Omega) \cap W_2^{k+1}(\Omega)) \). Obviously \((\mathcal{I} - \mathcal{P}_*)^2 = \mathcal{I} - \mathcal{P}_* \) holds. Furthermore, we have

\[
(\mathcal{I} - \mathcal{P}_*) \Xi_2^1 = \Xi_2^1 - \mathcal{P}_* \Xi_2^1 = \mathcal{D}(\mathcal{Z}, \mathcal{Z}')[T_\Omega \Xi_2^1 - \mathcal{P}_* \Xi_2^1] = \mathcal{D}(\mathcal{Z}, \mathcal{Z}')[T_\Omega \Xi_2^1 - T_\Omega \mathcal{P}_* \Xi_2^1].
\]

It is clear that

\[
\text{tr} T_\Omega [T_\Omega \Xi_2^1 - T_\Omega \mathcal{P}_* \Xi_2^1] = \text{tr} T_\Omega \Xi_2^1 - \text{tr} T_\Omega \mathcal{P}_* \Xi_2^1 = 0.
\]

Invoking the uniqueness of the orthoprojections \(\mathcal{P} \) and \(\mathcal{Q} \) concludes the proof. \(\square \)

5 Acknowledgments

This paper was written during the scientific stay of R. Abreu-Blaya, J. Bory-Reyes and T. Moreno-García at the Clifford Research Group of the Department of Mathematical Analysis of Ghent University; the financial support and kind hospitality are gratefully acknowledged.
References

R. Abreu Blaya: Facultad de Informática y Matemática, Universidad de Holguín, Holguín 80100, Cuba.
E-mail: rabreu@facinf.uho.edu.cu

J. Bory Reyes: Departamento de Matemática, Universidad de Oriente, Santiago de Cuba 90500, Cuba.
E-mail: jbory@rect.uo.edu.cu

F. Brackx: Department of Mathematical Analysis, Faculty of Engineering, Ghent University, Galglaan 2, 9000 Gent, Belgium.
E-mail: fb@cage.UGent.be

H. De Schepper: Department of Mathematical Analysis, Faculty of Engineering, Ghent University, Galglaan 2, 9000 Gent, Belgium.
E-mail: hds@cage.UGent.be

T. Moreno-García: Facultad de Informática y Matemática, Universidad de Holguín, Holguín 80100, Cuba.
E-mail: tmorenog@facinf.uho.edu.cu

F. Sommen: Department of Mathematical Analysis, Faculty of Engineering, Ghent University, Galglaan 2, B-9000 Gent, Belgium.
E-mail: fs@cage.UGent.be