Optimization of nutrient fluxes in European agriculture by using bio-based mineral fertilizer substitutes: a field experiment

Ivona Sigurnjak\(^1\), Ellen Dolmans\(^1\), Evi Michels\(^1\), Bart Ryckaert\(^2\), Viooltje Lebuf\(^3\), Filip M.G.Tack\(^1\), Erik Meers\(^1\)

\(^1\) Laboratory of Analytical and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent, Belgium, ivona.sigurnjak@ugent.be, www.ecochem.be
\(^2\) Provincial Research and Advice Centre for Agriculture and Horticulture (Inagro vzw), www.inagro.be
\(^3\) Flemish Coordination Centre for Manure Processing (VCM vzw), www.vcm-mestverwerking.be

INTRODUCTION

• Several regions in Europe such as Flanders (Belgium) are confronted with manure surplus as a consequence of intensive livestock production. These regions are obliged to process and export the manure surplus.

• In contrast, European agriculture is faced with an increasing demand for synthetic fertilizers. The solution for the existing paradox can be found in a sustainable resource management which is in line with the cradle-to-cradle approach: waste should be turned into secondary resources.

• With the goal to use bio-digestion derivatives as a substitute for mineral fertilizers, several field trials were conducted within the projects INTERREG IV - ARBOR (Accelerating Renewable Energies through Valorization of Biogenic Organic Raw Material) and MIP – NutriCycle (Green fertilizer from digestate and manure).

• A first field trial was conducted in Wingene. No statistical differences could be identified when comparing classic fertilisation versus green fertilizers with respect to crop yield, soil fertility and quality.

• In order to validate the results and evaluate the impact on soil quality in the longer term, these field trials were continued in the following years (2012 – 2013).

• Several regions in Europe such as Flanders (Belgium) are confronted with manure surplus as a consequence of intensive livestock production. These regions are obliged to process and export the manure surplus.

• In contrast, European agriculture is faced with an increasing demand for synthetic fertilizers. The solution for the existing paradox can be found in a sustainable resource management which is in line with the cradle-to-cradle approach: waste should be turned into secondary resources.

• With the goal to use bio-digestion derivatives as a substitute for mineral fertilizers, several field trials were conducted within the projects INTERREG IV - ARBOR (Accelerating Renewable Energies through Valorization of Biogenic Organic Raw Material) and MIP – NutriCycle (Green fertilizer from digestate and manure).

• A first field trial was conducted in Wingene. No statistical differences could be identified when comparing classic fertilisation versus green fertilizers with respect to crop yield, soil fertility and quality.

EXPERIMENTAL SETUP 2013

• In 2013, field trials were conducted on two different locations in Belgium: Wingene (sandy soil) and Roeselare (sandy-loam soil).

• In total, on both fields, eleven different fertilization treatments (n=4) were applied.

• Conventional fertilization regime (manure + artificial fertilizers) served as a reference = Scenario 1.

CROP YIELD RESULTS 2013

• On both locations, no statistical differences were observed when comparing classic fertilization versus green fertilizers with respect to crop yield.

• In Wingene (sandy), scenario eight with complete substitution of artificial fertilizers by air scrubber water and LF digestate, showed a slightly higher yield as compared to the reference scenario.

• In Roeselare (sandy loam), scenarios with complete substitution of artificial fertilizers have shown the tendency to have equal or slightly higher yield as compared to the reference.

• Compilation of the results from the three-year trial will contribute significantly in evaluating bio-digestion derivatives as a nutrient source.

• In March 2014, a new field assessment will be conducted. In this trial, a wider range of bio-digestion derivatives, such as evaporated effluent from biological treatment, will be tested on cauliflower.

CONTRIBUTION TO THE TRANSITION FROM FOSSIL TO BIO-BASED ECONOMY AS A CATALYST FOR RECOGNITION OF GREEN FERTILIZERS WITHIN THE EUROPEAN LEGISLATION