Advanced search
1 file | 901.21 KB Add to list

Radiation-induced strengthening and absorption of dislocation loops in ferritic Fe-Cr alloys: the role of Cr segregation

Author
Organization
Abstract
The understanding of radiation-induced strengthening in ferritic FeCr-based steels remains an essential issue in the assessment of materials for fusion and fission reactors. Both early and recent experimental works on Fe-Cr alloys reveal Cr segregation on radiation-induced nanostructural features (mainly dislocation loops), whose impact on the modification of the mechanical response of the material might be key for explaining quantitatively the radiation-induced strengthening in these alloys. In this work, we use molecular dynamics to study systematically the interaction of dislocations with 1/2 < 111 > and < 100 > loops in all possible orientations, both enriched by Cr atoms and undecorated, for different temperatures, loop sizes and dislocation velocities. The configurations of the enriched loops have been obtained using a non-rigid lattice Monte Carlo method. The study reveals that Cr segregation influences the interaction mechanisms with both 1/2 < 111 > and < 100 > loops. The overall effect of Cr enrichment is to penalize the mobility of intrinsically glissile 1/2 < 111 > loops, modifying the reaction mechanisms as a result. The following three most important effects associated with Cr enrichment have been revealed: (i) absence of dynamic drag; (ii) suppression of complete absorption; (iii) enhanced strength of small dislocation loops (2 nm and smaller). Overall the effect of the Cr enrichment is therefore to increase the unpinning stress, so experimentally 'invisible' nanostructural features may also contribute to radiation-induced strengthening. The reasons for the modification of the mechanisms are explained and the impact of the loading conditions is discussed.
Keywords
EDGE DISLOCATION, INTERSTITIAL CLUSTERS, MECHANICAL-PROPERTIES, MOLECULAR-DYNAMICS, ATOMIC-SCALE, FRANK LOOPS, ALPHA-IRON, SIMULATION, STEELS, MODEL

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 901.21 KB

Citation

Please use this url to cite or link to this publication:

MLA
Terentyev, D, and Alexander Bakaev. “Radiation-induced Strengthening and Absorption of Dislocation Loops in Ferritic Fe-Cr Alloys: The Role of Cr Segregation.” JOURNAL OF PHYSICS-CONDENSED MATTER 25.26 (2013): n. pag. Print.
APA
Terentyev, D, & Bakaev, A. (2013). Radiation-induced strengthening and absorption of dislocation loops in ferritic Fe-Cr alloys: the role of Cr segregation. JOURNAL OF PHYSICS-CONDENSED MATTER, 25(26).
Chicago author-date
Terentyev, D, and Alexander Bakaev. 2013. “Radiation-induced Strengthening and Absorption of Dislocation Loops in Ferritic Fe-Cr Alloys: The Role of Cr Segregation.” Journal of Physics-condensed Matter 25 (26).
Chicago author-date (all authors)
Terentyev, D, and Alexander Bakaev. 2013. “Radiation-induced Strengthening and Absorption of Dislocation Loops in Ferritic Fe-Cr Alloys: The Role of Cr Segregation.” Journal of Physics-condensed Matter 25 (26).
Vancouver
1.
Terentyev D, Bakaev A. Radiation-induced strengthening and absorption of dislocation loops in ferritic Fe-Cr alloys: the role of Cr segregation. JOURNAL OF PHYSICS-CONDENSED MATTER. 2013;25(26).
IEEE
[1]
D. Terentyev and A. Bakaev, “Radiation-induced strengthening and absorption of dislocation loops in ferritic Fe-Cr alloys: the role of Cr segregation,” JOURNAL OF PHYSICS-CONDENSED MATTER, vol. 25, no. 26, 2013.
@article{4415013,
  abstract     = {{The understanding of radiation-induced strengthening in ferritic FeCr-based steels remains an essential issue in the assessment of materials for fusion and fission reactors. Both early and recent experimental works on Fe-Cr alloys reveal Cr segregation on radiation-induced nanostructural features (mainly dislocation loops), whose impact on the modification of the mechanical response of the material might be key for explaining quantitatively the radiation-induced strengthening in these alloys. In this work, we use molecular dynamics to study systematically the interaction of dislocations with 1/2 < 111 > and < 100 > loops in all possible orientations, both enriched by Cr atoms and undecorated, for different temperatures, loop sizes and dislocation velocities. The configurations of the enriched loops have been obtained using a non-rigid lattice Monte Carlo method. The study reveals that Cr segregation influences the interaction mechanisms with both 1/2 < 111 > and < 100 > loops. The overall effect of Cr enrichment is to penalize the mobility of intrinsically glissile 1/2 < 111 > loops, modifying the reaction mechanisms as a result. The following three most important effects associated with Cr enrichment have been revealed: (i) absence of dynamic drag; (ii) suppression of complete absorption; (iii) enhanced strength of small dislocation loops (2 nm and smaller). Overall the effect of the Cr enrichment is therefore to increase the unpinning stress, so experimentally 'invisible' nanostructural features may also contribute to radiation-induced strengthening. The reasons for the modification of the mechanisms are explained and the impact of the loading conditions is discussed.}},
  articleno    = {{265702}},
  author       = {{Terentyev, D and Bakaev, Alexander}},
  issn         = {{0953-8984}},
  journal      = {{JOURNAL OF PHYSICS-CONDENSED MATTER}},
  keywords     = {{EDGE DISLOCATION,INTERSTITIAL CLUSTERS,MECHANICAL-PROPERTIES,MOLECULAR-DYNAMICS,ATOMIC-SCALE,FRANK LOOPS,ALPHA-IRON,SIMULATION,STEELS,MODEL}},
  language     = {{eng}},
  number       = {{26}},
  pages        = {{11}},
  title        = {{Radiation-induced strengthening and absorption of dislocation loops in ferritic Fe-Cr alloys: the role of Cr segregation}},
  url          = {{http://dx.doi.org/10.1088/0953-8984/25/26/265702}},
  volume       = {{25}},
  year         = {{2013}},
}

Altmetric
View in Altmetric
Web of Science
Times cited: