Advanced search
1 file | 394.06 KB Add to list

Closing reciprocal relations w.r.t. stochastic transitivity

Steven Freson (UGent) , Bernard De Baets (UGent) and Hans De Meyer (UGent)
(2014) FUZZY SETS AND SYSTEMS. 241. p.2-26
Author
Organization
Keywords
CONSENSUS, ALGORITHMS, MATRICES, TREE, FUZZY PREFERENCE STRUCTURES, GROUP DECISION-MAKING, RANDOM-VARIABLES, LUKASIEWICZ TRIPLETS, DEFINITION, CLOSURES, Transitive closure, Reciprocal relation, Stochastic transitivity

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 394.06 KB

Citation

Please use this url to cite or link to this publication:

MLA
Freson, Steven, et al. “Closing Reciprocal Relations w.r.t. Stochastic Transitivity.” FUZZY SETS AND SYSTEMS, vol. 241, 2014, pp. 2–26, doi:10.1016/j.fss.2013.01.014.
APA
Freson, S., De Baets, B., & De Meyer, H. (2014). Closing reciprocal relations w.r.t. stochastic transitivity. FUZZY SETS AND SYSTEMS, 241, 2–26. https://doi.org/10.1016/j.fss.2013.01.014
Chicago author-date
Freson, Steven, Bernard De Baets, and Hans De Meyer. 2014. “Closing Reciprocal Relations w.r.t. Stochastic Transitivity.” FUZZY SETS AND SYSTEMS 241: 2–26. https://doi.org/10.1016/j.fss.2013.01.014.
Chicago author-date (all authors)
Freson, Steven, Bernard De Baets, and Hans De Meyer. 2014. “Closing Reciprocal Relations w.r.t. Stochastic Transitivity.” FUZZY SETS AND SYSTEMS 241: 2–26. doi:10.1016/j.fss.2013.01.014.
Vancouver
1.
Freson S, De Baets B, De Meyer H. Closing reciprocal relations w.r.t. stochastic transitivity. FUZZY SETS AND SYSTEMS. 2014;241:2–26.
IEEE
[1]
S. Freson, B. De Baets, and H. De Meyer, “Closing reciprocal relations w.r.t. stochastic transitivity,” FUZZY SETS AND SYSTEMS, vol. 241, pp. 2–26, 2014.
@article{4413776,
  author       = {{Freson, Steven and De Baets, Bernard and De Meyer, Hans}},
  issn         = {{0165-0114}},
  journal      = {{FUZZY SETS AND SYSTEMS}},
  keywords     = {{CONSENSUS,ALGORITHMS,MATRICES,TREE,FUZZY PREFERENCE STRUCTURES,GROUP DECISION-MAKING,RANDOM-VARIABLES,LUKASIEWICZ TRIPLETS,DEFINITION,CLOSURES,Transitive closure,Reciprocal relation,Stochastic transitivity}},
  language     = {{eng}},
  location     = {{Regua, Portugal}},
  pages        = {{2--26}},
  title        = {{Closing reciprocal relations w.r.t. stochastic transitivity}},
  url          = {{http://doi.org/10.1016/j.fss.2013.01.014}},
  volume       = {{241}},
  year         = {{2014}},
}

Altmetric
View in Altmetric
Web of Science
Times cited: