Performance based on sEMG activity is related to psychosocial components: differences between back and abdominal endurance tests.

Van Damme Benedicte1,2, Stevens Veerle1,2, Van Tiggelen Damien1,2, Perneel Christiaan3, Crombez Geert4, Danneels Lieven2

1Center for Musculoskeletal Medicine & Rehabilitation, Military Hospital Queen Astrid, Brussels, Belgium;
2Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium;
3Department of Mathematics, Royal Military Academy, Brussels, Belgium;
4Department of Experimental Clinical and Health Psychology, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium.

Corresponding author: Benedicte Van Damme (Benedicte.VanDamme@mil.be)

Military Hospital Queen Astrid, Center for Musculoskeletal Medicine & Rehabilitation, Bruynstraat 1, 1120 Brussels, Belgium

(32) 2-264-47-28
Introduction

Physical and psychosocial deconditioning is common in patients with chronic LBP [Brox et al, 2005; Frost et al, 1998]. Research showed that the clinical evolution and prognosis of LBP is influenced by psychosocial factors such as pain related fear [Crombez et al, 1999; Sullivan et al, 2009], pain catastrophizing [Burton et al, 1995; Meyer et al, 2009], pain and functional self-perceived disability [Vlaeyen & Linton, 2000; Thomas & France, 2008], self-reported health [Ahrens et al, 2010] and depression [Ryan et al, 2010]. All these psychosocial influences make it hard to ensure that physical measurements in patients with persistent non-specific LBP provide an accurate representation of the real physical condition.

Biering Sorenson [Biering Sorenson, 1984] developed a test to measure back muscle fatigability and demonstrated that a shorter position-holding time during this test predicted LBP within the next years [Demoulin et al, 2006]. However, a clear influence of psychosocial factors on the endurance time of the Biering-Sorenson test (B-S test) was demonstrated, in healthy subjects as well as in patients with chronic LBP [Larivière et al, 2010; Coorevits et al, 2008]. In order to obtain a more objective measurement of the intrinsic muscle fatigue, a measure for the decrease of the median frequency during static submaximal testing, recorded by surface electromyography (sEMG), can be used [Coorevits et al, 2008]. A regression coefficient of the median frequency slope towards lower frequencies can be used as a fatigue index for the investigated muscle. This regression coefficient is often normalized by the intercept, which is the crossing point of the slope and the Y-axis [Konrad, 2005]. A combination of the use of the regression coefficient of the median frequency, time to exhausting and self-reporting questionnaires, could be useful to understand the different influencing factors on physical performance.

In contrast to the almost systematic use of the B-S test and its modified versions to analyze back muscle endurance, much more variation in position and procedure is observed in abdominal endurance tests. Brox et al. [2005] utilized a dynamic abdominal endurance test to demonstrate that deconditioning (deterioration of impairment and disability) was more related to psychological measures and physical measures of abdominal and back muscle endurance than to general
cardiovascular fitness (estimated by a submaximal bicycle ergometer test). However, static endurance
tests are preferred since variation in muscle length throughout the test can alter the frequency content
of the EMG signal [Mannion et al, 1996; Sparto et al, 1999].

In conclusion, research on the relation between psychosocial deconditioning and physical
performance is scarce and often lacks standardized and specialized physical testing or sufficient
patients. Therefore, the aim of the present study was to investigate the influence of psychosocial
components on the duration of standardized back and abdominal static endurance tests in patients
with persistent non-specific LBP. Determining good performance may lead to a better understanding
of factors that make patients perform less than they physically can during these tests. The hypothesis
was that underperformance during back and abdominal endurance tests in patients with persistent
non-specific LBP is influenced and may be predicted by psychosocial components.

Materials and Methods

Patients

Three-hundred and thirty-two patients (291 men and 41 women; military and civilian employees) from
19 to 63 years old with persistent non-specific LBP, with or without leg pain, were included in this
study after screening by a medical doctor specialized in physical medicine at the Military Hospital
Queen Astrid in Brussels. When needed additional investigations were performed to assure that no
identifiable specific anatomical or neurophysiological causative factors were present. Pregnant
women, patients with previous spinal surgery, nerve root entrapment with neurological deficit, patients
with specific LBP diseases and patients with a BMI ≥ 33 were excluded from this study. Study
population characteristics are shown in Table 1. The study was approved by the Ethical Committee of
the Ghent University.

Psychosocial assessment questionnaires

All subjects received self-report questionnaires before performing physical tests. General questions
related to the sociodemographic status and characteristics of their LBP were registered. Several
validated questionnaires were used as a measure of physical and/or psychological influence of the LBP on daily life. A numerical scale was used to indicate the average pain over the last week. Pain Catastrophizing was measured by the Pain Catastrophizing Scale (PCS) and its three subscales (rumination, magnification and helplessness) [Sullivan et al, 1995]. The Hospital Anxiety or Depression Scale (HADS) [Zigmond & Snaith, 1983] determined the levels of anxiety and depression that a patient was experiencing. The Distress Risk Assessment Method (DRAM) consisting of the Modified Somatic Perceptions Questionnaire (MSPQ) [Mannion et al, 2011; Main, 1983] and the Modified Zung Depression Index (MZDI) [Mannion et al, 2011; Zung et al, 1965] were used as screening tools for depression and somatic pain respectively. The Short Form Health Survey (SF-36) [Ware & Gandek, 1998] and its different subscales gave a general measure of health, both mental and physical components. Depending on the mother tongue, the participants filled in the questionnaires in Dutch or French (validated versions).

Physical Assessment – endurance tests

An isometric endurance test for the abdominal muscles (AE test) [Stevens et al, 2008] was performed (Figure 1). The patient was seated on a bench in a straight-knee position, with the trunk unsupported at a 45-degree angle. The hands were placed on the shoulders with the arms flexed alongside the trunk. Neutral position of the head and lumbar spine was respected.

For the evaluation of the isometric endurance of the trunk extensor muscles patients performed a modified version of the B-S test (Figure 2) [Demoulin et al, 2006; Coorevits et al, 2008; Demoulin et al, 2013; Stevens et al, 2006]. The patient was lying on a bench in a prone position with the anterior-superior iliac spines at the rotation point of the bench. The lower body was fixed to the table by two straps, one around the pelvis and one on the ankles. The patients had to hold their hands touching their foreheads, with their elbows out to the side and leveled with the trunk. Patients were also instructed to hold their head in a neutral position, and to look downward. The test was started with the upper body in an about 70° downward position so that a concentric contraction of the trunk extensor muscles was needed initially to reach the horizontal position.
The patient was asked to isometrically maintain these positions. This was checked by visual evaluation. The time the patient held these positions was recorded. Verbal encouragement was given by the tester during both endurance tests to ensure that the maximal effort was produced by the patient.

EMG recording

sEMG was used to quantify the rate of development of muscle fatigue. After appropriate skin preparation in order to get a good electrode-skin contact and to reduce skin impedance, 8 pairs of circular Ag/AgCl sensor surface electrodes (Ambu® Blue Sensor M, Ambu A/S, Ballerup, DK) were placed parallel to the muscle fibres [Ng et al, 1998], bilaterally, of 2 deep stabilizing and 2 superficial torque producing abdominal and back muscle groups as follows: The inferior fibres of the internal obliques (IO) (midway between the anterior iliac spine and the symphysis pubis, above the inguinal ligament) [Stevens et al, 2008; Van Damme et al, 2012], the external obliques (EO) (15 cm lateral to the umbilicus) [Cholewicki et al, 1997; Hubley & Vezina, 2002], the lumbar multifidus (LMF) (above and below the L5 spinous process, parallel to the line between the posterosuperior iliac spine and the L1–L2 interspinous space) [Danneels et al, 2001; Ng et al, 1997], the thoracic part of the iliocostalis (ICLT) (above and below the L1 level, midway between the midline and the lateral aspect of the body) [Stevens et al, 2008; Van Damme et al, 2012; Danneels et al, 2002]. A reference electrode was placed on the thoracic cage.

Electromyographic signals were recorded using an 8-channel sEMG system (Myosystem 2000, Noraxon U.S.A. Inc., Scottsdale, AZ) connected to a computer. The raw sEMG signals were recorded at a sampling rate of 1000Hz, amplified (overall gain 1000, common mode rate rejection ratio 115 dB), filtered to produce a bandwidth of 10 – 500 Hz and analog digital conversion (12-bit resolution) was at 1000 Hz. Each recorded sEMG signal that was stored on the computer was divided in intervals of 5 s. The median frequency (MF) of the sEMG power spectrum was calculated at each 5-s interval with Fast-Fourier Transform algorithms using the Noraxon MyoResearch software v2.11. During a sustained isometric contraction of the muscles, the MF spectral shifts indicate local muscle fatigue and decrease over time [Sung et al, 2009]. The MF was defined as the frequency that divided the
spectrum into two equal areas. Finally, linear regression analyses were performed on the calculated MF's as a function of time. The initial MF (MF$_{init}$) was defined as the intercept of the regression line and the MF slope (MF$_{slope}$) was determined as the slope of the regression line. MF$_{slope}$ was normalized to MF$_{init}$ [Biering Sorenson, 1984], to deal with inter subject and inter location differences in subcutaneous tissue layers. The MF$_{slope}$, normalized to MF$_{init}$, gave a measure of fatigability for each recording site for each individual [Mannion et al, 2011; Coorevits et al, 2008].

Data analysis

The outcome of each questionnaire was calculated following the instructions of the original designers. SPSS 21.0 was used for statistical analyses. Statistical significance was accepted at the 5% level.

Patients were dichotomized as underperformers and performers, by comparing their real endurance time, to the expected time of endurance derived from the normalized MF$_{slope}$ (NMF$_{slope}$). This was done for the B-S test and the AE test separately. The NMF$_{slope}$ [Coorevits et al, 2008] provided a measure of fatigability for each muscle on both sides, for each subject. The endurance time was regressed on the NMF$_{slope}$ for the most fatigable region of the LMF during the B-S test and for the most fatigable region of the IO during the AE test. The deep stabilizing muscles were selected because, in this group, they showed generally a steeper slope than the superficial torque-producing muscles. Endurance appears to be limited by the most fatigable region of a muscle group [Mannion & Dolan, 1994]. Stepwise multiple regression analyses (Probability of F-to-enter ≤0.05; Probability of F-to-remove ≥0.10) were used to determine a linear model for the endurance time of the two endurance tests. The influence of gender on the slope and the intercept of the regression line were analyzed. For this reason, the dummy variable gender and gender*NMF$_{slope}$ were introduced as two extra independent variables into the model. Using the regression equation derived from the group data, the "expected" endurance time for a given subject was determined for both exercises. Depending on whether their real endurance time fell short (a) or was equal to or exceeded (b) the expected time, they were classified as underperformers (a) or as performers (b) for that specific exercise. A similar method was used by Mannion et al. (2011), but in the present model gender was also added in the regression model.
For the AE test and the B-S test separately, independent \(t \) tests were performed to examine the differences between underperformers and performers on the different variables and self-reporting questionnaires. Stepwise multiple regression analysis (Probability of \(F \)-to-enter \(\leq 0.05 \); Probability of \(F \)-to-remove \(\geq 0.10 \)) was performed using the variables that were found significantly different between the two groups in a bivariate analysis as predictor variables. For the regression analyses, the normality of the errors, independency of the errors and the homoscedasticity assumption were verified.

Results

The linear regression analysis for the B-S test (Figure 3) provided two different parallel regression lines, one for each gender. The regression line for the female patients was situated below the model of the male patients. In the AE test no significant differences were found between the regression line of male and female patients. This means that the prediction line (Figure 4) was the same for male and female subjects.

Biering-Sorensen Test

Independent \(t \)-tests between the underperformers and performers on the B-S test (Table 2) showed that the mean age \((p=0.007)\) and mean BMI \((p<0.001)\) of the underperformers were higher than these of the performers. No significant difference was found in hours of sport per week \((\text{sport hrs/week})\) between the two groups \((p=0.988)\). The two groups had a similar \(\text{NMF}_{\text{slope}} \) of the LMF \((\text{NMF}_{\text{slope}} \text{LMF})\), but the performers group demonstrated a significantly longer endurance time on the B-S test \((p<0.001)\). The scores on some of the subscales of the SF-36 were significantly higher for the performers: Physical Function \((p<0.001)\), General Health \((p<0.001)\) and total Physical Health \((p=0.046)\).

Stepwise multiple regression analysis (Table 3) of all the variables that were found significant in bivariate analysis revealed that a greater BMI \((\beta=-221.748; p<0.001)\) and lower scores on the Physical
Function subscale of the SF-36 ($\beta=355.209; p=0.001$) were significant predictors of underperformance on the B-S test. These components explained more than 10% ($R^2=0.113$) of the variance.

Abdominal Endurance Test

Independent t-tests between the underperformers and performers on the AE test (Table 4) showed that the underperformers group of the AE test had a significantly higher BMI ($p=0.014$). No significant difference was found in sport hrs/week between the two groups ($p=0.482$). The two groups had a similar NMF$_{slope}$ of the IO (NMF$_{slope}$IO), but the performers group demonstrated a significantly longer endurance time on the AE test ($p<0.001$). The underperformers group scored significantly higher on the DRAM MZDI ($p=0.018$) and on the PCS scale ($p=0.020$), as well as on two of its subscales: magnification ($p=0.025$) and helplessness ($p=0.012$). This group showed also significantly lower scores on the SF-36 and some of its subscales: General Health ($p=0.009$), Social Functioning ($p=0.048$), Role Emotional ($p=0.008$), total Physical Health ($p=0.25$) and total Mental Health ($p=0.006$).

Stepwise multiple regression analysis (Table 5) of all the variables that were found significant in bivariate analysis revealed that a higher BMI ($\beta=-2748.282; p=0.005$) and a lower score on the total mental health subscale of the SF-36 ($\beta=547.415; p=0.011$) were predictive for underperformance on the AE test. These components explained more than 4% of the variance ($R^2=0.049$).

Discussion

The present study examined the relationship between psychosocial components and underperformance -performance less than expected- on abdominal and back muscle endurance tests in patients with persistent non-specific LBP. The main findings were that underperformance on back muscle endurance tests was more likely to be influenced by physical components (self-reporting on physical health), whereas abdominal muscle endurance tests seemed more affected by psychosocial components (self-reporting of mental health). Performing less than expected as in underperformance, does not necessarily involve low performance, but may even present high performance in well-trained subjects.
Back muscle endurance

For the B-S test underperformers had statistical significant lower scores on different subscales of the SF-36: Physical Function, General Health and total Physical Health. All these scales reflect a physical component. So, we could suggest that more negative perceptions of physical health could induce underperformance on the B-S test.

The results described above are in line with observations in elderly patients with chronic LBP [Ledoux et al, 2012]. Functional capacity, measured by endurance and peak torque during prone and side bridge positions, was very much dependent on physical components (physical activity and disability levels), and not on psychosocial components as depression scores or pain catastrophizing. In the current study baseline physical activity, reported in sport hrs / week was not different between the group underperformers and good performers, but a more detailed questioning about physical activity could have given more information. Disability levels in se were not reported in the current study, but reporting on physical health was significantly different between the two groups in the B-S test.

Demoulin et al. [2013] did not find any association between endurance time on the B-S test and pain-related fear measures, but no subdivision was made between performance groups. Mannion et al. [2011] found that underperformers on the B-S test had more negative back beliefs, greater psychological disturbance, greater catastrophizing and lower exercise self-efficacy compared with the performers. In contrast to the results of the present study, the underperformers showed significant greater catastrophizing and psychological disturbance. Lariviè re et al. [2010] suggested that pain catastrophizing is related to outcome on the B-S test. These different results might be explained by the population characteristics. In contrast to all active working patients in the present study, Lariviè re et al. [2010] observed a population in which 10 of the 27 patients were not at work (7 due to back problems). In the study of Mannion et al. [2011] the group symptoms were similar to the present group, but there were a lot more female subjects (57%). In contrast to the present study, Mannion et al. [2011] did not take gender into account while making the subdivisions in underperformers and performers group. However, several studies demonstrated a clear gender difference in muscle
fatigability during the B-S test. Kankaanpää et al. [1998], for example, demonstrated sex differences in paraspinal muscle fatigability during the B-S test and explained this by gender differences in muscle anatomy and physiology. Therefore, gender cannot be thought away in determining the performance group. In addition, gender differences have been found consistently in catastrophizing, with women reporting significantly higher scores than men on the PCS [D’Eon et al, 2004; Thorn et al, 2004]. In several studies, performance was evaluated by a Functional Capacity Evaluation (FCE) or other physical tests and no strong relationship was found between the FCE-physical outcome and psychological factors [Schiphorst et al, 2008; Reneman et al, 2007; Smeets et al, 2007]. This is in line with the results found in the present study, although the physical tests were very different.

Abdominal muscle endurance

Underperformers on the AE test had significantly higher scores on the DRAM, the MZDI and on the PCS and two of its subscales: magnification and helplessness. The SF-36 and some of its subscales (general health, social functioning, role emotional, total physical health and mental health) of this group showed lower scores, indicating more problems with these health components. Patients who were more emotionally distressed and patients with high levels of catastrophizing tended to underperform on the AE test. No studies were found which specifically investigated the relation between underperformance on abdominal muscle tests and psychological distress. Brox et al. [2005] investigated healthy controls and patients with sub-acute and chronic LBP and found that patients with chronic LBP demonstrated significantly higher pain, self-reported functional disability and fear-avoidance and lower abdominal and back muscle endurance times than sub-acute patients. A study of Sullivan et al. [2002] revealed that pain catastrophizing was significantly predictive for low performance on a repeated lifting task in patients with chronic LBP. However, performing less than expected as in underperformance, does not necessarily involve low performance, but may even present high performance in e.g. well-trained subjects.

Multiple regression analysis demonstrated that a greater BMI and lower scores on the Physical Function subscale of the SF-36 were significant predictors of underperformance on the B-S test and that a higher BMI and lower scores on the total mental health subscale of the SF-36 were predictive
for underperformance on the AE test. It is striking that performance on back muscle endurance tests was more likely influenced by physical components, while the abdominal muscle endurance test seemed more affected by psychological components. Different subjective observations were made, which could explain this discrepancy. Some aspects, typically observed during the AE test, could influence the patient’s motivation to perform. In general, subjects reported more pain discomfort during the AE test. The sitting position is for many patients a pain provocative position. Although the neutral position of the back was respected during the AE test, patients did not like to sit in this position and needed a lot more motivation to hold it. Previous research demonstrated that pain catastrophizing is in strong relation with pain [Sullivan et al, 2001]. Catastrophizing, in the absence of pain, is not associated with impaired physical function or with reduced motivation to perform physical maneuvers. However, under conditions where movement is associated with pain, catastrophizing appears to contribute to a reduction in physical outcome [Sullivan et al, 2002] and this could explain underperformance. In contrast to the lumbar extension control position during the B-S test, the abdominal endurance demanded more control to avoid lumbar flexion. Higher catastrophizing and emotionally distressed patients may fear flexion positions more than extension postures. Flexion-related pain disorders are the most common disorders observed in clinical practice [O’Sullivan, 2000]. In the sitting flexion endurance test, patients also experienced vibrations in the abdominal muscles; these vibrations were generally not observed during the B-S test. Due to the uncomfortable sensation of these vibrations, the patient’s performance could have been disturbed. In addition, the visual focus was also very different between the two endurance tests. During the B-S test, the patients’ vision was orientated to the ground, which created less visual disturbance in comparison to the view of the test environment, equipment and testers during the AE test. Highly test-anxious persons often divide their attention between task-irrelevant and task-relevant variables and become more distractible, whereas low-test anxious persons focus their attention more fully on the task [Pijpers et al, 2005; Eubank et al, 2000]. This could explain why patients who were more psychologically distressed tend to underperform on the AE-test compared to subjects who were not psychologically distressed, and could also clarify why we did not find such a difference in the B-S test. However, the relative shift in attention away from environmental cues, and towards internal monitoring of feelings, thoughts and
movements – which is more likely to happen in the B-S-test - has also been demonstrated to have a

detrimental effect on motor performance especially in anxious people [Maxwell et al, 2000; Janelle,

2002].

Patients who are more psychologically distressed could be more influenced by all these different

factors. Further exploration of the causes of this statistical difference between the AE test and the B-S

test is needed.

Although the results of the multiple regression analyses were in accordance to the clear statistical

significant differences between the group of the underperformers and the good performers, the effect

sizes of the regression analyses were small. Only about 10% in the B-S test and 4% in the AE test of

the variance could be explained by the defined variables. In sociological and biological measurements

high percentages are almost never achieved, however it is often possible to identify about 25% of the

variance of a relationship [Botz & Doering, 2002]. This was not achieved in the present study.

However, interpretation of linear regression analysis is not straightforward [Schneider et al, 2010] and

some statisticians believe that being able to improve an outcome by 4% can be clinically useful.

In previous research, BMI was observed as a significant predictor of endurance time in the B-S test

[Mbada et al, 2009]. This could be explained by the association between BMI and the rate of MF
dercrease during this test. A higher BMI was shown to create a greater fatigability and a lower

endurance time of the paraspinal muscles [Kankaanpää et al, 1998]. The present study examined this

more thoroughly, and found in addition a direct association between BMI and underperformance, both

on the abdominal as well as on the back muscle endurance test. A high BMI was even a predictor of

underperformance on these two endurance tests. In the literature, BMI is often associated with lower

physical performance but also with a higher occurrence of psychosocial problems [Vaidya, 2006;

Fabricatore & Wadden, 2004].

The method used in this study to determine the group of underperformers and performers could be

questioned, because controversy exists concerning the use of MF_slope to determine the time to

exhaustion [Bouillard et al, 2012]. Because parameters derived from the EMG power spectrum are

less dependent on the force level of the muscle compared to amplitude parameters and appear to be
more sensitive to the myoelectric manifestations of muscle fatigue [Ng et al, 1996; Potvin & Bent, 1997], the use of spectral EMG variables as fatigue index was preferred over the EMG amplitude parameters [Roy & Oddsson, 1998]. MF has been suggested to be the most suitable parameters for describing localized muscle fatigue [Kankaanpää et al, 1998; Larivière et al, 2002] and may provide an objective measure of muscle fatigue [Arnall et al, 2002; Mannion et al, 1998; Ng et al, 1996; Nicolaisen & Jorgensen, 1985; Roy et al, 1989]. In contrast, Bouillard et al [2012] demonstrated that other physiological (e.g. motor unit synchronization) and non-physiological (e.g., change in fiber pennation angle, change in the muscular temperature) factors may affect the sEMG signal and thus its changes over time. Other parameters have also been proposed, such as the Dimitrov spectral index, which was shown to be higher correlated with endurance time than the initial slope of the MF in a small healthy population performing isotonic biceps brachii contractions [Lee et al, 2011]. In addition, the MF was demonstrated to be not a suitable indicator for dynamic contractions [Van Dieën et al, 1996] and contractions at approximately 9-10% of maximal voluntary isometric contraction (MVIC) [Gonzalez-Izal et al, 2010]. However, since most of the studies analyzing back muscle fatigue have used MF [Allison & Henry, 2001; Biedermann et al, 1990; Champagne et al, 2008; Dederin et al, 2000; Elving et al, 1999; Kankaanpää et al, 1998; Larivière et al, 2002; Mannion et al, 2011; Müller et al, 2010; Ng et al, 2002; Peach & McGill, 1998; Süüden et al, 2008], and the endurance tests were not dynamically performed and achieved higher levels than 9 to 10% of MVIC, the method applied in the present study was choosen. However, the accuracy of the method using MF_slope to estimate the endurance time is not known and thus some participants may not have been well classified. In addition, the low R^2 values could induce some doubt about the usefulness of the linear regression models. But R^2 is not a way to decide if a model is good or bad and that prudence is warranted in interpreting R^2 values (Achen, 1977; Kennedy, 2008; Goldberger, 1991; King, 1986).

Finally, the aim of this study was not to make a model to predict underperformance on endurance test, but to demonstrate, in addition to previous research, that endurance time on the B-S test and the AE test is not a clear measure of intrinsic muscle fatigue. Psychosocial components and reporting on physical health are interacting with performance on these tests and should be taken into account while
making conclusions based on these tests. In addition, differences found between the AE test and B-S test in this study indicate that these interactions could be test-specific. So these results cannot be generalized to all performance measures. There is a clear need for the use of sEMG in measuring intrinsic muscle fatigue in research and/or clinical settings. Using sEMG in the clinical practice is not feasible, but clinical practitioners, who want to measure endurance, should be aware that psychosocial components could influence performance.

References

Allison GT, Henry SM. Trunk muscle fatigue during a back extension task in standing. Manual Therapy 2001;6(4):221-228

Arnall FA, Koumantakis GA, Oldham JA, Cooper RG. Between-days reliability of electromyographic measures of paraspinal muscle fatigue at 40, 50 and 60% levels of maximal voluntary contractile force. Clinical Rehabilitation 2002;16:761-771

Bortz J, Doering N. Forschungsmethoden und evaluation. 3rd ed., Berlin, Germany: Springer; 2002

Burton, A. Kim PhD; Tillotson, K. Malcolm; Main, Chris J. PhD; Hollis, Sally MSc. Psychosocial Predictors of Outcome in Acute and Subchronic Low Back Trouble. Spine 1995;20:635-748

Konrad P. ABC of EMG. Powered by Noraxon Inc, USA. 2005, p. 50

Ledoux E, Dubois JD, Descarreaux M. Physical and psychosocial predictors of functional trunk capacity in older adults with and without low back pain. J Manip Physiol Ther 2012;35:338-345

Mannion AF, Dolan P. Electromyographic Median Frequency changes during isometric contraction of the back extensors to fatigue. Spine 1994;19:1223-1229

Mannion AF, Dumas GA, Stevenson JM, Cooper RG. The influence of muscle fiber size and type distribution on electromyographic measures of back muscle fatigability. Spine 1998;23(5):576-584

Ng J, Richardson CA, Jull GA. Electromyographic amplitude and frequency changes in the iliocostalis lumborum and multifidus muscles during a trunk holding test. Phys Ther 1997;77:954-961

Peach JP, McGill SM. Classification of low back pain with the use of spectral electromyogram parameters. Spine 1998;23(10):1117-1123

2 Roy SH, Oddsson LIE. Classification of paraspinal muscle impairments by surface electromyography. Physical Therapy 1998;78(8):838-851

Sullivan M, Rodgers W, Wilson P, Bell G, Murray T, Fraser S. An experimental investigation of the
relation between catastrophizing and activity intolerance. Pain 2002;100:47-53

on repetition-induced summation of activity-related pain in patients with chronic low back pain. Pain
2009;141:70-78

Sullivan M, Thorn B, Haythornthwaite J, Keefe F, Martin M, Bradley LA, Lefebvre J. Theoretical

Sung PS, Lammers AR, Danial P. Different parts of erector spinae muscle fatigability in subjects with

Süüden E, Erel ine J, Gapeyeva H, Pääsuke M. Low back muscle fatigue during Sorensen endurance
test in patients with chronic low back pain: relationship between electromyographic spectral
compression and anthropometric characteristics. Electromyography and Clinical Neurophysiology
2008;48(3-4):185-192

Thomas J, France C. The relationship between pain-related fear and lumbar flexion during natural
recovery from low back pain. Eur Spine J 2008;17:97-103

Thorn BE, Clements KL, Wald LC, Dixon KE, Kersh BC, Boothby JL, Chaplin WF. Personality factors
in the explanation of sex differences in pain catastrophizing and response to experimental pain. Clin J
Pain 2004;20:275-282

Van Damme B, Stevens V, Van Tiggelen D, Duvigneaud N, Neyens E, Danneels L. Velocity of
isokinetic trunk exercises influences back muscle recruitment patterns in healthy subjects. J
Electromyogr Kines 2012;23:378–386

Ware J, Gandek B. Overview of the SF-36 health survey and the international quality of life assessment (IQOLA) project. J Clin Epidemiol 1998;51:903-912

Zung W, Richards C, Short M. Self-rating depression scale in an outpatient clinic: further validation of the SDS. Arch Gen Psychiatry 1965;13:508
Caption to illustrations

Figure 1 The abdominal endurance test

Figure 2 A modified version of the Biering-Sorensen test

Figure 3 Plot of the real endurance time (ms) versus the normalized slope of the multifidus, for male and female patients, during a modified version of the Biering-Sorensen Test. The predicted endurance time is given by the regression equation for each gender separately. The regression line for the male was: Y = 122244 + (6638904*x). For female subjects the regression line was Y = (122244-18289) + (6638904*x).

Figure 4 Plot of the real endurance time (ms) versus the normalized slope of the internal obliques, for male and female patients, during an abdominal endurance test. The predicted endurance time is given by the regression equation(Y = 135858,264 + (11104256,44*x), which was found identical between the two genders.
Endurance Time Biering-Sorensen Test (ms)

- Male
- Female

$R^2 = 0.153$