Ghent University Academic Bibliography

Advanced

Herschel-ATLAS/GAMA: what determines the far-infrared properties of radio galaxies?

JS Virdee, MJ Hardcastle, S Rawlings, D Rigopoulou, T Mauch, MJ Jarvis, A Verma, DJB Smith, I Heywood, SV White, et al. (2013) MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. 432(1). p.609-625
abstract
We perform a stacking analysis of Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) data in order to obtain isothermal dust temperatures and rest-frame luminosities at 250 mu m (L-250), for a well-defined sample of 1599 radio sources over the H-ATLAS Phase 1/Galaxy and Mass Assembly (GAMA) area. The radio sample is generated using a combination of NRAO VLA Sky Survey data and K-band United Kingdom Infrared Telescope Deep Sky Survey-Large Area Survey data, over the redshift range 0.01 < z < 0.8. The far-infrared (FIR) properties of the sample are investigated as a function of 1.4-GHz luminosity, redshift, projected radio-source size and radio spectral index. In order to search for stellar-mass-dependent relations, we split the parent sample into those sources which are below and above 1.5 L-K*. After correcting for stellar mass and redshift, we find no relation between the 250-mu m luminosity and the 1.4-GHz radio luminosity of radio active galactic nuclei. This implies that a galaxy's nominal radio luminosity has little or no bearing on the star formation rate (SFR) and/or dust mass content of the host system, although this does not mean that other variables (e. g. radio source size) related to the jets do not have an effect. The L-250 of both the radio detected and non-radio-detected galaxies (defined as those sources not detected at 1.4 GHz but detected in the Sloan Digital Sky Survey with r' < 22) rises with increasing redshift. Compact radio sources (<30 kpc) are associated with higher 250 mu m luminosities and dust temperatures than their more extended (>30 kpc) counterparts. The higher dust temperature suggests that this may be attributed to enhanced SFRs in compact radio galaxies, but whether this is directly or indirectly due to radio activity (e. g. jet-induced or merger-driven star formation) is as yet unknown. For matched samples in L-K and g'-r', sub-1.5 L-K* and super-1.5 L-K* radio-detected galaxies have 0.89 +/- 0.18 and 0.49 +/- 0.12 times the 250 mu m luminosity of their non-radio-detected counterparts. Thus, while no difference in L-250 is observed in sub-1.5 L-K* radio-detected galaxies, a strong deficit is observed in super-1.5 L-K* radio-detected galaxies. We explain these results in terms of the hotter, denser and richer halo environments massive radio galaxies maintain and are embedded in. These environments are expected to quench the cold gas and dust supply needed for further star formation and therefore dust production. Our results indicate that all massive radio galaxies (>1.5 L-K*) may have systematically lower FIR luminosities (similar to 25 per cent) than their colour-matched non-radio-detected counterparts. Finally, no relation between radio spectral index and L-250 is found for the subset of 1.4-GHz radio sources with detections at 330 MHz.
Please use this url to cite or link to this publication:
author
organization
year
type
journalArticle (original)
publication status
published
subject
keyword
CLUSTER GALAXIES, FORMATION RATES, ELLIPTIC GALAXIES, FORMATION HISTORY, LUMINOSITY FUNCTION, BLACK-HOLE MASS, DIGITAL-SKY-SURVEY, SCIENCE DEMONSTRATION PHASE, STAR-FORMING GALAXIES, ACTIVE GALACTIC NUCLEI, radio continuum: galaxies, infrared: galaxies, galaxies: active
journal title
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Mon. Not. Roy. Astron. Soc.
volume
432
issue
1
pages
609 - 625
Web of Science type
Article
Web of Science id
000319524600065
JCR category
ASTRONOMY & ASTROPHYSICS
JCR impact factor
5.226 (2013)
JCR rank
11/59 (2013)
JCR quartile
1 (2013)
ISSN
0035-8711
DOI
10.1093/mnras/stt488
language
English
UGent publication?
yes
classification
A1
copyright statement
I have transferred the copyright for this publication to the publisher
id
4385566
handle
http://hdl.handle.net/1854/LU-4385566
date created
2014-05-16 11:42:11
date last changed
2017-02-28 13:20:03
@article{4385566,
  abstract     = {We perform a stacking analysis of Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) data in order to obtain isothermal dust temperatures and rest-frame luminosities at 250 mu m (L-250), for a well-defined sample of 1599 radio sources over the H-ATLAS Phase 1/Galaxy and Mass Assembly (GAMA) area. The radio sample is generated using a combination of NRAO VLA Sky Survey data and K-band United Kingdom Infrared Telescope Deep Sky Survey-Large Area Survey data, over the redshift range 0.01 {\textlangle} z {\textlangle} 0.8. The far-infrared (FIR) properties of the sample are investigated as a function of 1.4-GHz luminosity, redshift, projected radio-source size and radio spectral index. In order to search for stellar-mass-dependent relations, we split the parent sample into those sources which are below and above 1.5 L-K*.
After correcting for stellar mass and redshift, we find no relation between the 250-mu m luminosity and the 1.4-GHz radio luminosity of radio active galactic nuclei. This implies that a galaxy's nominal radio luminosity has little or no bearing on the star formation rate (SFR) and/or dust mass content of the host system, although this does not mean that other variables (e. g. radio source size) related to the jets do not have an effect. The L-250 of both the radio detected and non-radio-detected galaxies (defined as those sources not detected at 1.4 GHz but detected in the Sloan Digital Sky Survey with r' {\textlangle} 22) rises with increasing redshift. Compact radio sources ({\textlangle}30 kpc) are associated with higher 250 mu m luminosities and dust temperatures than their more extended ({\textrangle}30 kpc) counterparts. The higher dust temperature suggests that this may be attributed to enhanced SFRs in compact radio galaxies, but whether this is directly or indirectly due to radio activity (e. g. jet-induced or merger-driven star formation) is as yet unknown. 
For matched samples in L-K and g'-r', sub-1.5 L-K* and super-1.5 L-K* radio-detected galaxies have 0.89 +/- 0.18 and 0.49 +/- 0.12 times the 250 mu m luminosity of their non-radio-detected counterparts. Thus, while no difference in L-250 is observed in sub-1.5 L-K* radio-detected galaxies, a strong deficit is observed in super-1.5 L-K* radio-detected galaxies. We explain these results in terms of the hotter, denser and richer halo environments massive radio galaxies maintain and are embedded in. These environments are expected to quench the cold gas and dust supply needed for further star formation and therefore dust production. Our results indicate that all massive radio galaxies ({\textrangle}1.5 L-K*) may have systematically lower FIR luminosities (similar to 25 per cent) than their colour-matched non-radio-detected counterparts. Finally, no relation between radio spectral index and L-250 is found for the subset of 1.4-GHz radio sources with detections at 330 MHz.},
  author       = {Virdee, JS and Hardcastle, MJ and Rawlings, S and Rigopoulou, D and Mauch, T and Jarvis, MJ and Verma, A and Smith, DJB and Heywood, I and White, SV and Baes, Maarten and Cooray, A and de Zotti, G and Eales, S and Micha\unmatched{0142}owski, MJ and Bourne, N and Dariush, A and Dunne, L and Hopwood, R and Ibar, E and Maddox, S and Smith, MWL and Valiante, E},
  issn         = {0035-8711},
  journal      = {MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY},
  keyword      = {CLUSTER GALAXIES,FORMATION RATES,ELLIPTIC GALAXIES,FORMATION HISTORY,LUMINOSITY FUNCTION,BLACK-HOLE MASS,DIGITAL-SKY-SURVEY,SCIENCE DEMONSTRATION PHASE,STAR-FORMING GALAXIES,ACTIVE GALACTIC NUCLEI,radio continuum: galaxies,infrared: galaxies,galaxies: active},
  language     = {eng},
  number       = {1},
  pages        = {609--625},
  title        = {Herschel-ATLAS/GAMA: what determines the far-infrared properties of radio galaxies?},
  url          = {http://dx.doi.org/10.1093/mnras/stt488},
  volume       = {432},
  year         = {2013},
}

Chicago
Virdee, JS, MJ Hardcastle, S Rawlings, D Rigopoulou, T Mauch, MJ Jarvis, A Verma, et al. 2013. “Herschel-ATLAS/GAMA: What Determines the Far-infrared Properties of Radio Galaxies?” Monthly Notices of the Royal Astronomical Society 432 (1): 609–625.
APA
Virdee, J., Hardcastle, M., Rawlings, S., Rigopoulou, D., Mauch, T., Jarvis, M., Verma, A., et al. (2013). Herschel-ATLAS/GAMA: what determines the far-infrared properties of radio galaxies? MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 432(1), 609–625.
Vancouver
1.
Virdee J, Hardcastle M, Rawlings S, Rigopoulou D, Mauch T, Jarvis M, et al. Herschel-ATLAS/GAMA: what determines the far-infrared properties of radio galaxies? MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. 2013;432(1):609–25.
MLA
Virdee, JS, MJ Hardcastle, S Rawlings, et al. “Herschel-ATLAS/GAMA: What Determines the Far-infrared Properties of Radio Galaxies?” MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 432.1 (2013): 609–625. Print.