Advanced search
1 file | 575.57 KB

Analysis of bifurcations of limit cycles with Lyapunov exponents and numerical normal forms

Author
Organization
Keywords
DYNAMICAL-SYSTEMS, Fold-Neimark-Sacker, FIXED-POINTS, ODES, EQUILIBRIA, ENRICHMENT, PARADOX, MATCONT, MAPS, PERIODIC NORMALIZATION, Flip-Neimark-Sacker, Double Neimark-Sacker, 4-torus, 3-torus, Normal form, CODIM 2 BIFURCATIONS

Downloads

  • elsarticle-template-num.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 575.57 KB

Citation

Please use this url to cite or link to this publication:

Chicago
De Witte, Virginie, Willy Govaerts, Yuri A Kuznetsov, and Hil GE Meijer. 2014. “Analysis of Bifurcations of Limit Cycles with Lyapunov Exponents and Numerical Normal Forms.” Physica D-nonlinear Phenomena 269: 126–141.
APA
De Witte, Virginie, Govaerts, W., Kuznetsov, Y. A., & Meijer, H. G. (2014). Analysis of bifurcations of limit cycles with Lyapunov exponents and numerical normal forms. PHYSICA D-NONLINEAR PHENOMENA, 269, 126–141.
Vancouver
1.
De Witte V, Govaerts W, Kuznetsov YA, Meijer HG. Analysis of bifurcations of limit cycles with Lyapunov exponents and numerical normal forms. PHYSICA D-NONLINEAR PHENOMENA. 2014;269:126–41.
MLA
De Witte, Virginie, Willy Govaerts, Yuri A Kuznetsov, et al. “Analysis of Bifurcations of Limit Cycles with Lyapunov Exponents and Numerical Normal Forms.” PHYSICA D-NONLINEAR PHENOMENA 269 (2014): 126–141. Print.
@article{4350019,
  author       = {De Witte, Virginie and Govaerts, Willy and Kuznetsov, Yuri A and Meijer, Hil GE},
  issn         = {0167-2789},
  journal      = {PHYSICA D-NONLINEAR PHENOMENA},
  keyword      = {DYNAMICAL-SYSTEMS,Fold-Neimark-Sacker,FIXED-POINTS,ODES,EQUILIBRIA,ENRICHMENT,PARADOX,MATCONT,MAPS,PERIODIC NORMALIZATION,Flip-Neimark-Sacker,Double Neimark-Sacker,4-torus,3-torus,Normal form,CODIM 2 BIFURCATIONS},
  language     = {eng},
  pages        = {126--141},
  title        = {Analysis of bifurcations of limit cycles with Lyapunov exponents and numerical normal forms},
  url          = {http://dx.doi.org/10.1016/j.physd.2013.12.002},
  volume       = {269},
  year         = {2014},
}

Altmetric
View in Altmetric
Web of Science
Times cited: