Advanced search
1 file | 560.09 KB Add to list

Climate variability of southern Chile since the Last Glacial Maximum: a continuous sedimentological record from Lago Puyehue (40 degrees S)

(2008) JOURNAL OF PALEOLIMNOLOGY. 39(2). p.179-195
Author
Organization
Abstract
This paper presents a multi-proxy climate record of an 11 m long core collected in Lago Puyehue (southern Chile, 40 degrees S) and extending back to 18,000 cal yr BP. The multi-proxy analyses include sedimentology, mineralogy, grain size, geochemistry, loss-on-ignition, magnetic susceptibility and radiocarbon dating. Results demonstrate that sediment grain size is positively correlated with the biogenic sediment content and can be used as a proxy for lake paleoproductivity. On the other hand, the magnetic susceptibility signal is correlated with the aluminium and titanium concentrations and can be used as a proxy for the terrigenous supply. Temporal variations of sediment composition evidence that, since the Last Glacial Maximum, the Chilean Lake District was characterized by three abrupt climate changes superimposed on a long-term climate evolution. These rapid climate changes are: (1) an abrupt warming at the end of the Last Glacial Maximum at 17,300 cal yr BP; (2) a 13,100-12,300 cal yr BP cold event, ending rapidly and interpreted as the local counterpart of the Younger Dryas cold period, and (3) a 3,400-2,900 cal yr BP climatic instability synchronous with a period of low solar activity. The timing of the 13,100-12,300 cold event is compared with similar records in both hemispheres and demonstrates that this southern hemisphere climate change precedes the northern hemisphere Younger Dryas cold period by 500 to 1,000 years.
Keywords
C-14 YR BP, HIGH-RESOLUTION SEDIMENT, South America, Younger Dryas, climate, magnetic susceptibility, grain size, lake, sediment, LAKE DISTRICT, ISLA-GRANDE, RADIOCARBON CHRONOLOGY, VEGETATION, LATE PLEISTOCENE, HOLOCENE, LLANQUIHUE, PALEOCLIMATE

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 560.09 KB

Citation

Please use this url to cite or link to this publication:

MLA
Bertrand, Sebastien, François Charlet, Bernard Charlier, et al. “Climate Variability of Southern Chile Since the Last Glacial Maximum: a Continuous Sedimentological Record from Lago Puyehue (40 Degrees S).” JOURNAL OF PALEOLIMNOLOGY 39.2 (2008): 179–195. Print.
APA
Bertrand, Sebastien, Charlet, F., Charlier, B., Renson, V., & Fagel, N. (2008). Climate variability of southern Chile since the Last Glacial Maximum: a continuous sedimentological record from Lago Puyehue (40 degrees S). JOURNAL OF PALEOLIMNOLOGY, 39(2), 179–195.
Chicago author-date
Bertrand, Sebastien, François Charlet, Bernard Charlier, Virginie Renson, and Nathalie Fagel. 2008. “Climate Variability of Southern Chile Since the Last Glacial Maximum: a Continuous Sedimentological Record from Lago Puyehue (40 Degrees S).” Journal of Paleolimnology 39 (2): 179–195.
Chicago author-date (all authors)
Bertrand, Sebastien, François Charlet, Bernard Charlier, Virginie Renson, and Nathalie Fagel. 2008. “Climate Variability of Southern Chile Since the Last Glacial Maximum: a Continuous Sedimentological Record from Lago Puyehue (40 Degrees S).” Journal of Paleolimnology 39 (2): 179–195.
Vancouver
1.
Bertrand S, Charlet F, Charlier B, Renson V, Fagel N. Climate variability of southern Chile since the Last Glacial Maximum: a continuous sedimentological record from Lago Puyehue (40 degrees S). JOURNAL OF PALEOLIMNOLOGY. 2008;39(2):179–95.
IEEE
[1]
S. Bertrand, F. Charlet, B. Charlier, V. Renson, and N. Fagel, “Climate variability of southern Chile since the Last Glacial Maximum: a continuous sedimentological record from Lago Puyehue (40 degrees S),” JOURNAL OF PALEOLIMNOLOGY, vol. 39, no. 2, pp. 179–195, 2008.
@article{434576,
  abstract     = {This paper presents a multi-proxy climate record of an 11 m long core collected in Lago Puyehue (southern Chile, 40 degrees S) and extending back to 18,000 cal yr BP. The multi-proxy analyses include sedimentology, mineralogy, grain size, geochemistry, loss-on-ignition, magnetic susceptibility and radiocarbon dating. Results demonstrate that sediment grain size is positively correlated with the biogenic sediment content and can be used as a proxy for lake paleoproductivity. On the other hand, the magnetic susceptibility signal is correlated with the aluminium and titanium concentrations and can be used as a proxy for the terrigenous supply. Temporal variations of sediment composition evidence that, since the Last Glacial Maximum, the Chilean Lake District was characterized by three abrupt climate changes superimposed on a long-term climate evolution. These rapid climate changes are: (1) an abrupt warming at the end of the Last Glacial Maximum at 17,300 cal yr BP; (2) a 13,100-12,300 cal yr BP cold event, ending rapidly and interpreted as the local counterpart of the Younger Dryas cold period, and (3) a 3,400-2,900 cal yr BP climatic instability synchronous with a period of low solar activity. The timing of the 13,100-12,300 cold event is compared with similar records in both hemispheres and demonstrates that this southern hemisphere climate change precedes the northern hemisphere Younger Dryas cold period by 500 to 1,000 years.},
  author       = {Bertrand, Sebastien and Charlet, François and Charlier, Bernard and Renson, Virginie and Fagel, Nathalie},
  issn         = {0921-2728},
  journal      = {JOURNAL OF PALEOLIMNOLOGY},
  keywords     = {C-14 YR BP,HIGH-RESOLUTION SEDIMENT,South America,Younger Dryas,climate,magnetic susceptibility,grain size,lake,sediment,LAKE DISTRICT,ISLA-GRANDE,RADIOCARBON CHRONOLOGY,VEGETATION,LATE PLEISTOCENE,HOLOCENE,LLANQUIHUE,PALEOCLIMATE},
  language     = {eng},
  number       = {2},
  pages        = {179--195},
  title        = {Climate variability of southern Chile since the Last Glacial Maximum: a continuous sedimentological record from Lago Puyehue (40 degrees S)},
  url          = {http://dx.doi.org/10.1007/s10933-007-9117-y},
  volume       = {39},
  year         = {2008},
}

Altmetric
View in Altmetric
Web of Science
Times cited: