Please refer to this article using:

- Check the website of Geomorphology for the final version of this publication

Quantifying long-term changes in gully networks and volumes in dryland environments: the case of Northern Ethiopia

Amaury Frankl a,*, Jean Poesen b, Mitiku Haile c, Jozef Deckers b, Jan Nyssen a

a Department of Geography, Ghent University, Krijgslaan 281 (S8), B-9000 Ghent, Belgium.

b Department of Earth and Environmental Sciences, KU Leuven, B-3001 Heverlee, Belgium.

c Department of Land Resources Management and Environmental Protection, Mekelle University, Mekelle, Ethiopia.

* Corresponding author: Tel.: +32 92644701; fax: +32 92644985; e-mail address: amaury.frankl@ugent.be (A. Frankl)

Abstract

Understanding historical and present gully development is essential when addressing the causes and consequences of land degradation, especially in vulnerable dryland environments. For Northern Ethiopia, several studies exist on the severity of gully erosion, yet few have quantified gully development. In this study, gully network and volume development were quantified over the period 1963-2010 for an area of 123 km², representing the regional variability in...
environmental characteristics. Gully networks were mapped from small-scale aerial photographs and high-resolution satellite images. For the latter, visualizing Google Earth images in 3D proved to be very suitable to investigate gully erosion. From the changes in networks and volumes over the period 1963-2010, the occurrence of one cut-and-fill cycle is apparent. From a largely low-dynamic gully system in the 1960s, network expansion and increased erosion rates in the 1980s and 1990s caused the drainage density and volume to peak in 1994. The average gully density \(D_{\text{total}} \) was then 2.52 km km\(^{-2}\) and the area-specific gully volume \(V_a \) 60 \(10^3 \) m\(^3\) km\(^{-2}\). This coincides with soil losses by gully erosion \(SL_g \) of 17.6 t ha\(^{-1}\) y\(^{-1}\) over the period 1963-1994. By 2010, improved land management and the region-wide implementation of soil and water conservation measures caused 25% of the gully network to stabilize, resulting in a net infilling of the gully channels over the period 1994-2010. The study validates previous findings that land degradation by gullying was indeed severe in Northern Ethiopia in the second half of the 20th century, but also shows that when proper land management is applied, a gully can be transformed into a linear oasis, which increases the resistance of gullies to further erosion.

Keywords: Aerial photographs; Dryland; Ethiopia; Google Earth; Gully; Volume

1. Introduction

Drylands are areas where evapotranspiration exceeds precipitation during part of, or during, the whole year (Kassas, 1995). They cover 40% of the Earth’s surface and house about 2.1 billion people in nearly 100 countries, including Ethiopia (UNEP-DDD, 2012). In terms of aridity, drylands are defined as regions where the ratio between long-term annual precipitation and potential evapotranspiration is between 0.05 and 0.65, and include hyper-arid, arid, semi-arid and
dry sub-humid zones (Thornthwaite, 1948; UNEP, 1994). For these zones, water availability and
biomass production are restricted and mostly confined to a short rainy season. As a result, the
carrying capacity of the ecosystems is rapidly exceeded by the human exploitation of natural
resources, especially in poor countries with fast demographic expansion and deficient
exploitation techniques (Kassas, 1995). Furthermore, the resilience of drylands is often reduced
by the occurrence of recurring droughts and severe desertification, which threatens sustainable
development in these fragile environments.

Gully erosion is acknowledged as a key erosion process whereby land degradation in dryland
environments occurs. In a review, Poesen et al. (2002) conclude that gully erosion contributes to
50% to 80% of the overall sediment production in drylands. Sediment yields are locally very
variable, but may be as high as 3.4 t ha$^{-1}$ y$^{-1}$ in Kenya, 32 t ha$^{-1}$ y$^{-1}$ in Niger, 16.1 t ha$^{-1}$ y$^{-1}$ in
Portugal, 64.9 t ha$^{-1}$ y$^{-1}$ in Spain and 36.8 t ha$^{-1}$ y$^{-1}$ in the USA (Poesen et al., 2003).

Understanding historical and present-day gully erosion is therefore essential when addressing the
consequences of future land-use and climate change scenarios (Poesen et al., 2003; Valentin et
al., 2005). For instance, land managers need to foresee the effects of land-use changes,
infrastructure construction or urbanization on gully development. Without such projections,
future developments may be unsustainable and yield much higher costs than originally budgeted.
In addition, soil losses may strongly increase, jeopardising in-situ and downstream agricultural
production (Poesen et al., 2003). Furthermore, the rapid expansion of gullies is related to shifts in
the hydrological regime of landscapes (Knighton, 1998), by which runoff and soil water rapidly
converge to gullies (Muhindo Sahani, 2011). This often results in flash floods of polluted water
which threaten human health.
Relatively few studies investigate the importance of gully erosion on land degradation, especially when considering sub-Saharan Africa (e.g., Stocking, 1980; Moeyersons, 1989, 1991; Boardman et al., 2003; Katsurada, 2007; Marzolff and Ries, 2007; Leblanc et al., 2008; Ndonga and Truong, 2011). From the studies that report on severe historical and present gully erosion in Ethiopia (e.g., Virgo and Munro, 1978; Nyssen et al., 2002; Billi and Dramis, 2003; Reubens et al., 2009; Frankl et al., 2011), few quantified gully erosion networks or volumes over large areas. Nyssen et al. (2006) investigated the development of four gully systems in Northern Ethiopia by developing a field method which is based on how local people remember the historical extent of gullies. Although this approach yields accurate results, it is rather difficult to apply over large areas. That is why, in Southern Ethiopia, Moges and Holden (2008) limited their analysis on the importance of historical gully erosion to eight gullies. A small gully network in Eastern Ethiopia was studied by Daba et al. (2003), using a time-series of Digital Elevation Models (DEM)s derived from small-scale aerial photographs. Analyzing the development of gully headcuts and cross-sections at regional scale was done by Frankl et al. (2011, 2012).

The objective of this paper is to quantify changes in gully networks and volumes since 1963 in Northern Ethiopia from remote sensing data. The presented methods are widely applicable, as coverage by aerial photographs and satellite images are common over long periods in many dryland environments. The results are representative for the broader region and reflect the importance of gully erosion in drylands. Moreover, the linkages with the controlling factors of gully erosion are discussed.

2. Materials and Methods

2.1. Study area
Eight catchments, representative for the regional variability in environmental characteristics, were selected to study gully development in Northern Ethiopia: Ablo (15.2 km²), May Mekdan (44.7 km²), May Ba’ati (4 km²), May Tsimble (8.1 km²), Atsela (4.9 km²), Ayba (37 km²), Seytan (8.2 km²) and Lake Ashenge (1.1 km²) (Figure 1). The study areas have elevations that range between 2100 and 3900 m a.s.l., and consist of deeply incised valleys which developed with the uplift of Ethiopian Highlands at the western margin of the Rift Valley (Williams and Williams, 1980). The Ablo catchment exposes sandstone; May Mekdan and May Tsimble shale with limestone cliffs and occasionally dolerite at the summits; Atsela, Ayba, Seytan and Lake Ashenge expose volcanics (flood basalt, rhyolites and consolidated volcanic ash) and May Ba’ati exposes volcanics at higher elevations, while sandstone, limestone and shale occur at lower elevations.
Figure 1: Location of the study areas in the Northern Ethiopian Highlands. Oro-hydrography based on SRTM data (http://srtm.csi.cgiar.org).
Rainfall is mostly restricted to a short rainy season from July until early September. Average annual rain increases from north to south, ranging between 500 and 900 mm y\(^{-1}\), and usually falls as intense showers that seldom last longer than ten minutes (Nyssen et al., 2005). Rain is however highly unreliable and droughts frequently occur.

Due to active geomorphologic processes, most soils are young (HTS, 1976; Nyssen et al., 2008a). Leptosols are found in high landscape positions while Regosols or Cambisols occur on steep slopes. In footslope positions, more developed fine-textured soils occur, with Vertisols on basalt (colluvium) and Calcisols on limestone. Under remnant forests, Phaeozems occur (Descheemaeker et al., 2006).

Land degradation is severe in Northern Ethiopia (Virgo and Munro, 1978; Nyssen et al., 2004). Gullies affect nearly all slopes and frequently exceed 2 m in depth and 5 m in top width. Their occurrence is related to the vulnerable environment, which exposes steep slopes, where rainfall intensities are high and where deforestation and overgrazing depleted the landscape of most vegetation. However, with the introduction of soil and water conservation measures since the 1970s – including slope terracing, the establishment of exclosures, and the construction of check dams in gullies – the landscape is greening and reports on land rehabilitation are becoming more frequent (e.g., McCann, 1997; Crummey, 1998; Nyssen et al., 2009; Munro et al, 2008).

2.2. Creating time-series of aerial photographs and satellite images

A database of satellite images and digitized stereographic aerial photographs was created for all eight study areas. Aerial photographs of 1963, 1965, 1986 and 1994 having scales ranging between 1:35,000 and 1:60,000 (ground resolutions of 1-2 m) were collected from the Ethiopian Mapping Authority. They were scanned at a resolution of 1200 dpi with a desktop scanner.
IKONOS-2 satellite images (resolution of 1 m) of 2006 were available from the VLIR MU-IUC program for the study areas of Ablo and May Ba’ati. For all other study areas, images were consulted on Google Earth. This platform offers high resolution GeoEye - 1 (resolution of 0.50 m) images of 2005, Digital Globe (resolution of 0.60 m) images of 2006, and Cnes SPOT (resolution 2.5 m) images of 2011, and allows 3D visualization of the images.

Next, the aerial photographs and satellite images were geometrically rectified into the UTM-WGS1984 coordinate system. Considering the satellite images, a good rectification was already provided by reading the IKONOS-2 images into ArcGIS 9.2 together with the period rational polynomial coefficient (RPC) data. In order to increase the accuracy for the areas of interest, Ground Control Points (GCPs) were used to perform a second order polynomial transformation on the images. Considering the aerial photographs, the geometric rectification was done from a photogrammetric restitution (Miller, 2004) or, when this yielded poor results, from a co-registration (Hughes et al. 2006; James et al., 2012). Photogrammetric restitutions were done with Supersoft Inc VirtuoZo 2.2 and were based on a DEM devised for the same area. Producing DEMs from the aerial photographs required inner and exterior orientation. The relative orientation was based on >300 tie points per stereo pair, and the exterior orientation on seven to fifteen GCPs. When the number of GCPs suitable for the DEM production was too low for a specific area and period, the photogrammetric restitution proved to be unsuccessful. This was especially the case when considering the oldest aerial photographs that display a landscape that has undergone important changes. Within decades of fast population growth, rural settlements, infrastructure and land management structures may have changed considerably. Moreover, the low level of technological development implies that few human-built structures were stable. For instance, the position of footpaths may change over time, trees may be cut and traditional houses
and fences rebuilt. Therefore, the geometric rectification of some aerial photographs was done by co-registration. Second or third order polynomial transformations (with ArcGIS 9.2) were performed, using points that were derived from the most recent orthophotographs or Google Earth images. The advantage of such an image-to-image registration is that a large number of corresponding points can be identified on both layers, assuring a density of 2 to 9 points per km². As shown by Hughes et al. (2006) and James et al. (2012), such an approach can yield reasonable results when considering small areas and using enough control points that are located close to the features of interest.

Once all photographs and images were geometrically rectified, they were organized as layers in a Geographic Information System (GIS) environment. Switching the layers on or off allows easy and rapid observations of gully network changes in the study areas. As could be visually observed, some orthophotographs produced from DEMs showed relatively large lateral displacements when compared to each other. This was solved by performing a co-registration of these layers to the most recent image. As a result, observed changes in the gully networks that were the result of mismatches between the different layers were kept minimal.

Assessing the horizontal positional accuracy was done for each layer by calculating the distance between an independent set of ten ground control points measured by GPS in the field, and their location on the different layers. This approach quantifies the horizontal error that is not influenced by the type of data used, or the way in which they were geometrically rectified. Consequently, the average horizontal positional error (± standard deviation) for the different layers could be compared with each other. Table 1 indicates that all the layers have a similar horizontal positional accuracy, which is not related to the type of rectification process. For all periods and catchments the average horizontal positional accuracy was 8.4±3.3 m. In some cases,
observations from one layer were transferred to another. This was done for the 1963 situation of
the Seytan catchment, for which only 47% of the catchment could be observed, and for the
situations of Atsela 1965 and 1986, and Lake Ashenge 1986 and 1994, which were largely
adapted from Frankl et al. (2011).

Table 1. Horizontal positional accuracy of the produced dataset. The average locational error ± standard deviation
is based on 10 independent test points that were measured in the field by Trimble® GEO XH 2005 series GPS with
submeter accuracy.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ablo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.6±7.3 c</td>
</tr>
<tr>
<td>May Mekdan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.1±3.2 a</td>
</tr>
<tr>
<td>May Ba’ati</td>
<td></td>
<td>9.6±4.8 a</td>
<td></td>
<td>7.1±4.4 c</td>
<td></td>
<td>7.0±4.4 a</td>
<td>5.6±2.7 b</td>
</tr>
<tr>
<td>May Tsimble</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astela d</td>
<td>TRANS 1994</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16.4±10.0 c</td>
</tr>
<tr>
<td>Ayba</td>
<td>7.2±3.2 c,e</td>
<td>10.4±6.1 c</td>
<td></td>
<td>12.9±6.6 b,c</td>
<td></td>
<td>5.1±1.8 b</td>
<td></td>
</tr>
<tr>
<td>Seytan</td>
<td>TRANS 1994 f</td>
<td></td>
<td></td>
<td>10.6±5.6 c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lake Ashenge d</td>
<td>6.7±2.5 a</td>
<td>TRANS 2006</td>
<td>TRANS 2006</td>
<td>TRANS 2006</td>
<td></td>
<td>5.1±1.8 b</td>
<td></td>
</tr>
</tbody>
</table>

(a) Orthophotograph; (b) Satellite image; (c) Georectified aerial photograph; (d) Data largely adapted from Frankl et al. (2011); (e) 91% of the catchment could be observed; (f) 47% of the catchment could be observed.

TRANS 1994: transferred to the 1994 situation

The accuracy of the gully network maps depends on (i) the horizontal positional accuracy of the
data-layers, (ii) the ability to detect the gully networks on the aerial photographs and satellite
images, which depends on the spatial resolution of the layers and the ability to distinguish gullies
from adjacent land covers, and (iii) errors in the vectorisation process within the GIS software.

As shown by Frankl et al. (2013a), who mapped gully networks both from Google Earth images
and from ground measurements (May Ba’ati 2008-2010 in this study, Table 2), these errors result
in both under- and overestimations of gully length, which resulted in an average error of 7.5% on
the drainage density as computed from the imagery alone. The most important errors are related
to difficulties in correctly identifying gullies in low-contrast areas, which is very similar for all aerial photographs and images used in this study. Therefore, we assumed an error of 7.5% (Frankl et al., 2013a) on the network density calculation in this study (see Section 2.2.).

2.2. Quantifying changes in gully networks and volumes

Gully networks observed on the time-series of aerial photographs and satellite images were mapped on-screen using ArcGIS 9.2 or Google Earth, and were updated with more recent modifications as observed in the field (period 2008-2010). For each period, a distinction was made between low-active and high-active gullies (Figure 2) using criteria similar as those used by Oostwoud Wijdenes et al. (2000). Low-active gullies typically have a narrow active channel, smooth cross-sectional profiles, and walls overgrown by vegetation; and mobile bed material is absent or restricted to small grain sizes. For the most recent period, stabilization of low-active channels was typically enforced by check dams. High-active gullies are characterized by an active channel width equal to the total width of the gully bottom. Therefore, the channel has a rectangular cross-sectional shape with steep, well-delineated walls subject to mass failure. Vegetation is not present on the channel floor and on the lower section of the walls. Mobile bed material is present, especially in the lower sections of the gullies where sediment deposition becomes more important. Furthermore, recent peak flow discharges in the gully can be assessed by the size of the entrained bed particles and by flood marks in the gully channel.

For the most recent situation, field observations allowed to classify the gully networks into low- and high-active segments. This was accompanied by observing the high-resolution satellite images available in Google Earth. For previous periods, for which aerial photographs were used to map gully networks, the distinction between low- and high-active
gullies was made visually by observing the gully segments in stereographic view. The steep and well delineated walls make the high-active gullies very distinctive. Their detection is often accentuated by shadows cast in the gullies and by the absence of vegetation. Making the distinction between low- and high-active gullies from aerial photographs requires expertise in gully erosion and good practice with using aerial photographs, and therefore, remains to a certain extent subjective. Validating the classification of historical gully networks into low- or high-active segments was therefore done by using a large dataset of historical terrestrial photographs (Frankl et al., 2011) that show the gully networks in the same periods as that of the aerial photographs, and from which gully activity could be assessed easily. Before analyzing changes in gully network development, networks mapped in Google Earth were integrated in ArcGIS 9.2 by the method of Frankl et al. (2013a). Subsequently, the gully network density could be calculated and analyzed for the different study areas and periods.

A preliminary study on the controls of the drainage density was made by analyzing the effect of catchment area (A, in km²), lithology and average catchment slope gradient (S_c, in m m⁻¹) of 21 subcatchments smaller than 10 km². A was mapped from contour lines derived from DEMs or from topographical maps and was verified in the field, S_c was obtained from SRTM data (90 m resolution, available on http://srtm.csi.cgiar.org), using ArcGIS 9.2 (Spatial Analyst). The effects of A and S_c were analyzed with a linear regression ($\alpha = 0.05$) and the effects of lithology with Analysis of Variance (one-way ANOVA, $\alpha = 0.05$).

Quantifying gully volumes was done in the field for the most recent situation of 2008-2010 (Frankl et al., 2013b). By considering 33 mutually exclusive catchments, totaling 5 380 ha and 152 km of gully length, gully volume (V) – length (L) relationships were established, taking the regional environmental variability and gully characteristics into account. As the lithology and the
presence of check dams or low-active channels proved to be the most important controls of gully cross-sectional shape and size, $V - L$ relationships were established for the different lithologies and percentages of the gully network having check dams and/or being low active (Frankl et al., 2013b). These equations (having r^2 values ranging between 0.81 and 0.94) could then be applied to historical gully networks to calculate their volumes taking into account the gully cross-sectional variability.

Figure 2: Examples of high- and low-active gully segments. A: High-active gully section, B: Low-active section without check dams and C: Low-active section with check dams.

3. Results
3.2. Changes in gully networks and volumes since 1963

Table 2 presents the results of the gully network and volume development analysis. For each catchment and period, data are given on the gully length (L, km), the length of the high-active gullies ($L_{\text{high-active}}$, km), the length of the low-active gullies ($L_{\text{low-active}}$, km) and the total gully volume (V, 10^3 m3). Given the catchment area (A, km2), the drainage density of the total gully network (D_{total}, km km$^{-2}$), the drainage density of the high-active gullies ($D_{\text{high-active}}$, km km$^{-2}$) and the area-specific gully volume (V_a, 10^3 m3 km$^{-2}$) could also be calculated. The development of D_{total}, $D_{\text{high-active}}$ and V_a through time is shown on Figure 3A-C and E-F.
Table 2: Gully network and volume development for the studied catchments (in total 123 km²) over the period 1963-2010.

<table>
<thead>
<tr>
<th>Catchment</th>
<th>1963 - 1965</th>
<th>1986</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>L_{high}</td>
</tr>
<tr>
<td></td>
<td>(km)</td>
<td>active</td>
</tr>
<tr>
<td>Ablo</td>
<td>96.65</td>
<td>62.25</td>
</tr>
<tr>
<td>May Mekdan</td>
<td>4.82</td>
<td>3.85</td>
</tr>
<tr>
<td>May Ba’ati</td>
<td>10.40</td>
<td>2.88</td>
</tr>
<tr>
<td>May</td>
<td>49.42</td>
<td>8.82</td>
</tr>
<tr>
<td>Tsimble</td>
<td>8.43</td>
<td>(a)</td>
</tr>
<tr>
<td>Atsela</td>
<td>2.52</td>
<td>0.74</td>
</tr>
<tr>
<td>Ayba</td>
<td>172.23</td>
<td>78.53</td>
</tr>
<tr>
<td>Seytan</td>
<td>96.65</td>
<td>62.25</td>
</tr>
<tr>
<td>Lake Ashengi</td>
<td>70.76</td>
<td>12.43</td>
</tr>
<tr>
<td>Total</td>
<td>127.37</td>
<td>118.82</td>
</tr>
<tr>
<td>Total shale</td>
<td>127.37</td>
<td>118.82</td>
</tr>
<tr>
<td>Total volcanics</td>
<td>127.37</td>
<td>118.82</td>
</tr>
<tr>
<td>1974</td>
<td>Ablo</td>
<td>6.49</td>
</tr>
<tr>
<td>May Ba’ati</td>
<td>196.80</td>
<td>141.37</td>
</tr>
<tr>
<td>Catchment</td>
<td>Ablo</td>
<td>7.79</td>
</tr>
<tr>
<td>May Mekdan</td>
<td>126.79</td>
<td>111.41</td>
</tr>
<tr>
<td>1994</td>
<td>Ablo</td>
<td>126.79</td>
</tr>
<tr>
<td>May Mekdan</td>
<td>100.63</td>
<td>87.81</td>
</tr>
<tr>
<td>2008- 2010</td>
<td>Ablo</td>
<td>7.84</td>
</tr>
<tr>
<td>May Mekdan</td>
<td>100.63</td>
<td>87.81</td>
</tr>
<tr>
<td>Area</td>
<td>10.81</td>
<td>10.81</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>May Ba'ati</td>
<td>29.4</td>
<td>29.4</td>
</tr>
<tr>
<td>May Tsimble</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Atsela</td>
<td>17.23</td>
<td>17.23</td>
</tr>
<tr>
<td>Ayba</td>
<td>89.77</td>
<td>84.01</td>
</tr>
<tr>
<td>Seytan Lake</td>
<td>27.7</td>
<td>27.7</td>
</tr>
<tr>
<td>Lake Ashenge</td>
<td>288.34</td>
<td>21.14</td>
</tr>
<tr>
<td>Total</td>
<td>309.47</td>
<td>21.14</td>
</tr>
<tr>
<td>Total shale</td>
<td>156.18</td>
<td>15.37</td>
</tr>
<tr>
<td>Total volcanics</td>
<td>134.7</td>
<td>5.76</td>
</tr>
<tr>
<td>Total</td>
<td>12.1</td>
<td>1.48</td>
</tr>
<tr>
<td></td>
<td>30.41</td>
<td>29.32</td>
</tr>
</tbody>
</table>

L: Total gully length; \(L_{\text{high-active}} \): Length of the high-active gullies; \(L_{\text{low-active}} \): Length of the low-active gullies; \(V \): Total gully volume; \(A \): Catchment area; \(D_{\text{total}} \): Drainage density of the total gully network; \(D_{\text{high-active}} \): Drainage density of the high-active gullies, \(V_a \): area-specific gully volume.

(a) Could not be calculated due to the poor quality of the aerial photographs. (b) 493 m of gullies were poorly visible due to shadow.
In 1963-1965, D_{total} ranged between 1.20 km km$^{-1}$ and 2.29 km km$^{-2}$, and was on average 1.86 km km$^{-2}$. From Table 2 and Figure 3B, it can be observed that only a limited part of the 1963-1965 network was composed of high-active gullies, $D_{\text{high-active}}$ being on average 0.89 km km$^{-2}$. The bulk of the 1963-1965 network consisted of low-active gullies. Summed over all the study areas that could be observed in 1963-1965, the gully volume was $2,980 \times 10^3$ m3. V_a varied between 9.48×10^3 m3 km$^{-2}$ and 51.89×10^3 m3 km$^{-2}$, with an average of 32.23×10^3 m3 km$^{-2}$. As can be observed in Table 2 and on Figure 3E-F, V_a was on average 3.3 times larger when comparing the May Mekdan catchment, that developed in shale, to the catchments that developed in volcanics. For the catchment of May Ba’ati, which could be observed on 1974 aerial photographs, the situation after a decade showed that D_{total} increased from 1.20 km km$^{-2}$ to 1.62 km km$^{-2}$. This increase of 35% was the result of the expansion of the gully network with high-active gullies, and was accompanied with a strong increase in V_a, from 9.48×10^3 m3 km$^{-2}$ to 15.06 10^3 m3 km$^{-2}$.

In 1986, a strong increase in D_{total} occurred for the catchments of Atsela, Ayba (Figure 4), Seytan and Lake Ashenge. Network expansion resulted in high D_{total} values that ranged between 2.28 km km$^{-2}$ and 3.63 km km$^{-2}$, with an average of 2.48 km km$^{-2}$. These figures reflect closely $D_{\text{high-active}}$, as nearly all gullies could be classified as high-active. Especially for the catchment of Atsela, a strong increase in D_{total} and $D_{\text{high-active}}$ could be observed, with 72% and 523% respectively. Considering V_a, the average doubled in the study areas that developed in volcanics, increasing from 15.60×10^3 m3 km$^{-2}$ to 33.52×10^3 m3 km$^{-2}$ (range 22.25-39.66 10^3 m3 km$^{-2}$).

In 1994, the average D_{total} and $D_{\text{high-active}}$ were at their highest value, being 2.52 km km$^{-2}$ and 2.35 km km$^{-2}$ respectively. D_{total} and $D_{\text{high-active}}$ both ranged between 0.50 km km$^{-2}$ and 3.35 km km$^{-2}$. The low minimum D_{total} and $D_{\text{high-active}}$ values were caused by observations in the Ablo
catchment, which was only studied since 1994. On Figure 3B, it can clearly be observed that for
the period 1986-1994, the gully network was in a very active phase, with most of the gullies
being high-active while important network extensions took place. The total volume of the 1994
networks was 7,306 10^3 m3, which is more than the double of the 1963-1965 situation. V_a was on
average 59.59 10^3 m3 km$^{-2}$, and V_a-values were on average 2.6 times higher in shale catchments
than in volcanics catchments. The highest value for V_a was quantified in May Tsimble (= 119.26
10^3 m3 km$^{-2}$) and the lowest in the Ablo catchment (= 5.76 10^3 m3 km$^{-2}$). In the steep-sloped
catchment of Seytan, a marked increase in V_a occurred between 1986 and 1994.
In 2008-2010, D_{total} decreased for most catchments, with the exception of the small catchments
of May Tsimble and May Ba’ati. Values for D_{total} were however still relatively high, ranging
between 0.50 km km$^{-2}$ and 3.37 km km$^{-2}$, with an average of 2.20 km km$^{-2}$ (Table 2, Figure 3A).
Hence, a sharp decline could be noted for $D_{high-active}$ in most catchments. The average $D_{high-active}$
dropped to 1.65 km km$^{-2}$, and represented 75% of the total gully network. The average V_a also
decreased for all areas, with the exception of May Tsimble, and was 48.96 10^3 m3 km$^{-2}$, ranging
from 4.43 to 123.15 10^3 m3 km$^{-2}$ (Table 2, Figure 3E-F). The effect of lithology still caused V_a
values for catchments in shale to be on average 2.6 times larger than for catchments in volcanics.
Summed for all the study areas, the gully volume was 6,056 10^3 m3, which is twice the volume of
1963-1965, and a decrease by 17% when compared to the 1994 situation.
Figure 3: Trends in gully drainage density and area-specific gully volume for the studied catchments during the period 1963-2010. A: Total drainage density (D_{total}). B: Drainage density of the high-active gullies ($D_{\text{high-active}}$). C: D_{total} for networks that developed in deposits derived from shale and from volcanics. D: Relation between D_{total} and the average basin slope gradient (S_c) for 2008-2010. E: Area-specific volume development (V_a). F: V_a for networks that developed in deposits derived from shale and from volcanics.

A preliminary analysis on the controls on D_{total} revealed that lithology and average slope gradient of the catchment (S_c, in m m$^{-1}$) explain a large fraction of the variability in D_{total} between watersheds. As shown on Figure 3C, the overall tendency in D_{total} plots higher for shale than for volcanics. The difference in D_{total} attributable to lithology was on average 0.38 km km$^{-2}$ for the period 1963-1965, 0.27 km km$^{-2}$ in 1994 and 0.12 km km$^{-2}$ for the period 2008-2010. In percentages, these departures represent respectively 18%, 9% and 5% of increased D_{total} when comparing shales to volcanics and express a slightly higher vulnerability of shales compared to volcanics. Selecting 22 subcatchments <10 km2 revealed that the distributions in D_{total} were significantly different from each other when comparing catchments that developed in shale, to catchments that developed in volcanics (One-way ANOVA, $P < 0.05$).

The effect of S_c was also added to the analysis. As shown in Figure 3D, equal values of D_{total} occur on slopes with much lower S_c-values when comparing shales to volcanics. Given the relative small number of observations, the linear regression lines explain relatively large fractions of the variability in D_{total} (Figure 3D). Thus, slope amplifies the higher vulnerability to gully erosion of soils that developed on shales when compared to soils that developed on volcanics. The outlier, “Atsela road” on Figure 3D, was not considered in the linear regression.
The road zigzags in the upper catchments and clearly had an aggravating effect on gully erosion.

Catchment area did not show a significant effect on D_{total} (linear regression, $n = 22, P = 0.09$).

Figure 4: Gully network maps of the Ayba catchment between 1965 and 2008. Note the large proportion of low-active gullies in 1965 and the expansion (arrows for comparison) of the gully network by 1986-1994, with most gullies being high-active. By 2008, the proportion of low-active gullies increased. For details see Table 2.

4. Discussion

4.1. Using small-scale aerial photographs and Google Earth
Using small-scale aerial photographs proved to be very useful for the analysis of changes in gully networks and volumes, even in a mountainous country like Ethiopia for which old aerial photographs are of poor quality and difficult to orthorectify. This study indeed confirms that, with a minimal geomorphologic background and stereographic view, gully networks can be delineated with relative ease. Assessing their volumes requires the establishment of $V - L$ relations (Frankl et al., 2013b), based on in situ observations.

High resolution satellite images complete the recent data series for which the use of Google Earth was very helpful. This platform can map features in 3D on-the-screen with a planimetric accuracy comparable to that of a handheld GPS (e.g. Garmin GPSMap 60, standard deviation of 5 m) (Frankl et al., 2013a). With the ability to import mapped features into a GIS-environment, the potential of Google Earth for geomorphologic studies is strongly increasing. Several studies exist that use Google Earth, but mostly these are limited to 3D-visualizations or on-screen measurements (e.g., Warren et al. 2007; Hesse, 2009; Tsou et al. 2011). Few studies explored its potential for analyzing landforms (e.g., Iglesias et al., 2009; McInnes et al., 2011).

4.2. Cut-and-fill cycle

The changes in gully networks and volumes shown on Figure 3A-C and E-F indicate that the gully system experienced a cut-and-fill cycle over the period 1963-2010. In 1963-1965, the quite extensive gully network merely consisted of low-active gullies. By 1984-1994, with a marked increase in high-active gullies, the gully network became highly active, with the expansion of the network and the increase in gully volume as a result. At present, in 2008-2010, the proportion of high-active gullies decreased at the benefit of low-active gullies. Moreover, the gully network shrunk and the total gully volume decreased. This cut-and-fill cycle can best be observed when
considering the largest catchments, i.e. those of May Mekdan (44.7 km²) and Ayba (37 km²)
(Figure 3 A and E; Figure 4).

These findings are in line with those of Frankl et al. (2011). On the basis of repeat photography,
gully dynamism in Northern Ethiopia was explained in terms of hydrogeomorphic phases. From
ca. 1868 to 1965, gullies were low-active, displaying smooth (vegetated) cross-sections. This
corresponds to the large proportions of low-active gullies for the period 1963-1965 in this study.
It indicates that environmental vulnerability did not yet reach a critical point for large-scale
channel extension and degradation to occur. After 1965, a marked transition from low- to high-
active gullies occurred, which is also apparent in this study. This is probably related to arid
pulses that occurred in the 1970s and 1980s. Such phases alter biomass production and increase
the human pressure on land and vegetation. In order to secure food production, farmers will be
forced to cultivate steeper land and grazing will deplete slopes of most vegetation. Analyses of
region-wide land-use and cover on the basis of Landsat imagery by de Mûelenaere et al. (2012)
in the 1970s and 1980s confirmed that in 1984/1986, the surface covered by bare ground was
extensive and that the surface covered by cropland peaked. From the analysis of land-use and
land cover on old terrestrial photographs, Meire et al. (2012) also indicate a minimum in
vegetation cover in the period 1940s-1990s. Frankl et al. (2013c) showed that the length of the
growing period decreases with increasing drought in Northern Ethiopia, making croplands very
vulnerable to high-intensity rainfall in the summer rainy season. Since ca. 2000, the large-scale
implementation of soil and water conservation measures started to yield positive effects on the
environmental rehabilitation and the on stabilization of gullies. Several studies indeed indicate
that vegetation cover and land management strongly improved in recent decades (e.g.,
Gebremedhin et al., 2004; Munro et al., 2008; Alemayehu et al., 2009; Mekuria et al., 2009;
Nyssen et al., 2009; de Mûelenaere et al., 2012; Meire et al., 2012). Frankl et al. (2011) indicated that in 2009, 23% of the studied gully sections were stabilizing. In this study, low-active gully segments count for 25% of the gully network, which is very close to the previous findings.

The decrease in gully volume is essentially the result of siltation behind check dams on low-active sections. Environmental rehabilitation proves to be very successful for gully stabilization in Atsela (Figure 5). In this steep-sloped catchment, the road – built by the Italians in the 1930s – that zigzags in the upper catchment causes a high runoff concentration, and strongly contributed to the peaked increase in $D_{\text{high-active}}$ from 1963-1965 to 1986 (Figure 3). The sharp decline in $D_{\text{high-active}}$ after 1994 is the result of a thorough land rehabilitation. The reforestation of steep slopes, dense soils and water conservation structures (stone bunds, trenches) and management of the gullies led to an almost total gully stabilization, where even important rainstorms, as was observed multiple times in the period 2008-2011, result in little or no flooding in the gully. The success of the gully rehabilitation in Atsela is most probably related to proximity to the small town of Adi Shuho and the threatening by gullying of the road which used to be the main thoroughfare from Addis Ababa to Mekelle. As a result, the deep gully was transformed into a linear oasis (black arrow and zoom, Figure 5) which can decrease landscape fragmentation and, therefore, is beneficial for ecological recovery (cf. Aerts et al., 2008). Moreover, the forestation of gullies will increase their resilience to the effects of drought or land-use changes on the runoff response of the land and the occurrence of flash floods in gullies. The afforestation of gullies is rather rare in Northern Ethiopia and a similar example was studied for a gully near the catchment of May Ba’ati (Reubens et al., 2009).
Figure 5: Gully rehabilitation in the catchment of Atsela. Thanks to the improved land management and the application of soil and water conservation measures, like the reforestation of the steep slope (foreground), the gully indicated by the black arrow was transformed into a green oasis in the landscape. (Photographs by Cleo De Wolf, March 2012)

4.3. Soil loss by gullying

In order to compare our results to other reports of soil erosion by gullying in Northern Ethiopia and in other drylands, the soil loss was also expressed as soil loss by gullying (SLg, t ha\(^{-1}\) y\(^{-1}\)). As no soil bulk density measurements were performed in this study, we used a standard soil bulk density of 1.5 g cm\(^{-3}\). Average soil bulk density values for topsoils in Northern Ethiopia vary between 1.28 and 1.38 g cm\(^{-3}\) (Girmay et al., 2009).
Soil losses by gullying (SLg) are considerable in Northern Ethiopia. Over the period 1963/1965 – 2008/2010, the average SLg was 8.3 t ha\(^{-1}\) y\(^{-1}\). This is similar soil losses of 9.7 t ha\(^{-1}\) y\(^{-1}\) by sheet and rill erosion (Nyssen et al., 2008b). For shales and for volcanics, the average SLg-values were 12.28 t ha\(^{-1}\) y\(^{-1}\) and 6.3 t ha\(^{-1}\) y\(^{-1}\), respectively. Over the same period, Nyssen et al. (2006) obtained average SLg-values of 6.2 t ha\(^{-1}\) y\(^{-1}\), for several gullies near the catchment of May Ba’ati. Low SLg-values of 4.1 t ha\(^{-1}\) y\(^{-1}\) were reported by Nyssen et al. (2008b) over the period 1998-2001 in a well managed catchment also near May Ba’ati. Calculating SLg over the period 1963/1965 - 1994, when the gully system was in a pronounced cut-phase, gave a much higher value of 17.6 t ha\(^{-1}\) y\(^{-1}\). Differentiating between shales and volcanics gave values of 27.0 t ha\(^{-1}\) y\(^{-1}\) and 12.5 t ha\(^{-1}\) y\(^{-1}\) respectively. Over the period 1994-2008/2010 a net infilling of 8.3 t ha\(^{-1}\) y\(^{-1}\) was calculated. This of course does not imply that no active gullying occurs (headcut retreat, bank erosion, etc.), but merely indicates that soil is efficiently being trapped into gullies. Compared to SLg-values of other dryland environments reported in Poesen et al. (2003), see introduction, soil loss by gullying is severe in Northern Ethiopia.

These tendencies have to be understood within a socio-economic environment of strong population growth and a low level of technological development, where most people rely on land resources for their livelihood, and where the fragility of the country’s economy is frequently emphasized, for example when climatic shocks such as drought cause severe food shortages and famine. Socio-economical developments and their relation to land degradation should therefore be monitored closely. With an annual population growth rate of 2.37% (period 2000-2010, CSA, 2008) and population size which is likely to double by 2050, the country faces immense challenges. The key is to rehabilitate land as a resource base for food security and ecosystem services, and to strengthen and diversify the rural economy in order to make local communities...
less dependent on land resources. Such challenges are embraced by many local, national and international programs, and should remain high on the agenda.

5. Conclusions

Small-scale aerial photographs of the period 1963-1994 proved to be very valuable to map and understand historical gully erosion, even for a mountainous country like Ethiopia for which old aerial photographs are of poor quality and difficult to orthorectify. Having a basic geomorphic background (fieldwork, use of aerial photographs) and stereographic views, gully networks could be mapped relatively easily and a distinction between low- and high-active gullies could be made. High-resolution satellite images offer similar resolutions to those of aerial photographs, and could thus be used to collect data on present gully erosion. At no cost and at good spatial accuracy, we mapped gully networks in Google Earth using 3D visualization of the images.

Considering the changes in gully networks and volumes from 1963 to 2010, this study confirms previous findings by Frankl et al. (2011) that the gully network is experiencing a cut-and-fill phase, related to alternating environmental conditions. Although network density was relatively high (1.86 km km\(^{-2}\)) in the 1960s, 50% of the network was low-active, and the area specific gully volume \(V_a\) was only 32.23 \(10^3\) m\(^3\) km\(^{-2}\). These figures changed dramatically towards the 1980s and 1990s. The total \(D_{\text{total}}\) and high-active \(D_{\text{high-active}}\) network density then peaked reaching 2.52 km km\(^{-2}\) and 2.35 km km\(^{-2}\) in 1994. This coincided with an almost double \(V_a\) of 59.59 \(10^3\) m\(^3\) km\(^{-2}\). With improved land management and the region-wide implementation of soil and water conservation measures in the recent decades, the gully network density and volume subsequently decreased. \(D_{\text{total}}\) and \(D_{\text{high-active}}\) declined to 2.2 km km\(^{-2}\) and 1.65 km km\(^{-2}\) respectively, and 25% of the gully network is low-active. \(V_a\) in 2008-2010 was 48.96 \(10^3\) m\(^3\) km\(^{-2}\). Comparing
catchments of similar size showed that the drainage density is largely controlled by catchment
gradient and that for the same gradient, densities in shales are higher than in volcanics (flood
basalt, rhyolites and consolidated volcanic ash).

Soil losses by gullying (SL_g) are considerable in Northern Ethiopia. Over the period 1963/1965-
2008/2010, SL_g was on average 8.3 t ha$^{-1}$ y$^{-1}$. However, these rates have varied considerably in
time and space. Average SL_g-values between shales and volcanics differ considerably. The gully
cut-phase from 1963/1965-1994 gave a much higher average SL_g-values of 17.6 t ha$^{-1}$ y$^{-1}$. Over
the period 1994-2008/2010 a net filling of 8.3 t ha$^{-1}$ y$^{-1}$ occurred.

This study shows that land degradation by gullying was indeed severe in Northern Ethiopia in
the second half of the 20th century. However, the huge efforts in environmental rehabilitation
undertaken in the recent decades are starting to result in gully stabilization. When proper land
management is applied, gullies can even be transformed into a linear oasis (Figure 5) which will
increases the resistance of gullies to possible further erosion. In the light of strong population
growth and expected increasing demands of land resources, rehabilitating the gully networks
needs to be of high priority for all local, national and international beneficiaries of soil recourses.

Acknowledgements

This study was carried out with the support of Ghent University, Research Foundation Flanders
(FWO), Royal Academy of Overseas Sciences, Couderé Geomatic Engineering bvba and the
Flemish Interuniversity Council – University Development Cooperation (VLIR-UOS-MU-Land
Project). Special thanks go to our field assistant Gebrekidan Mesfin and to the local residents for
their hospitality.

