Advanced search
1 file | 1.23 MB

Uncovering the genetic basis for early isogamete differentiation : a case study of Ectocarpus siliculosus

Author
Organization
Abstract
Background: The phenomenon of sexual reproduction characterizes nearly all eukaryotes, with anisogamy being the most prevalent form of gamete discrimination. Since dimorphic gametes most likely descend from equal-sized specialized germ cells, identifying the genetic bases of the early functional diversification in isogametes can provide better understanding of the evolution of sexual dimorphism. However, despite the potential importance to the evolutionary biology field, no comprehensive survey of the transcriptome profiling in isomorphic gametes has been reported hitherto. Results: Gamete differentiation on the genomic level was investigated using Ectocarpus siliculosus, a model organism for brown algal lineage which displays an isogamous sexual reproduction cycle. Transcriptome libraries of male and female gametes were generated using Next Generation Sequencing technology (SOLiD) and analyzed to identify differentially regulated genes and pathways with potential roles in fertilization and gamete specialization. Gamete transcriptomes showed a high level of complexity with a large portion of gender specific gene expression. Our results indicate that over 4,000 of expressed genes are differentially regulated between male and female, including sequences related to cell movement, carbohydrate and lipid metabolism, signaling, transport and RNA processing. Conclusions: This first comprehensive transcriptomic study of protist isogametes describes considerable adaptation to distinct sexual roles, suggesting that functional anisogamy precedes morphological differentiation. Several sex-biased genes and pathways with a putative role in reproduction were identified, providing the basis for more detailed investigations of the mechanisms underlying evolution of mating types and sexual dimorphism.
Keywords
Transcriptome, Sexual reproduction, Gamete, Ectocarpus, Isogamy, Brown alga, Signaling, SEA-URCHIN SPERM, SEXUAL REPRODUCTION GENE, NOTCH SIGNALING PATHWAY, EGG PEPTIDE SPERACT, BROWN-ALGAE, EXPRESSION ANALYSIS, FUCUS-SERRATUS, LIFE-CYCLE, G-PROTEIN, EXTRACELLULAR-MATRIX

Downloads

  • Lipinska.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 1.23 MB

Citation

Please use this url to cite or link to this publication:

Chicago
Lipinska, Agnieszka, Sofie D’Hondt, Els Van Damme, and Olivier De Clerck. 2013. “Uncovering the Genetic Basis for Early Isogamete Differentiation : a Case Study of Ectocarpus Siliculosus.” Bmc Genomics 14.
APA
Lipinska, A., D’Hondt, S., Van Damme, E., & De Clerck, O. (2013). Uncovering the genetic basis for early isogamete differentiation : a case study of Ectocarpus siliculosus. BMC GENOMICS, 14.
Vancouver
1.
Lipinska A, D’Hondt S, Van Damme E, De Clerck O. Uncovering the genetic basis for early isogamete differentiation : a case study of Ectocarpus siliculosus. BMC GENOMICS. 2013;14.
MLA
Lipinska, Agnieszka, Sofie D’Hondt, Els Van Damme, et al. “Uncovering the Genetic Basis for Early Isogamete Differentiation : a Case Study of Ectocarpus Siliculosus.” BMC GENOMICS 14 (2013): n. pag. Print.
@article{4283472,
  abstract     = {Background: The phenomenon of sexual reproduction characterizes nearly all eukaryotes, with anisogamy being the most prevalent form of gamete discrimination. Since dimorphic gametes most likely descend from equal-sized specialized germ cells, identifying the genetic bases of the early functional diversification in isogametes can provide better understanding of the evolution of sexual dimorphism. However, despite the potential importance to the evolutionary biology field, no comprehensive survey of the transcriptome profiling in isomorphic gametes has been reported hitherto.
Results: Gamete differentiation on the genomic level was investigated using Ectocarpus siliculosus, a model organism for brown algal lineage which displays an isogamous sexual reproduction cycle. Transcriptome libraries of male and female gametes were generated using Next Generation Sequencing technology (SOLiD) and analyzed to identify differentially regulated genes and pathways with potential roles in fertilization and gamete specialization. Gamete transcriptomes showed a high level of complexity with a large portion of gender specific gene expression. Our results indicate that over 4,000 of expressed genes are differentially regulated between male and female, including sequences related to cell movement, carbohydrate and lipid metabolism, signaling, transport and RNA processing.
Conclusions: This first comprehensive transcriptomic study of protist isogametes describes considerable adaptation to distinct sexual roles, suggesting that functional anisogamy precedes morphological differentiation. Several sex-biased genes and pathways with a putative role in reproduction were identified, providing the basis for more detailed investigations of the mechanisms underlying evolution of mating types and sexual dimorphism.},
  articleno    = {909},
  author       = {Lipinska, Agnieszka and D'Hondt, Sofie and Van Damme, Els and De Clerck, Olivier},
  issn         = {1471-2164},
  journal      = {BMC GENOMICS},
  keyword      = {Transcriptome,Sexual reproduction,Gamete,Ectocarpus,Isogamy,Brown alga,Signaling,SEA-URCHIN SPERM,SEXUAL REPRODUCTION GENE,NOTCH SIGNALING PATHWAY,EGG PEPTIDE SPERACT,BROWN-ALGAE,EXPRESSION ANALYSIS,FUCUS-SERRATUS,LIFE-CYCLE,G-PROTEIN,EXTRACELLULAR-MATRIX},
  language     = {eng},
  pages        = {15},
  title        = {Uncovering the genetic basis for early isogamete differentiation : a case study of Ectocarpus siliculosus},
  url          = {http://dx.doi.org/10.1186/1471-2164-14-909},
  volume       = {14},
  year         = {2013},
}

Altmetric
View in Altmetric
Web of Science
Times cited: