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Abstract—The quantize-and-forward (QF) cooperative proto-
col can effectively be used to combat fading in systems using
half-duplex relay terminals. While the outage behavior of the
QF protocol has been extensively investigated, few research has
been performed on the impact of imperfect channel estimates. In
this contribution, a lower bound (LB) on the estimation error is
obtained for a one-hop relaying channel with data quantization
at the relay. To this purpose the modified Cramer-Rao (MCRB)
bound is calculated, which, compared to the true Cramer-Rao
bound (CRB), is a looser and computationally less complex bound
that converges to the CRB in the high signal-to-noise ratios. By
using a general system model for the relay channel, the obtained
results can be utilized to benchmark a wide variety of systems.

Index Terms—Cooperative communication, Quantize-and-
Forward, Cramer-Rao Bound, Estimation

I. INTRODUCTION

Cooperative telecommunication systems can effectively be
used to combat fading by exploiting the broadcast nature of
the wireless medium [1], [2], [3] : a relay can forward to
the destination the information it receives from the source,
creating additional signal paths and thus providing spatial
diversity [4], [5]. Different strategies can be used to implement
the information forwarding, including amplify-and-forward
(AF) [6], quantize-and-forward (QF) [7], decode-and-forward
[8] and coded cooperation [9]. The AF protocol, in which
the relay amplifies the signal received from the source before
sending it to the destination, is well known for its seemingly
low-complexity implementation. However, when half-duplex
terminals are used, the information received from the source
needs to be stored with high precision at the relay awaiting
retransmission to the destination, requiring a large memory
at the relay terminal. This memory requirement is relaxed by
the quantize-and-forward (QF) protocol, in which the signal
received by the relay is (coarsely) quantized before being
stored into memory. These quantized samples are then sent
to the destination in a subsequent timeslot [7], [10].

The majority of the work on cooperative systems is per-
formed under the assumption of perfect channel state in-
formation (CSI). While this is useful for obtaining various
information-theoretical results, the situation of imperfect CSI

presents new challenges that need to be tackled. Channel
parameter estimation for QF has been discussed in [10], [11]
for a protocol in which the relay estimates the source-relay
(SR) channel and forwards the estimate to the destination,
while [12] describes a QF system in which all channel
parameters are estimated at the destination. In [12], the SR
channel is abstracted to be a discrete channel, characterized
by a finite set of transition probabilities. In doing so, the
estimation of the SR channel is greatly simplified, and the
computational complexity at the destination is reduced. In
this contribution, the modified Cramer-Rao bound (MCRB) is
obtained using a similar channel model as in [12]. Compaired
to the unmodified Cramer-Rao bound (CRB), the MCRB is a
looser and computationally less complex bound that coincides
with the CRB in the high signal-to-noise (SNR) limit [13],
[14]. Both the estimation of the SR channel and the relay-
destination (RD) channel will be considered. By only making
loose assumptions on the structure of the SR channel and the
quantization operation, the results obtained here can be used
to benchmark a wide variety of cooperative communication
systems that use a form of quantization at the relay.

The remainder of this contribution is organized as follows.
In section II the system model is introduced. In section III
an expression is obtained for the modified Cramer-Rao bound
(MCRB), whereafter a few special cases will be presented
that will provide more insight on the qualitative aspects of the
obtained lower bound (LB). Finally, the use of importance
sampling (IS) is outlined, a technique that is crucial for
obtaining numerical results within acceptable simulation times
[16]. These numerical results are then presented in section IV,
whereafter conclusions are drawn in section V.

II. CHANNEL MODEL

In this contribution, a one-hop relaying channel is analyzed.
The relay is considered to be a half-duplex device, meaning
that it cannot send and receive information simultaneously. In
a first timeslot, the source broadcasts K M1-PSK symbols,
denoted cs, which are altered by the channel before being
received by the relay. The relay quantizes the received samples



using log2(M2) bits. These quantized samples, represented by
K M2-PSK symbols denoted cr, are then forwarded to the
destination in a second timeslot. The energy of the symbols
sent by the source and the relay is equal to Es and Er,
respectively. By considering a memoryless SR channel and
assuming that the quantization operation is performed on a
symbol-by-symbol basis, the k-th symbol sent by the relay,
denoted cr(k), only depends on the k-th symbol sent by the
source, denoted cs(k). By noting that both the source and the
relay transmit discrete symbols from a PSK constellation, the
cascade of the SR channel and the quantization operation at
the relay can be abstracted to be a communication channel
with M1 input values and M2 output values. Introducing the
mapping function χM (x) = e

j2πx
M , the SR channel can be fully

characterized by M2 ×M1 transition probabilities τq,m(k) =
P [cr(k) = χM2(q) | cs(k) = χM1(m)], which determine the
probability of the symbols sent by the relay conditioned on
the symbols sent by the source.

By assuming that the duration of a frame is much shorter
than the channel coherence time, the SR and RD channel
parameters can be considered to be constant within a timeslot.
In doing so, the transition probabilities τq,m(k) do not depend
on the symbol index k and will be denoted τq,m. It is further
assumed that M2/M1 is integer and that the quantization op-
eration exhibits circular symmetry with respect to the symbols
sent by the source, so that

P

[
cr(k) = χM2

(
q +

M2

M1
m

) ∣∣∣ cs(k) = χM1(m)
]

= P [cr(k) = χM2(q) | cs(k) = χM1(0)] (1)

and thus τ
q+

M2
M1

m,m
= τq,0 = τq .

The channel between the relay terminal and the destination
will be modelled as a flat Rayleigh fading channel with
additive white Gaussian noise. The RD channel coefficient is
denoted hd and the samples received by the destination are
represented by the vector rd which is equal to

rd =
√
Ercrhd + nd. (2)

The channel coefficient hd is considered to be constant during
a timeslot and has a zero mean circular symmetric com-
plex gaussian (ZMCSCG) distribution with variance Nhd =
1/dRDn with dRD the distance between the relay terminal and
the destination and n the path loss exponent. The elements of
the noise vector nd are ZMCSCG distributed with variance
Nd.

III. MODIFIED CRAMER-RAO BOUND

The MCRB is an LB on the mean square error (MSE)
of an unbiased estimate. At the destination, both the SR
transition probabilities τq and the RD channel coefficient hd
are considered to be unknown and will need to be estimated. In
the current contribution, we will assume the destination does
not possess any a-priori information on the different channel
parameters. The unknown channel parameters are grouped into
the real-valued vector θ = (τ0, τ1, . . . , τM2−2,R(hd), I(hd)),

with R(hd) and I(hd) denoting the real and imaginary part
of hd, respectively. Note that τM2−1 is not contained in
θ, because it is not an independent paremeter (τM2−1 =
1− τ0 − . . .− τM2−2).

In order to obtain the MCRB for the various elements of
θ, the modified Fisher information matrix (MFIM) JM (θ) is
introduced, the elements of which are defined as

JM (θ)i,j

= Ecs

[
Erd|cs

[
∂

∂θi
ln p(rd | cs;θ)

∂

∂θj
ln p(rd | cs;θ)

]]
= Erd|cs

[
∂

∂θi
ln p(rd | cs;θ)

∂

∂θj
ln p(rd | cs;θ)

]
. (3)

Using the notation x̂ to represent an unbiased estimate of x,
it follows from [13], [15] that

Erd|cs

[
(θ − θ̂)(θ − θ̂)H

]
≥ J−1

M (θ), (4)

where A ≥ B implies that A − B is positive-semidefinite
matrix. By noting that

(τ − τ̂ ) = V (θ − θ̂), (5)

with

V =

 IM2−2
0 0
0 0

−1 −1 0 0


and IM2−2 denoting the (M2−2)× (M2−2) identity matrix,
a LB on the MSE arising from the estimation of τ can be
expressed as

Erd|cs
[
(τ − τ̂ )H(τ − τ̂ )

]
= Tr

(
Erd|cs

[
(τ − τ̂ )(τ − τ̂ )H

])
= Tr

(
V Erd|cs

[
(θ − θ̂)(θ − θ̂)H

]
V H

)
≥ Tr

(
V J−1

M (θ)V H
)

= MCRBτ (θ), (6)

where in the last step (4) was used. Similarly, (hd − ĥd) can
be expressed as (

hd − ĥd
)

= u
(
θ − θ̂

)
, (7)

with u = (0, . . . , 0, 1, i), yielding the following LB on the
MSE arising from the estimation of hd:

Erd|cs

[
|hd − ĥd|2

]
= Tr

(
uE
[
(θ − θ̂)(θ − θ̂)H

]
uH
)

≥ Tr
(
uJ−1

M (θ)uH
)

= MCRBhd(θ).
(8)

Note that the exact value of the MCRB from (6) and (8)
depends on the specific realization of θ. In order to obtain
a LB that is independent of θ, (6) and (8) need to be averaged
over θ, as will be done numerically in section IV. It is shown
in Appendix A that for a given value of θ, the elements of the
MFIM can be expressed as

JM (θ)i,j = KErd|cs [Xi,j(rd, cs;θ)] , (9)

where cs is an arbitrary M1-PSK constellation point, and the
expectation is over the distribution p(rd | cs), representing



a short-hand notation of p(rd(k) | cs(k) = cs), which does
not depend on the time index k. The exact expression for
Xi,j(rd, cs;θ) is given in (25).

A. Special Cases

In this subsection, a few special cases are introduced which
are simpler to evaluate than the general case, and which
provide a lower bound on the MCRB resulting from (9).

1) Perfect RD channel: A perfect RD channel corresponds
to the case where the destination receives the message from the
relay unaltered, i.e., rd = cr. When this is the case, only the
parameters {θq, q = 0, . . . ,M2 − 2} must be estimated. The
MFIM has dimension (M2 − 1)× (M2 − 1), and is obtained
by substituting in (25) cr for rd, yielding

JM (θ)i,j

= KEcr|cs

[
∂

∂θi
ln p(cr | cs;θ)

∂

∂θj
ln p(rd | cs;θ)

]
.

(10)

Using (26), (10) can be written as

JM (θ)i,j =
δi−j
τi

+
1

τM2−1
, (11)

with δx = 1 only if x = 0, yielding the following expression
for the MFIM:

JM (θ) = D−1 + τ−1
M2−111T , (12)

with D a diagonal matrix with diagonal elements equal to
(τ0, τ1, . . . , τM2−2) and 1 a column vector with all elements
equal to 1. Introducing d = (τ0, τ1, . . . , τM2−2)T and using
the matrix inversion lemma to calculate the inverse of the
MFIM yields

J−1
M (θ) =

1
K

(
D − ddT

)
. (13)

The MCRB corresponding to the estimation of τ is obtained
by substituting (13) into (6), yielding

E
[
(τ − τ̂ )H(τ − τ̂ )

]
≥ 1
K

(
1−

M2−1∑
q=0

τ2
q

)
. (14)

2) Perfect SR channel: A perfect SR channel corresponds
to the case where the relay receives the message from the
source unaltered; the message sent by the relay then equals
a quantized version of the message sent by the source. This
yields cr = FQ(

√
Escs), with FQ(.) representing the quan-

tization operation. In this case we only have to estimate hd.
The corresponding MFIM of dimension 2× 2 is obtained by
substituting in (25) cr for cs. One obtains JM =

(
2KEr
Nd

)
I2,

and thus

E
[
|ĥd − hd|2

]
≥ Nd
KEr

. (15)

3) Known SR or RD channel: When the transition probabil-
ities of the SR channel are known, the MCRB corresponding
to the estimation of the RD channel hd is obtained by
omitting from the MFIM the first M2 − 1 columns and rows
that correspond to the parameters θ0, θ1, . . . , θM2−2 of the
SR channel. Similarly, when the RD channel hd is known,
the MFIM for the estimation of the SR channel parameters
θ0, θ1, . . . , θM2−2 is obtained by removing from the MFIM
the last two rows and columns.

B. Importance Sampling

Except in the case of a perfect RD or SR channel, averaging
over rd in (9) cannot be achieved analytically and Monte-
Carlo (MC) techniques must be employed. However, when
some of the transition probabilities of the SR channel are very
small, the computational effort required to achieve a consistent
value for the MCRB can be prohibitively high. This can be
understood by calculating the MCRB corresponding to the
case of a perfect RD channel and using a MC approach instead
of an analytical one. The MC approach to obtain JM (θ)i,j
involves the following approximation :

JM (θ)i,j ≈
K

N

N∑
n=1

I
(n)
i δi−j
τ2
i

+
I
(n)
M2−1

τ2
M2−1

i, j = 0, 1, . . . ,M2 − 2, (16)

where I(n)
q = 1 if c(n)

r = cse
j2πq
M2 and 0 otherwise, cs is an

arbitrary symbol from the M1-PSK constellation (say, cs = 1),
and {c(n)

r , n = 1, 2, . . . , N} is a sequence of i.i.d random vari-
ables, generated according to Pr

[
c
(n)
r = cse

j2πq
M2

]
= τq, q =

0, 1, . . . ,M2 − 1. Suppose that for given N, τi1 and τi2 are
both much smaller than 1/N , so that it is likely to have
I
(n)
i1 = I

(n)
i2 = 0 for n = 1, 2, . . . , N . In this case, the

(estimate of) the MFIM obtained from (16) is singular, so
that its inverse does not exist. Hence, to obtain meaningful
results using (16), very large values of N (and, therefore, long
simulation times) are required when some of the transition
probabilities are very small.

This problem can be avoided by using importance sampling
(IS) [16]. For the situation at hand, this involves generating
{c(n)
r , n = 1, 2, . . . , N} according to a biased distribution

Pr
[
c
(n)
r = cse

j2πq
M2

]
= κq, q = 0, 1, . . . ,M2−1, and replacing

(16) by

JM (θ)i,j ≈
K

N

N∑
n=1

I
(n)
i δi−j
τ2
i

.
τi
κi

+
I
(n)
M2−1

τ2
M2−1

.
τM2−1

κM2−1

i, j = 0, 1, . . . ,M2 − 2. (17)

We select all κq to be much larger than 1/N , so that it is
unlikely for any q to have I(n)

q = 0 for n = 1, 2, . . . , N . This
yields 1

N

∑N
n=1 I

(n)
q ≈ κq for all q, so that (17) is close to

the analytical result (11).



In the general case, JM (θ) from (9) is computed as

JM (θ)i,j ≈
K

N

N∑
n=1

Xi,j(rd, cs;θ).
p
(
r
(n)
d | cs;θ

)
p
(
r
(n)
d | cs; θ̃

) , (18)

where {r(n)
d , n = 1, 2, . . . , N} are N independent realizations

generated according to the biased distribution p
(
r
(n)
d | cs; θ̃

)
.

IV. NUMERICAL RESULTS

In this section, the value of the MCRB is obtained for
different SNR ratios using computer simulations. Before re-
sults can be obtained, the SR channel and the quantization
operation need to be parameterized. To this purpose, the SR
channel is modelled as a flat Rayleigh fading channel with
additive white Gaussian noise, characterized by the channel
parameter hr. The latter is constant during a timeslot and has
a ZMCSCG distribution with variance Nhr = 1/dSRn, with
dSR the distance between the source and the relay terminal.
The additive white Gaussian noise has a ZMCSCG distribution
with variance Nr. The path-loss exponent on the SR and RD
channels is assumed to be equal to 4 and the distances between
the various terminals satisfy dSR = dRD = 0.5. The SR and
RD channels have equal noise variances (i.e. Nr = Nd) and
equal symbol energies (i.e. Es = Er). The source is assumed
to broadcast BPSK symbols that are quantized at the relay on
QPSK symbols. The quantization of the samples at the relay is
performed without knowledge of the SR channel as described
in [7], [12].

The corresponding transition probabilities are obtained as
function of the SR channel parameters hr and Es/Nr using
the techniques described in [7], [12]. Because some tran-
sition probabilities can be very small at high SNR values,
the use of IS is required for obtaining meaningfull results
within reasonable simulation times. The alternative transition
probabilities κ used for the IS distribution are generated by
assuming the instantaneous SNR of the SR channel, defined
as γr = Es|hr|2/Nr is always equal to 0 dB, independent of
the actual value. In doing so, only 104 realizations of rd given
cs are required to average over rd in (9). The framelength K
is equal to 1500 and a total of 104 realizations of θ are used
to average MCRBτ (θ) and MCRBhd(θ) over θ.

Fig. 1 shows the MCRB corresponding to the estimation
of the SR channel as function of the average SNR on this
channel (defined as SNRr = E[γr] = EsNhr/Nr) for various
values of the instantaneous SNR on the RD channel (defined
as γd = Er|hd|2/Nd). Also included for reference is the case
of a perfectly known RD channel, corresponding to the case
of γd → +∞. As can be seen on the plot, MCRBτ decreases
as SNRr increases. It is worth to note however that the value
of MCRBτ is much more sensitive to the value of γd. When
γd decreases, the a posteriori probabilities p(cr|rd, cs;θ) tend
to p(cr|cs;θ); in which case the elements (26) of the MFIM
related to the estimation of the transition probabilities become
very small, and the corresponding MCRB gets very large.
When γd is very large, p(cr|rd, cs;θ) ≈ 1 when cr is the

Fig. 1. MSE of τ̂ as a function of the Es/Nr ratio for different states of
the RD channel.

Fig. 2. MSE of ĥ2 as a function of the Er/Nd ratio for different states of
the SR channel.

M2-PSK constellation point actually transmitted by the relay;
the corresponding MCRB related to estimating τ approaches
the MCRB (14) for the perfect RD channel, which assumes a
maximum value of

(
1− 1

M2

)
/K when SNRr goes to zero,

and approaches zero when SNRr goes to infinity.
The MCRB related to the estimation of the RD channel

is shown in Fig. 2 as function of the average SNR on this
channel (defined as SNRd = E[γd] = ErNhd/Nd), for
different values of γr. The situation of a perfect SR channel
is also included for reference. Unlike the MCRB related to
the estimation of the SR channel transition probabilities, the
MCRB related to the estimation of hd is much less sensitive
to variations in the instantaneous SNR of the SR channel,
especially at high SNR values. This is due to the fact that
the relay broadcasts discrete symbols from a pre-defined and
known constellation, information which can be used when
estimating the RD channel coefficient. When SNRd is very
large, p(cr|rd, cs;θ) ≈ 1 when cr is the M2-PSK constellation
point actually transmitted by the relay; from (27) it can be



verified that in this case MCRBhd approaches the MCRB (15)
for the perfect SR channel. This implies that at high SNR,
the symbol sent by the relay can be accurately determined
without the knowledge of the symbol sent by the source, as the
distance between the constellation points at the relay becomes
larger compared to the noise variance. As a result, from an
estimation point of view, the optimal relay location is close to
the destination, as this has the best potential to yield accurate
channel estimates for both the SR and RD channels.

V. CONCLUSIONS

In this contribution, LBs were derived for the estimation of
the SR channel and the RD channel in QF cooperative systems.
The SR channel and the quantization operation only need to
adhere to loose constraints outlined in section II, making the
obtained results applicable to a wide variety of cases, such
as Rice fading channels or a cascade of different channels.
After presenting an expression for the MCRB, a few special
cases were introduced in which the MCRB can be obtained
analytically. In the general case, the value of the MCRB is
obtained using IS techniques. The presented results show that
it is difficult to obtain an accurate estimate of the SR channel
parameters when the RD channel quality is low. Because a low
SNR on the SR channel does not significantly deteriorate the
RD channel estimate, placing the relay close to the destination
has the best potential to yield accurate channel estimates for
both the SR and RD channel. Future work includes extending
the obtained expressions to general QAM constellations.

APPENDIX A
CALCULATION OF THE MODIFIED FISHER INFORMATION

MATRIX

In the following section, the calculation of the elements
of the modified Fisher information matrix is outlined. These
elements are obtained by evaluating

JM (θ)i,j = Erd|cs

[
∂

∂θi
ln p(rd | cs;θ)

∂

∂θj
ln p(rd | cs;θ)

]
= Erd|cs [gi(rd, cs;θ)gj(rd, cs;θ)] , (19)

with gi(rd, cs;θ) = ∂
∂θi

ln p(rd | cs;θ). By taking into
consideration the channel model described in section II, the
function gi can be written as

gi(rd, cs;θ) =
∂

∂θi
ln

K∏
k=1

p(rd(k) | cs(k);θ)

=
∂

∂θi

K∑
k=1

ln p(rd(k) | cs(k);θ), (20)

with

ln p(rd(k) | cs(k);θ) =∑
cr(k)

p(rd(k) | cr(k);θ)p(cr(k) | cs(k);θ),

(21)

where the summation over cr(k) runs over all M2 values cr(k)
can adopt. Substituting (20) into (19) yields

JM (θ)i,j = Erd|cs K∑
k,k̃=1

∂

∂θi
ln p(rd(k) | cs(k);θ)

∂

∂θj
ln p(rd(k̃) | cs(k̃);θ)

 .
(22)

Evaluation of the terms for which k 6= k̃ yields

Erd|cs

[
∂

∂θi
ln p(rd(k) | cs(k);θ)

∂

∂θj
ln p(rd(k̃) | cs(k̃);θ)

]
= Erd(k)|cs(k)

[
∂

∂θi
ln p(rd(k) | cs(k);θ)

]
.Erd(k̃) | cs(k̃)

[
∂

∂θj
ln p(rd(k̃) | cs(k̃);θ)

]
, (23)

with

Erd(k)|cs(k)
[
∂

∂θi
ln p(rd(k) | cs(k);θ)

]
=
∫

∂

∂θi
p(rd(k) | cs(k);θ)drd(k) = 0. (24)

Substituting (23), (24) into (22) yields

JM (θ)i,j =
K∑
k=1

Erd(k)|cs(k)[
∂

∂θi
ln p(rd(k) | cs(k);θ)

∂

∂θj
ln p(rd(k) | cs(k);θ)

]
= KErd(0)|cs(0)[

∂

∂θi
ln p(rd(0) | cs(0);θ)

∂

∂θj
ln p(rd(0) | cs(0);θ)

]
.

(25)

The factors ∂
∂θi

ln p(rd(0) | cs(0);θ) in (25) can further be
expressed as
∂

∂θi
ln p(rd | cs;θ)

=
P
[
cr = χM2

(
i+ M2

M1
m
) ∣∣ rd, cs = χM1(m);θ

]
τi

−
P
[
cr = χM2

(
(M2 − 1) + M2

M1
m
) ∣∣ rd, cs = χM1(m);θ

]
τM2−1

(26)

for i < M2 − 1 and
∂

∂θi
ln p(rd | cs;θ) =

∑
cr

∂

∂θi
ln p(rd | cr;θ)p(cr | cs, rd;θ)

(27)

for i ≥ M2 − 1, where the symbol index 0 has been omitted
for convenience of notation.
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