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Abstract—This paper proposes an exact formalism for the
inclusion of static nonlinear elements with polynomial I-V char-
acteristic into the polynomial chaos framework for statistical
circuit simulation, which was so far limited to linear circuits. The
formulation is SPICE-compatible, thus allowing the convenient
integration of such nonlinear elements into standard circuit
solvers. This contribution represents a step forward towards
the inclusion of nonlinear terminations into the SPICE- and
polynomial chaos-based statistical analysis of interconnects with
stochastic parameters. The theory is illustrated and validated by
means of an application example.

Index Terms—Circuit modeling, circuit simulation, nonlinear,
polynomial chaos, stochastic analysis, transmission lines, uncer-
tainty.

I. INTRODUCTION

With the increasing shrinking of device dimensions, the im-
pact of process variability on circuit performance is becoming
more and more important. Therefore, statistical approaches
are usually preferred in circuit simulation in order to provide
variation-aware results and thus more robust designs [1], [2].
In the packaging and manufacturing community, great atten-
tion has been attracted so far by polynomial chaos (PC)-based
techniques [3]–[8], according to which statistical information
is obtained via the projection of stochastic variables onto
orthogonal polynomials [9].

Specifically, the authors of this contribution developed a PC-
based framework for the statistical simulation of distributed
networks that include lossy and dispersive lines with variabil-
ity in their cross-sectional parameters [10]. The formulation is
compatible with standard SPICE-type simulators, thus easily
enabling the simulation of arbitrary network topologies. Nev-
ertheless, a considerable limitation of the approach is that it
hitherto applies exclusively to linear circuits.

As far as the extension towards nonlinear networks is
concerned, a novel formalism has been proposed allowing
for the inclusion of general nonlinear terminations into the
PC framework [11]. Such a new formulation has been imple-
mented into MATLAB in conjunction with a finite-difference
time-domain (FDTD) scheme and applies to arbitrary I-V
characteristics. However, although very good accuracy was
established, the approach is approximate. In this paper, we

show that an alternative and exact formulation can be derived
when the nonlinear terminations have a static polynomial I-
V characteristic. We also demonstrate that its integration in
SPICE solvers is straightforward, thus allowing the analysis
of arbitrary network topologies as well as the inclusion of
lossy and dispersive interconnects, which would be rather
cumbersome via the FDTD technique.

The paper is organized as follows: Section II summarizes
the rationale of the PC-based circuit simulation; Section III
presents the formalism for nonlinear elements with polynomial
I-V characteristic and discusses the integration into SPICE
solvers; numerical results and validations are provided in
Section IV; finally, conclusions are drawn in Section V.

II. POLYNOMIAL CHAOS-BASED SIMULATION OF
STOCHASTIC INTERCONNECTS

For the sake of simplicity and ease of notation, the dis-
cussion is based on a single transmission line characterized
by stochastic per-unit-length (p.u.l.) parameters R(ξ), L(ξ),
G(ξ), C(ξ), and loaded with a given termination, as illustrated
in Fig. 1. Here, ξ ∈ Rd is a d-variate vector collecting all
the independent random variables (RVs) affecting the line
properties and is used to highlight the parameters that exhibit
variability. Generalization to multiconductor interconnects, as
well as to larger network topologies, will be straightforward.

R(ξ), L(ξ)

G(ξ), C(ξ)

i(t, ξ)
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Fig. 1. Stochastic transmission line and its termination.

The underlying idea of the PC-based simulation of stochas-
tic interconnects is to express terminal voltages and currents
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as PC expansions:

v(t, ξ) ≈
P∑

k=0

vk(t)ϕk(ξ), i(t, ξ) ≈
P∑

k=0

ik(t)ϕk(ξ), (1)

where {ϕk}Pk=0 is an orthonormal basis of polynomial func-
tions constructed based on the inner product

⟨ϕk, ϕm⟩ =
∫
Rd

ϕk(ξ)ϕm(ξ)w(ξ)dξ = δkm, (2)

with w(ξ) the joint probability density function (PDF) of ξ and
δkm the Kronecker delta. For standard distributions, the classes
of polynomials are well known and correspond e.g. to Hermite
polynomials (for Gaussian RVs), Legendre polynomials (for
uniform RVs), and so on.

The advantage of having a representation like (1) is that,
thanks to the orthogonality properties, the first two statistical
moments are readily given as

E {v(t, ξ)} ≈ v0(t), Var {v(t, ξ)} ≈
P∑

k=1

v2k(t), (3)

and this of course also holds for the current i(t, ξ). Moreover,
higher order moments as well as distribution functions can be
obtained by randomly sampling (1), this step being extremely
fast because (1) are mere polynomials.

The problem therefore reduces to the determination of
the unknown coefficients vk(t) and ik(t). It can be proven
that such coefficients are the line voltages and currents of a
deterministic multiconductor transmission line described by
the following telegrapher’s equations (see e.g., [10])

∂

∂z
ṽ(z, t) = −R̃ĩ(z, t)− L̃

∂

∂t
ĩ(z, t)

∂

∂z
ĩ(z, t) = −G̃ṽ(z, t)− C̃

∂

∂t
ṽ(z, t),

(4)

where ṽ = [v0, . . . , vP ]
T and ĩ = [i0, . . . , iP ]

T and with the
entries of the pertinent p.u.l. matrices given as e.g.

R̃jm =

P∑
k=0

Rk⟨ϕkϕm, ϕj⟩, (5)

j,m = 0, . . . , P . In (5), ⟨ϕkϕm, ϕj⟩ is merely a real number
and the Rk are the PC-expansion coefficients of the random
p.u.l. parameter, which can be computed — based on the
random geometric and material properties of the line — via
numerical integration techniques [10]. The remaining p.u.l.
matrices L̃, G̃ and C̃ are constructed analogously.

Once the expansion coefficients of the p.u.l. parameters
are known, the modified matrices can be constructed and
the corresponding multiconductor transmission line can be
simulated e.g. in a SPICE-type circuit analysis tool to re-
trieve the sought-for coefficients for the voltage and current
variables [10], provided that proper boundary conditions are
enforced and the line terminations, as illustrated in Fig. 2 for
the case P = 2. This step is discussed in the next section.
As a result, a single, deterministic simulation of the modified

circuit allows to collect statistical information faster compared
to, e.g., running Monte Carlo sampling with a large number
of simulations of the original network.
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Fig. 2. Modified, deterministic transmission line and its new terminations to
be determined.

III. BOUNDARY CONDITIONS AT LINE TERMINATIONS

In order to simulate the transmission line characterized
by (4), suitable boundary conditions, expressed in terms of
current-voltage relationships, must be derived for the line
terminations. These stem from the I-V characteristic of the
original termination. The result turns out to be trivial when
the load is linear, because in that case such a load is simply
replicated on all the terminations of the multiconductor line.
Unfortunately, this is not the case when the termination is
nonlinear.

Now, we relax the assumption of linearity and assume a
nonlinear current-voltage relationship at the line termination:

i(t, ξ) = F (v(t, ξ)). (6)

Replacing the voltage and current with their PC expansions (1)
and weighting the resulting equation using the basis functions
{ϕm} yield

P∑
k=0

ik(t)ϕk(ξ)ϕm(ξ) = F

(
P∑

k=0

vk(t)ϕk(ξ)

)
ϕm(ξ) (7)

(m = 0, . . . , P ). Then, integrating with the inner product (2)
produces

im(t) =

∫
Rd

F

(
P∑

k=0

vk(t)ϕk(ξ)

)
ϕm(ξ)w(ξ)dξ (8)

where, in general, no exact closed-form expression exist for
the right-hand side. In [11], a closed-form, but approximate,
expression is obtained by discretizing the integral using a
numerical quadrature with a given number of nodes. The
method provides very good accuracy and excellent efficiency.
However, in this paper, we provide an alternative and exact
solution that applies when the nonlinear characteristic F (v)
can be expressed as a polynomial function, i.e.

i(t, ξ) = F (v(t, ξ)) =
N∑

n=0

Gn(v(t, ξ))
n. (9)



Replacing (9) into (8) yields

im(t) =

∫
Rd

N∑
n=0

Gn

(
P∑

k=0

vk(t)ϕk(ξ)

)n

ϕm(ξ)w(ξ)dξ.

(10)
The multinomial theorem allows to write(

P∑
k=0

vk(t)ϕk(ξ)

)n

=

∑
k0+...+kP =n

(
n

k0,...,kP

) ∏
0≤r≤P

(vr(t)ϕr(ξ))
kr ,

(11)

with the multinomial coefficient defined as(
n

k0,...,kP

)
=

n!

k0! · · · kP !
. (12)

Substituting (11) into (10) and rearranging leads to

im(t) =

N∑
n=0

∑
k0+...+kP =n

Gn

(
n

k0,...,kP

)
×

×
∏

0≤r≤P

(vr(t))
kr

∫
Rd

∏
0≤r≤P

(ϕr(ξ))
krϕm(ξ)w(ξ)dξ.

(13)

Despite the somewhat bulky equation, it is now possible to
note that:

1) the term ( n
k0,...,kP )Gn is a mere constant number;

2) the integral
∫
Rd

∏
0≤r≤P (ϕr(ξ))

krϕm(ξ)w(ξ)dξ also
yields a constant number that can be calculated an-
alytically, at least for standard classes of orthogonal
polynomials ϕk;

3) the argument
∏

0≤r≤P (vr(t))
kr is still a polynomial,

although (P + 1)-variate, function of all the PC coeffi-
cients of the controlling voltage, and of total degree at
most N .

As an example, the three nonlinear terminal conditions for
the case d = 1, P = 2 and N = 2 reduce to

i0(t) = G0 +G1v0(t) +G2[v
2
0(t) + v21(t) + v22(t)]

i1(t) = G1v1(t) +G2[2v0(t)v1(t) + 2
√
2v1(t)v2(t)]

i2(t) = G1v2(t) +G2[
√
2v21(t) + 2v0(t)v2(t) + 2

√
2v22(t)]

(14)
As already pointed out, the new terminal conditions (13)

preserve a polynomial characteristic. This allows to take
advantage of the capability, available in circuit solvers like
HSPICE or PSPICE, of handling multivariate polynomial func-
tions of a given set of controlling node voltages (using e.g. the
POLY keyword, cfr. [12]). The new line terminations can then
be straightforwardly implemented in SPICE-type simulators
as voltage-dependent current sources (“G-elements”) that are
a polynomial function of all the line terminal voltages. It is
worth noting that the statements can be parametric with respect
to the coefficients Gn of the I-V characteristic, so that there is
no need to redetermine the expression, should such coefficients
change.
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Fig. 3. Transmission-line network considered for the application example.

IV. VALIDATION AND NUMERICAL RESULTS

This section proposes an application example in order to
better illustrate and validate the proposed theoretical formu-
lation. The network in Fig. 3 includes two coupled copper
microstrip lines with two terminations being nonlinear. The
microstrip cross-section is also shown on the top. The I-V
characteristics of the nonlinear terminations are i = F1(v) =
0.02v−0.1v2+0.6v3 and i = F2(v) = 0.01v−0.15v2+0.8v3.
The variability is provided by the substrate thickness and
by the trace-to-trace separation, which are considered as two
independent Gaussian random variables with relative standard
deviations of 10% and 5%, respectively. The voltage source
produces a pulse with an amplitude of 5 V, a duration of 4 ns
and rise/fall times of 100 ps. All the simulations are carried
out using HSPICE on an ASUS U30S laptop with an Intel(R)
Core(TM) i3-2330M, CPU running at 2.20 GHz and 4 GB
of RAM. For additional details on how to setup a PC-based
simulation of such a transmission-line network, the reader is
referred to [10].
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Fig. 4. Statistical transient analysis of vA(t). Gray lines: samples of the
random response; blue lines: mean response and ±3σ limits obtained with
Monte Carlo analysis; red markers: mean response (circles) and ±3σ limits
(asterisks) estimated with PC.

Fig. 4 shows the transient simulation of the voltage vA(t)
across the first nonlinear termination, F1(v). A 1000-run
Monte Carlo analysis is performed first, using the available
feature in HSPICE, and the blue lines display the correspond-
ing estimated mean response as well as the ±3σ limits (σ



denoting the standard deviation). The microstrip lines are char-
acterized with the internal field solver, which allows to take
losses and dispersion into account. A reduced set of response
samples is also plotted in gray to visualize the fluctuation due
to the variability of the line parameters. Then, a PC-based
simulation is run to compute the PC-expansion coefficients.
The red markers compare the same statistical information
obtained from the voltage coefficients according to (3). A
remarkable accuracy can be appreciated. Furthermore, Fig. 5
provides similar results, this time for the voltage across the
second nonlinear termination, F2(v). The meaning of the
curves is the same as in Fig. 4, and again excellent accuracy
is established.
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Fig. 5. Statistical transient analysis of vB(t). Curve identification is as in
the inset of Fig. 4.

Finally, Fig. 6 shows the PDF of vA(t) at 6 ns, when the
fluctuation of the voltage is quite large. The gray bars are
the histogram constructed based on the Monte Carlo samples,
whilst the red line is obtained by randomly sampling the PC
expansion of vA(t). It is worthwhile to point out that this step
takes less than 1 s for 106 samplings, nevertheless allowing a
much smoother reproduction of the PDF thanks to the larger
number of values considered.

As far as the simulation times are concerned, the Monte
Carlo analysis required 26 min 5 s, whereas the PC simulation
took 11.4 s. An impressive speed-up of 140× is thence
achieved.
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Fig. 6. Probability density function of vA at t = 6 ns obtained from both
the Monte Carlo samples (gray bars) and the PC expansion (red line).

V. CONCLUSIONS

This paper presents an exact and close-form formulation
to include nonlinear terminations with polynomial I-V char-
acteristic into the PC framework of statistical interconnect
simulation. Contrary to the Monte Carlo approach, a single
simulation of a modified network allows to extract statisti-
cal information much faster than analyzing a large number
of random circuit configurations. The formulation is SPICE
compatible, thus enabling the designer to perform stochastic
analyses using standard circuit solvers. As such, it represents
a first step towards the inclusion of nonlinear elements in the
SPICE- and PC-based circuit analysis. The theory is illustrated
by means of an application example involving the simulation
of a network with two lossy and dispersive coupled microstrip
sections having random variations in the substrate thickness
and trace separation, and terminated by nonlinear loads.
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