Stable time-domain differential equations which reproduce the warm plasma dielectric tensor

W. Tierens\(^1\) and D. De Zutter\(^1\)

\(^1\)Electromagnetics Group, Ghent University, Belgium

Nonlinear and transient phenomena are of great interest in plasma physics [1]. The ability to model such phenomena is a major advantage of time-domain computational techniques.

In [2], we derived stable (provably conservative) time-domain constitutive differential equations which, in the frequency domain, reproduce a finite-order approximation to the dielectric tensor for hot Maxwellian plasmas [3]. In [2], the approximation was accurate to second order in the thermal velocity and only valid for perpendicular propagation, with the electric field perpendicular to the background magnetic field (i.e. reproducing the x-y block of the dielectric tensor). Later [4], we also reproduced the zz-block of the dielectric tensor in this fashion.

This stable approximation is obtained using carefully-chosen rational rather than polynomial approximations to the special functions in the dielectric tensor, which are then related to time-domain differential equations by means of the Fourier transform [5].

Here, we will obtain a conservative set of time-domain differential equations which reproduces, in the frequency domain, the warm plasma dielectric tensor to second order in the thermal velocity and first order in the parallel wavenumber.

20th TOPICAL CONFERENCE ON
RADIO FREQUENCY POWER IN PLASMAS

Sorrento, Italy

June 25-28, 2013

Organized by

Associazione ENEA-EURATOM sulla Fusione, Frascati, Italy

BOOK OF ABSTRACTS