Silicon-Organic Hybrid Electro-Optical Devices

Juerg Leuthold, Fellow, IEEE, Christian Koos, Wolfgang Freude, Senior Member, IEEE, Luca Alloatti, Robert Palmer, Dietmar Korn, Joerg Pfeifle Matthias Lauermann, Raluca Dinu, Silvan Wehrli, Student Member, IEEE, Mojca Jazbinsek, Peter Günter, Michael Waldow, Thorsten Wahlbrink, Jens Bolten, Heinrich Kurz, Maryse Fournier, Jean-Marc Fedeli, Hui Yu, and Wim Bogaerts, Member, IEEE

(Invited Paper)

Abstract—Organic materials combined with strongly guiding silicon waveguides open the route to highly efficient electro-optical devices. Modulators based on the so-called silicon-organic hybrid (SOH) platform have only recently shown frequency responses up to 100 GHz, high-speed operation beyond 112 Gbit/s with fJ/bit power consumption. In this paper, we review the SOH platform and discuss important devices such as Mach–Zehnder and IQ- modulators based on the linear electro-optic effect. We further show liquid-crystal phase-shifters with a voltage-length product as low as \(V_{\pi} L = 0.06 \text{ V·mm} \) and sub-\(\mu \text{W} \) power consumption as required for slow optical switching or tuning optical filters and devices.

Index Terms—Integrated optics, silicon, organic materials, liquid crystals, nanophotonics, electrooptic modulators.

I. INTRODUCTION

SILICON photonics when combined with the many options offered by organic molecules forms the base of a powerful technology - the silicon-organic hybrid (SOH) platform [1], [2]. This platform is of considerable interest since it adds strong linear-electro-optic effect and a variety of other optical properties to the toolbox of silicon photonics.

A platform that allows for a smooth cointegration of passive and active photonics devices, and that also has the potential to cointegrate photonics with electronics, is one of the long-term visions of the datacom and telecom industry. There are only a few platforms that could meet the combined needs of the photonics and electronics world. The few contenders are the Si, the InP, and the GaAs semiconductor platforms. Among these, the silicon platform is unique because the material is widely available at low cost and is already the mainstream of the electronics industry [3]. However, silicon has issues when applied for photonics. Due to its centro-symmetric crystal structure it does not provide a \(\chi^{(2)} \) – nonlinearity, and thus defies building of electro-optic modulators based on the linear-electro-optic effect. On the other hand, the \(\chi^{(3)} \) – nonlinearity is sufficiently large but its usefulness is diminished by two-photon absorption (TPA). Finally, crystalline silicon does not support spontaneous emission of light, so an integrated silicon laser remains an elusive challenge of its own right.

While the silicon photonics community has responded to these challenges with a set of innovative monolithically integrated solutions [4], there have been numerous activities with respect to the SOH platform that increasingly holds promise to overcome most obstacles [2]. In the SOH approach, optical modes are strongly guided by conventional silicon-on-insulator (SOI) waveguides, but the functional properties of the waveguide have their origin in an organic nonlinear cladding. Thanks to the large variety of organic cladding materials, almost any property can be grafted onto a waveguide [5]–[12].

In this paper, we first review the SOH approach in general. We then focus on the SOH Pockels effect phase-shifter. Due to the fast response, it is ideal for use in modulators. We then discuss different modulator realizations, such as the Mach–Zehnder (MZ) modulators or the in-phase/quadrature-phase (IQ) modulators. Bandwidth, power consumption, and drive voltage are considered in detail. Finally, we report on an alternative approach which exploits a liquid-crystal cladding instead of a \(\chi^{(2)} \) – cladding for building phase-shifters. The result is a phase-shifter with record high efficiency and record low-power consumption but a slow response. These phase-shifters are ideal for tuning filter responses.

II. SOH—THE PLATFORM

In the SOH approach, a conventional SOI waveguide is functionalized with an organic cladding material. This way critical
Fig. 1. Different types of silicon organic-hybrid waveguides with magnitude of electric field plotted for quasi-TE modes. (a) Strip waveguide with an organic cladding. (b) Slot waveguide where the light is strongly confined to the slot filled with an organic material. (c) Strip-loaded slot waveguide where metal electrodes are connected to the two rails of the slot waveguide by doped silicon strips (stripload). Both, the modulating field and the optical mode are well confined to the slot. For efficient electro-optic modulation the slot needs to be filled with an adequate electro-optic material. Plots derived from [28]. (d) High-order mode for double-slot waveguide dispersion-engineered for phase-matched difference-frequency generation (DFG) [17].

fabrication steps can rely on high-yield processes based on CMOS fabrication technology of an SOI wafer and the functional organic material can subsequently be deposited onto the wafer. Typical organic cladding materials vary from highly nonlinear χ(3) oligomers such as DDMEBT [13] for efficient four-wave mixing [8], to highly-nonlinear χ(2) chromophores [14], [15] for high-speed modulation [16] and difference-frequency generation [17], to polymer-dispersed dyes for optically pumped lasers [18], [19], to liquid-crystals for low-voltage phase-shifters [20].

In the following, we discuss two important components: Active SOH waveguides, and the strip-to-slot converter that is needed to perform a transition from passive strip to active slot waveguides.

A. SOH Waveguide Structures

For maximizing the optical interaction with the organic cladding and for optimizing other device-dependent properties such as minimizing TPA, maximizing the overlap with an external modulating field optimizing phase-matching between different optical modes, or minimizing optical losses, the designer can choose between four basic waveguide structures: A simple strip waveguide, a slot waveguide, a strip-loaded slot waveguide, and a double-slot waveguide; see Fig. 1. The properties of these waveguides are summarized in Table I. All waveguides depicted in Fig. 1 share the common feature of having a high-refractive index core (n_{Si} = 3.48) and a low-refractive index organic cladding (which typically ranges between 1.5 and 2).

When considering quasi-TE modes, the discontinuity of the refractive index leads to a discontinuity of the electric field an effect which is known as “field-enhancement” [2] and improves the optical interaction between the optical mode and the cladding. Additionally, the SOH concept allows the user to freely choose the cladding among the immense variety of available organic molecules, many of which have been developed and optimized for longer than a decade [13]–[15].

In the following, we review these waveguide structures with respect to their ability for nonlinear applications and electro-optic modulation.

1) Strip waveguide, see Fig. 1(a): The advantage of the strip waveguide is ease of fabrication and low optical losses. In strip waveguides, losses are meanwhile approaching 0.2 dB/mm [21]. (Remark: In ridge waveguides with lower mode confinement losses are below 0.2 dB/mm [22] and in planar waveguides with very weak guiding even record low losses of 0.1 dB/m have been reported [23]). Phase-shifters with polymer cladding [24] and with liquid crystals [25] have been demonstrated with strip waveguides, but the large separation of the contact electrodes used for modulation, which is typically a few microns require relatively high driving voltages.

2) Slot waveguide, see Fig. 1(b): The structure offers a high confinement of the optical mode in the slot [5], [8]. This has been successfully exploited for reducing TPA in the silicon core for nonlinear processes at high optical powers [8], [26] and for increasing the optical interaction with optical dies for lasing [18]. The slot is however more difficult to fabricate and often requires high-resolution 193 nm DUV lithography or e-beam lithography. The field enhancement on the slot sidewalls also increases propagation losses, which are typically in the range 0.7–1.5 dB/mm [21], but are expected to decrease as advanced technologies improve the surface smoothness [27]. And while vertical slots so far are more common [5], [28], [29], ease of fabrication might also make a good case for horizontal slots [30].

3) Strip-loaded slot waveguide, see Fig. 1(c): This structure is ideal for electro-optic devices [9]–[11]. Its conductive silicon strip-loads connect the two rails of the slot waveguide with metal electrodes [2], [11]. If the strip-load resistance is sufficiently low, a voltage applied on the metal electrodes will almost entirely drop across the slot. The ribs to both sides of the slot and the slot itself can be optimized so that quite a fraction of the optical signal is in the cladding [17].

Since the slot is typically only 100 nm wide, and both electrical and optical modes almost ideally overlap in the narrow slot, only low voltages are needed to induce a very high refractive index change in the nonlinear material of...
the slot. The structure has to be engineered for low optical and low RF electrical losses though. Optical losses are not only due to imperfect surfaces but also due to free-carrier absorption (FCA) from the doped strip loads. For making the silicon strips sufficient conductive without causing excessive optical losses, it has been suggested to use gate-induced accumulation layers instead of ion-implantation [31]. Further, the structure has to be optimized for low RF losses which again are in part due to the conductive strip loads [32]. The fabrication of this type of waveguide is the most elaborate, and requires high-resolution lithography, different etch depths, ion implantation, metallization, and passivation [16].

4) Double-slot waveguide, see Fig. 1(d): This type of waveguide can be dispersion-engineered to achieve phase-matching using higher order quasi-TE modes for second-order nonlinear optical mixing such as mid-IR difference and sum-frequency generation (DFG, SFG) as well as second harmonic generation [17]. Most of the light is confined inside the slots, and this field concentration again maximizes the nonlinear optical interaction with the $\chi^{(2)}$.

The various advantages and disadvantages of the four structures are summarized in Table I. A more extensive review on nonlinear effects in silicon may be found in [33].

In the following, we will concentrate on Fig. 1(c) since this is the preferred geometry for building the most efficient electro-optic SOH modulators.

B. Strip-to-Slot Converter

The standard waveguides in silicon photonics are strip waveguides. If a silicon circuit comprises active sections with slot waveguides, then these typically must be accessed via strip waveguides, meaning that strip-to-slot converters are needed. These converters must meet the following objectives.

1) The transition must occur with low losses as well as low reflection for avoiding multipath interference.

2) The two rails defining the slot must remain electrically separated, since these are connected to electrodes with different potentials [16].

Previously proposed strip-to-slot converters were based on linear tapers [34]. A Y-shaped converter has been proposed by Brosi et al. [11] and a transition loss of 0.13 dB has been reported [35]. Recently, a very short strip-to-slotloaded slot waveguide converter has been introduced that meets all the above listed requirements with losses of 0.02 dB per converter [28]. We summarize the results of this publication and refer the reader to [28] for more details.

Fig. 2(a) depicts the low-loss converter for coupling a strip waveguide to a strip-loaded slot waveguide. The converter comprises two sections. In each of the sections, the width of one of the two rails of the slot waveguide is logarithmically tapered. Further, the two rails of the slot waveguide are attached to 45-nm-thick silicon strip loads that connect the waveguide to metal electrodes. The stripload is tapered at the begin of Section I to ensure a smooth transition.

The strip-to-slot converters as depicted in Fig. 2(a) were realized with the following parameters. In converter Section I, the slot width w_{slot} has been tapered down logarithmically from 240 to 120 nm, and rail 2 tapers up from 120 to 240 nm. Section II comprises the logarithmic taper of rail 1 to the final symmetric strip-loaded slot waveguide. The slot width and the width of rail 2 remain constant in this section. The lengths of Sections I and II were 4 μm and 8 μm, respectively. The strip was 240 nm thick, and the stripload section was as thin as 45 nm.

<table>
<thead>
<tr>
<th>TABLE I</th>
<th>CHARACTERISTICS OF SILICON-ORGANIC HYBRID WAVEGUIDE STRUCTURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristics of SOH Waveguide</td>
<td>Strip, Fig. 1(a)</td>
</tr>
<tr>
<td>Typical applications</td>
<td>FWM, modulation</td>
</tr>
<tr>
<td>Typical claddings</td>
<td>$\chi^{(2)}$ [26], $\chi^{(3)}$ [24], Liquid crystals [25]</td>
</tr>
<tr>
<td>Fabrication Complexity</td>
<td>Simple: low lithography resolution, single etch step</td>
</tr>
<tr>
<td>Confinement of optical field in nonlinear cladding, exemplary values</td>
<td>Field in cladding e.g. 0.33</td>
</tr>
<tr>
<td>Voltage-length product VxL (for modulation only)</td>
<td>High</td>
</tr>
<tr>
<td>Dominant Bandwidth limitation (for modulation only)</td>
<td>RF losses, Walk-off</td>
</tr>
<tr>
<td>Power consumption (for modulation only)</td>
<td>Low</td>
</tr>
<tr>
<td>Radio-frequency (RF) attenuation of travelling-wave electrodes [32]</td>
<td>\approx0.5 dB/cm @ 100GHz</td>
</tr>
</tbody>
</table>

1Exemplarily we choose $w_{\text{strip}} = 350$ nm, $h = 220$ nm, $\lambda = 1.55$ μm and $n_g = 3.48$, $n_{\text{strip}} = 1.44$, and $n_{\text{polymer}} = 1.7$.

2Exemplarily we choose $w_{\text{slot}} = 175$ nm, $w_{\text{load}} = 120$ nm, $h = 220$ nm, $\lambda = 1.55$ μm and $n_g = 3.48$, $n_{\text{slot}} = 1.44$, and $n_{\text{polymer}} = 1.7$.

3Exemplarily we choose $w_{\text{strip}} = 175$ nm, $w_{\text{load}} = 80$ nm, $h = 220$ nm, $h_{\text{topstrip}} = 50$ nm, $\lambda = 1.55$ μm and $n_g = 3.48$, $n_{\text{strip}} = 1.44$, and $n_{\text{polymer}} = 1.7$. |
Fig. 2. (a) Simulations showing how a signal in a strip waveguide is mapped into a slot waveguide by means of a strip-to-stripload converter. The plot shows the electric field distribution in the logarithmically tapered strip-to-strip loaded slot mode converter. To the left of Section I one can also see a one-sided logarithmic up taper of the strip load. (b) Measured loss per converter in a wavelength range between 1480 and 1580 nm. The average loss in this wavelength range is 0.02 dB per converter [28].

Results of the experimentally realized tapers from e-beam lithography in a wavelength range from 1480 to 1580 nm are shown in Fig. 2(b). The average loss per converter is as low as 0.02 dB in the measured wavelength range. The losses are plotted as loss per converter, while the actual experimental results are derived from a cascade of 30 pairs of strip-to-slot and slot-to-strip converters.

III. SOH MODULATORS

Modulators are key elements in optical communications. They are needed to encode information onto an optical carrier. In the past, information was mostly encoded by on-off keying onto an optical carrier and turning the light ON and OFF with sufficient extinction ratio was considered good enough. Meanwhile, information is often encoded using the quadrature-amplitude modulation (QAM) format, a modulation format where multiple levels of both phase and amplitude are encoded [36], [37]. In the foreseeable future software defined transmitters will be used to encode any shape (including precompensation) and any modulation format onto an optical carrier [38]. Future modulators thus need to reliably encode any point on the complex constellation space on an optical carrier. In the industry such amplitude and phase-encoding is typically realized with MZ and IQ modulators. Both MZ- and IQ-modulators need true phase-shifter basic building blocks. Subsequently, we discuss the MZ- and IQ-modulator configuration and comment on possible implementations paths.

A. MZ and IQ Modulator Configuration

We begin the discussion by introducing the transfer function of a MZ modulator with phase-shifters on its arms

\[E_x = \frac{1}{2} \exp(i(\vartheta_1 + \vartheta_2)) \cos \left(\frac{\vartheta_1 - \vartheta_2}{2} \right) \]

(1)

where \(\vartheta_1 \) and \(\vartheta_2 \) are the phase changes when applying a voltage to the phase modulators (PM) in the respective upper and lower arms of the MZ. It can be seen that an ideal chirp-free amplitude-shift keying signal is obtained for operating the device in “push–pull” mode—i.e., when the phases induced in the upper and lower arms of the MZ interferometer are chosen to have opposite signs, \(\vartheta_2 = -\vartheta_1 \). As an advantage of the “push–pull” operating mode, ON-OFF switching only requires switching the phases in the arms between \(+\pi/2 \) and \(-\pi/2 \), so that full switching requires a voltage swing of \(V_{\pi/2} \) only rather than \(V_\pi \), with \(V_\pi \) the voltage required to shift the phase by \(\pi \). An MZ modulator configuration is depicted in Fig. 3(a).

By nesting two MZ modulators where each is operated in push–pull mode and both are offset by \(\pi/2 \), one can encode the in-phase and quadrature information of a signal independently. Often a bias-T is used to adjust the relative phase within the interferometer by a dc offset voltage \(V_{\text{off}} \). The MZ and IQ modulator configuration are depicted in Fig. 3.

B. SOH “Push–Pull” Phase Modulator

Phase-modulators are not straight forward to implement in silicon, as the material is centro-symmetric and does not offer a linear-electro-optic effect. Yet, the silicon photonics community has found ways to build modulators using the plasma effect [4]. This means that free carriers are either injected [39] or extracted [40] from a p-n/p-i-n-junction or capacitor located
within the silicon waveguide. This way the permittivity changes due to a free-carrier refractive index (FCI) variation. However, FCI is inevitably accompanied by FCA [41]. This makes accessing a particular point within a complex constellation diagram more difficult. Despite these obstacles, plasma effect silicon modulators for QPSK signals [42], 16QAM signals [43] and with bandwidths of up to 50 GHz have been demonstrated [44]. Alternatively, some groups have been growing strained silicon layers, thereby breaking the centro-symmetry of crystalline silicon such that a linear electro-optic effect could be exploited [45], [46].

The SOH platform allows for an alternative path toward the realization of a true phase-modulator [9]–[11], [16]. To explain the operation principle in more detail, we show a sketch through the cross section of an MZ modulator in Fig. 4. This figure shows the upper and lower arm of the strip-loaded slot waveguides that form the MZ-modulator of Fig. 3(a) together with the ground-signal-ground (GSG) travelling wave RF electrodes. The two slot waveguides shown in blue are filled with the nonlinear electro-optic material. A simulation of the optical field in the slot is shown in the lower left inset. It can be seen that the large index contrast between Si of $n_{Si} = 3.48$ and the nonlinear polymer $n_{poly} = 1.7$ causes an enhancement of the dominant optical field of the optical quasi-TE wave inside the slot. The ribs of the slot are connected to the GSG electrodes of a coplanar RF waveguide. When an RF voltage is applied to the metals and by this to the conductive striploads of the Si rails, the electric field drops off across the slot filling with the nonlinear, insulating polymer (lower right inset). This way the optical and electrical field are both confined to the narrow slot such that the overlap of the two fields is high resulting in an efficient modulation.

We now become more quantitative and state the total phase shift obtainable with an electro-optic modulator of length L [11]

$$\Delta \phi_L = k_0 \Gamma \Delta n L$$

(2)

where k_0 is the wave number of the signal and the refractive index change Δn is proportional to the electro-optic coefficient r_{xx}

$$\Delta n = -\frac{1}{2} r_{xx} E_{RF,x}^2, \quad E_{RF,x} = V_{RF,x}/w_{Contact}$$

(3)

where the RF electric field $E_{RF,x}$ is aligned along the x-axis and is due to a voltage $V_{RF,x}$ applied across the slot of width $w_{Contact}$ and where the optical transverse electric field E_x is propagating in an electro-optic material with refractive index n_x along the x-axis. We further have the interaction factor Γ:

$$\Gamma = \int_{gap} \frac{n_x}{Z_0} |E_x|^2 dA \left/ \int \Re \left(\bar{E} \times \hat{H}^* \right) \cdot \hat{e}_z dA \right.$$

(4)

with Z_0 the free-space wave impedance, \bar{E} and \hat{H} the electrical and magnetic field of the optical mode, and \hat{e}_z the unit vector along the propagation direction. It should be stressed that Γ is not the confinement factor, which usually gives the ratio of the total power in the active section to the total power of the mode. Here, Γ is only the ratio of the power that interacts with the material and the applied electrical field to the total power. So for instance, in our case only the components $|E_x|^2$ transverse to the slot and in parallel to the applied electrical field $E_{RF,x}$ contribute to the interaction [11].

As an example, we calculate the interaction factor of the strip loaded-slot waveguide from Fig. 1(c) with the waveguide dimension as per footnote of Table I. The total interaction of the optical field with the nonlinear cladding is $\Gamma = 0.62$. Yet, only a fraction of $\Gamma = 0.23$ of the signal is in the slot where the electrical field is strongest. A fraction of 0.39 of the light is in the cladding and will contribute only little to the refractive index change; thus, one could conclude that the structures from Fig. 1(a) or (b) might be more advantageous. Yet, what really matters is the total phase-shift for a given applied voltage $V_{RF,x}$. This total phase-shift increases to the same extent as $w_{Contact}$ decreases. In the strip and slot structures of Fig. 1(a) and (b), the metallic contact $w_{Contact}$ would typically be $3.2 \mu m$ apart from each other. In the strip-loaded slot structure, the doped layers are identical to the slot width and thus $w_{Contact} = w_{slot} = 160 \text{nm}$. As a consequence the achievable phase-shift of the strip-loaded slot structure is about 13 times more efficient than the strip waveguide structure.

Finally, we should touch upon the art of poling the nonlinear polymer in the slot. Thanks to the fact that modulators come with metallic CPWs the active molecules of the nonlinear material can be aligned during fabrication by applying a poling voltage (green arrows) across the GSG electrodes. This way they are poled along the same direction. In operation, when an RF signal on the S-electrode is applied (red arrows), it will cause a positive phase shift in one arm and a negative phase shift in the other.
one, which is exactly what is needed for to operate the MZI in push–pull operation mode.

C. Bandwidth Considerations

One of the most important characteristics of a modulator is its bandwidth which determines its modulation speed. For the strip-loaded slot waveguide shown in Fig. 1(c) switching can be performed with devices having a length of only 0.5 mm [48]. For such a length, the main bandwidth limitation derives from the RC-time constant, where C is the capacitance of the active region (slot), and R is the resistance of the strip-load. The next important limiting factor is the high attenuation of the radio frequency (RF) wave propagating on the travelling wave electrodes, which can be as high as 5 to 10 dB/mm at 100 GHz, see Table I and [32]. For longer devices and sufficiently low RF losses, also the walk-off between the optical and the electrical signal might become relevant [11], [32]. With these considerations in mind, we now discuss the bandwidth limitations in more detail. The discussion will be somewhat simplistic but useful to get an intuitive understanding. A proper design would require sophisticated modeling and intricate RC-circuit discussions [32], [49].

Electrical RC-limitations: In the strip-loaded MZI device depicted in Fig. 4, the voltage across the silicon rails should be at best the same as the voltage across the metal electrodes for any modulating frequency f. This requires charging of two slot capacitances C through the strip-load resistance R as depicted in the equivalent circuit in Fig. 5(a). The corresponding 3 dB bandwidth reads [11]

$$f_{3dB} = \frac{1}{4\pi RC}$$

where the capacity of a single slot is C and the capacity for the two slots in an MZI is included by a factor 2 C. In order to increase the bandwidth, one either needs to decrease the capacity or decrease the sheet resistivity of the strip load. The capacity could be decreased by increasing the slot width—this however would be at the expense of increasing the operation voltage. The resistivity in the strip-load can be decreased by increasing the doping. This works well indeed and is frequently done. However, it comes at the price of higher optical losses due to the doped layers.

Recently, the resistivity was reduced and the bandwidth increased by applying a gate voltage that created a highly conductive electron accumulation layer at the silicon/silica–insulator interface [16], [48]. The scheme is shown in Fig. 5(a) and plots of frequency responses are shown in Fig. 5(b) and (c). The scheme works as follows. To generate a thin and highly conductive carrier accumulation layer, a voltage is applied between the strip loads and the bottom silicon substrate which acts as a gate. A thin carrier accumulation builds up at the interface between the silicon strip-load and the SiO$_2$ layer. We have plotted the frequency response of a 500 μm long phase-modulator section in Fig. 5(b). A 3 dB frequency response beyond 100 GHz can be seen. The data are normalized to a 10 dBm launch power (1 V amplitude at 50 Ω characteristic impedance). Fig. 5(c) shows that the frequency response increases when applying different gate fields. Our measurements also indicate that for thin layers and a given sheet conductivity, one obtains lower losses with the accumulation layer technique rather than by doping. A thorough discussion of the effect is given in [31].

limitations due to walk-off and microwave attenuation: Depending on device length and modulation frequency, one categorizes modulators into either “lumped” or “traveling wave (TW)” types. In the first case, the device is much shorter than
the RF wavelength. In the second case, the modulator can in principle be arbitrarily long. However, spatial walk-off between electrical wave and optical signal as well as the RF attenuation impair the bandwidth. We now discuss these problems in more details.

The total phase change induced by an RF signal oscillating at the frequency f and propagating along a phase shifter of length L is given by [50]

$$\Delta \varphi(t) = \Delta \varphi_0 \cdot \frac{1}{L} \int_0^t e^{-\alpha z/2} \cos \left(2\pi f \left(\frac{\tau_{vm}}{L} z - t \right) \right) dz$$ \hspace{1cm} (6)

where t is the time, $\Delta \varphi_0$ is the phase-change due to the linear electro-optic effect from a dc field and α_{el} is the RF power loss constant and the accumulated group delay τ_{vm} is

$$\tau_{vm} = \frac{L}{v_{g,el}} - \frac{L}{v_{g,opt}}$$ \hspace{1cm} (7)

with the electrical group velocity $v_{g,el}$ and optical group velocity $v_{g,opt}$. Equation (6) shows how an induced phase shift $\Delta \varphi_0$ decreases with frequency in the presence of a group velocity mismatch or due a lossy coplanar microwave transmission line. If attenuation is neglected, the 3 dB bandwidth limitation associated with (6) is [11]

$$f_{\text{walk-off,3dB}} \approx \frac{0.5}{L} \frac{1}{\tau_{vm}}.$$ \hspace{1cm} (8)

This walk-off usually can be neglected for mm-sized devices. For example, for a device of 1 mm length a large group delay of up to 5 ps would still result in a 100 GHz bandwidth.

D. Energy Consumption

An advantage of the SOH modulator concept is its low energy consumption. The power consumption is low because of two effects [10], [11]. First, the modulating voltage drops across the narrow slot resulting in a high RF field in the polymer infiltrate slot and second, because of organic materials with increasingly larger electro-optic coefficient [51]. To estimate the energy consumption, it is desirable to have closed-form expressions. We will first derive approximate expressions for the energy consumption, and will then report on first experiments demonstrating SOH modulators operating with as little as 60 fJ at 12.5 Gbit/s [52], [53]. The following discussion is mainly for illustrative purposes and requires more elaborate considerations for accurate results.

The power consumption can roughly be estimated with closed expressions for either of the two extreme cases of a lumped or a traveling wave modulator.

The traveling wave modulator, see Fig. 6(a), typically needs an electrical termination matched to the wave impedance in order to avoid reflection of RF waves that would interfere with the signal of the next bit. When a matched termination is used, the total power launched into the modulator is dissipated—in part by RF loss and capacitive loading, but eventually in the terminating resistor $R = 50 \, \Omega$. The voltage amplitude across the modulator input terminal is $U_0/2$. For a dc-free rectangular drive voltage with a peak-to-peak open-circuit value $2U_0$, representing an alternating series of logical ones and logical zeros with a bit rate B_B, the energy consumption per bit can thus be approximated by $W_{\text{bit}} = (U_0/2)^2/R/B_B$. TW modulators are energy-efficient when CPW losses are low and the optical and electrical CPW can propagate over long distances without walk off [54].

For a lumped modulator, the device is short and can be operated without terminating resistor. Many resonant modulator configuration in fact are lumped modulators that are usually operated without termination. Examples are slow-light structures [11], [55] or ring resonator structures [56], [57]. Short nonresonant modulators can also be operated without termination [53]. As an additional advantage of the un terminated lumped modulator, the in-device modulation voltage (the voltage made available at the electrodes of the device) is about U_0, i.e., it nearly doubles as explained in Fig. 6(c) as compared to the terminated case, Fig. 6(b). The energy consumption of the modulator is then dominated by the capacitive load of the slot waveguide. For the lumped device, we estimate the power dissipation associated with charging and discharging the total modulator capacitance $C_{\text{MZM}} = 2C'_{PM}$ as seen by the CPW to be $W_{\text{bit}} = C_{\text{MZM}} \times U_{\text{drive}}^2/4$, where C_{MZM} is the capacitance of the MZM comprising two PM and C'_{PM} is the respective capacitance of one PM. This again assumes equal probabilities of logical ones and zeros, and it takes into account that only transitions consume energy [58].
As an illustrative example, we recently characterized a 10 Gbit/s on-off keying SOH-Modulator of 1.5 mm length with an 80 nm wide slot [52]. The modulator can be operated in two ways.

1) First, we operate the device with a 50 Ω termination and use a peak-to-peak drive voltage V_{drive} of 800 mV (i.e., an amplitude of 400 mV). V_{π} – the voltage needed to switch an MZI modulator from minimum to maximum transmission was found to be 2.5 V_{pp} for high data rates. However, also smaller voltages sufficed to get a clear and open eye. In our experiment the energy per bit thus was only 320 fJ when driving the modulator with 800 m V_{pp}.

2) Since the device is short and when limiting the bit-rate to a slower 10 Gbit/s, then operation without a termination is possible. At this data rate the modulator acts as a lumped device. The capacitance of the MZI modulator was found to be C_{MZM} = 2 C_{PM} = 378 fF, which resulted in an energy consumption of 60 fJ/bit. Currents flowing due to bias and gate voltages were measured to be below 2 nA and below 100 fA, respectively, contributing a negligible energy consumption of less than 3 aJ/bit.

E. High-Data Rate Modulation Experiments

In this section, we demonstrate MZ and IQ modulators that generate advanced modulation formats at speeds up to 112 Gbit/s. The modulators exemplarily show that integrated circuits comprising fairly complex active and passive elements can be fabricated using the SOH platform. An in-depth description of both the structure and the experiment can be found in [47].

We implemented MZ and IQ-modulator configuration depicted in Fig. 3. For the fabrication, the silicon photonics platforms of IMEC and CEA-Leti were used to implement the structure of Fig. 7, where processes were optimized to allow a mass fabrication of the strip-loaded slot waveguide structure of Fig. 1(c). We use SOI wafers, which have a 220-nm high waveguide (WG) layer on a buried oxide (BOX) of 2 μm height. By employing 193 nm DUV lithography slot, WGs are patterned and subsequently etched into the WG layer (w_{Slot} = 140 nm, w_{Rail} = 220 nm, h_{Rail} = 220 nm). Dry etching of 70 nm of Si is employed to make standard grating couplers [59] and rib WGs for low loss access waveguides [60]. Ion implantations are used to provide n-doped silicon strip-loads ($h_{\text{Stripload}}$ = 50 nm). A silicide film (on top of the highly doped silicon with nominally 1×10^{20} cm$^{-3}$) is created to guarantee a good electrical contact with the metallization. Different metallizations have been used for first experiments, gold or aluminium electrodes were deposited directly on the silicided striploads. For a more CMOS-compatible back-end stack, IMEC applied an oxide dielectric cover, and tungsten-filene vias then provided an electrical contact between the slot rails (guiding the optical field) and the RF transmission line (guiding the electrical modulating wave) made of copper damascene electrodes. The slot is exposed using a selective dry-+ wet etch on the back-end. It is then functionalized with a commercially available electro-optic polymer (named M3 by the supplier GigOptix, Inc., [61], used in Telecordia certificited polymer modulators of the same manufacturer). It contains chromophores which are aligned in a poling procedure [62] inside the slot WG by applying a dc voltage at an elevated temperature to create the $\chi^{(2)}$ nonlinearity [18].

The MZ modulators consist of multimode interferometer couplers and the two phase modulator sections as schematically drawn in Fig. 3(a). The IQ-modulators consist of four phase modulator sections as depicted in Fig. 3(b). A photograph of a fabricated device is shown in Fig. 8. The strip-to-slot WG transitions are converters as outlined in Fig. 2 and discussed in [28] are shown in Fig. 8(b). Finally, we show an SEM image with the details of the strip-loaded slot structure in Fig. 8(c).

The experimental results below were achieved with a single polarization signal around 1540 nm. Data generation and reception experiments were performed in a standard test setup, as described in [47], using a PRBS of length $2^{11}-1$. A software defined transmitter was used to generate the electrical signals [38]. An advantage of this transmitter is that a preemphasis can be applied to the electrical signals for the generation of multilevel signals.

In Fig. 9, we show results obtained with SOH MZI modulators [63]. The plots in the upper row represent the constellation...
diagrams obtained for BPSK, 4-ASK and 8-ASK signals at a symbol rate of 28 Gbd. Bit-error ratio (BER) and error-vector magnitude (EVM) measurements [64] indicate that error-free operation is possible. All results prove a BER below the soft decision forward error correction limit. All results prove a BER below the soft decision forward error correction limit. The plot in Fig. 9(c) shows an 8-ASK modulation format at 84 Gbit/s. The sampling scope traces at the bottom illustrate transitions between the various ASK levels. Even for the 8-ASK signal, one still can clearly see the eight levels at the center of the plot that correspond to the symbols in the constellation diagram above.

Results of the experimental tests performed with the SOH IQ-modulators are shown in Fig. 10, reported also in [47]. Fig. 10(a) displays the constellation diagram of a QPSK signal generated with an SOH modulator at a symbol rate of 28 Gbd. This corresponds to a 56 Gbit/s signal. The symbols have clear and distinct shapes. The EVM was found to be 14.2% and bit-error ratios are well below the error detection limit of our setup. The constellation diagram in Fig. 10(b) shows how a 16-QAM symbol rate of 28 Gbd which corresponds to 112 Gbit/s. The symbols are round and distinct indicating a good signal quality. Measurements confirm that we are below the hard-decision FEC limit with a BER of 2×10^{-3}. The EVM is 10.3% without equalization at the receiver.

IV. SILICON PHASE-SHIFTERS BY MEANS OF LIQUID CRYSTALS

Phase-shifter are also important building blocks in filter and other, especially interferometric configurations. They should offer lowest power consumption but do not necessarily require fast operation. So far silicon photonic phase shifters are mainly based on the thermo-optic effect, where resistive heaters are co-integrated with SOI waveguides, and the large thermo-optic coefficient of silicon is exploited to induce a phase shift by locally increasing the temperature [65].

By using the SOH platform in combination with a liquid crystal (LC) phase shifter. The bottom inset visualizes how LC aligns in the presence of an electric field. If no external voltage is applied to the slot waveguide ($U = 0$), the LC molecules align parallel to the waveguide axis (1); for nonzero voltages $U \neq 0$, the LC will partly realign along the x-direction [20].

![Liquid Crystal Phase Shifter](image)

Fig. 11. (a) Configuration of a silicon-organic hybrid (SOH) liquid crystal (LC) phase shifter. The bottom inset visualizes how LC aligns in the presence of an electric field. If no external voltage is applied to the slot waveguide ($U = 0$), the LC molecules align parallel to the waveguide axis (1); for nonzero voltages $U \neq 0$, the LC will partly realign along the x-direction [20].

(b) Phase shift, applied voltage and excess optical loss versus time. The envelope of a 100 kHz square wave is modulated with a triangular function having frequency 100 Hz. The maximum electrical amplitude is 4 V. The maximum phase shift achieved is about 80 π. The device length is 1.7 mm [67].

By using the SOH platform in combination with a liquid crystal (LC) it is possible to achieve phase-shifting with extremely low power consumption [20], [25], [66]. In this section we report on a phase shifter with a record-small voltage-length product of $V_sL = 0.06$ V-mm [67]. This is obtained by combining liquid crystals with slot-waveguides built on the SOH platform [20].

Liquid crystals are highly birefringent materials, which can reorient under the influence of an electric field. This makes them ideal candidates for electro-optic applications. Both the strip waveguide structure of Fig. 1(a) [25] as well the strip-loaded structure of Fig. 1(c) [20], [67] have been successfully used to demonstrate efficient phase-shifting. Yet, the strip-loaded slot configuration is of particular interest because it allows applying a large electric field with small voltages in a purely capacitive input impedance configuration. We therefore may expect lowest power consumption. [67]
Fig. 11(a) depicts the strip-loaded slot waveguide used in the experiment in a slightly different context as in Fig. 1(c). The external voltage is applied to the metallic electrodes located at a sufficient distance from the optical slot waveguide. The applied voltage drops entirely across the 120 nm wide slot, creating a strong electric field which can reorient the director of the liquid crystal deposited in the slot. The resistive silicon strips together with the capacitive slot act as an \(RC \)-circuit, whose time constant is negligible for the frequencies involved because of the slight doping of the silicon strips [16]. The phase shifter region is 1.7 mm long and has been fabricated in the silicon fab of CEA-Leti, see [16] for a detailed description. As a liquid crystal we used the commercially available E7 mixture, which is commonly used in liquid crystal displays.

In order to prevent ion migration in the liquid crystal, we applied a 100 kHz electrical square wave, as common in LC technology. The liquid crystal orientation, and therefore the optical phase shift, can then be tuned by varying the amplitude of the square wave. An example is depicted in Fig. 10(b), where the envelope of the 100 kHz square signal is modulated with a 100 Hz triangular wave having 4 V amplitude. The maximum phase shift achieved in the 1.7 mm long device is as high as 80 \(\pi \) (251 rad); see Fig. 10(b). Additionally, we observed a voltage-dependent insertion loss [see the blue curve in Fig. 10(b)], which is attributed to the light scattering occurring at the liquid crystal domain boundaries [68], [69].

The energy needed for varying the voltage from 0 to 4 V is less than 1 pJ. This low energy is due to the small capacitance in the order of 0.1 pF. Repeatedly varying the voltage at a frequency of less than 1 pJ. This low energy is due to the small capacitance in the smallest value ever reported so far in a silicon-based device.

Some power is also dissipated by the parallel resistance of the device across the slot. This resistance is 20 G\(\Omega \), so that this power contribution is in the nW range only. Because of the high phase shifting efficiency, a device length of 100 \(\mu \)m is sufficient for most applications. In this case a \(\pi \)-shift could be obtained with a voltage swing smaller than 1 V, and with voltage-dependent losses below 0.3 dB. The power consumption would then decrease by another factor 16 because of the lower voltage.

\[\text{REFERENCES} \]

Luca Alloatti was born in 1980 in Turin, Italy. He received the Graduation degree in physics (Hons.) at the University of Pisa, the “Diploma di Licenza” (Hons.) from the Scuola Normale Superiore, Pisa, Italy, and the Ph.D. degree from the Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, in 2004, 2006, and 2012, respectively. He is currently a Postdoctoral Researcher at the Institute for Photonics and Quantum Electronics at the KIT.

Robert Palmer received the Diploma degree in Physics (Hons.) from the Karlsruhe Institute of Technology (KIT), Karlsruhe, Karlsruhe, Germany, and is currently working toward the Ph.D. degree in electrical engineering. He is a Research Associate at Institute of Photonics and Quantum Electronics, KIT His research interests include Silicon Photonics and define by the BMBF project MISTRAL.

Dietmar Korn received the Diploma degree in physics from the University of Potsdam, Potsdam, Germany, and is currently working toward the Ph.D. degree in electrical engineering. He is a Research Associate at the Institute of Photonics and Quantum Electronics, Karlsruhe Institute of Technology, Karlsruhe, Germany, affiliated with Karlsruhe School of Optics and Photonics. His research interests include integrated optics and define by the EU project www.sofi-ict.eu about the Silicon Organic hybrid Fabrication platform for Integrated circuits, which he manages.

Joerg Pfeifle received the Dipl.-Ing. degree in electrical engineering from the Karlsruhe Institute of Technology in 2010, where he is currently working towards the Ph.D. degree. His research interest includes design, fabrication and characterization of devices for integrated high-capacity and energy-efficient optical interconnects.

Christian Koos received the Dr.-Ing. degree in electrical engineering from the University of Karlsruhe, Karlsruhe, Germany, in 2007. He has been a Professor at Institute of Photonics and Quantum Electronics, Karlsruhe Institute of Technology since 2010. From 2007 to 2008, he carried out Postdoctoral research at the Institute of Photonics and Quantum Electronics, University of Karlsruhe. From 2008 to 2010, he was with the Corporate Research and Technology department of Carl Zeiss AG, Germany.

Matthias Lauermann received the Diploma degree in 2011 from the Department of Electrical Engineering and Information Technology, Karlsruhe Institute of Technology (KIT), Germany, where he is currently working toward the Ph.D. degree in the Group of Prof. Christian Koos. His research interest includes around the integration of hybrid silicon photonics systems.

Raluca Dinu received the B.Sc. degree in optics and the Ph.D. degree in physics from the University of Bucharest, Bucharest, Romania, in 2000, in ferroelectric thin film for random access memories. She also graduated from the Executive MBA Aea/Stanford Institute, Stanford, CA, USA, in 2007. In 2008, She joined GigOptix as the Vice President of Product Development after having served as the Vice President of the Electro-Optic Business Unit since 2007 for Lumera Corporation. She holds 15+ patents and successfully brought the polymer-based business TFPS technology to production.
Silvan Wehrli (S’07) was born in Zürich, Switzerland, in 1980. He received the M.Sc. degree in electrical engineering and information technology from the Swiss Institute of Technology of Zürich (ETHZ), Zuerich, Switzerland, in 2005, and the Ph.D. degree from the Electronics Laboratory, ETH Zuerich, Switzerland for his thesis “Integrated Active Pulsed Reflecto for an Indoor Positioning System.” His work in GigOptix mainly focuses on chip design for multichannel optical transceivers for high data rates.

Mojca Jazbinsek received the Ph.D. degree in physics in 2001 from the University of Ljubljana. Following the graduation, she moved to ETH Zurich, Switzerland, where she was working as a Project Leader at the Nonlinear Optics Laboratory, Institute of Quantum Electronics. In 2010, she moved to the spin-off company of ETH, Rainbow Photonics AG, where she is currently working on applied research projects on organic nonlinear optical materials for electro-optics and THz-wave generation, as well as development of commercial THz sources.

Peter Günter studied at Swiss Federal Institute of Technology (ETH) and received the Master’s degree (dipl. Phys. ETH) in 1971 and the Ph.D. degree in physics in 1976. He is currently an Emeritus Professor of physics at ETH. In 1982 he became Privatdozent (Senior Lecturer) and from 1996 to 2008, he was a Professor of experimental physics and the Head of the Nonlinear Optics Laboratory at ETH. His research interests include electro-optics, nonlinear optics, integrated optics, and optical microresonators, photorefractive phenomena in organic and inorganic materials, terahertz. Dr. Günter is and was a member of the editorial board of various journals and he is a Fellow of the Optical Society of America.

Michael Waldow received the Diploma degree in electrical engineering at the University of Karlsruhe, Karlsruhe, Germany, on design of high speed integrated 40 Gb/s modulators, in 2006, and the Ph.D. degree in photonics at Institute of Semiconductor Technology, RWTH Aachen, Aachen, Germany. After being with Bell-Labs, Crawford Hill for an internship he worked for five years as a Scientist at RWTH Aachen, Institute of Semiconductor Technology (2006–2011). Since 2011, he is leading the Nanophotonic Group at AMO, where he is responsible for several European and national projects in the field of nanophotonics. He has authored and coauthored several journal papers and conference proceedings.

Thorsten Wahlbrink received the Diploma degree and the Ph.D. degree in physics from the University of Osnabrück, Osnabrück, Germany (2001). He is a Senior Research Scientist at AMO GmbH, Aachen, Germany (2001–today). He conducted research on nanoscaled transistor devices and fabrication processes for integrated silicon photonic devices. Furthermore, he is primarily responsible for the e-beam lithography at AMO. He has worked in several national and European funded nanophotonic projects and successfully coordinated the FP6 project “Circles of Light.” He is author or coauthor of several publications of advanced processing for integrated nanophotonic devices.

Jens Bolten received the Diploma degree in electrical engineering at RWTH Aachen, Aachen, Germany, in 2006, and the Ph.D. degree in 2012. Since 2006, he has been a Research Scientist at AMO GmbH, Aachen, Germany. His research interests include electron beam lithography as a prototyping technology for advanced and novel nanoelectronic and nanophotonic devices. He has authored and coauthored several journal papers and conference proceedings within the fields of his research.

Heinrich Kurz received the diploma and Ph.D. degrees in physics from the University of Wien, Vienna, Austria, in 1968 and 1971, respectively. After spending time at the Philips-Research center in Hamburg and at Harvard University he became a Professor at RWTH in Aachen, Germany, in 1984. In 1990, he is a Full Professor at RWTH Aachen. Since 1993 and 1997, he is also heading the AMO GmbH and AMIC Center in Aachen.

Jean-Marc Fedeli received the Diploma degree in electronics engineer from Grenoble Institute of Technology Grenoble, France, in 1978. Then he conducted researches at the CEA-LETI on various magnetic memories and magnetic components as a Project Leader, Group Leader, and Program Manager. Under a large partnership with universities and research laboratories, he works on various technological aspects on Photonics on CMOS. Under the European FP7, was program manager of the HELIOS project. He is currently managing the FP7 PLAT4M project on Silicon Photonics Platform and involved in a CELTIC project as well as industrial projects on Silicon Photonics.

Wim Bogaerts (M’98) studied engineering at Ghent University, Gent, Belgium, where he subsequently received the Ph.D. degree and IMEC in 2004. He is a Professor in the Photonics Research Group, Ghent University. He specialized in the modeling, design, and fabrication of nanophotonic components. As a Professor, he focuses research on design challenges in large-scale silicon photonics. Dr. Bogaerts is a member of the IEEE Photonics Society, the Optical Society of America (OSA) and SPIE.