Luminescence of CaGd$_{2(1-x)}$Eu$_{2x}$(WO$_4$)$_4$ scheelites

Katrien W. Meert$^{a#}$, Philippe F. Smeta, Anne Berthab, Joke Hadermannb, Dirk Poelmana

aLumiLab, Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, 9000 Gent, Belgium
Center for Nano- and Biophotonics (NB Photonics), Ghent University, Gent, Belgium

bEMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium

Scheelites are ABO$_4$ compounds (A = alkali, alkaline-earth or rare-earth element; B = Mo, W) with the most well-known scheelite being CaWO$_4$. In scheelite related compounds there is a partial substitution of the A and/or B cation and crystals can be aperiodic in 3-dimensional space. The advantage of this so-called incommensurate modulation is that varying the composition results in various order patterns which yield a wide range of materials with often good optical properties, good stability and a relatively simple preparation method [1]. Since the order directly affects the position of the luminescence centers, and thus the efficiency of the phosphor, there could be a relation between this order and the optical properties. Here, the main focus will be on the optical properties of CaGd$_{2(1-x)}$Eu$_{2x}$(WO$_4$)$_4$. The temperature-dependent luminescence and decay pathways of the materials are investigated over a wide concentration range. In this way the potential of the materials as LED-phosphors or even as thermometric phosphors are evaluated.

correspondence author katrien.meert@ugent.be