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Nonlinear dust-acoustic solitary waves in strongly coupled dusty plasmas
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Dust-acoustic waves are investigated in a three-component plasma consisting of strongly coupled dust particles
and Maxwellian electrons and ions. A fluid model approach is used, with the effects of strong coupling being
accounted for by an effective electrostatic “pressure” which is a function of the dust number density and the
electrostatic potential. Both linear and weakly nonlinear cases are considered by derivation and analysis of the
linear dispersion relation and the Korteweg-de Vries equation, respectively. In contrast to previous studies using
this model, this paper presents the results arising from an expansion of the dynamical form of the electrostatic
pressure, accounting for the variations in its value in the vicinity of the wave.

DOI: 10.1103/PhysRevE.86.066404 PACS number(s): 52.27.Lw, 52.35.Fp, 52.35.Sb, 52.27.Gr

I. INTRODUCTION

A dusty plasma is characterized by the presence of massive,
charged dust particles in addition to the electron, ion, and
neutral components that are found in ordinary plasmas. These
dust particles range in size from nanometres to millimeters,
are typically billions of times more massive than protons,
and can have between one thousand and several hundred
thousand elementary charges [1]. The study of dusty plasmas
has become an increasingly important area of research in
plasma physics; its scope encompasses a wide variety of
fields such as astrophysics, semiconductor manufacturing, and
fusion reactors. It is interesting to note that the first scientific
study performed in the International Space Station was a dusty
plasma physics experiment [2], and it is perhaps an indication
of its perceived importance within the scientific community.

The presence of a massive, charged dust component in a
usual electron-ion plasma can have profound effects on the
dynamics of the system. This article theoretically investigates
aspects of two such effects; namely the introduction of the dust-
acoustic wave (DAW) as a new wave mode and the possibility
of strong coupling between the dust particles.

The DAW is a very low frequency mode in which the wave is
supported by the inertia of the dust particles, with the restoring
force being provided by the pressure of both the electrons and
ions. The DAW was first theoretically investigated in 1990 by
Rao et al. [3] and experimentally observed by Barkan et al. [4],
who were able to produce fascinating images and real-time
videos of the propagation of DAWs due to their low phase
velocity and the large size of the dust particles. In addition to
DAWs, there may also be the associated nonlinear structures
such as dust-acoustic solitary waves, which arise due to a
balance between nonlinear effects and dispersion. Solitons
are a particular type of solitary wave which maintain their
shape and speed after interactions and have been extensively
studied in mathematics and physics due to their stable structure
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and also because they arise as solutions to various exactly
solvable models including the Korteweg-de Vries (KdV) and
the nonlinear Schrödinger (NLS) equations.

In 1986 Ikezi [5] predicted that a dusty plasma can enter
the strongly coupled regime due to the high charge and low
temperature of the dust. Here, the coupling parameter, � � 1,
where we have

� = Z2
de

2

4πε0kBTdad

, (1)

with Zd , Td , and ad = nd
−1/3 being the charge number, tem-

perature, and mean interparticle distance of the dust particles,
respectively. This prediction was soon verified in plasma
discharges [6–8], and strongly coupled plasmas have since
become a popular research area among plasma physicists.

The large masses of the dust particles can cause compli-
cations when studying strongly coupled dusty plasmas on
earth-based experiments. This is because gravity can dominate
over some of the more subtle interactions, masking some
interesting phenomena. A series of experiments aboard the
TEXUS 35 rocket flight [9] and the International Space Station
[2] were able to study strongly coupled dusty plasmas in both
liquid and crystalline forms in an environment with negligible
gravitational effects. Among the interesting results obtained
from these experiments was a void, a region which contained
plasma but no dust particles, that formed in the center of the
discharge due to effects of the ion drag force.

There have subsequently been many approaches used
to theoretically study strongly coupled DAWs such as the
generalized thermodynamical [10], the quasilocalized charge
approximation [11], kinetic [12], and hydrodynamical [13]
models. Another model which has recently been applied to
study DAWs is the fluid approach presented by Gozadinos et al.
[14]. Drawing inspiration from previous space experiments
[2,9], they developed a numerical model to simulate crystalline
dusty plasmas under microgravity conditions. In this paper
they formulated an equation of state for this regime given by

P� � Nnn

3
�kBTdnd (1 + κ)exp(−κ), (2)
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where Nnn is the number of nearest neighbors that determine
the dusty plasma’s structure and κ is the lattice parameter,
defined as the mean interparticle distance n

−1/3
d , divided by

the dynamical Debye screening length, λD , such that

κ = 1
3
√

ndλD

(3)

with

λD =
√

ε0kBTiTe

e2(niTe + neTi)
, (4)

where Ts and ns are the temperature and number density of
species s = e,i, respectively. This model, although originally
developed for crystalline plasma structures, has recently been
applied as an approximation to the equation of state for
strongly coupled plasmas near the liquid-crystal phase transi-
tion. This has included the study of Bohm sheaths [15], double-
layer formation [16,17], the linear DAW mode [18], and non-
linear solitary wave structures [19,20]. This theory is seen to be
in excellent agreement with the experimental observations of
linear wave modes, as elegantly demonstrated by Yaroshenko
et al., for example, Fig. 5 in Ref. [18]. By considering the form
of Eqs. (1) and (2), an effective electrostatic “temperature” was
defined such that

kBT� = NnnZ
2
de

2

12πε0

3
√

nd (1 + κ)exp(−κ), (5)

which is typically a few orders of magnitude larger than
the dust kinetic temperature. In doing so, they demonstrated
that this model predicts the transition to a thermal mode at
high wave numbers for dispersion curves obtained in previous
experimental studies [21], which the dust kinetic temperature
alone was not great enough to explain.

Our aim here is to investigate linear and nonlinear dust-
acoustic waves in strongly coupled dusty plasmas. We account
for strong coupling between the dust grains by using the model
presented by Gozadinos et al. [14], along with the electrostatic
temperature approach of Yaroshenko et al. [18]. The reductive
perturbation method is employed to derive both the linear
dispersion relation and the Korteweg-de Vries equation for this
system. We then investigate how the properties of linear and
nonlinear waves vary with respect to initial plasma parameters.
We choose these parameters to reflect those typically observed
in dusty plasma experiments and base them on those presented
by Bandyopadhyay et al. [22].

In this paper, the electrons and ions are assumed to follow
the Maxwellian distribution, such that their densities are de-
pendent on the local electrostatic potential, which varies with
the passing of the wave. The lattice parameter κ , through its
dependence on the dynamically varying screening length λD , is
dependent on the densities of the Maxwellian species and, thus,
also varies with the electrostatic potential. The electrostatic
pressure is, thus, a dynamically varying quantity, depending
on both �, through the κ term, and nd , both explicitly and
through κ . In this paper, we therefore emphasize that

P� ≡ P�(nd,�) (6)

and so the electrostatic pressure is found to vary due to the
perturbations in nd and � in the vicinity of the wave. In

previous studies in this area [18,20], an approximation was
made such that the electrostatic pressure is only a function of
the equilibrium parameters; therefore, an aim of this article
is to show what effects this approximation has on the results
predicted by this model.

The dust charge number, Zd , is a function of the size of
the dust particle and of the local plasma conditions. There
are various theoretical models which can be used to estimate
the charge number, but here we use an orbit motion limited
(OML) approach [23], which is based on a balance between
electron and ion currents onto the dust particles. In a real
physical situation, this quantity should vary dynamically in the
vicinity of the wave, but for simplicity in this investigation, we
only consider the equilibrium values in determining the charge
number of the dust and, therefore, do not apply perturbation
theory to Zd .

This article is structured as follows. In Sec. II, the fluid
equations to model dust-acoustic waves in a strongly coupled
plasma are presented, using the equation of state derived by
Gozadinos et al. [14]. This is followed in Sec. III by an outline
of the reductive perturbation method and an introduction to
the concept of “electrostatic temperature perturbations” which
are used in this paper. In Sec. IV, the relevant equations used
in this study, namely the linear dispersion relation and the
KdV equation, are derived from the normalized fluid model.
In Sec. V, a parametric investigation is presented for both the
linear and solitary wave cases for typical plasma conditions.
In Sec. VI we discuss the effects of strong coupling and of
the electrostatic temperature perturbations on the dynamics
of the waves. A summary of the most important results and
conclusions of this paper is presented in Sec. VII.

II. MODEL EQUATIONS

A. System description

We consider linear and nonlinear acoustic waves
propagating through an unbounded, three-component plasma
consisting of dust particles, ions, and electrons. The radius, rd ,
and the mass, md , of the dust particles are assumed to be con-
stant. The charge of the dust particles, qd = Zde, is assumed
to be constant but with a value determined by the equilibrium
plasma parameters. Two forces acting on the dust particles are
considered. The first is the electrostatic force which arises from
the internally generated electric field of the wave, while the
second is from the dust particles electrostatically repelling each
other. No gravitational or externally applied electromagnetic
fields are applied to the system. In the linear case, the wave
propagates due to the inertia of the dust particles being bal-
anced by the restoring effects of the electron and ion pressures.
For nonlinear wave propagation, we consider a solitary wave,
which is supported due to a balance between nonlinear effects
and dispersion. Far from the disturbing effects of the wave,
the plasma is considered to be in an equilibrium state. Here
the plasma is macroscopically homogeneous, quasineutral,
and at rest. In the proximity of the wave, the charged dust
particles are perturbed by its generated electrostatic potential.
The ions and electrons, which have masses much less than
that of the dust particles, are assumed to instantaneously
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redistribute themselves according to the Maxwellian
distribution.

B. Fluid equations

We use the fluid approach to model linear and weakly
nonlinear dust-acoustic waves in a 1D strongly coupled plasma
in a liquid rather than crystalline state. It would be reasonable
to ask whether the fluid equations, typically used for weakly
coupled and diffuse plasmas, are applicable in the strongly
coupled case. In 1996, however, Wang and Bhattacharjee [24]
developed a kinetic theory, including strong coupling from
the Klimontovich equation and the Bogolyubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy, and showed that the
Vlasov equation, from which the fluid model may be derived,
is still valid in the range 1 � � � �cr, where �cr is the critical
coupling parameter at which crystallization occurs.

The number density of the dust particles obeys the continu-
ity equation such that

∂nd

∂t
+ ∂

∂x
(ndud ) = 0, (7)

where nd and ud are the dust number density and the dust fluid
velocity, respectively.

The force arising due to strong coupling between the
dust particles is here modelled by an effective electrostatic
pressure gradient, where we have the pressure, P� = ndkBT�,
with T� defined in Eq. (5). It was shown in Ref. [16] that
the electrostatic temperature T� is always a few orders of
magnitude higher than the kinetic temperature Td of the dust in
the region of the crystal-liquid phase transition. In this paper,
we therefore follow this assumption and so neglect the effects
of Td on the dynamics of the system. The momentum equation
for this system therefore can be written as

mdnd

(
∂ud

∂t
+ ud

∂ud

∂x

)
= ndZde

∂�

∂x
− ∂P�

∂x
. (8)

The system is then closed by Poisson’s equation given by

∂2�

∂x2
= − e

ε0
(ni − ne − Zdnd ), (9)

where we have set the ion charge number, Zi = 1, for
simplicity. The density of the electrons and ions in the
proximity of the wave is dependent on their temperature and
on the electrostatic potential at that point such that

ne = ne0exp

(
e�

kBTe

)
(10)

and

ni = ni0exp

(
− e�

kBTi

)
. (11)

Far from the effects of the wave, at equilibrium, Poisson’s
equation gives the quasineutrality condition such that ni0 −
ne0 − Zdnd0 = 0.

C. Normalization

We now normalize the various quantities in Eqs. (7)–(9)
by the scalings presented in Table I to obtain a dimensionless
system of equations. The variables nd , ud , �, and T� are written

TABLE I. Characteristic scales appearing in this investigation.

Parameter Characteristic scale

Temperature T0 = Z2
d
nd0TiTe

ni0Te+ne0Ti

Length λD0 =
√

ε0kBT0
nd0Z2

d
e2

Time ω−1
pd =

√
ε0md

nd0Z2
d
e2

Velocity v0 =
√

kBT0
md

Number density n0 = nd0

Electrostatic potential �0 = kBT0
Zde

in dimensionless form as n, u, φ, and d, respectively. The
normalized space and time quantities are denoted by a tilde.
Equations (7)–(9) thus become

∂n

∂t̃
+ ∂

∂x̃
(nu) = 0, (12)

n

(
∂u

∂t̃
+ u

∂u

∂x̃

)
= n

∂φ

∂x̃
− ∂(nd)

∂x̃
, (13)

and

∂2φ

∂x̃2
≈ (n − 1) + c1φ + c2φ

2 + c3φ
3, (14)

where for Poisson’s equation the relation exp(mφ) ≈ 1 +
mφ + (mφ)2/2 + · · · has been used. The coefficients in Pois-
son’s equation are calculated to be

c1 = 1, (15)

c2 = − (1 − μ)(1 − μθ2)

2(1 + μθ )2
, (16)

c3 = (1 − μ)2(1 + μθ3)

6(1 + μθ )3
, (17)

and, in general,

cj = (1 − μ)j−1[(−1)j−1 + μθj ]

j !(1 + μθ )j
, (18)

where we have

μ = ne0

ni0
, θ = Ti

Te

. (19)

D. Grain charging

We consider the dust particles to have a charge number, Zd

which depends on the equilibrium conditions of the plasma,
and is constant in time throughout the system. We determine
the value of Zd by using an orbit motion limited approach [23]
and assuming that the electron and ion currents onto the dust
particles are such that Ie + Ii = 0. In doing so, we obtain the
following equation for Zd

Zd = 4πε0rdkBTe

e2

[
W

(
μ

√
θ

σ
exp(θ )

)
− θ

]
, (20)

where σ = me/mi and W denotes the Lambert W function,
which has recently been applied to the problem of dust
charging [25]. This function is included in programs such
as MATLAB and Mathematica and therefore allows a closed

066404-3



S. E. COUSENS et al. PHYSICAL REVIEW E 86, 066404 (2012)

form representation of the dust charge number, without having
to rely on numerical methods. For a derivation of the above
equation, see Appendix A.

Equation (20) gives an expression for the charge number
at equilibrium in the plasma. However, as the wave passes,
the local electron and ion densities will change, resulting in a
dynamic variation in charge number. This effect is neglected
in this article for simplicity and to facilitate the focus on the
variations in the electrostatic temperature in the vicinity of the
wave.

III. REDUCTIVE PERTURBATION METHOD

The reductive perturbation method involves the expansion,
in terms of a small parameter ε, of the dynamical variables of
the system about their equilibrium states such that

A = A0 +
∞∑

j=1

εjAj , (21)

where A is the variable to be expanded. Here, the normalized
quantities to be expanded are the dust number density n, the
dust fluid velocity u, and the electrostatic potential φ such that

n = 1 + εn1 + ε2n2 + · · · , (22)

u = εu1 + ε2u2 + · · · (23)

and

φ = εφ1 + ε2φ2 + · · · . (24)

From Eq. (5) it is seen that T� is a function of nd

and � through the κ term and, thus, varies dynamically.
For analytical convenience, we introduce the concept of
electrostatic temperature perturbations. For details of the
derivation of the following quantities, see Appendix B. By
expanding the dynamic variables in Eq. (5), we acquire a form
of the normalized electrostatic temperature, d, such that

d = d0 + εd1 + ε2d2 + · · · , (25)

where the normalized equilibrium electrostatic dust tempera-
ture, d0, is expressed as

d0 = T�0/T0 (26)

with

kBT�0 = NnnZ
2
de

2

12πε0

3
√

nd0(1 + κ0)exp(−κ0), (27)

where κ0 = 1/ 3
√

nd0λD0. The perturbations d1 and d2 are found
to be

d1 = d11n1 + d12φ1 (28)

and

d2 = d21n2 + d22φ2 + d23n
2
1 + d24n1φ1 + d25φ

2
1 , (29)

where we have

d11 = d21 = d0

3

1 + κ0 + κ2
0

1 + κ0
, (30)

d12 = d22 = −d0c2
κ2

0

1 + κ0
, (31)

d23 = d0

18

κ3
0 − 3κ2

0 − 2κ0 − 2

1 + κ0
, (32)

d24 = −d0

3
c2

κ2
0 (κ0 − 1)

(1 + κ0)
, (33)

and

d25 = −d0

2

(
3c3 − c2

2κ0
) κ2

0

1 + κ0
. (34)

IV. DERIVATION OF MODEL EQUATIONS

A. Linear dispersion relation

To obtain the linear dispersion relation for this system,
the dependent variables in Eqs. (12)–(14) are expanded in a
power series of ε, as described in Sec. III, with terms higher
than ε1 neglected. By then assuming oscillatory solutions to
the perturbed quantities we obtain the following system of
equations:

−ω̃n1 + k̃u1 = 0, (35)

−βk̃n1 + ω̃u1 + αk̃φ1 = 0, (36)

and

n1 + φ1(1 + k̃2) = 0, (37)

in which ω̃ and k̃ are the normalized frequency and wave
number, respectively, and we have

α = 1 − d12, β = d0 + d11. (38)

By combining the above system of equations, it can be seen
that we arrive at a dispersion relation

ω̃2 = αk̃2

1 + k̃2
+ βk̃2. (39)

In the long-wavelength limit, Eq. (39) gives the normalized
phase velocity v such that

v = ω̃

k̃
=

√
1 + d0 + d11 − d12. (40)

B. KdV equation

To obtain the KdV equation, in which we balance non-
linearity with dispersion, we first stretch the space and time
coordinates in Eqs. (12)–(14) in the style of Washimi and
Taniuti [26] such that

ξ̃ = ε1/2(x̃ − vt̃), τ̃ = ε3/2 t̃ . (41)

By then applying the reductive perturbation method as outlined
in Sec. III to lowest order in ε we obtain

−v
∂n1

∂ξ̃
+ ∂u1

∂ξ̃
= 0, (42)

β
∂n1

∂ξ̃
− v

∂u1

∂ξ̃
− α

∂φ1

∂ξ̃
= 0, (43)

and

∂n1

∂ξ̃
+ ∂φ1

∂ξ̃
= 0. (44)
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By integrating Eqs. (42)–(44), noting that the perturbations
tend to zero at ξ → ±∞, we obtain equations for the dust
fluid density and dust fluid velocity perturbations in terms of
the electrostatic potential perturbation such that

n1 = −φ1, u1 = −vφ1, (45)

as well as an expression for the normalized phase velocity
which is the same as Eq. (40).

To next lowest order in ε, we obtain

−∂φ1

∂τ̃
+ 2vφ1

∂φ1

∂ξ̃
− v

∂n2

∂ξ̃
+ ∂u2

∂ξ̃
= 0, (46)

−v
∂φ1

∂τ̃
+ 2

(
1

2
+ d11 − d12 + d23 − d24 + d25

)
φ1

∂φ1

∂ξ̃

+ (d0 + d21)
∂n2

∂ξ̃
− v

∂u2

∂ξ̃
+ (d22 − 1)

∂φ2

∂ξ̃
= 0, (47)

and
∂2φ1

∂ξ̃ 2
− n2 − φ2 − c2φ

2
1 = 0, (48)

where the relations in Eq. (45) have been used to express
the first-order perturbed quantities solely in terms of φ1. By
differentiating Eq. (48) with respect to ξ̃ , an equation for
∂n2/∂ξ̃ can be obtained, which then can be substituted into
Eq. (47) to get an equation for ∂u2/∂ξ̃ . These expressions for
both ∂n2/∂ξ̃ and ∂u2/∂ξ̃ can then be substituted into Eq. (46)
to obtain an equation of the form

∂φ1

∂τ̃
+ Ãφ1

∂φ1

∂ξ̃
+ B̃

∂3φ1

∂ξ̃ 3
= 0, (49)

in which we have

Ã = − (1 + 2v2 + 2αc2 + 2γ )

2v
, (50)

B̃ = α

2v
, (51)

where α is defined in Eq. (38) and γ is defined as

γ = d11 − d12 + d23 − d24 + d25. (52)

Equation (49) can be solved by separation of variables,
giving a solution of

φ1(ξ̃ ,τ̃ ) = 3Ũ

Ã
sech2

⎡
⎣ ξ̃ − Ũ τ̃√

4B̃

Ũ

⎤
⎦ , (53)

where Ũ is the normalized velocity of the nonlinear wave in
the moving reference frame. We now transform back to the
laboratory frame, in which the solitary wave is traveling with
a normalized velocity Ṽ , which is greater than the sound speed
in the plasma by an amount δṼ . Taking φ to the first order of
ε, we then have

φ(x̃,t̃) = φmsech2

[
χ̃

�̃

]
, (54)

where

|φm| = 3δṼ

|Ã| , �̃ =
√

4B̃

δṼ
(55)

are the amplitude and width of the solitary wave and χ̃ =
x̃ − Ṽ t̃ .

V. PARAMETRIC INVESTIGATION

In this section, we present a parametric investigation based
on the equations derived in Sec. IV. In the previous sections, we
have demonstrated that both the linear dispersion relation and
the KdV equation are dependent on the following equilibrium
quantities: ni0, ne0, Ti , Te, σ = me/mi , rd , and md . To
determine the coupling parameter of the system, so its phase
state may be estimated, the dust temperature Td must be
specified. When considering solitary wave solutions to the
KdV equation, we must also specify the velocity of the solitary
wave relative to the sound speed in the plasma, which in
dimensional form may be expressed as δV = V − vph. From
these nine quantities, the various attributes of the linear and
nonlinear wave structures can be derived.

Here, we choose to investigate the effects of varying the
densities and temperatures of the Maxwellian species and
fix the other quantities. For the purposes of this section,
the scalings shown in Table I are inappropriate, since they
are dependent on these parameters, so in this section we
analyze the dimensional form of the equations. Some of the
normalization quantities presented in Table I arise naturally
in the algebra, however, so the notation of the various
dimensionless quantities will be retained in this section.

We will be using the parameters shown in Table II for
this investigation, which are based on those measured by
Bandyopadhyay et al. [22]. The value of the ratio σ = me/mi

is for the commonly used argon plasma, but here we set the ion
charge number, Zi = 1, for simplicity. We choose Nnn = 12,
corresponding to an fcc crystal lattice. We choose the range
of temperatures and densities under investigation such that we
expect the dust particles to be strongly coupled, but the plasma
is in a fluid rather than crystalline state.

Vaulina and Khrapak [27] found that the coupling parameter
required for crystallisation is

�cr = 106exp(κ0)(
1 + κ0 + κ2

0

) , (56)

and, therefore, the equation of state, Eq. (2) is valid in the
region in which we have approximately 1 < � < �cr, so we
restrict our parameters to values such that this inequality holds.
Here we have used the equilibrium quantities to determine the
coupling parameter, and therefore we do not take into account
the effects of the wave perturbations on the phase state of the
system.

TABLE II. Parameters studied in this investigation.

Parameter Parameter range

ni0 (5–8) × 1013m−3

ne0 (1–4) × 1013m−3

kBTi (0.2–1) eV
kBTe (3–8) eV
kBTd 0.3 eV
rd 0.2 μm
md 1 × 10−13 kg
σ = me/mi 1.3732 × 10−5

δV 2 mm/s
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FIG. 1. (Color online) The charge number of the dust particles
studied in this investigation, as functions of (a) the temperatures (eV)
and (b) the densities (in units of 1013 m−3) of the Maxwellian species.
In both plots we have md = 1 × 10−13 kg, rd = 0.2 μm, kBTd =
0.3 eV, and σ = 1.3732 × 10−5. In (a) we have ni0 = 7 × 1013 m−3,
ne0 = 4 × 1013 m−3 and in (b) we have kBTi = 0.3 eV, kBTe = 8 eV.

As described in Sec. II D, the charge of the dust grain is
dependent on the temperatures and densities of the Maxwellian
species. To determine how the coupling parameter varies with
these quantities, the dust charge number, Zd , should first be
calculated according to Eq. (20). Figure 1 shows how the dust
charge number, Zd , is dependent on the parameters used in
this investigation, and it is seen to vary between approximately
1100 and 3200 for this parameter range. Using Eqs. (1) and
(56), it then can be shown that this corresponds to values of �

which fall approximately in the desired range.
The lower bound for the velocity of a solitary wave is given

by the sound speed in the plasma, and so it is important to
consider the linear case, even when investigating nonlinear
waves. Restoring dimensions to Eq. (39) we see that the
dispersion relation may be written as

ω2 = kBT0

md

(
αk2

1 + λ2
D0k

2
+ βk2

)
, (57)

which, in the limit kλD0 � 1, shows a predicted phase velocity
of

vph = ω

k
=

√
kB(T0 + T�0 + T�11 − T�12)

md

. (58)

In this and the following equations, the terms written T�ij

are the electrostatic temperature perturbation coefficients in
dimensional form, corresponding to Eqs. (30)–(34). Figure 2
shows how the phase velocity varies with the parameters under
investigation.

FIG. 2. (Color online) The phase velocity, vph (cm/s) of the dust-
acoustic waves studied in this investigation, as functions of (a) the
temperatures (eV) and (b) the densities (in units of 1013 m−3) of the
Maxwellian species. In both plots we have md = 1 × 10−13 kg, rd =
0.2 μm, and σ = 1.3732 × 10−5. In (a) we have ni0 = 7 × 1013 m−3,
ne0 = 4 × 1013 m−3 and in (b) we have kBTi = 0.3 eV, kBTe = 8 eV.

Restoring dimensions to Eq. (49) and rearranging, we
obtain

∂�1

∂τ
+ A�1

∂�1

∂ξ
+ B

∂3�1

∂ξ 3
= 0, (59)

in which we have

A = Zde

(mdkBT0)1/2
Ã (60)

and

B = ε0(kBT0)3/2

Z2
de

2nd0m
1/2
d

B̃. (61)

This gives a solution in the laboratory frame of

�(x,t) = �msech2

(
χ

�

)
, (62)

which is the dimensional form of Eq. (54). Since |�m| =
3δV/|A| and � = √

4B/δV , we see that the amplitude and
width of the solitary waves have two main dependences. The
first is a dependence on the velocity of the solitary wave relative
to the sound speed in the plasma, δV , such that the amplitude
of the solitary wave is directly proportional, and the width
inversely proportional to the square root of its magnitude.
This parameter is related to the strength of the perturbation
and we see that, for constant A and B, faster solitary waves
will be taller and thinner than slower ones. We also see the
well-known relation that for a particular plasma system, the
product |�m|�2 is independent of δV .

066404-6



NONLINEAR DUST-ACOUSTIC SOLITARY WAVES IN . . . PHYSICAL REVIEW E 86, 066404 (2012)

FIG. 3. (Color online) The amplitude, |�m| (mV) of the potential
perturbations associated with the solitary waves studied in this
investigation, as functions of (a) the temperatures (eV) and (b) the
densities (in units of 1013 m−3) of the Maxwellian species. In both
plots we have md = 1 × 10−13 kg, rd = 0.2 μm, σ = 1.3732 × 10−5,
and δV = 2 mm/s. In (a) we have ni0 = 7 × 1013 m−3, ne0 =
4 × 1013 m−3 and in (b) we have kBTi = 0.3 eV, kBTe = 8 eV.

The second dependence is on the coefficients of the KdV
equation, A and B, which are unique to the model being
presented. By holding δV constant, we demonstrate, in Figs. 3
and 4, the effects that the variation of these coefficients with
equilibrium plasma parameters have on the amplitude and
width of solitary waves. We emphasize that, although we
have held δV constant, in the laboratory frame the speeds
of the solitary waves differ, due to the sound speed being
dependent on these parameters. By noting the range of phase
velocities shown in Fig. 2, we see that Figs. 3 and 4 correspond
to solitary waves traveling with a Mach number range of
M = V/vph = 1.04–1.15.

VI. THE EFFECTS OF STRONG COUPLING BETWEEN
DUST PARTICLES ON DUST-ACOUSTIC WAVES

In this section, we present a discussion on how strong
coupling between the dust particles, described via the elec-
trostatic temperature model, affects the attributes of the linear
and nonlinear dust-acoustic waves. We do this by comparing
the model presented in this paper, which in this section we
denote as the T� ≡ T�(nd,�) case, with a model in which we
set the electrostatic temperature terms to zero such that T� = 0.
This model is well documented and may be found, for example,
in Ref. [1], although using a scaling which differs from that
in this article. In addition to this, we also show the effects
of the inclusion of the electrostatic temperature perturbation
terms by comparison to a model in which the electrostatic

FIG. 4. (Color online) The width, � (mm), of the potential
perturbations associated with the solitary waves studied in this
investigation, as functions of (a) the temperatures (eV) and (b) the
densities (in units of 1013 m−3) of the Maxwellian species. In both
plots we have md = 1 × 10−13 kg, rd = 0.2 μm, σ = 1.3732 × 10−5,
and δV = 2 mm/s. In (a) we have ni0 = 7 × 1013 m−3, ne0 =
4 × 1013 m−3 and in (b) we have kBTi = 0.3 eV, kBTe = 8 eV.

temperature is set to its equilibrium value such that T� ≡ T�0,
which may be found, for example, in Ref. [20]. These models
may be recovered from the equations presented in this text in
the appropriate limits, which are discussed in this section.

A. Linear dust-acoustic waves

We start with the linear case, and by inspection of the form
of Eq. (39), we see that the defining terms for each model
are α and β, the values of which are displayed in Table III.
Figure 5 presents the calculated dispersion relations for the
three models.

1. Short-wavelength limit, kλD0 � 1

As was demonstrated by Yaroshenko et al. [18], a feature of
the dispersion relation which is indicative of strong coupling
is a transition into a regime similar to that of the thermal mode
at high wave numbers. This indicates that the electrostatic
interactions between the dust particles produce an effect

TABLE III. Values of α and β for the three models under
comparison.

Model α β

T� ≡ T�(nd,φ) 1 − d12 d0 + d11

T� ≡ T�0 1 d0

T� = 0 1 0
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FIG. 5. (Color online) The normalized dispersion relation
for three different models of dust-acoustic waves. Here we
have ni0 = 7 × 1013 m−3, ne0 = 4 × 1013 m−3, kBTi = 0.3 eV,
kBTe = 8 eV, md = 1 × 10−13 kg, rd = 0.2 μm, and σ =
1.3732 × 10−5.

analogous to that of a temperature, and we see this effect
clearly in Fig. 5. Here, the term responsible for this effect is
β in Eq. (39). In the weakly coupled case, since we do not
consider any temperature-like terms, we have β = 0 and so
the wave frequency saturates at the dust plasma frequency for
high wave numbers, as can be seen from the solid blue line
in Fig. 5. For the strongly coupled models, we have nonzero
β terms, so for large wave numbers, these models predict a
transition to the thermal mode, such that ω̃ → √

βk̃. Since
the value of β is larger for the T� ≡ T�(nd,�) model than the
T� ≡ T�0 case, we see that the inclusion of dust electrostatic
temperature perturbations in the model makes this effect even
more pronounced.

2. Long-wavelength limit, kλD0 � 1

In the case of low wave numbers such that kλD0 � 1,
Yaroshenko et al. [18] predicted an increase in the phase
velocity of the wave due to the effects of strong coupling.
Here, we see that, in this limit, v = √

α + β. For the scaling
we have chosen, the T� = 0 model has a phase velocity
of 1. Since the phase velocity for the T� ≡ T�0 model is√

1 + d0, we see that an effect of including strong coupling
in the model is an increase in the phase velocity in the long-
wavelength limit. In this paper, for the T� ≡ T�(nd,�) case,
we have a phase velocity of v = √

1 + d0 + d11 − d12. For the
parameters considered in Sec. V, we have d11 > d12 across
the entire range, so we see that the electrostatic temperature
perturbations further increase the predicted phase velocity.
The difference in phase velocity between the models is a
function of the equilibrium plasma parameters. To get a sense
of the magnitude that these differences amount to, we produced
graphs similar to Fig. 2 for the two other models, which are
excluded from this work for brevity. In doing so, it may be seen
that the approach used in this paper predicts phase speeds that
are up to approximately 20% greater than the T� = 0 model
and up to approximately 5% greater than the T� ≡ T�0 model
for the parameter range considered in Sec. V.

B. Nonlinear dust-acoustic solitary waves

We now discuss the nonlinear case. By considering the
form of Eq. (55), we see there are two key factors affecting

the attributes of the nonlinear solitary waves. The first is the
sound speed excess, δṼ , of the solitary wave, and the second
is the values of the coefficients in the KdV equation, Ã and B̃.
Both of these factors are dependent on the model used, so we
will now discuss each of them in turn.

1. Differences in the calculated sound speed excess

For a measured solitary wave speed in the laboratory frame
Ṽ , each model will give a different value of δṼ on which
the amplitude and width of the solitary waves are dependent.
For example, using the same parameters which were used
for the comparison in Fig. 5, the normalized phase speeds,
v, for the dynamically varying electrostatic temperature
model, the constant electrostatic temperature model, and the
electrostatically cold model are 1.14, 1.10, and 1, respectively.
For a solitary wave moving in the laboratory frame with
a normalized velocity of Ṽ = 1.2, the three models then
give δṼ = (Ṽ − v) of 0.06, 0.1, and 0.2, respectively. Since
the amplitude is directly proportional to, and the width is
inversely proportional to, the square root of δṼ , it is seen
that this factor contributes to the strongly coupled models
predicting shorter but wider solitary waves.

This factor is most important for lower values of Ṽ . To see
this, let us consider two separate models, with phase velocities
v1 and v2, respectively. One may arbitrarily choose v2 > v1.
It then follows that δṼ1 = Ṽ − v1 > δṼ2. The ratio δṼ1/δṼ2

may then be seen to increase monotonically as Ṽ is decreased
and approaches v2. Thus, it follows that the relative differences
in the predicted amplitudes and widths of the solitary waves,
arising from the deviations in δṼ between the models, are
greatest for lower values of Ṽ .

2. Differences in the KdV coefficients

We now compare the Ã and B̃ coefficients in the KdV
equation for the three models, which leads to differences in
the amplitude and width of the predicted solitary waves.

Accounting for the differences in α and v = √
α + β

between the models, it may be seen that the KdV coefficients
for the T� = 0 and T� ≡ T�0 models are

Ã = −3 + 2c2

2
B̃ = 1

2
(63)

and

Ã = −3 + 2c2 + 2d0

2
√

1 + d0
B̃ = 1

2
√

1 + d0
, (64)

respectively. Having calculated the values of these coefficients
across the parameter range described in Sec. V, we find that the
T� ≡ T�(nd,�) model presented in this paper predicts values
of Ã which are greater in magnitude than those predicted
by the T� ≡ T�0 and T� = 0 models by up to a maximum of
approximately 8% and 15%, respectively. We find that the
corresponding decrease in B̃ reaches approximately 3% and
8%, respectively. The percentage difference in the coefficients
predicted by each model varies across the equilibrium param-
eter range, so we just give the maximum values to give a
sense of the magnitude of these changes. The increase in the
absolute value of the Ã coefficient contributes to the prediction
of lower amplitude solitary waves for the strongly coupled
models. The decrease in B̃ contributes to a narrowing of the
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FIG. 6. (Color online) Normalized solitary wave structures for
three different models. Here we have ni0 = 7 × 1013 m−3, ne0 = 4 ×
1013 m−3, kBTi = 0.3 eV, kBTe = 8 eV, md = 1 × 10−13 kg, rd =
0.2 μm, σ = 1.3732 × 10−5, and Ṽ = 1.2.

solitary waves for the strongly coupled models, which is in
contrast to the effect arising from the reduction of the value of
δṼ , which leads to a widening. The net effect on the predicted
width of the solitary waves thus depends on which factor is
dominant, which is determined by the specific equilibrium
plasma parameters and the solitary wave velocity, Ṽ .

Figure 6 shows solitary waves predicted by the three
models for typical plasma parameters. Here we see that the
combination of the reduction of δṼ and the increase of |Ã|
results in a large decrease in the amplitude of the solitary
waves for the strongly coupled models. The effect of strong
coupling on the width is more subtle, but Fig. 6 shows slightly
wider solitary waves for the strongly coupled models, which
indicates that for these parameters the effect of the reduction
in δṼ dominates over the effect of the reduction in B̃.

VII. CONCLUSIONS

In this paper we have theoretically investigated both
linear and nonlinear dust-acoustic waves in a dusty plasma
in which the dust particles are strongly coupled. We have
modelled the effects of strong coupling by utilizing the
electrostatic temperature approach of Yaroshenko et al. [18].
Uniquely, we have considered perturbations in the electrostatic
temperature, which is a function of the dust number density
and electrostatic potential, in the locality of the wave, and then
demonstrated how these affect the linear dispersion relation
and the Korteweg-de Vries equation.

Our main objectives were to investigate how the dynamics
of the waves change for a range of equilibrium plasma
parameters, to describe what effects strong coupling has on
the waves, and to provide an overview of how electrostatic
temperature perturbations affect the model. In summary, the
main conclusions of our paper are as follows:

(1) The phase velocity of the dust-acoustic wave, as well as
the amplitude and width of solitary waves, are seen to vary
significantly with the equilibrium plasma parameters. This
is shown in Figs. 2, 3, and 4, respectively, where we have
displayed how the variation of densities and temperatures of
the Maxwellian species affect these attributes.

(2) The predicted phase velocity, v, is seen to be larger when
strong coupling effects are accommodated in the model via the
electrostatic temperature approach.

(3) The amplitude of the predicted nonlinear solitary waves
is seen to be reduced when strong coupling is included in
the model, due to an increase in the absolute value of the
nonlinear coefficient, Ã, in the KdV equation. In addition to
this, if we consider a solitary wave traveling with a set velocity
in the laboratory frame Ṽ , the increase in phase velocity
arising from strong coupling effects will result in a reduction
in the predicted sound speed excess, δṼ = Ṽ − v, compared
to the weakly coupled model. This will then result in a further
reduction in the amplitude predicted by the strongly coupled
models.

(4) The width of the predicted nonlinear solitary waves may
be seen to either increase or decrease with the inclusion of
strong coupling effects, depending on which of two factors
is dominant. The first, contributing to a narrowing of the
solitary waves for the parameters under investigation, is the
reduction of the B̃ coefficient in the KdV equation. The second
factor, contributing to a widening of the solitary waves, is the
reduction in δṼ brought about by the increased phase velocity
in the strongly coupled model. Which factor dominates is
determined by the specific equilibrium plasma parameters and
the solitary wave velocity, Ṽ .

(5) The inclusion of the electrostatic temperature perturba-
tions in the model is seen to amplify the effects of strong
coupling mentioned in points (2)–(4).

We have seen that the difference between the inclusion or
exclusion of the perturbations of the electrostatic temperature
affects the value of the linear phase velocity by only a small
amount (the magnitude of this difference depends on the
specific equilibrium plasma conditions but is seen to be at
most ∼5% for the parameter range under investigation). For
solitary waves, however, since the sound speed excess will
be changed, this seemingly small modification can result in
large differences in the amplitude and width between the
two models when combined with the changes in the KdV
coefficients. We show, therefore, that the consideration of the
dynamic variation of the electrostatic temperature can provide
important modifications to more simple models.

The dust charge number Zd , which in this case was derived
using an orbit motion limited approach, is found to vary
significantly with the equilibrium plasma parameters and this
has a substantial effect on the dynamics of the wave modes. For
a more complete understanding of the system, perturbations of
the dust charge number may also show important additions to
the model, since Zd is actually dependent on the dynamically
varying electron and ion densities.
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APPENDIX A: THE CALCULATION OF THE DUST
CHARGE NUMBER VIA THE LAMBERT W FUNCTION

According to OML theory, the electron and ion currents
onto the dust particle may be written as

Ie = Ie0exp

(
e�d

kBTe

)
, (A1)

Ii = Ii0

(
1 − e�d

kBTi

)
, (A2)

with

Is0 =
√

8πr2
dns0qs

√
kBTs

ms

(A3)

for species s = e,i. Here �d is the difference between the
grain and plasma potentials. Setting Ii + Ie = 0 gives

−μ

√
1

σθ
exp

(
e�d

kBTe

)
+

(
1 − e�d

kBTi

)
= 0, (A4)

where we have defined σ = me/mi , μ = ne0/ni0, θ = Ti/Te.
Multiplying through by θexp(θ − e�d/kBTe) and rearranging
then gives(

θ − e�d

kBTe

)
exp

(
θ − e�d

kBTe

)
= μ

√
θ

σ
exp(θ ). (A5)

This equation is of the form Xexp(X) = f (μ,θ ), the solution
to which may be written as X = W (f (μ,θ )), where W denotes
the Lambert W function. This equation thus may be expressed
as

θ − e�d

kBTe

= W

[
μ

√
θ

σ
exp(θ )

]
. (A6)

By then substituting �d = −Zde/(4πε0rd ) into this equation
and rearranging, we obtain our expression for the dust charge
number, Eq. (20).

APPENDIX B: DERIVATION OF ELECTROSTATIC
TEMPERATURE COEFFICIENTS

In this Appendix, we outline a derivation of the electrostatic
temperature coefficients which were presented in Sec. III. The
electrostatic temperature depends on the local screening length
in the plasma via the lattice parameter κ , and we use this as
the starting point. Looking at the normalized Debye length,
we see that

λD

λD0
=

(
ni0Te + ne0Ti

niTe + neTi

)1/2

=
[

1 + μθ

exp
(− e�

kBTi

) + μθexp
(

e�
kBTe

)]1/2

. (B1)

We may write the electrostatic potential as � =
φ�0, where the normalization quantity �0 = kBT0/e =

[(1 − μ)/(1 + μθ )](kBTi/e). The denominator of the last term
in Eq. (B1) may then be written as

exp

[
− (1 − μ)

(1 + μθ )
φ

]
+ μθexp

[
(1 − μ)θ

(1 + μθ )
φ

]
. (B2)

By expressing φ in a power series of ε and Taylor
expanding, Eq. (B1) then simplifies to

λD

λD0
=

[
1∑∞

j=0 (j + 1)cj+1φj

]1/2

, (B3)

where cj refers to the j th coefficient in Poisson’s equation, as
defined in Sec. II C.

To derive the KdV equation we only require up to the second
order, so we take the lattice parameter, κ , to be

κ = 1

λDn
1/3
d

= κ0(1 + 2c2φ + 3c3φ
2)1/2n−1/3. (B4)

By expressing the dynamic variables in series of ε and Taylor
expanding, we arrive at an equation for the perturbations in
the lattice parameter, such that

κ = κ0 + εκ1 + ε2κ2 (B5)

with

κ1 = − 1
3n1 + c2φ1 (B6)

and

κ2 = −1

3
n2 + c2φ2 + 2

9
n2

1 − c2

3
n1φ1 +

(
3c3 − c2

2

)
2

φ2
1 .

(B7)

This equation for κ can now be substituted into Eq. (5) to
obtain the electrostatic temperature perturbation terms. The
calculation can be divided up into three main components,
with

n
1/3
d � n

1/3
d0 (1 + εn1 + ε2n2)1/3

� n
1/3
d0

[
1 + ε

n1

3
+ ε2 1

9

(
3n2 − n2

1

)]
, (B8)

(1 + κ) � (1 + κ0)

(
1 + ε

κ1

1 + κ0
+ ε2 κ2

1 + κ0

)
, (B9)

and

exp(−κ) � exp(−κ0 − εκ1 − ε2κ2)

= exp(−κ0)exp(−εκ1 − ε2κ2)

� exp(−κ0)

[
1 − εκ1 + ε2

(
κ2

1 − 2κ2
)

2

]
. (B10)

The product of these three equations, along with the constants
appearing at the beginning of Eq. (5), gives, after normalization
by T0, the electrostatic temperature perturbations that are
presented in Sec. III.
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