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Samenvatting

In onze samenleving is de automatische verwerking van video een handig en
veelgebruikt hulpmiddel geworden om mensen bij te staan, te beschermen en
hun taken te vergemakkelijken door toepassingen in toezicht/bewaking, domot-
ica, bejaardenzorg, verkeersmonitoring en video conferencing. In veel van deze
toepassingen zijn er uitdagingen te overwinnen zoals beperkte bandbreedte om
de videodata te versturen, de hoge kost en de rekenkracht nodig om deze grote
hoeveelheden videodata op te slaan en te verwerken.

Door het groeiende aantal camera's enerzijds en doordat we tegenwoordig
toch deze enorme hoeveelheden data kunnen verwerken en analyseren anderzi-
jds, zijn we tegenwoordig in staat om multicamera toepassingen te ontwikkelen
die data van verschillende sensoren samen verwerken. Een voorbeeld hiervan
zijn multicamera netwerken die vaak worden gebruikt om objecten te volgen en
hun gedrag te analyseren door hetzelfde evenement te observeren vanuit ver-
schillende standpunten. In tegenstelling tot het werken met een enkele camera
zijn multicamera netwerken robuuster en kunnen deze netwerken omgaan met
moeilijker omstandigheden waarbij een enkele camera niet volstaat, zoals oc-
clusies: objecten die verdwijnen achter hoeken, andere objecten of obstakels.
Dit is echter geen gemakkelijk probleem door de enorme hoeveelheden data die
moeten worden verwerkt. Het wordt zelfs nog lastiger als het uitwisselen van
videodata vermeden moet worden omwille van de privacy.

Het feit dat zulke enorme hoeveelheden data van alle camera's moeten wor-
den verwerkt is een van de belangrijkste problemen in dit soort toepassingen.
In deze context zijn zogenaamde smart camera's essentieel: zulke camera's kun-
nen hun data lokaal verwerken en dan data uitwisselen die minder gevoelig is
dan bijvoorbeeld afbeeldingen met herkenbare gezichten. Dit is niet enkel een
oplossing voor de privacyproblemen, maar kan ons ook helpen om al die enorme
hoeveelheden data te verwerken. Elke camera gedraagt zich namelijk ook als
een computer, kan dus de verwerking van zijn eigen opgenomen data lokaal
uitvoeren en beperkt daardoor de belasting van het netwerk.

In een multicamera netwerk bestaat een toepassing meestal niet uit een
enkele methode of algoritme, maar is die eerder een speci�eke combinatie van
verschillende methodes die toegespitst is om een bepaalde taak te vervullen.
Voor dit soort toepassingen kunnen de methodes ruwweg worden onderverdeeld
als volgt:

• Laag-niveau: het extraheren van basiskenmerken uit de ruwe video
afkomstig van een camera.
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• Midden-niveau: nemen de kenmerken van het vorige niveau en com-
bineren deze kenmerken voor een bepaalde taak op basis van het multi-
camera netwerk.

• Hoog-niveau: opereren op een abstract niveau en combineren verschil-
lende aanwijzingen vanuit de vorige twee niveaus om activiteiten te anal-
yseren, zoals het correct classi�ceren van een aantal activiteiten uit een
reeks videostromen.

In deze thesis gebruiken we technieken van al deze niveaus en passen deze toe
speci�ek op multicamera netwerken.

Als aanpak voor een methode die opereert op laag niveau, hebben we
een nieuw algoritme voor voorgronddetectie ontwikkeld speci�ek voor het vol-
gen van objecten in ware tijd, waarbij aandacht werd besteed aan moeilijke
en veranderende belichtingsomstandigheden van de scène. We stellen twee
nieuwe methoden voor om de voorgrond (foreground: FG) van de achter-
grond (background: BG) te scheiden om zo bewegende objecten in ware tijd
te detecteren. Daarbij wordt gebruik gemaakt van beeldgradiënten of pixelin-
tensiteiten. Het voornaamste idee is om een beslissingsboom-achtige meth-
ode voor voorgrond/achtergrond segmentatie te gebruiken. Daarbij gebruiken
we een aantal statistische maten voor elke knoop van de boom om een pixel
ofwel als voorgrond ofwel als achtergrond te classi�ceren. Als statistisch achter-
grondmodel gebruiken we zowel een korte-termijn als een lange-termijn gewogen
gemiddelde, uitgaande van verschillende leerfactoren. In de voorgestelde meth-
oden gebruiken we beeldgradiënten of beeldintensiteiten als statistische ken-
merken voor voorgrond- en achtergrondgebieden in het beeld. Bij de ontwikke-
ling van onze methoden hebben we ons geconcentreerd om onze methoden in
staat te stellen om te kunnen gaan met moeilijke en veranderende belichting,
en zich snel aan zulke veranderingen aan te passen.

We vergelijken de resultaten van de door ons voorgestelde methoden met de
resultaten van twee state-of-the-art FG/BG segmentatietechnieken. Onze tech-
nieken werden getest op verschillende beeldsequenties die binnenshuis werden
opgenomen, zowel met als zonder lokale en globale belichtingsveranderingen.
We tonen aan dat onze voorgestelde methoden op basis van beeldgradiënten of
beeldintensiteiten het best presteren voor sequenties waarin belichtingsveran-
deringen optreden.

Het voornaamste deel van deze thesis gaat over een gedetailleerde analyse
van twee eigen ontwikkelde state-of-the-art volgtechnieken in ware tijd: een
multicamera volgmethode gebaseerd op bezettingskaarten (welke posities in
de scène worden door iemand ingenomen) en een gedistribueerde aanpak om
objecten te volgen met een multicamera systeem voorzien van een terugkop-
pelingslus.

De multicamera volgtechniek gebaseerd op bezettingskaarten is in feite een
gecentraliseerde aanpak, wat wil zeggen dat het belangrijkste deel van de
berekeningen plaatsvindt in het fusie centrum (een centrale verwerkingseen-
heid), die data binnenkrijgt van de camera's in het netwerk. De kern van ons
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onderzoek was de ontwikkeling van een volgmethode in ware tijd gebaseerd op
Bayesiaanse �lterstrategieën om op smart camera's te kunnen worden gebruikt.
Het gebruik van bezettingskaarten is gebaseerd op het werk van [Tessens 10]
en [Morbee 11].

We geven zowel kwalitatieve als kwantitatieve resultaten voor verschillende
binnenshuissequenties (tijdens een vergadering) waarin we zelfs getoond hebben
om te kunnen gaan met occlusies (door meubilair en andere mensen). Langs
de ene kant tonen de resultaten dat het mogelijk is om verschillende mensen
te volgen met een camera netwerk. Ons volgsysteem laat echter niet toe om
de volledige trajecten die de personen tijdens de sequenties hebben afgelegd in
de ruimte te bepalen voor de geteste sequenties. Langs de andere kant hebben
onze methoden ook beperkingen voor onder andere de verwerking in ware tijd
van de data. We wijzen ook op de beperkingen van de door ons voorgestelde
techniek.

De gedistribueerde multicamera volgtechniek met terugkoppelingslus werd
ontworpen als een gedecentraliseerde verwerkingsarchitectuur, waarin de zwaar-
ste berekeningen van de videoverwerking worden uitgevoerd in de smart cam-
era's zelf. Eigenlijk zijn de eisen voor ons fusiecenter in deze opstelling zo laag
dat het zelfs mogelijk is om de algoritmes van het fusiecentrum te laten lopen
op elke camera zodat we uiteindelijk een volledig gedistribueerde architectuur
hebben. Deze aanpak richt zich op een schaalbaar systeem voor het volgen van
verschillende mensen in ware tijd, met zeer beperkte vertraging. De terugkop-
pelingslus zorgt ervoor dat de camera's telkens up-to-date worden gehouden
over de recentste locaties en bewegingsstatussen van de gevolgde objecten. In
onze architectuur is er geen nood aan het uitwisselen van video om objecten te
kunnen volgen en zelfs niet voor de interesseregio's binnen de zichtvelden van
de camera's.

In ons systeem voert elke camera eerst een computationeel e�ciënte op-
splitsing uit van de waargenomen scène in bewegende blobs (voorgrond) en
een statische achtergrond. Daarna groepeert elke camera deze blobs in omhul-
lende rechthoeken (of balken in 3D) ten opzichte van een coördinatensysteem in
wereldcoördinaten. Deze omhullenden komen dan met grote waarschijnlijkheid
overeen met individuele personen. Vervolgens stuurt de camera een compacte
beschrijving op hoog niveau van de bewegende objecten door naar het fusie
centrum, die deze data samenvoegt volgens een Bayesiaanse aanpak. We gaan
daarbij niet uit dat een camera zeer accuraat objecten kan volgen. Een camera
mag dus fouten maken, die daarna nog kunnen worden gecorrigeerd bij het
samenvoegen van alle hoogniveau data van de verschillende camera's uit het
netwerk.

De prestaties van ons voorgestelde systeem werd geëvalueerd in termen van
precisie en nauwkeurigheid bij scenario's van vergaderingen of andere binnen-
shuis activiteiten. We tonen aan dat onze aanpak redelijk goed werkt, namelijk
dat een eenvoudige analyse van veranderingen in de beelden beter werkt dan
het schatten van bewegingen voor het betrouwbaar en accuraat volgen van ver-
schillende mensen in een multicamera netwerk. De gemiddelde nauwkeurigheid
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is ongeveer 12 cm en deze resultaten werden behaald in een schaalbaar systeem
in ware tijd met zeer kleine vertraging tussen gebeurtenis en verwerking, waar-
bij er slechts lage belasting was qua berekeningen en netwerkverkeer. Verder
wordt er vergeleken met state-of-the-art methoden, waaruit blijkt dat ons sys-
teem minstens even goed werkt als de andere methoden uit de vergelijking.

Als een hoog-niveau toepassing stellen we een methode voor om de dy-
namiek van vergaderingen te begrijpen (zogenaamde smart meetings) gebruik
makend van een multi-camera opstelling, bestaande uit omgevingscamera's en
close-up camera's. Hierbij worden omgevingscamera's gebruikt om bijvoor-
beeld de deelnemers aan de vergadering te volgen of om een bepaald deel van
de vergaderruimte te observeren (zoals het scherm of het witbord). Daarente-
gen hebben de close-up camera's (zoals laptop camera's) gewoonlijk slechts één
speci�eke deelnemer in hun gezichtsveld. Daarom is het van vitaal belang om
automatisch de activiteiten die zich op elk moment in de scène voordoen au-
tomatisch te analyseren uit de onbekende videostromen, met andere woorden,
correct classi�ceren van een videostroom in een set van activititeiten. Data ge-
bruiken op laag niveau (zoals FG/BG segmentatie), en op midden-niveau (zoals
positiegegevens van de deelnemers aan de vergadering die werd gehaald uit een
multicamera systeem of uit gezichtsanalyse) helpt ons om modellen op te stellen
voor verschillende soorten van activiteiten, zoals bijvoorbeeld het automatisch
creëren van een volledig protocol van een vergadering, of gedragsanalyse van
deelnemers tijdens een vergadering (balanced meeting). Als speci�eke toepass-
ing stellen we voor om automatisch te bepalen welke camera het beste zicht
heeft binnen een multicamera netwerk. De data van deze camera wordt dan
doorgestuurd als representatief beeld naar een deelnemer die vanop een andere
locatie de meeting volgt via zijn computer. Onze bijdragen aan deze methode
bestaat uit drie delen: ten eerste schatten we de extrinsieke parameters van de
close-up camera's gebruik makend van de posities van de hoofden in de omgev-
ingscamera's en de corresponderende close-up camera's. In de tweede stap
worden de hoofdposes (positie en oriëntatie) gebruikt om gemeenschappelijke
gebieden te vinden naar waar deelnemers kijken tijdens een bepaalde periode.
In de derde stap worden deze gebieden geanalyseerd en gebruikt om overlap-
pende gebieden te detecteren gebaseerd op de consensus van de deelnemers aan
de vergadering.

We tonen zowel kwalitatieve als kwantitatieve resultaten van verschillende
experimenten uitgevoerd op data verzameld aan het Wireless Sensor Networks
Lab aan de Universiteit van Stanford. Daarbij evalueerden we elke stap van
onze voorgestelde aanpak en toonden aan dat onze aanpak beter presteerde
dan eenvoudige methoden voor bewegingsschatting.

Om samen te vatten zijn de bijdragen van deze thesis:

• Een nieuw laag-niveau algoritme voor voorgronddetectie in ware tijd,
met focus op moeilijke en veranderende belichtingsomstandigheden van
de scène [Grünwedel 11b], [Grünwedel 13];

• Een nieuwe gecentraliseerde volgmethode in een multicamera systeem die
gebruik maakt van bezettingskaarten [Grünwedel 11a];
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• Een nieuwe gedecentraliseerd multicamera systeem met een terugkop-
pelingslus, met of op een schaalbaar systeem voor het volgen van ver-
schillende mensen in ware tijd met zo klein mogelijke vertraging [Grün-
wedel 12a], [Grünwedel 14];

• een nieuw raamwerk om de dynamiek van vergaderingen te begrijpen op
basis van een multicamera netwerk [Grünwedel 12b].

In totaal heeft dit doctoraatsonderzoek geleid tot één A1 publicatie in een
internationaal peer-gereviewd tijdschrift [Grünwedel 14]. Eén artikel wordt
nog gereviewd [Grünwedel 13] en nog een ander is in voorbereiding [Xie 13].
Verder werden nog twaalf artikels gepubliceerd in de proceedings van inter-
nationale conferenties [Grünwedel 11a], [Grünwedel 11b], [Van Hese 11], [Je-
la£a 11], [Demeulemeester 11], [Grünwedel 12a], [Grünwedel 12b], [Xie 12],
[Nyan 12], [Guan 12], [Heyman 12] en [Nyan 13].
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Summary

In our society, video processing has become a convenient and widely used tool
to assist, protect and simplify the daily life of people in areas such as surveil-
lance, domotics, elderly care, tra�c monitoring and video conferencing. In
many applications, bandwidth constraints, privacy issues, and di�culties in
storing and analyzing large amounts of video data make applications costly
and technically challenging.

Thus, the growing number of cameras, the handling and analysis of these
vast amounts of video data enable the development of multi-camera appli-
cations that cooperatively use multiple sensors. For example, a cooperative
multi-camera network is often used to track objects and analyze their behavior
by observing the same event from di�erent viewpoints. In contrast to a single
camera approach, multi-camera networks are more robust and can handle more
di�cult situations (e.g. occlusions) in which one camera is not su�cient; for
instance, observing objects which are occluded by corners, other objects or ob-
stacles. However, this is not simple, given the vast amount of data. It becomes
even more complicated if the exchange of video data needs to be avoided for
privacy reasons.

The limitation of dealing with the tremendous amounts of information that
is contained in numerous video streams, is one major problem of these cameras.
In this context, the emergence of smart cameras is vital: they can process the
data locally and transmit less sensitive data, instead of real pictures, with
recognizable faces. This reduces not only privacy issues, but also potentially
solves the computational problem. Each camera acts as a computer and thus
limits the network data load.

In a multi-camera network, an application usually consists not only of one
single algorithm or method, but rather combines di�erent approaches to solve
the desired task. For such applications, the approaches can be roughly sum-
marized as:

• Low-level approaches: Low-level processing describes the process of
extracting features from raw video data in a camera.

• Mid-level approaches: Mid-level processing takes features of the low-
level processing into account and combines/fuses these features for a cer-
tain task, using a multi-camera network.

• High-level approaches: High-level processing operates on an abstract
level, and combines several low-level and mid-level cues to analyze activ-
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ities automatically, i.e. to correctly classify video streams into a set of
activities.

In this thesis, we deploy techniques ranging from low-level to high-level ap-
proaches, speci�cally designed for multi-camera networks.

As a low-level approach, we designed a novel low-level foreground detec-
tion algorithm for real-time tracking applications, concentrating on di�cult
and changing illumination conditions. We propose two new methods to sepa-
rate the foreground (FG) from the background (BG) to detect moving objects,
using either image gradients or image intensities in real time. The main idea
is to apply a decision-tree-like approach to FG/BG segmentation, i.e. we cal-
culate statistical measures at each node of the tree to classify a pixel either
as foreground or as background. As statistical background model we use a
long- and a short-term weighted average, based on di�erent learning factors.
In the proposed approaches we either use image gradients or image intensities
as statistical features of foreground and background regions. In particular, the
approaches concentrate on the aforementioned tracking approaches in di�cult
and changing illumination conditions, and adapt fast to such changes.

We compare the results of the proposed methods with the results of two
state-of-the-art FG/BG segmentation techniques. Results are obtained for sev-
eral indoor sequences with/without local and global lighting changes. We show
that the proposed methods, using either image gradients or image intensities,
perform best in sequences exposed to changes in illumination, compared with
the state-of-the-art methods.

The main part of this dissertation focuses on a detailed analysis of two
novel state-of-the-art real-time tracking approaches: a multi-camera tracking
approach based on occupancy maps and a distributed multi-camera tracking
approach with a feedback loop.

The multi-camera tracking approach based on occupancy maps can be con-
sidered as a centralized approach, i.e. the main part of the computation takes
place at a fusion center, a central processing unit, which receives data from
cameras in the network. The focus of this research was the development of a
real-time tracking application based on Bayesian �ltering strategies which can
possibly be used on smart cameras. The use of occupancy maps is based on
the work of [Tessens 10] and [Morbee 11].

We provide qualitative and quantitative results on several indoor sequences
(meeting scene) even under occlusions (by furniture and other people). On
one hand, the results show that we are able to track multiple people using a
camera network. The performance of our tracker is su�cient to obtain tra-
jectories of people for the tested sequences. On the other hand, the approach
imposes restrictions on, for example, the real-time processing. We point out
the limitations of the proposed approach and its restricted use down to a few
applications.

The distributed multi-camera tracking approach with a feedback loop is de-
signed as a decentralized processing architecture in which the most compute-
intensive video processing is performed within the smart cameras. In fact, since
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the requirements on the fusion center are so low, it is even possible to run the
fusion center algorithms on each camera and end up with a distributed archi-
tecture. This approach focuses on real-time, low-latency and scalable tracking
of multiple people. The feedback loop ensures that the cameras are up-to-date
about the most recent locations and motion states of tracked objects. In our
architecture no video transmission is needed for the purpose of tracking, not
even for regions of interest within the camera views.

In our system, each camera �rst performs low-complexity FG/BG segmen-
tation to segment the scene into moving blobs on a static background. Next,
each camera groups the blobs into bounding boxes (�cuboids�) with respect to
a world coordinate system, which most likely correspond to individual persons.
Then, the camera transmit a compact high-level description of moving objects
to the fusion center, which fuses these data using a Bayesian approach. Here,
we do not assume that a camera is accurate and precise in object tracking.
Thus, a camera can make mistakes which are corrected using the feedback of
a cooperative decision, using all available cameras in the network.

The performance of the proposed system is evaluated in terms of precision
and accuracy on indoor and meeting scenarios. We demonstrate that our ap-
proach works reasonably well, i.e. that a simple analysis of changes in pictures,
rather than motion estimation results, is reliable and accurate for tracking mul-
tiple people in a multi-camera network. The average accuracy is about 12 cm
and we achieve those results in a real-time, low-latency, and scalable system, re-
quiring low computational and network resources. Furthermore, a comparison
to state-of-the-art methods is provided, which shows that our system performs
at least as good as other methods.

As a high-level application we propose an approach to understand the dy-
namics in meetings - so called, smart meetings - using a multi-camera setup,
consisting of �xed ambient and portable close-up cameras. Here, �xed ambi-
ent cameras are used, for example, to keep track of the meeting attendees or
observe a certain area in the meeting, such as a white board or a screen. On
the contrary, portable close-up cameras, such as laptop cameras, usually have
only one speci�c participant in the �eld of view. For this purpose it is vital to
automatically analyze ongoing activities from one or multiple unknown video
streams (i.e. correctly classify a video stream into a set of activities). Making
use of low-level data, such as FG/BG segmentation, and mid-level data, such
as positional data of meeting attendants obtained by a multi-camera system
or face analysis, helps to de�ne models for several activities. For example, to
automatically create a complete protocol of a meeting, or to perform behavioral
analysis of the meeting (balanced meeting). We propose, as a particular appli-
cation, the detection of the best view within a multi-camera network, which is
streamed as a representative view to a remote participant. Our contribution
to this approach is threefold: At �rst, we estimate the extrinsic parameters
of the close-up cameras using head positions in the ambient cameras and the
corresponding close-up cameras. In the second step, the head poses (position
and orientation) are used to �nd common viewing areas where attendees look
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at for a certain time period. In the third step, these areas are analyzed and
used to detect overlapping areas based on the consensus of meeting attendees.

We provide qualitative and quantitative results on several experiments, us-
ing the collected video data from the Wireless Sensor Networks Lab at Stanford
University. Here, we evaluated every step of our proposed approach and showed
that our approach performs better than a simple motion estimation method.

To summarize, the main contributions of this thesis are:

• a novel low-level foreground detection algorithm for real-time applica-
tions, focusing on di�cult and changing illumination conditions [Grün-
wedel 11b], [Grünwedel 13];

• a novel centralized multi-camera tracking approach based on the use of
occupancy maps [Grünwedel 11a];

• a novel decentralized multi-camera system with a feedback loop, focusing
on real-time, low-latency and scalable tracking of multiple people [Grün-
wedel 12a], [Grünwedel 14];

• a novel framework to understand the dynamics in meetings, using a multi-
camera network [Grünwedel 12b].

In total, the research during this PhD resulted in one publication in an
international peer-reviewed journal [Grünwedel 14]. One article is under revi-
sion [Grünwedel 13] and one in preparation [Xie 13]. Furthermore, twelve pa-
pers have been published in the proceedings of international conferences [Grün-
wedel 11a], [Grünwedel 11b], [Van Hese 11], [Jela£a 11], [Demeulemeester 11],
[Grünwedel 12a], [Grünwedel 12b], [Xie 12], [Nyan 12], [Guan 12], [Heyman 12]
and [Nyan 13].
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1
Introduction

Everybody is a genius. But if you judge a �sh by its ability to climb a tree, it will
live its whole life believing that it is stupid.

�Albert Einstein

Over the past decades, large-scale camera networks have become increas-
ingly widespread due to decreasing costs of cameras and advances in minia-
turization, aiming to assist, protect and simplify the everyday life of people.
Lots of applications are emerging, such as security and surveillance, video con-
ferencing, medical care, and tra�c monitoring. In many applications, band-
width constraints, privacy issues, and di�culties in storing and analyzing large
amounts of video data make applications costly and technically challenging.

Thus, the growing number of cameras, the handling and analysis of these
vast amounts of video data enable the development of multi-camera applica-
tions that cooperatively use multiple sensors, ideally process video data locally
and share only compact and informative representation of the data to ful�ll
the desired task of an application - namely, distributed or decentralized multi-
camera systems.

A cooperative multi-camera network is often used to track objects and an-
alyze their behavior by observing the same event from di�erent viewpoints.
In contrast to single �xed-viewpoint cameras, multi-camera networks are more
robust and can handle more di�cult situations (e.g., occlusions). For instance,
in elderly care it is very important to detect when a person fell, or to ana-
lyze the long-term behavior of this person for Alzheimer's disease. In video-
conferencing, positional data for each meeting attendant can be very valuable.
The positional data can be used to de�ne regions of interest containing people,
and thus, to limit more detailed processing to those areas. In these applications,
both, the whereabouts and the behavior of people need to be analyzed.

An application usually consists not only of one single algorithm or method,
but rather combines di�erent approaches to solve the desired task. For such
applications, the approaches can roughly be summarized as:

• Low-level approaches: Low-level processing describes the process of
extracting features from raw video data, e.g., foreground/background
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segmentation, face detection, head pose estimation. The processing is
usually performed on, but not limited to, a single camera and operates
on a frame-by-frame basis.

• Mid-level approaches: Mid-level processing takes features of the low-
level processing into account and combines/fuses these features for a
certain task. Furthermore, such approaches involve the use of a single
camera, or multi-camera network. In particular, multi-camera networks
with overlapping views provide substantial advantages over a single �xed-
viewpoint camera in terms of accuracy and precision of the desired algo-
rithms. One essential task of a multi-camera network is the tracking of
objects (in most cases humans).

• High-level approaches: High-level processing operates on an abstract
level, and combines several low-level and mid-level cues such as fore-
ground/background segmentation, face detection, face recognition, head
pose estimation, or positional data. In most cases, the task is to analyze
activities automatically, i.e., to correctly classify video streams into a set
of activities. For example, in meetings it can be very valuable to create
a complete protocol, or evaluate the meeting e�ectiveness and e�ciency
automatically.

However, each of those levels are already very challenging research tasks. There-
fore, combining approaches of each level for the development of an application,
such as smart meeting analysis, is highly non-trivial.

In this thesis, we deploy techniques ranging from low-level to high-level
approaches, speci�cally designed for multi-camera networks. In our research,
we developed a multi-camera tracking system, focusing on real-time, low-latency
and scalable tracking of multiple people. The research was addressed in the
project �iCocoon�, describing a next-generation video conferencing system in
which real-time object tracking was one speci�c task.

As a low-level approach, we designed a low-level foreground detection algo-
rithms speci�cally for real-time tracking applications, concentrating on di�cult
and changing illumination conditions.

The main part of this dissertation focuses on a detailed analysis of two state-
of-the-art real-time tracking approaches: a multi-camera tracking approach
based on occupancy maps and a distributed multi-camera tracking approach
with a feedback loop. The �rst approach can be considered as a centralized
approach, i.e., the main part of the computation takes place at a fusion center,
which receives data from cameras in the network. The second approach is
designed as a decentralized processing architecture with a feedback loop, in
which the most compute-intensive video processing is performed within the
cameras. Moreover, the feedback loop ensures that the cameras are up-to-date
about the most recent locations and motion states of tracked objects.

As a high-level application, we address the problem of understanding the
dynamics in meetings - so called smart meetings. For this purpose, automati-
cally analyzing ongoing activities from one or multiple unknown video streams
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(i.e., correctly classify a video stream into a set of activities) is essential. Mak-
ing use of low-level data, such as foreground/background segmentation, and
mid-level data, such as positional data of meeting attendants obtained by a
multi-camera system or face analysis, helps to de�ne models for several activ-
ities, for example to create a complete protocol of a meeting automatically.
Here, the data is fused on a higher level, which assumes that the data can be
imprecise due to environmental changes, or inherent errors of the employed
algorithms. More precisely, the opportunity to perform research on activity
analysis in smart meetings arose from the collaboration with Prof. Aghajan.
He kindly o�ered the possibility to conduct three months of research at the
Wireless Sensor Networks Lab at Stanford University.

1.1 Contributions & Publications

The main novelties and contributions presented in this thesis are as follows:

• A novel low-level foreground detection algorithm for real-time applica-
tions was developed, focusing on di�cult and changing illumination con-
ditions. We propose two approaches. The main idea is to apply a decision-
tree-like approach to foreground/background segmentation, i.e., we calcu-
late statistical measures at each node of the tree to classify a pixel either
as foreground or as background pixel. As statistical background model,
we use a long- and a short-term weighted average, based on di�erent
learning factors. In the proposed approaches, we use either image gra-
dients or image intensities as statistical features of foreground and back-
ground regions. This research has been published at Advanced Concepts
for Intelligent Vision Systems (ACIVS) [Grünwedel 11b]. Furthermore,
one journal publications for Electronic Letters has been submitted [Grün-
wedel 13].

• A novel centralized multi-camera tracking approach was designed based
on the use of occupancy maps. The approach is considered to be cen-
tralized since the main part of the computations takes place at a fusion
center, although meta-data is already transmitted by each camera instead
of video data. The focus of this research was the development of a real-
time tracking application based on Bayesian �ltering strategies. The use
of occupancy maps is based on the work of [Tessens 10] and [Morbee 11].
We evaluate our methods on several indoor sequences with/without the
presence of local and global lighting changes. This work has been pub-
lished in the Proceedings of the IEEE/ACM International Conference on
Distributed Smart Cameras (ICDSC) [Grünwedel 11a].

• A novel decentralized multi-camera system with a feedback loop is pre-
sented, focusing on real-time, low-latency and scalable tracking of multi-
ple people. In this system, the main part of the low-level video processing
takes place in the cameras. Therefore, each camera transmits a compact
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high-level description of moving objects to the fusion center, which fuses
these data using a Bayesian approach. Here, we do not assume that a
camera is accurate and precise in object tracking. Thus, a camera can
make mistakes which are corrected using the feedback of a cooperative
decision using all available cameras in the network. The performance of
the proposed system is evaluated in terms of precision and accuracy on
indoor and meeting scenarios. Furthermore, a comparison to state-of-
the-art methods is provided which shows that our system performs at
least as good as other methods. This work has led to one journal publi-
cation [Grünwedel 14] and a conference publication in the Proceedings of
Society of Photo-Optical Instrumentation Engineers (SPIE) Conference
Series [Grünwedel 12a].

• A novel framework to understand the dynamics in meetings was devel-
oped using a multi-camera network, consisting of ambient and close-up
cameras. In our approach, we focus, as a particular application, on de-
tecting the best view within a multi-camera network, which is streamed
as a representative view to a remote participant. Our contribution to
this approach is threefold: First, we estimate the extrinsic parameters of
the close-up cameras using head positions in the ambient cameras and
the corresponding close-up cameras. In the second step, the head poses
(position and orientation) are used to �nd common viewing areas where
attendees look at for a certain time period. In the third step, these areas
are analyzed and used to detect overlapping areas based on the consensus
of meeting attendees. This work has been published in the Proceedings of
the IEEE/ACM International Conference on Distributed Smart Cameras
(ICDSC) [Grünwedel 12b].

In total, the research during this PhD resulted in one publication in an
international peer-reviewed journal [Grünwedel 14]. One article is under revi-
sion [Grünwedel 13] and one in preparation [Xie 13]. Furthermore twelve pa-
pers have been published in the proceedings of international conferences [Grün-
wedel 11a], [Grünwedel 11b], [Van Hese 11], [Jela£a 11], [Demeulemeester 11],
[Grünwedel 12a], [Grünwedel 12b], [Xie 12], [Nyan 12], [Guan 12], [Heyman 12]
and [Nyan 13].

The design of the multi-camera system has been performed in close col-
laboration with my colleague Vedran Jela£a. Therefore, parts of the general
multi-camera concept also appear in his PhD dissertation. However, the con-
cept is not the main part of his thesis. His focus lies in the description of objects
using signatures within the multi-camera system. The work on low-level fore-
ground detection algorithms for real-time applications is not mentioned in his
thesis. Some other colleagues in the Image and Interpretation (IPI) research
group at Ghent University, and in Vision Systems (VIS) at Hogeschool Gent
have also worked on the multi-camera system, though more based on an engi-
neering point of view. Their contribution, together with the assigned project,
will be mentioned in Chapter 2.
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Note that, for example, the multi-camera tracking approach using occu-
pancy maps is built on the work of [Tessens 10] and [Morbee 11], and was
extended to a Bayesian tracking approach. Furthermore, the work of [Tee-
len 10] on geometric uncertainty models for correspondence problems between
cameras is also related.

The research performed at Stanford University, describing a framework to
understand the dynamics in meetings, was done in collaboration with Xingzhe
Xie. While her PhD is still in the early stage, some concepts will also be part
of her PhD. Nevertheless, in particular, the application to �nd the best view
for a remote participant is solely part of this dissertation.

1.2 Outline

As already mentioned, this thesis provides an overview of a product chain
ranging from low-level to high-level applications. Nevertheless, the focus of
this thesis lies in object tracking using a network of multiple cameras. For this
purpose, a new multi-camera system was developed.

The outline of this thesis is as follows: in Chapter 2 we brie�y describe the
context and purpose of our multi-camera system, including the contributions
of other research groups and colleagues.

In Chapter 3 we focus on low-level foreground detection algorithms for real-
time applications such as object tracking. Two new methods are proposed
to separate the foreground (FG) from the background (BG) to detect moving
objects, using either image gradients or image intensities in real time. We
evaluate our methods on several indoor sequences with/without the presence
of local and global lighting changes. Moreover, we also present a comparison
to other state-of-the-art methods, e.g., the Mixture of Gaussians (MoGs).

Chapter 4 addresses the problem of tracking multiple individuals by using
occupancy maps in a network of overlapping smart cameras. We combine
Bayesian �ltering strategies with occupancy maps obtained by the work of
[Tessens 10], [Morbee 11]. The focus lies in low-level processing, resulting in a
real-time system which can potentially be used on smart cameras. We provide
qualitative and quantitative results on several indoor sequences (meeting scene)
even under occlusions (by furniture and other people). Furthermore, we explain
the advantages and disadvantages of this approach, leading to the proposed
research in Chapter 5.

In Chapter 5 we present a decentralized multi-camera system focusing on
real-time, low-latency and scalable tracking of multiple people. In our system
all low-level video processing is performed on smart cameras. The smart cam-
eras transmit a compact high-level description of moving objects to the fusion
center, which fuses these data using a Bayesian approach. Moreover, a feedback
loop ensures that each smart camera is up-to-date about the most recent loca-
tions and motion states of tracked individuals. We evaluate the performance of
the proposed system in terms of precision and accuracy, in indoor and meeting
scenarios where individuals are often occluded by other people and/or furni-
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ture. Furthermore, we compare our approach to state-of-the-art methods and
show that our system performs at least as good as other methods. However,
our system is capable of running in real-time and therefore produces instant
results.

Chapter 6 describes a high-level application based on the previously men-
tioned low-level and mid-level applications. We present an approach to un-
derstand the dynamics in meetings using a multi-camera setup, consisting of
�xed ambient and portable close-up cameras. In particular, we focus on an
applicable detection of the best view of the multi-camera setup, to stream this
representative view to a remote participant. The best view hereby refers to
the most informative video stream within the multi-camera setup. We demon-
strate the proof-of-concept of this approach and provide its performance based
on several meeting experiments.

Chapter 7 presents the general conclusions of this dissertation.



2
Overview

In the last decades, video processing has become a convenient and widely used
tool to assist, protect and simplify the daily life of people in areas such as
surveillance, domotics, elderly care, tra�c monitoring and video conferencing.
Cameras, which become more and more widespread, in airports, cities or even
indoor environments, provide visual information of a scene to monitor, analyze
certain areas, or track individuals for special purposes.

For instance, very promising, emerging applications include monitoring the
crowd �ow for safety reasons (e.g., in train stations or airports) and domotic
applications, such as to turn on/o� light or heating in buildings to save energy.
In these applications, both, the whereabouts and the behavior of people need
to be analyzed. Behavior analysis plays an important role for such applications
and facilitates the detection of abnormal or rare events. For example, in home
care �elds (e.g., elderly care), it is important to detect people who fell or behave
in a confused manner (e.g., Alzheimer's disease).

One major problem of these cameras is the limitation in dealing with the
tremendous amounts of information contained in numerous video streams. Cur-
rently the analysis often consists of the interpretation by human operators.
Moreover, lots of data is recorded automatically and stored for a certain period
to possibly be processed or analyzed manually later on. However, it is often
impractical and impossible to track the information of interest quickly through
large volumes of multiple video recordings. Moreover, the aforementioned ap-
plications could raise privacy issues, which can be minimized by exchanging
only information of interest rather than the video itself. In this context, the
emergence of smart cameras is interesting [Belbachir 10]: they can process the
data locally and transmit less sensitive data, like motion patterns, instead of
real pictures with recognizable faces. This limits the privacy issue and poten-
tially solves the computational problem. Each camera acts as a computer and
thus limits the network data load.

Moreover, the advantage of visual sensors such as smart cameras, espe-
cially processed collaboratively, lies in the type of gathered information. It is
possible for applications to extract di�erent features like color, edges, depth,
feature points, etc., which are obtained locally by foreground/background seg-
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mentation, object detection, object tracking, etc. However, cameras are in
general preferred over other sensors, e.g., Bluetooth or thermal sensors. For
example, on the one hand, high resolution cameras are able to get even a
detailed view of a speci�c person further away from the camera for face anal-
ysis. On the other hand, low resolution cameras are less expensive and can
be used for quanti�cation of people in a room or for an indication of their
whereabouts [Hengstler 06,Hengstler 07].

During the last two decades extensive literature on single-camera applica-
tions emerged, for example on detection and tracking algorithms, including
even multiple targets. However, the problem of most algorithms lies in their
complexity and they are often not suited for real-time applications. Moreover,
most of them are restricted to speci�c situations and due to projective geometry,
information retrieval in a single camera is limited. For example, it is di�cult
to extract 3D positions of one or multiple targets within a single-camera view.

All of the aforementioned applications can be greatly simpli�ed by combin-
ing the information of multiple cameras. In contrast to a single camera ap-
proach, multi-camera networks are more robust and can handle more di�cult
situations (e.g., occlusions) in which one camera is not su�cient; for instance,
observing objects which are occluded by corners, other objects or obstacles.
Therefore, multi-camera systems became more and more popular in the recent
years. Multi-camera systems, especially with overlapping views provide sub-
stantial advantages over a single �xed-viewpoint camera and their use becomes
necessary when applications need to accurately detect and track people in dif-
�cult situations (e.g., occlusions, illumination changes) [Aghajan 09]. Multiple
cameras observe a broad scene and o�er therefore multiple images of the same
event from di�erent viewpoints, which help tracking objects and analyzing their
behavior. When processed collaboratively, these extra data can overcome the
limitations of �xed viewpoint cameras. However, this is not simple given the
vast amount of data. It becomes even more complicated if the exchange of
video data need to be avoided for privacy reasons.

One essential task of a multi-camera network is the tracking of objects (in
most cases humans). Here, security and surveillance applications of individuals
for path-retracing is the best known application [P�ugfelder 10], [Morris 08].
For instance, in video-conferencing, positional data for each meeting attendant
can be very valuable. Here, the positional data can be used to de�ne regions
of interest containing people, to limit more detailed processing to those areas.
It can be helpful to focus pan-tilt-zoom cameras (PTZ camera) on speci�c
people [Aghajan 09], to determine when they enter and leave the room, to
determine their identity even when they do not currently face a camera, and
even to infer some activities [Fathi 11] such as getting a cup of co�ee, . . .

Several methods for object tracking using multi-camera networks have ap-
peared in literature, such as [Kim 06], [Fleuret 08], [Khan 09], [Taj 09] to name
a few. Most of them focus on computer vision tasks such as segmentation,
motion analysis and 3D position estimation and pay little attention to the �co-
operation with minimal data exchange� aspect. However, an equally important
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problem is the optimal design of the camera network as a whole, taking into
account:

• The distribution of work within the network: Which part of the analysis
will be done in the smart camera and which within the network? How
to avoid processing overload in any given camera by distributing work
to other cameras? How to achieve real-time processing within a camera
network?

• The information integration problem: What is the most likely estimate
of the current position of any object given the data from all cameras?

• The information distribution problem: What is the optimal amount of
information to send from each camera, avoiding that several cameras send
the same redundant information?

From this point of view, combining real-time, low-latency and scalability,
accuracy and tracking loss requirements, is highly non-trivial.

Often the low-latency and scalability problem is neglected in multi-camera
networks; e.g., centralized processing of multiple video streams creates not only
a computing but also a communication bottleneck. One way to address this
problem is to shift the computation load towards the smart camera and to
limit the data exchange within the camera network by transmitting compact
and representative data, instead of whole pictures. In this way, no video trans-
mission is needed for the purpose of object tracking, not even for regions of
interest within the camera views. When video transmission is needed for other
purposes, the positional information provided by the tracking system can help
to reduce the overall video bandwidth by restricting transmission to regions of
interest. However, many detailed image analysis algorithms, e.g., face recogni-
tion, can run on a single (smart) camera and do not require video transmission.

A crucial pre-processing step in many applications aimed at the separa-
tion of moving objects (the foreground) from a background scene is fore-
ground/background segmentation. Many techniques use this operation as part
of their work �ow; e.g., tracking algorithms may focus on foreground regions
to detect moving objects and therefore speed up object-matching, or to track
objects in space and time [Yilmaz 06]. Foreground/background segmentation
is computationally cheap and can be processed on a smart camera (see Chapter
3). Therefore, it is usually the �rst choice of available low-level features such
as tracking applications [Khan 09], [Fleuret 08].

In the above applications, which focus on individual tracks of individual
people, avoiding tracking loss is essential, i.e., tracks of individuals should not
be lost due to occlusions, and individuals should not be mixed up when they
get close together. One way to avoid this problem is to rely on high-level fea-
ture analysis, e.g., to periodically re-detect and re-identify people [Babenko 11].
Such algorithms are computationally intensive and it is often better to restrict
their use. For instance, they could only be activated when there is doubt about
the current tracks, or they could be run every few seconds only. Alternatively,
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high-level algorithms can be used to correct tracking losses when they are al-
ready executed for other purposes. For example, we analyze people's faces
when they enter the room or when they sit down in front of a web-cam [De-
boeverie 11]. This information can correct some tracking loss problems, but
often with a large delay. In conclusion, while algorithms relying on high-level
analysis are certainly valuable, it is still very important for any tracking algo-
rithm to minimize tracking loss in the �rst place.

In addition, accuracy is a very important requirement in tracking appli-
cations. A higher tracking accuracy helps to reduce tracking losses, thus a
reduced accuracy is a sensitive indicator of �near losses� [Aghajan 09]. Also, a
high accuracy is needed for some types of detailed behavior analysis, e.g., to de-
tect interactions between people (people who know each other well stand closer
to each other) or to detect people who are sitting close to each other [Fathi 11].
For instance, in video-conferencing applications people sometimes move close
to one another. In such an application the tracking results need to be at least
as accurate as the width of a person.

Reliable, accurate tracking of multiple people in crowded scenes is still a very
challenging task, mainly due to frequent occlusions and environmental changes.
Even detecting and tracking a single non-occluded person sometimes poses
problems for state-of-the-art single-camera tracking algorithms, e.g., due to
poor illumination or lighting changes. Tracking multiple people in the presence
of furniture and other obstacles, poses many additional problems. One way to
address these problems is to use foreground/background segmentation methods
which can be robust to environmental changes.

The remainder is structured as follows: Section 2.1 provides an overview
of the proposed multi-camera system on which the following Chapters concen-
trate. In Section 2.2, we brie�y outline the context and purpose of the project
�iCocoon� including the work carried out by the Image Processing and Inter-
pretation (IPI) research group of Ghent University and the Vision Systems
(VIS) research group at the Hogeschool Gent. Finally, the contributions of
each person, involved in the project, are described in Section 2.3.

2.1 The Multi-camera system

For the purpose of object tracking, the Image Processing and Interpretation
(IPI) research group, in cooperation with the Vision Systems (VIS) research
group at the Hogeschool Gent, developed a multi-camera system focusing on
real-time, low-latency and scalable tracking of multiple people. Especially, real-
time and low-latency operations are needed in many indoor tracking applica-
tions because they need to react quickly to changes in people's positions.

This research was addressed in the project �iCocoon� (Immersive COmmu-
nication by means of COmputer visioN) which was carried out with academic
knowledge and industrial companies present in Flanders. The project describes
a next-generation video conferencing system in which real-time object tracking
was one speci�c task. The purpose of the project �iCocoon� was to drasti-
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Figure 2.1: Multi-camera architecture. The idea of this multi-camera system is that
each smart camera performs the most compute-intensive video processing on-site.
Low-level features are extracted and processed locally. Furthermore, these features
can be used to estimate the local states of each individual. A compact representation
is sent to the fusion center, which fuses the information into a global estimate resulting
in the best possible global state for each individual.

cally change the way people communicate remotely by creating third-generation
video conferencing applications, based on world-class video technologies (such
as Computer Vision, Scene Understanding and 3D). The project resulted in
a real-time demonstration of video selections, display and symbolic overview
features of a third-generation video conferencing application.

The idea of our multi-camera system is based on a decentralized tracking
approach. In general, multi-camera tracking approaches can be categorized
into centralized, decentralized and distributed tracking approaches, as shown
in [Taj 11]. Centralized approaches transmit all video streams to one or more
fusion centers and process the video on these fusion centers. The fusion centers
need to be very powerful computers and need to be able to sustain high com-
munication bandwidths. Therefore, centralized processing of multiple video
streams creates not only a computing but also a communication bottleneck.
Decentralized and distributed tracking approaches group cameras into clusters
which communicate with a local fusion center (decentralized) or with each other
(distributed tracking). This allows the construction of huge smart camera net-
works without straining network and server resources. It also only requires
simple processing in the smart cameras, leaving precious resources for other
video processing algorithms if needed. We have built such a multi-camera sys-
tem with one fusion center and six (smart) cameras.
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In our research we followed two di�erent approaches: a multi-camera track-
ing approach based on occupancy maps and a distributed multi-camera tracking
approach with a feedback loop. The former can be considered as a centralized
approach, although parts of the processing are already carried out on the smart
cameras (Chapter 4). The latter describes a decentralized processing architec-
ture with a feedback loop, in which the most compute-intensive video processing
is performed within smart cameras. In fact, since the requirements on the fu-
sion center are so low, it is even possible to run the fusion center algorithms
on each camera and end up with a distributed architecture (Chapter 5). In
this PhD we focus on the research and the development of these two di�erent
tracking approaches and explain them in detail.

Figure 2.1 illustrates the general idea of our multi-camera system. In our
system, each smart camera �rst performs low-level feature extraction. These
features can already be used to estimate the local state of each individual. The
fusion center gathers data from each smart camera and calculates a global esti-
mate of the most likely state of each individual. Here, a compact representation
is sent to the fusion center, rather than images which keeps the communication
at a minimum level and therefore saves bandwidth.

Relevant previous work at the IPI research group includes occupancy map-
ping [Tessens 10], [Morbee 11].

Tessens et al. developed a technique to calculate ground occupancy maps
with a set of calibrated and synchronized cameras [Tessens 10]. In particular, a
fusion method of the ground occupancies based on Dempster-Shafer theory of
evidence was proposed. The method yields very accurate occupancy detection
results and it outperforms the state-of-the-art probabilistic occupancy map
method and fusion by summing in terms of concentration of the occupancy
evidence around ground truth person positions.

In [Morbee 11], building on the previously mentioned work of [Tessens 10],
line sensors were used to calculate an accurate occupancy map. The emphasis in
the work is the study of the usage of di�erent sensors (cameras, line sensors),
and their data output types (full images, scan lines from full images, scan
lines from light-integrating line sensors). An overall comparison between the
di�erent systems was presented covering the obtained occupancy map quality,
the memory and computational requirements, the price of the system, its power
consumption and its privacy-friendliness.

2.2 The iCocoon Project

The purpose of the project �iCocoon� (Immersive COmmunication by means
of COmputer visiON) was to drastically change the way people communicate
remotely. This has been realized by creating third-generation video confer-
encing applications based on world-class video technologies (such as Computer
Vision, Scene Understanding and 3D). The targeted solution provides a much
better sensation to the communicating partners and better understands, and
takes into account the context in which the communication is taking place.
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Figure 2.2: iCocoon - meeting room setup. This �gure depicts the way people could
communicate remotely. A meeting room will be equipped with �xed and portable
cameras observing the on-going meeting ,using world-class video technologies (such
as Computer Vision, Scene Understanding and 3D).

The project was carried out with academic knowledge and industrial compa-
nies present in Flanders1. The goal of this project was to perform research on,
and to realize a proof of concept on a new generation of video communication
systems, built with innovative 2D and 3D computer vision technologies.

The iMinds project �iCocoon� targeted a new generation of telepresence
systems for professional use, which o�er an immersive communication sensa-
tion. Its main characteristics are the a�ordable price, �exible communication
and easy set-up due to smart multi-camera networks, intelligent context under-
standing of the scene, 3D capturing, e�cient information encoding & transport,
and innovative rendering as well as displaying techniques (Figure 2.2). From
this perspective, the solution is di�erent from current high-end video conferenc-
ing systems which are expensive, targeted at formal communications between a
relatively small number of people and which require dedicated communication
rooms.

The project proposal addresses the aforementioned issues, and moreover,

1More details can be found at http://www.iminds.be/en/research/overview-projects/

p/detail/icocoon-2

http://www.iminds.be/en/research/overview-projects/p/detail/icocoon-2
http://www.iminds.be/en/research/overview-projects/p/detail/icocoon-2
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(a) Smart meeting room

(b) Composed virtual view

Figure 2.3: iCocoon - system overview. In (a), the goal is to visualize the captured
information using a multi-camera network in the most e�ective way. The system
produces a consistent and ongoing overview of the virtual communication environment
via a combination of live and synthetic video streams in the form of a 3D dynamic
rendering of a virtual meeting room in which the participants are displayed as moving
avatars (b). Examples pictures are taken from the project video produced by Alcatel-
Lucent [Alcatel-Lucent 12].
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includes the following ideas:

1. Computer vision technologies are used to analyze the scene and human
behavior in each meeting room. The data is captured from a distributed
smart camera network which will register, in an inexpensive way, ev-
ery ongoing activity in the room. The smart camera network will be
highly plug-and-play due to automatic camera calibration. The visual
cues which are important for communication control, are detected and
annotated such that the system can take decisions over which events are
important to visualize to an end-group/user on the remote side.

2. On the display side, the goal is to visualize the captured information
in the most e�ective way. This is done by automatically showing the
most relevant actions by automatically editing the appropriate camera
shots from all available 2D video data. This seems laborious, but it
produces a consistent and ongoing overview of the virtual communication
environment via a combination of live and synthetic video streams. The
latter takes the form of a dynamic 3D rendering of a virtual meeting room
in which the participants are displayed as moving avatars (see Figure 2.3
and 2.4).

3. In the long term, the realism of this teleconferencing experience could be
enhanced using techniques from augmented reality. For this reason, the
project investigated the capture and compression of 3D models of people,
meeting rooms, furniture and other artifacts, to compose a virtual meet-
ing room. It also investigated the di�culties involved in the 3D capture
of persons in real-time and provide a non-real-time, semi-interactive sim-
ulation meant to be able to probe users on how they would experience
such a system. Therefore, low-resolution versions of these artifacts and
persons were shown in the avatar display.

The project aimed at a real-time demonstration of the video selection, the
display and the symbolic overview features. For that purpose, two tracking
environments based on smart camera networks were set up at Hogeschool Gent
and at Alcatel-Lucent in Antwerp.

2.3 Contributions & Credits

The research contribution to the project �iCocoon� was done by the Image
Processing and Interpretation (IPI) research group at Ghent University and
the Vision Systems (VIS) research group at the Hogeschool Gent.

For a video-conference meeting it is necessary to determine positions of
people within a meeting room in real-time. The research goal of the project
was to determine the location, pose, body motion and head orientation of people
in meeting rooms, using low-latency multi-camera video processing for a video
conferencing application. A smart camera solution was aimed at, in which
most of the processing is done within each smart camera. In this context, the
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(a) Symbolic room

(b) Presenting event

Figure 2.4: iCocoon - system overview. In (a), a virtual meeting room provides an
overview of the participants and events happening in a meeting. A real-time tracking
system, using a multi-camera network, is used to estimate the whereabouts of the
participants, and therefore detects events such as an ongoing presentation (b). For
such a system accuracy is very important to prevent the tracking system mistakenly
following another participant. Representative pictures are taken from the project
video produced by Alcatel-Lucent [Alcatel-Lucent 12].
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smart cameras output meta-data rather than video data, whenever possible.
Therefore, the data exchange and the network load is limited. This approach
di�ers radically from the traditional approaches which jointly analyze all video
streams in a central location.

However, such a task is challenging due to frequent occlusions of people
by furniture and other people in a meeting room environment. An additional
challenge is imposed by turning lights on or o�, or changing presentation slides,
which in�uence the lighting conditions.

As already mentioned, our research approach was twofold: we started with
the development of a multi-camera tracking approach based on occupancy
maps. Due to the real-time and low-latency requirement and other limita-
tions (described in Chapter 4), we also developed a scalable and distributed
multi-camera tracking with a feedback loop.

To deal with the occlusions, we use a multi-camera network, viewing a room
from di�erent viewpoints, to monitor participants of a meeting. However, this
creates new challenges, especially in terms of real-time processing and fusion
of the acquired data from di�erent cameras.

Our proposed system is scalable because it requires a very small commu-
nication bandwidth and only light-weight processing on a �fusion center� that
produces �nal tracking results. Thus, the fusion center does not need to be
sophisticated and expensive, and can also be duplicated to increase reliability.
All low-level video processing is performed on smart cameras. The smart cam-
eras transmit a compact high-level description of moving people to the fusion
center, which fuses this data using a Bayesian approach. In our system, the
camera-based processing takes feedback from the fusion center about the most
recent locations and motion states of tracked people into account. Based on
this feedback and background subtraction results, the smart cameras generate
a best hypothesis for the location of each person.

Furthermore, to deal with the lighting changes, we developed an edge-based
foreground/background segmentation method. The proposed method is more
robust to global and local lighting changes than the methods published so far.
This method is used on each smart camera to determine regions of interest that
contain motion, which in turn is used to track objects.

At the Image Processing and Interpretation (IPI) research group, Peter Van
Hese, who was supervising the project, Dirk Van Haerenborgh, Jorge Oswaldo
Niño-Castañeda, Vedran Jela£a and Sebastian Grünwedel were involved in the
project. At the Hogeschool Gent, the team consisted of Dimitri Van Cauwelaert
and Francis Deboeverie.

An experiment room was set up for this project at the Hogeschool Gent
with help of Dimitri Van Cauwelaert and Dirk Van Haerenborgh and under
the supervision of Prof. Dr. Ir. Peter Veelaert. The room was equipped with
six cameras, four side-view and two top-view cameras, operating on a frame
rate of 20 FPS (Figure 2.5). The cameras were mounted at ceiling height
(3m approximately), and extrinsically calibrated and synchronized up to frame
accuracy. Dimitri Van Cauwelaert and Dirk Van Haerenborgh took care of this
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Figure 2.5: HoGent - setup overview. An experiment room was set up for the project
�iCocoon� at the Hogeschool Gent. The room is equipped with six cameras, four side-
view and two top-view cameras, operating at a frame rate of 20 FPS. The cameras
were mounted at ceiling height (3m approximately), and extrinsically calibrated and
synchronized up to frame accuracy.

part of the project, as well as running experiments and testing the system.

Francis Deboeverie worked on the face recognition part of the project. Its
goal was to obtain a best view selection based on face recognition with geo-
metric features. In his research, faces are represented as Curve Edge Maps
(CEMs), which are collections of polynomial curves with a convex region. Face
recognition is performed by matching face CEMs driven by histograms of image
intensities and histograms of relative positions. Moreover, the face recognition
was also used to recognize the attendees of a meeting in the distributed real-
time tracking approach.

The design of the previously described tracking approaches were planned
and implemented by Jorge Oswaldo Niño-Castañeda, Vedran Jela£a and Se-
bastian Grünwedel.

The research work of Jorge Oswaldo Niño-Castañeda was concentrating on
person detection and appearance modeling, which is ongoing research. More-
over, he was working on behavior analysis which involved the detection of events
for each meeting attendee, such as �standing�, �sitting� or �moving�. Further-
more, he helped implementing a small part of the system architecture.
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The emphasis of Vedran Jela£a's work lies on �nding features and feature
matching methods to robustly track vehicles and people in real-time under
severe occlusions and in challenging lighting conditions. His work includes
multi-camera tracking of vehicles in tunnels by surveillance cameras with non-
overlapping views, where he addressed both tracking in a single and multi-
camera views. Within this project, he designed, in close cooperation with
Sebastian Grünwedel, both tracking approaches: a multi-camera tracking ap-
proach based on occupancy maps and a distributed multi-camera tracking ap-
proach with a feedback loop. Furthermore, he helped implementing a small
part of the system architecture.

Within the project, Sebastian Grünwedel was responsible for both tracking
approaches, including design, implementation and testing. This was performed
in collaboration with the aforementioned colleagues. Precisely, the work in-
cluded a research- and implementation-related task. The main part of this
PhD thesis consists of this research. The focus of this PhD thesis lies on a de-
tailed explanation of both tracking approaches, regarding scalability, accuracy
and precision, as well as limitations.

The implementation of such a system resulted in a real-time demonstrator
at Hogeschool Gent, which was realized within the project �iCocoon�.

Furthermore, Sebastian Grünwedel developed an edge-based FG/BG seg-
mentation approach which is used in both tracking systems and more robust
to changes in illumination than current state-of-the-art approaches.
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3
Low-Level Robust

Foreground Detection

Foreground/background segmentation is a crucial pre-processing step in many
applications, aimed at the separation of moving objects (the foreground) from
a background scene. Many techniques use this operation as part of their work
�ow. For instance, tracking algorithms may focus on foreground regions to
detect moving objects (and therefore speed up object-matching), or to track
objects in space and time [Yilmaz 06].

Humans are able to easily distinguish moving objects from a background
scene, but this remains one of the most challenging tasks in the �eld of com-
puter vision despite many available techniques to detect moving objects in
indoor and outdoor scenes, as reviewed by Cristani et al. [Cristani 10]. The
following properties are usually expected from a detection algorithm: accurate
detection of moving objects (in space and time), robustness to changing envi-
ronmental condition, especially changes in illumination, real-time processing,
and low latency. The last two properties are essential for tracking applications,
the latter on which we will focus further. This is of vital importance for the
tracking approaches explained later in Chapters 4 and 5. More speci�cally,
the real-time requirement, as explained above, is needed to achieve a reason-
able tracking performance, since tracking approaches perform best or at least
bene�t when they operate on the camera frame rate.

Nowadays, the computation load of low-level algorithms, such as fore-
ground/background segmentation, can be shifted to devices with limited pro-
cessing power, such as smart cameras [Soro 09]. One way to achieve real-time
processing is to distribute the processing to every smart camera, which are
operating simultaneous and in parallel. Since processing time is valuable, the
detection of moving objects should consume only a few percent of the avail-
able processing time for such devices with limited processing power, giving
the remaining processing power to more resource-intensive tasks (e.g., tracking
applications). Moreover, results should be available with little or even no delay.

Furthermore, most techniques in literature perform poorly when light
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changes suddenly [Cristani 10]. Especially in an indoor scenario case, such
as a meeting, there are often problems to distinguish foreground and back-
ground regions when sudden and/or partial lighting changes occur. Therefore,
the task to separate moving objects from the background scene still remains
challenging.

In this chapter, we focus on low-level foreground detection algorithms for
real-time applications. We propose two new methods to separate the fore-
ground (FG) from the background (BG) to detect moving objects, using ei-
ther image gradients or image intensities in real time. In particular, the ap-
proaches concentrate on the aforementioned tracking approaches in di�cult and
changing illumination conditions, and adapt fast to such changes. Therefore,
they outperform state-of-the-art methods, such as the Mixture of Gaussians
(MoGs) [Zivkovic 04]. Applications usually impose two con�icting require-
ments on the foreground/background methods: accuracy and fast response to
sudden changes in the background scene. Usually people who are, e.g., sitting
still for a long time do slowly become part of the background. We focus on
robust detection of moving objects (with loss of accuracy) rather than on an
accurate localization (both in space and time) as most foreground detection
methods do [Cristani 10]. Therefore, in our �rst approach we use image gra-
dients as statistical features of foreground and background regions and de�ne
foreground as regions containing moving edges, and background as regions con-
taining static edges of a scene. In particular, in this approach we are interested
in �nding edges on moving objects.

The main idea of both proposed approaches is to apply a decision-tree-like
approach to foreground/background segmentation, i.e., we calculate statistical
measures at each node of the tree to classify a pixel either as foreground or
as background pixel. As a main novelty of the proposed methods, we need
only two decision steps to separate the foreground (moving objects) from a
background scene. As statistical background model we use a long- and a short-
term weighted average, based on di�erent learning factors.

We compare the results of the proposed methods with the results of two
state-of-the-art FG/BG segmentation techniques. As one of the proposed meth-
ods detects edges on moving objects, in contrast to FG/BG methods which
produce binary foreground blobs, we arti�cially �ll the interior of moving ob-
jects by clustering edges and �lling those clusters with a convex hull technique.
The results are obtained for several indoor sequences with/without the pres-
ence of local and global lighting changes. In particular, we chose the Mixture
of Gaussian (MoG) method of [Zivkovic 04] and the sample-based approach
ViBe [Barnich 09] as a reference to the proposed method. We show that the
proposed methods using either image gradient or image intensities, perform
best in sequences exposed to changes in illumination.

This chapter is structured as follows: In Section 3.1, we discuss related work.
In Section 3.2, the idea of the proposed methods is explained, followed by the
background modeling for each method (Section 3.3 and 3.4). In Section 3.5,
experimental results will be discussed in detail and it will be shown that the
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proposed methods perform best for the tested sequences in presence of lighting
changes. Section 3.6 concludes this chapter.

3.1 Related Work

In the following section, we provide an overview of state-of-the-art approaches
in foreground/background segmentation. A comprehensive review about fore-
ground/background segmentation approaches, even taking multiple sensors into
account, is given by [Elhabian 08], [Cristani 10], [Bouwmans 11], to which the
reader is referred to for more details. Moreover, an evaluation of several back-
ground subtraction techniques can be found in [Brutzer 11] and [Parks 08].

The following background subtraction methods model each pixel indepen-
dently. A very �rst method for moving object detection dates back to the
'70s. It analyzes the di�erences between pixels in adjacent frames [Jain 79]. In
this paper, the background scene at each time instant is the previous frame.
Although computationally cheap, this approach is too simplistic for most ap-
plications. An improvement is made by progressively learning the background
scene, instead of assuming that it is equal to the previous frame [Chien 02].
Pixels are labeled as stationary if the di�erence between consecutive frames is
below a threshold, while the number of frames in which a pixel has remained
stationary is counted. And when this count is su�ciently high, the pixel is
copied to the background frame.

More advanced techniques build statistical models of the background. Usu-
ally, the background model consists of separate models for each pixel. These
pixel models take the form of an empirical distribution, a set of statistics such
as mean and variance, or the estimated parameters of a probability density
function. These models are derived from the pixel values at the same posi-
tion in previous frames. In [Lo 00], [Cucchiara 03] the median over n previous
frames is used. The method is relatively slow and has memory requirement of
n frames.

A popular approach is to model background pixels as a single Gaussian
distribution [Wren 97] or as a Mixture of Gaussian (MoG) distributions [Fried-
man 97], [Stau�er 00], [Power 02]. The latter is widely employed in the surveil-
lance community. According to this model, pixel values are samples of a random
distribution consisting of a mixture of usually three to seven Gaussian densities
per pixel. The incoming pixels are matched to one of the components of the
Gaussian mixture model. If an adequate match is found, the parameters of
the matched Gaussian component are updated. Otherwise, the least probable
component is replaced with a new one, representing the incoming pixel. The
Gaussian components that are more frequently matched represent the back-
ground model.

The MoG model can adapt to changes in illumination by changing the adap-
tation rate. However, this adaptation takes several frames during which the
performance is generally very poor. Moreover, the MoG background modeling
algorithm has two important drawbacks. First, the storage of the model pa-
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rameters requires at least 3×K frames of memory, where K is the number of
mixture components. Secondly, this model does not take spatial dependencies
between adjacent pixels into account.

In general, a number of improvements to the original algorithm are known,
which also include adaptations to lighting changes by changing the adap-
tation rate in order to permit a faster evolution of the BG model [Kaew-
TraKulPong 01], [Lee 03], [Mittal 04], [Zivkovic 06], [Klare 09]. For example,
Zivkovic et al. use a variable number of Gaussians to model the color value
distribution of each pixel [Zivkovic 06]. This approach adapts the number of
Gaussian components on-line to statistical changes to improve the processing
time and make it suited for real-time applications. Another very similar ap-
proach is presented in [Klare 09] wherein the distribution of thirteen di�erent
features (such as color, edges, Haar features [Papageorgiou 98]) are explicitly
modeled using time adaptive Gaussian mixtures.

More complex models for FG/BG segmentation include non-parametric sta-
tistical models, which estimate the probability distribution of a pixel directly
from the available data in previous frames. Histograms [Li 04] and kernel
density estimation [Elgammal 02], [Sheikh 05] have been successfully used for
estimating these probability distributions in background modeling. Elgammal
et al. presented an e�ective non-parametric method resulting in a better perfor-
mance than the parametric MoG model [Elgammal 02]. Background statistics
were modeled using a non-parametric kernel estimator and the resulting model
is validated using displacement probabilities, which suppress false detections
due to small and non-modeled movements in the scene background.

The method in [Noriega 06] divides the scene in overlapping squared patches,
followed by building intensity and gradient histograms for each patch. The
paper shows that contour based features are more robust than color features
regarding changes in illumination. In [Heikkila 06], a region-based method
describing local texture characteristics, is presented as a modi�cation of local
binary patterns [Ojala 94]. Each pixel is modeled as a group of adaptive local
binary pattern histograms which are calculated over a circular region around
the pixel. Similar to this approach is the method described in [Yao 07] which
uses texture features in combination with invariant color features in RGB space
to detect foreground objects. The two types of features are linearly combined,
resulting in a multi-layer background subtraction method which is modeled and
evaluated similarly to the MoG model. These models are particularly robust
to shadows.

The recently published Visual Background Extractor (ViBe) [Barnich 09],
[Barnich 11], [Zhu 12] is a sample-based approach for modeling the pixel distri-
bution. Instead of using a statistical model for the unknown pixel distribution,
Barnich et al. approximate this distribution by a set of representative pixel
samples. The sample set is updated according to a random process that substi-
tutes old pixel values for new ones if the cardinality of the intersection between
a sphere around the new pixel and the sample set is above a given thresh-
old. It exploits spatial information by using the neighborhood of the current
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pixel as well as by adapting to lighting changes. This method claims to be
more robust to noise than, for example, the MoG model, as shown in their
paper [Barnich 09]. Van Droogenbroeck et al. is a variant of ViBe with adap-
tive parameters and blob �ltering [Van Droogenbroeck 12]. ViBe has �xed
parameters, which proves su�cient for most surveillance tasks. However, to
increase its performance, there is another variant of ViBe, named PBAS, that
adds heuristics to adaptively change the parameters [Hofmann 12].

Most of the previously mentioned background subtraction methods model
each pixel independently. However, it is possible to improve the foreground
segmentation by introducing object-level information into the detection pro-
cess, for example as presented in [Cucchiara 03]. In that paper, the initial
foreground is �rst detected by comparing the current frame to a background
estimate, calculated as a median over n previous frames. Next, the initially
detected foreground pixels are segmented into disconnected foreground blobs
by using connected component labeling. Finally, the segmented blobs are val-
idated by measuring average motion within foreground blobs using an optical
�ow approach [Bainbridge-Smith 97]. One disadvantage of this approach is
that, despite the choice of a relatively simple statistical background estimate,
a signi�cant computational overhead is added by the optical �ow motion es-
timation even though it is applied only to foreground regions. This makes it
quite time-consuming. In fact, optical �ow estimation generates more informa-
tion than actually needed in this application. It estimates a complete motion
�eld, while foreground validation requires only motion detection. Furthermore,
validation of foreground blobs by measuring average motion within the blobs,
will not suppress ghost objects if they are characterized by negligible average
motion and are accordingly connected to real moving objects.

The strategy of foreground validation by utilizing additional motion infor-
mation is also explored in [Cheung 05]. At �rst, the background model is built
by using a method based on Kalman �ltering [Karmann 90]. The pixels in the
current frame with signi�cant di�erence from the estimated background are
segmented into disconnected blobs. The frame di�erence is used to determine
if these blobs are real foreground objects. Only the blobs containing pixels
with considerable inter-frame di�erence are considered as real foreground. Ini-
tial foreground objects are then represented as bounding ellipses �tted to blobs.
These initial estimates are used to estimate the spatial distributions of pixel
values in foreground objects. The �nal foreground objects are obtained by
extending the initially detected foreground objects to the neighboring areas,
where the spatial pixel distributions resemble the foreground objects and dif-
fer from the background. Even though this is a robust approach, it has some
serious limitations, as outlined by [Cheung 05]: The use of bounding ellipses
restricts its applications to simple objects and it is not appropriate for more
complex objects such as humans. Additionally, the foreground objects are de-
termined by �nding the di�erence between foreground and background pixel
distributions, which could be similar. Also, if the foreground objects are small,
the distribution representing the object may not always be estimated correctly



26 Low-Level Robust Foreground Detection

since the number of samples is insu�cient.
Non-parametric algorithms are, in general, much more memory and com-

putationally demanding than, for instance, MoG background models. Even
though, the MoG method is considered to be less suitable for a hardware im-
plementation (e.g., smart cameras with limited processing power), as stated
in [Benton 08]. Nevertheless, improvements of the MoG method (as shown
in [Zivkovic 06]) exist, which makes it feasible to run the algorithm in real time
on a standard PC without using dedicated processing power (such as GPU).
Therefore, FG/BG segmentation algorithms suited for limited processing power
are needed, which stimulates the development of low-complexity background
modeling algorithms.

The widely-used MoG-based methods adapt poorly to fast local and/or
global changes in illumination due to the slow adaptation of the background
model. While ViBe performs already better under such circumstances, it is still
not robust enough (see Section 3.5). The adaptation to a change in lighting
usually involves several frames. Both approaches lose their ability to distin-
guish between foreground and background after a rapid succession of illumina-
tion changes. In this situation, moving objects will no longer be detected as
foreground and the performance drops signi�cantly.

The proposed methods overcome some of these limitations, aiming at a
�exible and robust solution for general moving objects, while retaining low
complexity.

3.2 Low-level Robust Foreground detection

In this section, we outline the idea behind the proposed approaches, followed
by two particular implementations.

Our idea is based on a decision-tree-like approach. Decision trees are well
known in the �eld of operations research, helping to identify a strategy most
likely to reach a goal. In an on-line decision process with incomplete knowledge,
a decision tree could be modeled using the probabilistic theory as a best-choice
model. Moreover, every decision can be described by conditional probabilities
of the previous node.

In our case, we apply a decision tree to foreground/background segmen-
tation, i.e., we perform a decision (test) at each node of the decision tree to
gather evidence for a certain pixel to be either a foreground or a background
pixel. For instance, a �rst test could compare the previous and current image
to detect a general change. Whereas another test could involve the compari-
son of each pixel individually. A test hereby refers to statistical measures and
the decision is passed from node to node until we reach enough evidence for
one of the two classes (foreground (FG) or background (BG)). Each decision
(test) is modeled by a random variable Dj which is binary. Assuming a certain
depth of the decision tree, we are interested in the joint probability distribu-
tion p (D1 = FG, D2 = FG, . . . , Dn = FG) to obtain a �nal conclusion that a
certain pixel is foreground. This distribution is in general very complex and
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can be split into conditional probability distributions depending on previous
decisions.

p (D1, . . . , Dn) = p (Dn|D1, . . . , Dn−1) p (Dn−1|D1, . . . , Dn−2) . . . p (D1)

=

n∏
k=1

p
(
Dk| ∩k−1

j=1 Dj

)
.

In this way, each decision can be modeled as a probability, conditioned on the
previous node.

For example, in our approaches we perform only two tests in which we
compare the current pixel value to two statistical models, i.e., the depth of
the decision tree is in our case two. Here, the random variables, D1 and
D2, of each test are binary and can be either �FG�, describing a certain pixel
as foreground, or �BG� (being background). In this case, the random vari-
ables constitute four di�erent possibilities; we are interested in the probability
p (D1 = FG, D2 = FG) (both tests judge a pixel as foreground). Moreover,
the possibilities of the random variables can be reduced to three, because if
D1 = BG we are already sure that a certain pixel is background and that we do
not need to perform further tests. Therefore, we are looking for a representation
of the following conditional distributions: p (D2 = FG|D1 = FG) p (D1 = FG),
p (D2 = BG|D1 = FG) p (D1 = FG) and p (D1 = BG).

Theoretically, it would be best to �nd models for these distributions. How-
ever, in the following approaches we simplify the aforementioned concept and
use very simple representations of the conditional probability distribution due
to real-time performance. As statistical background models for both decision
steps, an exponential smoothing technique of Brown et al. [Brown 56] was
chosen.

3.3 Foreground detection based on Image Gra-

dients

In this section, we outline the detection of moving objects based on image
gradients. We are in particular interested in a foreground detection method
which is robust to illumination changes and can run in real time.

A discontinuity in the image intensity function is assumed to be correspond-
ing to a discontinuity in either depth, surface orientation, re�ectance, or illumi-
nation. In this respect, the detection of edges in the image domain constitutes
a strong link to physical properties of the world [Lindeberg 98], [Lindeberg 01].
Therefore, the image gradient, usually used to detect edges, applied in the
�eld of foreground detection, should lead to more robust algorithms regarding
illumination changes.

The image gradient at each pixel i is given as the vector of the horizontal
and vertical partial derivative of the image intensity function at each time t:

Gt (i) = (Gx, Gy)
T
.
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Figure 3.1: Block scheme of the proposed method based on image gradients. From
the input image the image gradient is calculated using the Sobel operator. The short-
term model is an average of the image gradient for a short term only. At �rst, it is
used to detect a change between the model and the image gradient for each pixel.
If there is no change then the long-term background model is immediately updated,
otherwise a non-maximum suppression technique is applied to pixels where a change
was detected. This technique traces all pixels where a change was detected, discarding
the ones which belong to static edges in the long-term background model.

At each pixel, the gradient vector points to the direction of the largest possible
intensity increase, and the length of the gradient vector corresponds to the rate
of change in that direction. In discrete images, the image gradient is calculated
by convolving the input image with a discrete �lter (e.g., the Sobel operator).
Each pixel of the gradient measures the change in intensity of that same point
in the original image in a given direction. To get the full range of directions,
gradient images in the x and y direction are computed.

An edge is hereby de�ned as a set of connected pixel values that indicate the
boundaries of objects. As is often the case, edges are detected by computing the
edge strength, usually the gradient magnitude, and searching for local maxima
along the gradient direction. In our approach, we de�ne foreground as regions
of moving edges and background as regions containing static edges.

The use of the image gradient as the underlying feature for foreground detec-
tion, rather than image intensities, makes the method more robust to changes
in illumination. This is true since a change in illumination results in both,
an image intensity and an image gradient change, whilst the location of static
edges in the background will still be the same. However, in contrast to detec-
tion of foreground blobs, as done in many well-known FG/BG segmentation
methods, it leads to the detection of moving edges.

In Figure 3.1, the block scheme of the proposed foreground detection method
based on image gradients, is shown. The idea of the approach is to use two time
varying averages of the image gradient jointly. These averages are obtained by
a recursive exponential smoothing technique [Brown 56], [Piccardi 04] based
on a low and a high learning factor, αl and αs, respectively. In order to meet
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(a) (b)

Figure 3.2: Representative results of the proposed method. This example shows
an input frame (a), and the corresponding result of the proposed method (b). The
proposed method robustly detects edges on moving objects.

real-time criteria, we chose the simplest form of exponential smoothing, i.e.,
the statistical model being the weighted mean value as a cumulative frame-by-
frame estimate of the previous image gradient and the previous mean value.
We will refer to these two time varying averages as long-term background model
and short-term model, respectively.

To detect moving objects, we reason based on a decision-tree-like approach.
At �rst, we calculate the image gradient for each pixel i at each time instance t,
using the Sobel operator, resulting in the vector Gt (i). Then, we compare the
image gradient Gt (i) to the short-term model Bst (i), which is the time average
of the image gradient at pixel i for short term only (see Section 3.3.1). Here,
the used learning factor for the short-term model is rather high and therefore
adapts quickly to changes in the current image gradient Gt (i).

As a �rst detection step, we reason in the following way for each pixel i:

• If there is no change between the current image gradient and the short-
term model, we will update the long-term background model for the spe-
ci�c pixel i since we know for sure that the current image gradient is
similar to the background.

• If there is a change, we will explore where this change is coming from.

In Section 3.3.1 we will explain how we are detecting a change between the
current image gradient and the short-term model. There are two possible ex-
planations for such a change. Either, the change is caused by an illumination
change, or, by moving objects. In any case, we update the short-term model
with the current image gradient by using an exponential smoothing technique
since this model estimates statistics for a short term only and needs to adapt to
changes in the image gradient. Moreover, the model is responsible for smooth-
ing the image gradient to suppress noise.
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(a) (b)

(c) (d)

Figure 3.3: Short-term model. From the input image (a), the image gradient is
calculated and the short-term model is updated. Here, the model's x and y direction
((b) and (c), respectively) are depicted. Positive (bright) and negative (dark) values
indicate the strength of the derivatives. In (d), the magnitude of the short-term model
is shown. The results look very similar to the long-term background model (Figure
3.6), but the short-term model is responsible for smoothing the image gradient for a
short term only to suppress noise.

To explore the change between the current image gradient and the short-
term model, we use the second statistical model of the image gradient - the
long-term background model Blt (i). The long-term background model Blt is also
an average of the image gradient, but based on a low learning factor αl. Due to
the low learning factor αl, changes in the image gradient will be incorporated
slowly into the long-term background model. Moreover, the update of the long-
term background model is selective and only applied on pixels with no change
in the �rst detection step. Roughly speaking, this model estimates the static
edges in the scene which are not a�ected by moving objects.

As a second detection step we compare the current image gradient with
the long-term background model Blt and use it jointly with a non-maximum
suppression technique. This process is explained in detail in Section 3.3.2. The
result is a set of connected edge points which are located on moving objects
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(a) (b) (c)

Figure 3.4: Comparison between di�erent model updates. We are updating the model
with the values of the image gradient and not with the absolute value (or magnitude).
From the input image (a), the result of the proposed method is shown in (b). It can
clearly be seen that it di�ers from the result of (c) which used the absolute values to
update the short-term model.

(Figure 3.2).
Although the proposed approach could easily adapt to any type of initial-

ization, it is convenient to get an accurate background estimate as soon as
possible. Ideally we would like to be able to segment the video sequences start-
ing from the second frame, the �rst frame being used to initialize the models.
Since no temporal information is available prior to the second frame, we ini-
tialize the long- and short-term models with the current image gradient. This
procedure has only one drawback that the presence of a moving object in the
�rst frame will introduce a ghost object that has to fade over time.

A detailed discussion of the long- and short-term models can be found in the
following Sections, 3.3.1 and 3.3.2, followed by a description of the detection of
moving edges (Section 3.3.3).

3.3.1 Short-Term Model

The short-term model is responsible for smoothing the image gradient for a
short term only (Figure 3.3).

We update the model using a recursive smoothing technique [Brown 56],
[Piccardi 04] with a high learning rate αs. For each pixel i, the model Bst (i)
is the weighted average of the current image gradient Gt (i) and the previous
smoothed statistic Bst−1 (i):

Bst (i) = (1− αs)Bst−1 (i) + αsGt (i) , (3.1)

where αs ∈ [0, 1] is the learning rate. The learning rate αs is constant and
typically set to 0.01 (see Section 3.5.4).

Frame di�erencing is a special case of the short-term model with αs = 1
and the simplest case of motion detection; αs < 1 models the smoothing over
a recent number of frames rather than the last one.

It is worth mentioning that we are updating the model with the values of
the image gradient and not the absolute value (or the magnitude). Therefore,
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Figure 3.5: Results of the short-term model. The results of the �rst detection step
are shown for a sequence with lighting changes. Here, the magnitude of the image
gradient Gt (i), which is above the threshold Tlow, is depicted.

the sign of the image gradient in the equation above matters. In Figure 3.4, we
compare the resulting moving edges of the proposed method based on image
gradients, using either absolute values or the �real� values of the gradient. There
is a big di�erence in outcome. This is a logical result since the image gradient
directions are neglected by using the absolute values of the image gradient, and
therefore less edges are detected on moving objects.

In the �rst detection step, as shown in Figure 3.1, we threshold the di�erence
between the magnitude of the current image gradient Gt (i) and the magnitude
of the short-term model Bst−1 (i) for each pixel i using a threshold Tlow as

Gt (i) =

{
Gt (i) , if

∥∥Bst−1 (i)−Gt (i)
∥∥ > Tlow

0, otherwise.
(3.2)

As we will show in Section 3.5.4, this threshold Tlow can be �xed and does not
need to be estimated as long as it is higher than the noise level. In Figure 3.5,
the results of the �rst detection step are shown for a sequence with lighting
changes, and the magnitude of the image gradient Gt (i), which is above the
threshold Tlow, are visualized. It can be seen that the noise is reduced and
that the people in the scene are visible, as well as boundaries of stationary
objects that are a�ected by the lighting change. These stationary boundaries
will be eliminated by the use of the long-term background model in the second
detection step.

3.3.2 Long-Term Background Model

The long-term background model Blt (i) basically contains a weighted average
of the image gradient over a long period of time, and therefore can be seen to
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(a) (b)

(c) (d)

Figure 3.6: Long-term background edge model. From the input image (a), the long-
term background model is selectively updated for pixels which are not a�ected by
a change according to the �rst detection step. Here, the model's x and y direction
((b) and (c), respectively) are depicted. Positive (bright) and negative (dark) values
indicated the strength of the derivatives. In (d), the magnitude of the long-term
background model is shown. Roughly speaking, the long-term background model
estimates static edges in the background.

describe static edges in the background (Figure 3.6). The model is updated
based on a recursive smoothing technique [Brown 56], [Piccardi 04] with a very
low learning factor αl ∈ [0, 1] (around 0.001, see Section 3.5.4). For each pixel
i, the model Blt (i) is the weighted average of the current image gradient Gt (i)
and the previous smoothed statistic Blt−1 (i):

Blt (i) =

{
(1− αl)Blt−1 (i) + αlGt (i) , if

∥∥Bst−1 (i)−Gt (i)
∥∥ < Tlow

Blt−1 (i) , otherwise.
(3.3)

The model Blt is selectively updated for pixels which are not a�ected by a
change according to the �rst detection step. This ensures that moving objects
are not included in the long-term background model. Therefore, this model is
used to explain where a possible change of the �rst detection step comes from,
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(a) (b)

(c) (d)

Figure 3.7: Combination of the short- and long-term model. In case only the long-
term background model would be used to detect moving edges from the input image
(a), more edges around the objects would be detected due to noise (b). On the
other hand, if the short-term edge model would be solely employed, the result (c)
also includes some background edges due to smoothing over only a recent number
of frames. Only the combination of both models leads to a reasonable detection of
moving edges on objects (d). The movie can be found in [Grünwedel 13c].

i.e., so to speak, we check if this change is caused by a lighting change and still
belongs to an underlying �edge�.

3.3.3 Detection of Moving Edges

In the second and �nal detection step, we apply a non-maximum suppression
technique, as in [Canny 86], to pixels of the current image gradient which are
a�ected by a change according to the �rst detection step. The reason for using
a non-maximum suppression technique is that we are interested in a set of
connected pixel values indicating the boundaries of objects - de�ned before
as edges. Non-maximum suppression searches for the local maximum in the
gradient direction.

A detected change can be caused by either a moving object, an illumination
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Figure 3.8: Results of the proposed method. The results of the proposed method are
shown for a sequence with lighting changes. Here, in comparison to Figure 3.5, moving
edges are detected using a non-maximum suppression technique and the long-term
background model. The movie can be found in [Grünwedel 13c].

change or noise. Therefore, we compare the corresponding pixels of the current
image gradient that are a�ected by this change to the long-term background
model. Theoretically, it would be the best to �nd a model, e.g., based on
Gaussian statistics, to compare the corresponding pixels. For simplicity and the
real-time requirement, we choose a thresholding technique using the threshold
Tlow. The calculation is performed as follows:

Gt (i) =

{
Gt (i) , if

∥∥Blt−1 (i)−Gt (i)
∥∥ > Tlow

0, otherwise.
(3.4)

In the followed tracing process, hysteresis thresholding is applied using Tlow
and Thigh to obtain connected edge pixels. All gradient magnitudes larger than
Thigh are immediately accepted for the tracing process and vice versa; gradient
magnitudes smaller than Tlow are immediately rejected. This makes it possible
to also follow faint sections of possible edge pixels. Gradient magnitudes in
between the two thresholds are accepted if they are in the neighborhood (8-
connected) of an image gradient that has a magnitude larger than Thigh.

In Figure 3.7, the di�erence between the short-term model and the long-
term background model is shown. In 3.7b, only the long-term model will be
used to detect moving objects. This leads to edges due to noise around the
moving objects. On the other hand, if the short-term edge model would be
solely employed (Figure 3.7c), the result also include some background edges
due to smoothing over only a recent number of frames. Finally, the combination
of both model leads to the detection of moving objects (Figure 3.7d).

In 3.8, we show the results of the proposed method after the second detection
step. In comparison with Figure 3.5, it can be seen that the background edges
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Figure 3.9: Results of the proposed method. The results of the proposed method are
shown for a sequence containing up to four people in changing light conditions. The
movie can be found in [Grünwedel 13c].
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Figure 3.10: Block scheme of the proposed method based on image intensities. From
the input image we compare each pixel to the short-term model. The short-term
model is an average of the image intensities for short term only. If there is no change,
then the long-term background model is immediately updated. Otherwise we compare
each pixel also to the long-term background model and apply hysteresis thresholding.
Finally, we obtain a foreground mask describing moving objects.

are eliminated by the use of the long-term background model. Another example
is shown in Figure 3.9. Here, the results are shown for di�erent light conditions.
As can be seen, the proposed method results in moving edges on people. Even
the texture of the clothes is visible if the light is bright. If the scene is poorly
illuminated, less edges are visible on people. In such situations the gradient
magnitude of some edges is below the noise level, and therefore cannot be
detected.

3.4 Foreground detection based on Intensities

As a second approach, we outline the detection of moving objects based on im-
age intensities. The initial idea of this method was developed by our colleague
Nemanja Petrovi¢. We are in particular interested in a foreground detection
method which adapts fast to illumination changes and can run in real time.
In contrast to existing solutions like [Cucchiara 03], [Cheung 05], we propose
combining FG/BG segmentation with moving object validation at pixel level,
rather than at object level. In this way the algorithm is faster, insensitive to
the object's size and shape, and capable of suppressing ghost objects even if
they overlap with the real objects.

We apply the same idea described in the previous section to image intensities
rather than image gradients. In Figure 3.10, the block scheme of the proposed
foreground detection method based on image intensities, is shown.

For convenience we will use the same symbols for the statistical models as
in Section 3.3.

Our approach uses two time varying averages of the image intensities for
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each pixel jointly. These averages are obtained by a recursive exponential
smoothing technique [Brown 56], [Piccardi 04] based on a low and a high learn-
ing factor, αl and αs, respectively. In order to meet the real-time criteria, we
choose the simplest form of exponential smoothing, i.e., the statistical model
is the weighted mean value, as a cumulative frame-by-frame estimate of the
previous image gradient and the previous mean value. We will refer to these
two time varying averages also as long-term background model and short-term
model, respectively.

The initialization procedure is the same as in the previous section, i.e., the
long- and short-term models are initialized with the �rst image.

Moreover, we applied the same reasoning as explained in the previous Sec-
tion and use a decision-tree-like approach. At �rst, the short-term model is
updated using a recursive smoothing technique [Brown 56], [Piccardi 04] with
a high learning factor αs. For each pixel i, the model Bst (i) is the weighted
average of the current pixel value It (i) and the previous smoothed statistics
Bst−1 (i):

Bst (i) = (1− αs)Bst−1 (i) + αsIt (i) . (3.5)

Here, αs ∈ [0, 1] is a learning factor and usually set to 0.1 to adapt very quickly
to intensity changes.

In the �rst detection step, the i-th pixel of the t-th input frame It is com-
pared with the short-term model Bst (i), resulting in a binary foreground mask
Ft as follows

Ft (i) =

{
1, if

∥∥It (i)−Bst−1 (i)
∥∥ > Tlow

0, otherwise.
(3.6)

The task of the short-term mode is to detect areas in the scene where
motion appears. It is important to detect areas containing signi�cant temporal
activity. We assume that areas of signi�cant activity cover all moving objects
and occasionally some neighboring areas. Our intention is to detect slightly
more motion in the scene than actually present, rather than missing out parts
of the moving objects from detection. Here, we also use simple thresholding
instead of modeling a probability distribution for the �rst decision step (see
Section 3.2).

A signi�cant change can either be explained by a moving object, an illumi-
nation change, or noise. In contrast to the proposed method which is based on
image gradients, we are not able to distinguish the case of illumination changes,
but rather are able to adapt quickly if an illumination change occurs.

In case the foreground mask Ft for the i-th pixel is zero (meaning no signif-
icant change), we update the long-term background model immediately, since
this is strong evidence for a background pixel. The long-term background
model Blt (i) is updated as follows:

Blt (i) =

{
(1− αl)Blt−1 (i) + αlIt (i) , if Ft (i) = 1

Blt−1 (i) , otherwise.
(3.7)
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Figure 3.11: Representative frames of a partly illuminated scene. The �rst row shows
the input frames of a partially illuminated scene. The proposed method based on
image gradients (second row) reliably detects edges even in dark-illuminated regions.
The movie can be found in [Grünwedel 13c].

The model Blt is selectively updated for pixels which are not a�ected by a
change according to the �rst detection step. This ensures that moving objects
are not included in the long-term background model. The model is used to
explain where a possible change of the �rst detection step comes from, and
therefore veri�es a possible foreground pixel.

In the second and �nal detection step, we compare the selected pixels (given
by the mask Ft), marked as possible foreground pixels by the �rst detection
step, to the long-term background model to verify the hypothesis. Therefore,
we apply a hysteresis thresholding operation on these selected pixels using two
thresholds Tlow and Thigh. All selected pixels which distances between these
pixels and the long-term background model is larger than, or equal to, Thigh
are immediately accepted as foreground. These pixels are denoted as secure
pixels. Conversely, all pixels less than Thigh = 2Tlow are immediately rejected.
In this way, detecting the noise as foreground is avoided; however, some of the
foreground pixels are also not detected. In order to include the missed ones,
the pixels having gray values in between the two thresholds are accepted as
foreground if they are in the neighborhood of secure pixels. The result of the
�nal decision step is the �nal and updated foreground mask Ft. This foreground
mask Ft describes moving objects in the scene using the short- and long-term
model jointly.

Note that the proposed method has only two parameters, namely the learn-
ing factor αs and the threshold Tlow, since Tlow and αs are de�ned in terms of
Thigh and αl, respectively. Therefore, only the parameters Tlow and αs need to
be chosen. As a result, the proposed method has the same number of parame-
ters as the MoG background modeling scheme.
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3.5 Results & Discussion

In order to evaluate the proposed approaches, we conducted several experi-
ments using the video data we collected under di�erent light conditions. These
scenarios fall into the domain of surveillance and behavior analysis of people
in meetings. Here, the performance of the proposed methods is compared to
two state-of-the-art methods: the MoG method of [Zivkovic 04] and ViBe [Bar-
nich 09]. Both methods are developed for various environments with a �xed
set parameters, i.e., there was no �ne-tuning for environments under di�erent
light conditions.

First, we visually compare the results of the proposed methods to the two
state-of-the-art methods and brie�y discuss the observations. Next, we per-
form an evaluation of these three background segmentation methods by using
the foreground blobs from each method as input to construct occupancy maps
using Dempster-Shafer reasoning in a multi-camera network [Morbee 10] and
comparing these maps to manually annotated ground truth positions. The
soundness of the maps is then used as an evaluation measure for the di�er-
ent FG/BG methods. In particular, these maps are useful for monitoring the
activities of people and for tracking applications, with the intention to �nd a
correct trajectory of a person.

3.5.1 Data Sets

The data sets we used for comparison, consist of indoor sequences which were
captured by a network of four cameras (780 × 580 pixels at 20 FPS) with
overlapping views in an 8.8 by 9.2 m room. The datasets contain four people
walking around in the room observed by the camera network. Recordings were
taken for several minutes during which ground truth positions of each person
were manually annotated at one second intervals. The ground truth is needed
as part of the numerical evaluation for the di�erent FG/BG methods.

3.5.2 Visual Evaluation of the Proposed Methods under

Di�erent Lighting Conditions

We visually compared the performance on three di�erent sequences: a partially-
illuminated scene, a scene under global lighting changes, and a scene under
frequent local and global lighting changes. As an evaluation measure we
considered how well moving people are segmented using the MoG method
of [Zivkovic 04], ViBe [Barnich 09] and the proposed method based on image
intensities. Though, we also considered how well moving edges are detected on
people for the proposed method based on image gradients.

In Figure 3.11, the segmentation result of a partially-illuminated sequence
is shown. The proposed method based on image gradients produces reliable
results even in less illuminated regions, i.e., edges are still found on moving
people.
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Figure 3.12: Representative frames of a global lighting change. The �rst row shows
the input frames, followed by the results of the MoG method of [Zivkovic 04], ViBe
[Barnich 09], and the proposed methods. Here, black pixels correspond to foreground
regions. The second column re�ects the scene directly after a global lighting change.
As it can be seen, the proposed methods based on image gradients is not a�ected by
such a global change. The movie can be found in [Grünwedel 13c].

3.5.2.1 Global Lighting Changes

In the case of lighting changes, foreground detection methods need to adapt
fast to changes in the background scene while being able to detect moving
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objects, or at least recover moving objects after a short period. We performed
several experiments to test the adaptation to global lighting changes. Figure
3.12 depicts, as an example, results of a scene under global lighting changes.
The second column shows the scene directly after a lighting change. It is
clearly visible that the proposed method is not a�ected by such a change.
The detection of edges on the walking person is still reliable, even in poorly
illuminated parts of the scene, whereas the MoG method of [Zivkovic 04] and
ViBe [Barnich 09] su�er from the adaptation to a global lighting change. In
this example the latter fails to segment the person in the scene completely.
The proposed method based on intensities quickly adapts to the global lighting
changes. Nevertheless, parts of the foreground object are missing due to the
global lighting change.

3.5.2.2 Local and Global Lighting Changes

As the most di�cult case we considered the frequent appearance of both, lo-
cal and global, light changes in a scene [Grünwedel 13c]. In Figure 3.13 an
example of such changes is shown. In this sequence, four people are moving
around while the light is changing, at �rst globally and then locally, in the
scene. This makes it di�cult to �nd a proper segmentation of moving people.
The �rst column of Figure 3.13 illustrates the results of all methods at the
beginning of the sequence. Here, the people are well segmented. In the sec-
ond column the segmentations are shown directly after a global lighting change
had occurred. The MoG method of [Zivkovic 04] and ViBe [Barnich 09] su�er
from this lighting change while the proposed method still detects some edges
on moving people. Finally, the third and fourth column depict what happens
in case of local lighting changes. ViBe [Barnich 09] fails completely in this
case because the adaptation to lighting changes is quite slow. Even the MoG
method of [Zivkovic 04] has problems to adapt to these changes and to �nd a
good segmentation. The proposed method based on intensities quickly adapts
to the lighting changes, but has problems to di�erentiate between a lighting
change and foreground objects, as explained in Section 3.4. The method based
on image gradients performs best in these cases and provides a good detec-
tion of moving edges. Due to the local lighting changes, shadows are partially
segmented by our method, as depicted in the last column.

3.5.2.3 Summary

The results of our method based on image gradients are better in the pres-
ence of lighting changes, as shown in Figures 3.12 and 3.13. As seen in the
representative sequences, the proposed method is less in�uenced by lighting
changes and hence more robust. Even the method based on image intensities
gives acceptable results. Di�erent light conditions do cause, though, a drop
in the number of detected edges and an increase of partial detection of shad-
ows. Anyhow, our method based on image gradients is still able to detect some
edges in poor light conditions on moving objects, which is essential for tracking
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Figure 3.13: Representative frames of global and local lighting changes. In the
�rst row the input frames are shown, followed by results for the MoG method
of [Zivkovic 04], ViBe [Barnich 09], and the proposed method. Here, black pixels
correspond to foreground regions. In summary, the proposed method is less in�u-
enced by lighting changes. The movie can be found in [Grünwedel 13c].

applications.

3.5.3 Numerical Evaluation of the Proposed Method

Due to the fact that edges cannot be compared directly with foreground
masks of FG/BG segmentation techniques, we clustered edges using a nearest-
neighbor technique and combined them by a convex hull to represent silhouettes
of moving people. In general, a convex hull for a set of edge points is the mini-
mal convex point set containing all edge points. The convex hull is constructed
around a cluster of edges and usually results in a sub-optimal solution compared
to the real silhouette of a person. However, this is only used for comparison
with FG/BG methods to eventually construct an occupancy map.

We performed an evaluation based on the construction of occupancy maps
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Figure 3.14: Evaluation measures. In (a), an estimated occupancy map is shown
with rsmall = 10 cm and rbig = 70 cm for each ground truth position. It can be seen
that not all evidence is inside of rbig, and some evidence is outside the ground truth
positions due to noise in the FG/BG segmentation. In (b), the measures m1 (r) and
m2 (r) are calculated for di�erent radii, and the evaluation measures n = 0.9 and
p = 0.73 are obtained.

and the accuracy of a method.
At �rst, to evaluate the construction of occupancy maps, foreground sil-

houettes from each method are used as input to construct occupancy maps by
Dempster-Shafer reasoning in a multi-camera network [Morbee 10], i.e., a top
view of the scene. An occupancy map is calculated by using di�erent camera
views and fusing the projected foreground blobs onto the ground plane. The
ground plane is hereby discretized into an evenly-sized grid, where each cell
corresponds to an area on a ground plane w.r.t a world coordinate system.
Each cell contains evidence of how likely this cell is occupied by a foreground
object (see Section 4.2 for a more detailed explanation). This evaluation is
independent of the accuracy of a FG/BG segmentation method and favors the
detection of at least a few FG pixels on moving objects.

To quantitatively compare all methods, we used a sequence which includes
local and global lighting changes (example frames are shown in Figure 3.13).
In this sequence, we have four di�erent views of the scene and ground truth
positions of each person were manually annotated at one second intervals. For
each occupancy map the positions of people were compared to ground truth
data. This comparison is especially of interest for tracking applications, where
we focus on, since it is a measure of how often the tracking might be lost.

To evaluate the accuracy of a method as a second step, we use arti�cial
sequences from VSSN2006 Background competition1 which are provided along
with the ground truth and re�ect some important background modeling sce-
narios. From that competition, we use a sequence which is an indoor scenario

1International Workshop on Video Surveillance and Sensor Networks, http://mmc36.

informatik.uni-augsburg.de/VSSN06_OSAC

http://mmc36.informatik.uni-augsburg.de/VSSN06_OSAC
http://mmc36.informatik.uni-augsburg.de/VSSN06_OSAC


3.5 Results & Discussion 45

and contains sudden and gradual illumination changes in a scene. We are aware
of the fact that the proposed method based on image gradients is expected to
achieve only average performance due to the convex hull computations. Never-
theless, we want to include these results for the completion of the evaluation.

3.5.3.1 Evaluation Measures for Occupancy Maps

To evaluate the soundness of all maps per time instance, we use two measures,
n and p, as described in [Van Hese 11]: n represents a measure of evidence at a
person's position (within a radius of 10 cm, n = 1 is the ideal case) and p as a
measure of no evidence other than these positions (p = 1 is the ideal case). Let
us de�ne an occupancy mapm as an evenly-sized grid where each cell i speci�es
how likely this cell is occupied by a foreground object. In the ideal case, m (i)
is equal to one for cells in a neighborhood around ground truth positions of
people, and zero elsewhere. The size of the neighborhood is determined by
the width of a person and can be approximated by a circle with radius rperson.
According to [Van Hese 11], the following measures can be evaluated:

m1 (r) =

∑
i∈Ar m (i)

ℵAr

m2 (r) =

∑
i∈Ar m (i)∑
im (i)

,

where Ar is a set of cells describing circles with radii r centered at the ground
truth positions, and ℵ the cardinality of the set. Here, m1 (r) is the fraction
of the sum of evidence in a neighborhood around the ground truth positions,
relative to the number of cells in the neighborhood. In the ideal case it is equal
to one for small r (r � rperson), and it will decrease as r increases (as soon as
r gets bigger than rperson).

On the other hand, m2 (r) is the ratio of the sum of evidence in a neighbor-
hood and the sum of all evidence, and will increase as the radius r increases,
up to one for big r (r � rperson) (see Figure 3.14). Based on the above rea-
soning, we de�ne the measures n = m1 (rsmall) and p = m2 (rbig) to quantify
the soundness of an occupancy map with rsmall � rperson, and rbig � rperson.
For n, we choose the radius rsmall with 10 cm, and for p the radius rbig with
70 cm, based on the person's position as center point. Those measures provide
a reasonable evaluation of FG/BG methods, as stated in [Van Hese 11], e.g.,
for tracking applications. The ideal case for a method should be n = 1 and
p = 1, which means that all objects are detected and the evidence of a person
is concentrated around the ground truth position.

3.5.3.2 Evaluation Measures for the Accuracy

An e�cient foreground detection algorithm is supposed to generate a negligible
number of False Positive (FP), i.e., the background pixels mistakenly detected
as a foreground, and False Negative (FN) samples, i.e., foreground pixels missed
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Table 3.1: Overall performance. We calculated the mean of the n and p measure
over all ground truth positions for a sequence with and without lighting changes. The
proposed method based on image gradients clearly outperforms the other methods.

Lighting changes
Without With

Method n p n p
Method based on gradients 0.98 0.83 0.65 0.60
Method based on intensities 0.52 0.76 0.35 0.54

MoG method 0.92 0.76 0.35 0.25
ViBe 0.76 0.82 0.11 0.16

by the detector [Yang 99]. At the same time, it should detect as many True
Positive (TP) pixels as possible, i.e., pixels correctly located on foreground
objects, as well as True Negative (TN) pixels which are correctly detected
background pixels. Therefore, we measure recall, precision and the F-measure
of the foreground detection methods. The recall represents the proportion of
TPs among the correct foreground pixels and the missed foreground pixels,
and is de�ned as recall = TP/ (TP + FN), whereas the precision speci�es the
proportion of TPs among all pixels detected as foreground, i.e., precision =
TP/ (TP + FP).

High recall or high precision means high performance. However, each per-
formance measure can be misleading when examined alone. For example, a
simple algorithm that assigns every pixel to foreground will have a perfect re-
call of 100%, but an unacceptably low score in terms of precision. Usually
there is a trade-o� between recall and precision; obtaining a high recall usually
means sacri�cing precision and vice versa. Since there is a trade-o� between
precision and recall, we used the F-measure [Yang 99]

F-measure =
2 · recall · precision
recall + precision

,

which quanti�es how similar the obtained foreground mask is to the ground-
truth.

In order to better understand the ability of the proposed methods to deal
with dynamic changes in a background, we report the results on a frame-by-
frame basis, rather than on average, for the whole sequence.

3.5.3.3 Comparison to State-of-the-Art Methods

At �rst, we compared the proposed methods to the MoG method and Vibe
on a sequence without lighting changes. The sequence contains four people
walking around, talking to each other, and it lasts for about 90s. In Figure
3.15, the evaluation using the measures introduced in Section 3.5.3.1, is shown.
Our method based on image gradients outperforms the other two in both mea-
sures (Table 3.1). The method based on image intensities has a rather poor
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Figure 3.15: Sequence without lighting changes. We compared the proposed methods
in (a) and (b) to (c, the MoG method of [Zivkovic 04], and (d) ViBe [Barnich 09], for
ground truth position in a sequence without lighting changes. The n and p measures
are used for comparison. Higher values indicate better performance. The proposed
method based on image gradients outperforms the other methods, even in case of no
lighting changes, since it copes better with shadows.

performance since, in the sequence, people are standing for a while, which will
be treated as background for this method. As it can be seen, the n measure is
almost 1, i.e., we always have evidence around a person's position (within a ra-
dius of 10 cm). Due to noise the p measure is lower than the n measure, which
results in a suboptimal FG/BG segmentation, i.e., appearance of shadows in
the segmentations.

In Figure 3.16, the evaluation of all ground truth positions for a sequence
with lighting changes (about 90s) is shown. In the ideal case, the n and p
measure should be close to one. The results show that, after lighting changes
have occurred (around frame 600), our method performs best in that sequence.
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Figure 3.16: Sequence with lighting changes. The comparison of the proposed meth-
ods in (a) and (b), the MoG method of [Zivkovic 04] (c), and ViBe [Barnich 09] (d)
for each ground truth position under illumination changes shows that our method
performs best. Here, the n and p measure for each method are shown. Higher values
indicate better performance.

The result suggests that our method based on image gradients is a better
choice for tracking applications as they often have to deal with changing light
conditions.

In Table 3.1, the mean of all n and p values is shown. Our method
based on image gradients, has a performance of 60% in case of illumination
changes, which is still more than twice the performance of the MoG method
of [Zivkovic 04]. For some frames the results are still not satisfying due to the
fact that only half of the people are segmented, resulting in lower evidences of
occupancy. However, the MoG method of [Zivkovic 04] and ViBe [Barnich 09]
fail almost completely in the presence of lighting changes of this sequence. Our
proposed method based on image intensities, gives the best results of all the
used intensity-based methods in case of illumination changes. Nevertheless, as
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Figure 3.17: Accuracy. The comparison of the two proposed methods, the MoG
method of [Zivkovic 04], and ViBe [Barnich 09], results, in terms of accuracy (recall,
precision and F-measure), in an average performance of the proposed method that is
based on image gradients.

already mentioned, this method has a rather poor performance in the sequence
without lighting changes since people who are standing still for a while will be
treated as background.

As a second step, we compare the proposed methods to the MoG method
and Vibe for sequences from the VSSN2006 Background competition. Three
measures were used to evaluate the performance of the proposed method in
terms of accuracy: recall, precision, and F-measure (Section 3.5.3.2).

In Figure 3.17, the receiver operating characteristic (ROC) space (Figure
3.17a) and the F-measure (Figure 3.17b) are shown for the di�erent methods.
As can be seen, the proposed method based on image gradients, reports average
results for the F-measure. Moreover, the ROC space shows that this method
has a good true-positive rate compared to the other methods, but a rather
poor performance according to the false-positive rate. This can be explained
by the calculation of the convex hull. The calculation results in more fore-
ground pixels, especially in background regions, which only leads to an average
performance. Nevertheless, as shown in the results for the construction of oc-
cupancy maps, the method outperforms the others (Figure 3.15a and 3.16a).
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Table 3.2: Processing time. We obtained the processing time of all methods in full
resolution (780x580 pixels) averaged over time. The proposed method is clearly able
to run in real-time.

Method Processing time [ms]
Method based on gradients 43.2
Method based on intensities 25.2

MoG method 66.2
ViBe 18.4

Moreover, for tracking applications, a precise foreground silhouette of a person
is not needed. It is more important to maintain foreground blobs for moving
objects.

On the other hand, the proposed method on image intensities, reports very
good performance compared to the MoG method of [Zivkovic 04] and ViBe
[Barnich 09], and achieves very similar results.

Finally, we compared the processing time of all methods (Table 3.2). The
processing time of our methods is higher than ViBe, but still better than the
MoG method.

To sum up, the proposed method based on image gradients, performs best in
the presence of lighting changes compared to the MoG method of [Zivkovic 04]
and ViBe [Barnich 09]. This is due to the fact that our model is based on
gradients, which are much less in�uenced by lighting changes and therefore
more robust.

3.5.3.4 Feedback from High-Level Algorithms

As another experiment, we report the performance of the proposed method
based on image gradients using feedback from a high-level algorithm. The n and
p measure were used for comparison (Section 3.5.3.1). Figure 3.18 summarizes
the results for this scenario. Here, we used a high-level tracking application
to feed the projections of each individual back to the FG/BG segmentation
algorithm. This results in a binary mask describing pixels which belong to an
object as �1�, otherwise �0�. Regions which belong to an object prevented the
proposed algorithm to update the short-term and long-term model. In this
case, foreground objects will not be incorporated into the models.

The results show a clear advantage of using feedback from a high-level al-
gorithm. Anyhow, during our experiments we found out that this feedback is
crucial for the updating process of any FG/BG segmentation method. It can
also lead to false positives, i.e., if the feedback is mistakenly wrong, the whole
pipeline tends to fail (foreground results as well as tracking results). Therefore,
the feedback should only be applied if the high-level algorithm is sure about
preventing the update of the background models.
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Figure 3.18: Feedback from a high-level algorithm. In this scenario we were feeding
the results from a high-level tracking application back to the proposed method based
on image gradients. Here, we only updated pixel regions which were marked as
background by a high-level tracking application. The n and p measures were used for
both cases, resulting in a better performance for the feedback case.

3.5.4 Sensitivity of the Parameters

In this section we explore the in�uence of the parameters for both proposed
methods.

3.5.4.1 Method based on Image Gradients

We used a �xed learning factor of αs = 0.01 for the short-term and αl = 0.001
for the long-term model, for all experiments. The proposed framework is not
very sensitive to the learning factor of the long-term background model αl,
provided that the factor is reasonable small (0.001 to 0.005). However, due to
the fact that the short-term model is responsible for the smoothing of recent
activities in the foreground, the learning factor αs is important and speci�es
the adaptation speed to changes in the foreground. The best performance was
achieved when the �xed learning factor αs is about ten times bigger than αl. If
the learning factor of the short-term model is smaller, then non-moving objects,
which were moving before, will be incorporated in the background much faster.
This is often undesirable and results in the detection of less moving edges.

Moreover, the thresholds are also �xed. We experimentally found that
Tlow = 0.02 and Thigh = 3Tlow are reasonable values. In Table 3.3, the av-
erage noise level of the Sobel operator response was calculated for di�erent
sequences under changing conditions. The threshold Tlow should always be
above the noise level to avoid the detection of unstable edges. As can be seen,
the mean value and the standard deviation do not vary very much, and there-
fore the used threshold of Tlow = 0.02 is well chosen. The thresholds are values
between [0, 1] and describe the percentage of Sobel operator's maximum value.
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Table 3.3: In�uence of Tlow. The average noise level of the normalized Sobel op-
erator response for background pixels was calculated for di�erent sequences under
changing conditions. The used threshold of Tlow = 0.02 is su�cient.

Sequence Mean Standard deviation
#1 0.0095 0.0093
#2 0.0079 0.0096
#3 0.0166 0.0094

In fact, they depend on the used discrete �lter. Here, our method is also not
very sensitive to the thresholds. Only Tlow is a scene-dependent threshold and
could be a bit lower if the averaged illumination is more dark than bright.

In summary, we use three di�erent parameters for our method: αs and αl,
for both short-term and long-term model, and the threshold Tlow.

3.5.4.2 Method based on Image Intensities

For all experiments, we used a �xed learning factor of αs = 0.9 and Tlow = 7.
In contrast to the short-term model, αs has a larger value than αl, which is
the major di�erence between the two models. However, in usual surveillance
applications the algorithm is robust to changes of αs and produces satisfactory
results as long as αs is kept su�ciently large, i.e., in the range of [0.1, 0.5]. We
experimentally found that the learning rate αs ≈ 10αl produces good results
in most scenarios.

Finding the optimal value of the thresholds is generally very di�cult. It de-
pends on a number of factors including the scene content, illumination, the ac-
tual color di�erence between the objects and the background, and the amount
of noise in the scene. Techniques exist for a dynamic determination of the
optimal threshold [Rosin 98], [Rosin 03], but they are far from perfect. Ad-
ditionally, they are performed on a frame-by-frame basis, which could cause
a sudden change in the detection quality due to a wrong estimation of the
thresholds. We decided to set the thresholds Thigh and Tlow to �xed values
which gives satisfactory, but not necessarily optimal, results. We experimen-
tally found that the thresholds in the range of Tlow ∈ [2, 10] and Thigh = 2Tlow
are a good choice for our tested sequences. Higher thresholds produce a more
conservative detector, which detects less foreground areas but its detections
are more reliable, whereas lower thresholds generate more noise which even the
hysteresis thresholding is not able to suppress.

3.6 Conclusion

In this chapter, we presented two novel approaches for FG/BG segmentation
using either image gradients or image intensities. We showed that the proposed
methods produce results similar to state-of-the-art foreground/background
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methods [Zivkovic 04], [Barnich 09], but performs much better in the pres-
ence of lighting changes. The parameters of the proposed methods (short-term
and long-term learning factors) do not need �ne-tuning since the results are
satisfying in a wide range of environments with �xed set parameters.

The problem of changing light conditions is still a critical issue for FG/BG
segmentation techniques and needs further investigation. Therefore, the pro-
posed method based on image gradients could address this issue and is a step
towards increased robustness against illumination changes. This edge-based
approach can be used to model the lighting changes and thus help to �nd a
better segmentation of foreground objects. Minor drawbacks of the proposed
method are the not yet fully light-insensitive thresholds; further exploration to
automatically adapt the thresholds to the lighting changes is required. Fur-
thermore, tracking approaches could make use of moving edges because edges
are a common feature of choice in these applications.

This research has been published in the Proceedings of Advances Concepts
for Intelligent Vision Systems (ACIVS) [Grünwedel 11b] and is part of the
contributions to [Van Hese 11], [Nyan 12] and [Nyan 13]. A journal publication
was submitted [Grünwedel 13].
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4
Multi-Camera tracking

based on Occupancy Maps

In many applications, such as surveillance, smart rooms, video conferencing,
sport games analysis, etc., the deployment of a camera network with overlap-
ping �elds of view provides substantial advantages over a single �xed viewpoint
camera.

The use of multiple, overlapping cameras becomes necessary when applica-
tions need to accurately detect and track people in complicated environments,
such as surveillance or retail stores in indoor environments, or when the num-
ber of people is large. Images of the same event or subject can be gathered
from multiple viewpoints. When processed collaboratively, these extra data
can overcome the limitations of �xed viewpoint cameras. For example, to com-
pute the precise positions of people, multi-camera tracking techniques intend
to resolve occlusions by providing redundant 3D information about objects in
the scene.

Moreover, applications for real-time tracking of people often require an op-
timal trade-o� between accuracy, processing power and communication load
within a camera network. In recent years, it has become possible, with the
deployment of smart cameras [Hengstler 06], [Hengstler 07], to shift the com-
putation load towards the cameras, enabling tracking approaches which are
communication and computational e�cient.

Nevertheless, tracking is not a trivial task and incorporating features like
occupancy maps still remains challenging. Moreover, in a distributed camera
network, tracking approaches should be communication and computation ef-
�cient. Therefore, multi-camera approaches which can run in real time and
track people accurately, are needed.

Monitoring the activities of people, such as the number and whereabouts in
a room, is essential for this type of applications. Tracking approaches based on
occupancy maps provide a solution in many of the aforementioned applications.

An occupancy map provides a top view of a scene and can be accurately
estimated using a distributed network of overlapping cameras. Usually it con-
tains moving objects in a scene. There are two di�erent ways to construct
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an occupancy map: bottom-up methods project binary foreground masks ob-
tained by a FG/BG segmentation method from multiple viewpoints onto a
common reference plane (usually the ground plane) using homographies [De-
lannay 09], [Khan 09]. Top-down approaches extract occupied ground positions
by comparing a generative model of an object in the scene with the actual fore-
ground silhouettes observed by multiple cameras [Fleuret 08], [Berclaz 11].

In this chapter, we address the problem of tracking multiple individuals
by using occupancy maps in a network of overlapping cameras. In contrast
to approaches like [Fleuret 08], which compute optimal tracks from a Proba-
bilistic Occupancy Map (POM) by a greedy search strategy based on Dynamic
Programming, we combine Bayesian �ltering strategies with occupancy maps
obtained by the work of Tessens et al. [Tessens 10] and Morbee et al. [Mor-
bee 11]. Furthermore, our approach obtains an estimate of each person on a
frame-by-frame basis. We hereby focus on low-level processing resulting in a
real-time system which can possibly be used on smart cameras. For this ap-
proach, we explain the advantages and disadvantages that led to the proposed
research in Chapter 5.

We provide qualitative and quantitative results on several indoor sequences
(meeting scene) even under occlusions (by furniture and other people). On the
one hand, the results show that we are able to track multiple people using a
camera network. The performance of our tracker is su�cient to obtain tra-
jectories of people for the tested sequences. On the other hand, the approach
imposes restrictions on, for example, the real-time processing. However, we
present the limitations of the proposed approach and its restricted use down
to a few applications.

This chapter is structured as follows: In Section 4.1 we present related
work on occupancy maps. We hereby focus only on the research of occupancy
maps since a detailed review of multi-camera tracking approaches can be found
in Chapter 5.1. In Section 4.2, the proposed tracking system is explained,
followed by Section 4.3, showing experimental results and a detailed discussion
of its limitations. Finally, we conclude this chapter in Section 4.4.

4.1 Related Work

In this section, we provide an overview of state-of-the-art approaches for track-
ing based on occupancy maps. A more detailed discussion about general state-
of-the-art tracking approaches can be found in Chapter 5.1.

When one wishes to accurately detect and track multiple people and com-
pute their precise 3D locations in a complex environment, the use of multiple
cameras is unavoidable. Many techniques which explicitly use discretized oc-
cupancy maps exist. Most of them back-project objects detected in camera
images. These approaches that are based on occupancy maps fall into two
di�erent categories.

The �rst category are bottom-up methods which project foreground masks
from di�erent cameras onto a common reference plane using homographies [De-
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lannay 09], [Khan 09]. Delannay et al. present a method to detect and recognize
players on a sports �eld [Delannay 09]. An occupancy map is constructed as the
cumulative projection on a set of planes parallel to the ground plane. A cumu-
lative projection is calculated from the foreground masks of multiple cameras.
After the summation, maxima in the occupancy map indicate player positions
on the ground plane. These are used as an anchor for a more detailed analy-
sis of the reprojected bounding box in each camera to identify a sports player
based on the shirt number. After a joint multi-camera detection of players on
the ground plane, a graph-based tracking is used to match positions of play-
ers that are su�ciently close to each other, and to propagate the identity of a
player along its trajectory.

Khan et al. fuse foreground evidence obtained by a FG/BG segmenta-
tion method from di�erent camera viewpoints using a homographic occupancy
constraint [Khan 09]. The homographic occupancy constraint interprets fore-
ground as scene occupancy by non-background objects and implies that pixels
corresponding to occupancies on a reference plane will consistently warp to
foreground regions in every view. In the end, occlusions are resolved by localiz-
ing people on multiple reference planes. Their method attempts to �nd image
locations of scene points that are occupied by people.

The second category are top-down approaches. These approaches estimate
occupied ground positions by comparing a generative model of an object in
the scene with the actual foreground silhouettes observed by multiple cam-
eras [Fleuret 08], [Berclaz 11]. Fleuret et al. estimate probabilities of occupancy
on the ground plane, given the foreground masks obtained by background sub-
traction [Fleuret 08]. A generative model, representing a human as the union of
rectangles, is used to approximate probabilities of occupancy at every position
on a discretized ground plane. These probabilities are the marginals of the
product law, minimizing the Kullback-Leibler divergence from the conditional
posterior distribution. Finally, optimal tracks are computed from the raw ob-
servations by a greedy search strategy based on Dynamic Programming within
a speci�c time period.

Morbee et al. and Tessens et al. present a novel method for calculating
occupancy maps using an overlapping and calibrated multi-camera network
[Morbee 10], [Tessens 10], [Morbee 11]. They propose a Dempster-Shafer based
fusion strategy of ground occupancies computed in each camera view. In their
paper, the proposed method yields very accurate occupancy maps in terms
of concentration of the occupancy evidence around ground truth positions.
The method outperforms the state-of-the-art methods of [Delannay 09] and
[Fleuret 08].

4.2 The Multi-Camera Tracking System

In this section, we describe the proposed multi-camera tracking system. Here,
we aim to perform tracking of an unknown number of humans.

In Figure 4.1, a block diagram of the proposed system is shown. At �rst,
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Figure 4.1: Overview of the multi-camera tracking system. At �rst, FG/BG segmen-
tation is performed on a smart camera and the obtained foreground mask is projected
on a ground plane using homographies, resulting in an evidence map. The evidence
maps of each camera are transmitted to a fusion center which combines them to an
occupancy map using the Dempster-Shafer rule of combination. We hereby try to
keep the communication load low by only transmitting evidence maps. Finally, state
estimation based on Bayesian �ltering is performed, using the occupancy map as an
observation to obtain a new estimate for each person.

each smart camera computes the FG/BG segmentation of the input video to
obtain a foreground mask using methods as described in Chapter 3. The fore-
ground mask is then projected on a ground plane using homographies. In this
step, the ground plane is discretized into an evenly-sized grid with G cells,
where each cell corresponds to an area on a ground plane w.r.t a world coor-
dinate system. The result of this projection is an evidence map in which each
cell expresses how likely it is that this cell is occupied by a foreground object
(Figure 4.1). These evidence maps of all smart cameras are transmitted to
a fusion center. We hereby try to keep the communication load low by only
transmitting the evidence map, but that requires a large amount of communi-
cation. Of course, the communication load depends highly on the size of this
map. However, using a reasonable cell resolution (e.g., 10 cm) in a 10× 10 m
room the network load is in the range of ≈ 390 KBytes/second per camera. In
the fusion center, the evidence map of each smart camera is incorporated into
an occupancy map, which provides a top view of a scene and indicates areas
occupied by people or objects (see Section 4.2.3). This occupancy map is an
input of a Bayesian �ltering approach which estimates the positions of each
individual.
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The appearance of new people is handled by the fusion center, which ob-
serves a region of interest on the ground plane (entrance area). Simple blob
detection is performed on the resulting occupancy map. If enough foreground
is found in this region of interest, then a new person is initialized on the ground
plane and continuously tracked through space and time. We do not focus on
the initialization problem, but assume that only one person can enter at a time.
This simpli�es the problem and makes initialization rather robust.

4.2.1 Problem Formulation

In this section, we formulate the tracking problem of an a-priori unknown
number of people as an estimation of the most probable state of a hidden
Markov process, given a set of images acquired at each time instance t.

We model an individual as a point at location (xw, yw) on a plane (usually
the ground plane on which people move) w.r.t. a world coordinate system. The

locations xmt = (xw, yw)
T
, describing the unknown state vector, are di�erent

for each person m = 1, . . . ,M and vary over time t as the persons move.
Given It =

(
I1
t , . . . , I

C
t

)
, the images of the C cameras at time t, our task is

to �nd the persons' locations of x1
t , . . . ,x

M
t that maximize the posterior joint

probability
p
(
x1
t , . . . ,x

M
t |I1:t

)
of all M individuals, given all camera images up to the current time t. For
convenience, we denote the best estimate of each person as x̂mt at each time
instance.

To simplify the posterior joint probability, we assume that all xmt are in-
dependent random variables, i.e., that person's positions are independent of
those of other people and that individuals are not occluded in any of the cam-
era images I1:t. Taking into account the assumed independence of the state
vectors and the conditional independence given It, the posterior probability is
well approximated as the product of its marginals

p
(
x1
t , . . . ,x

M
t |I1:t

)
=

M∏
m=1

p (xmt |I1:t) . (4.1)

The optimization of (4.1) is a highly-complex and intractable problem since
it requires simultaneous optimization of all state vectors. Therefore, we opti-
mize every state xmt independently of the other states at each time instance.
Such an approximation is recursively correct: If all locations estimated up to
time t are correct, then the product of conditional probabilities (Equation (4.1))
also reach an optimum. This would be the case if the image data were informa-
tive enough to unambiguously associate locations to individuals. In practice,
due to, for example, occlusions for a given individual, this approximation might
mistakenly lead to a suboptimal solution in which the estimate of one person
gets o� track. This is especially likely to happen if the tracked individuals
are located close to each other. However, this situation can be prevented by
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Figure 4.2: Decomposition of xm
t . We partition the ground plane into an evenly-

sized grid with �xed resolution, namely a histogram �lter [Thrun 05]. Histogram
�lters decompose the continuous state xm

t into possible values xk.

treating the proximity of individuals as a special case to resolve ambiguities
(see Section 4.2.3).

Using Bayes' theorem and the Markov assumption, as shown in [Thrun 05],
we can recursively optimize each individual separately

p (xmt |I1:t) = η · p (It|xmt )

∫
p
(
xmt |xmt−1

)
p
(
xmt−1|I1:t−1

)
dxmt−1, (4.2)

where η = p (It|I1:t−1)
−1
. The distribution p (It|xmt ) is the likelihood of observ-

ing It given the state vector at time instance t, whereas p
(
xmt |xmt−1

)
describes

the motion model applied to the state vector xmt . It is appropriate to think of
It as noisy projections of the state vector.

Let us now consider the partition of the ground plane into an evenly-sized
grid with a �xed resolution. This grid has the same size as the resulting occu-
pancy map on the fusion center. Such a Bayesian �ltering approach is called
histogram �lter [Thrun 05] and is a particular representation (actually an ap-
proximation) of the probability distribution p (xmt |I1:t).

Histogram �lters decompose the continuous state xmt into �nitely K cells
(Figure 4.2). Each cell xk is pairwise disjointed, i.e., xk∩xl = ∅ for each k 6= l,
and describes an area (cell) on the ground plane. All xk together constitute
the whole ground plane. For convenience, from now on xmt denotes a set of
possible values xk.

Through the granularity of the decomposition we can trade o� accuracy and
computational e�ciency. Fine-grained decompositions infer smaller approxi-
mation errors than coarse ones, but at the expense of increased computation
complexity [Thrun 05]. The posterior probability p (xmt |I1:t) becomes a dis-
crete probability distribution. As shown in [Thrun 05], Equation (4.2) can be
approximated for discrete values xk of xmt as

p (xmt = xk|I1:t) = η · p (It|xmt = xk)︸ ︷︷ ︸
Likelihood

p (xmt = xk|I1:t−1) , (4.3)
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Figure 4.3: Example distribution describing the motion model. We use a very simple
and unconstrained motion model. A human can move in any direction with an average
speed of 1.4 m/s, but is limited by a maximal speed of 4.0 m/s. In (a), the posterior
probability p (xm

t−1|It−1) at time t− 1 is shown. Now, we apply the described motion
model which result in the distribution shown in (b). Note, the posterior is discretized
in an evenly-spaced grid and the corresponding probabilities are not normalized for a
better graphical representation. As can be seen, the model is isotropic and describes
how likely it is for every cell that a person has moved there.

where

p (xmt = xk|I1:t−1) =
∑
i

p
(
xmt = xk|xmt−1 = xi

)︸ ︷︷ ︸
Motion model

p
(
xmt−1 = xi|I1:t−1

)
.

The following two sections will explain the estimation of the motion model
p
(
xmt = xk|xmt−1 = xi

)
and the estimation of the likelihood p (It|xmt = xk) in

detail.

4.2.2 The Motion Model

To describe the motion of a person, a very simple and unconstrained motion
model was chosen [Fleuret 08]. We hereby assume that a human can move for
a distance da in any direction with an average speed of 1.4 m/s at each time
instance t, but is limited by a maximal distance dmax according to a maximal
speed of 4.0 m/s (Figure 4.3):

p
(
xmt = xk|xmt−1 = xi

)
=

{
η · e−

1
da
‖xk−xi‖, if ‖xk − xi‖ < dmax

0, otherwise.
(4.4)

Here, η describes a normalization factor and di�ers from the one in Equation
(4.2). The model is isotropic and the function of (4.4) decreases with the
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distance from location xk to zero, if the distance is greater than the maximal
distance dmax.

In the special case of da → ∞, the model becomes a uniform distribution
within the boundaries of the maximal allowed distance dmax. This simple and
unconstrained motion model is probably the simplest model of a person since
no additional information (such as the person's speed) is taken into account.
Moreover, it is arguable if a better model for a person would be useful, since
an individual can change direction and speed very fast.

4.2.3 Likelihood Estimation

In this section, we explain the estimation of the likelihood p (It|xmt = xk) which
describes two di�erent models, an appearance model and a model for occupancy
mapping.

To explain the model for occupancy mapping, we �rst de�nemk,t as a binary
random variable of an individual xmt at the location xk at time t, describing
how likely the kth cell of a grid is occupied by objects at time t. We denote an
occupied cell as �1�, otherwise �0�. All K binary random variablesmk,t together
de�ne an occupancy map of a scene. This map, as already mentioned, provides
a top-view of a scene in which each cell stands for the presence of an individ-
ual occupying this cell. Here, foreground masks from multiple viewpoints are
projected onto the ground plane using homographies [Delannay 09], [Khan 09].
Therefore, the estimation of an occupancy map depends on the extracted in-
formation (e.g., foreground blobs) from the camera images (see next Section
for further details).

From the input images It, we use foreground/background segmentation to
produce binary masks FGt. We denote the colors of the pixels inside the blobs
as Ct and treat the rest of the images as background, which is ignored. As
shown in [Fleuret 08], this results in

p (It|xmt = xk) = η · p (xmt = xk|It) (4.5)

= η · p (xmt = xk|Ct,FGt) (4.6)

= η · p (xmt = xk,mk,t = 1|Ct,FGt) (4.7)

= η · p (xmt = xk|mk,t = 1,Ct,FGt) p (mk,t = 1|Ct,FGt)
(4.8)

= η · p (xmt = xk|mk,t = 1,Ct) p (mk,t = 1|FGt)︸ ︷︷ ︸
Occupancy mapping

, (4.9)

where η = p(It)
p(xmt =xk) . Equation (4.5) results directly from Bayes' rule. In

Equation (4.6), we assume that all information are carried by the fore-
ground/background segmentation images FGt and the color images Ct. Equa-
tion (4.7) is true, since xmt = xk ⇒ mk,t = 1. Finally, (4.8) is true un-
der the assumptions that the occupancy of a location mk,t provides strictly
more information about someone being at location k than the result of the
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foreground/background segmentation, and that, given the result of the fore-
ground/background segmentation, the color of the blobs does not provide in-
formation about the occupancy.

Furthermore, as shown in [Fleuret 08], the appearance model results in

p (xmt = xk|mk,t = 1,Ct) =
p (Ct|xmt = xk)∑
n p (Ct|xnt = xk)

.

We assume that It only depends on xmt due to the independence as-
sumption we made in Equation (4.1). In practice, this is not the case.
The camera images It also contain information about the other state vec-
tors x1

t , . . . ,x
m−1
t ,xm+1

t , . . . ,xMt . Therefore, we compensate this restrictive
assumption, and exclude the contribution of the other state vectors to camera
images It. Let x̃t−1 be the state vector of the other states from the previous
time instance, and thus de�ne as x̃t−1 = x1

t , . . . ,x
m−1
t ,xm+1

t−1 , . . . ,x
M
t :

p (It|xmt = xk) = η · p (Ct|xmt = xk)∑
n p (Ct|xnt = xk)︸ ︷︷ ︸
Appearance model

p (mk,t = 1|FGt)︸ ︷︷ ︸
Occupancy mapping

p (mk,t = 1|x̃t−1)︸ ︷︷ ︸
Compensation

.

(4.10)
Here, the probability distribution p (mk,t = 1|x̃t−1) penalizes cells which

are in proximity of the remaining state vectors x̃t−1 from the previous time
instance. Furthermore, let x̂it−1 ∈ x̃t−1 be the best estimates of the remaining
state vectors for this time instance. Then,

p (mk,t = 1|x̃t−1) =

{
α, if ∀x̂it−1 ∈ x̃t−1,

∥∥x̂it−1 − xk
∥∥ < σPerson

1− α, otherwise,

where α = 0.01 and σPerson represents the width of a person. This is only a
rough approximation since it does not take the uncertainties of each individual
into account.

Further, we want to explore the in�uence of occupancy maps on tracking
and hence treat the appearance model as a uniform distribution which has
no in�uence on the results. In the next section, we will explain the estima-
tion of occupancy maps. The approach used to calculate an occupancy map
is based on the work of Linda Tessens [Tessens 10] and Marleen Morbee [Mor-
bee 10], [Morbee 11] which described occupancy mapping based on the theory
of Demster [Dempster 68] and Shafer [Shafer 76]. We will give a brief overview
of the method; refer to the work of [Tessens 10] and [Morbee 11] for more
details.

4.2.3.1 Occupancy Mapping based on the Dempster-Shafer Theory
of Evidence

The Dempster-Shafer theory of evidence [Dempster 68], [Shafer 76] is a gener-
alization of the Bayesian probability theory. Instead of using a probability as
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xy

Figure 4.4: Principle of Occupancy mapping. We consider the FG/BG segmentation
FGt =

{
FG1

t , . . . , FGC
t

}
of each camera c as a distinct piece of evidence, resulting

in an evidence map for each view. This evidence map is an evenly-sized grid in which
evidence is collected for each cell. These maps are fused to a common occupancy
maps using the Dempster-Shafer theory of evidence [Dempster 68], [Shafer 76]. The
evidence in each cell of such an occupancy map serves as the likelihood probability
for our tracking approach.

in the classical probability theory, the Dempster-Shafer theory uses the degree
of belief (also referred to as a mass) and the plausibility to constitute evidence.
Probability values are assigned to sets of hypotheses rather than single events:
their appeal rests on the fact that they naturally encode evidence in favor
of hypotheses. Formally, an exhaustive set of mutually exclusive hypotheses
constitutes a frame of discernment θ.

Morbee et al. and Tessens et al. de�ne the mutually exclusive and exhaus-
tive hypotheses θk = {nocc, occ} in that a cell k of an evenly-space grid on
the ground plane is either occupied (θk = occ) or not (θk = nocc) at time
t [Tessens 10], [Morbee 10], [Morbee 11].

The power set of θk, denoted as 2θk , is the set

{∅, {nocc} , {occ} , θk}

of all subsets of θk, including the empty set ∅, in which each subset is called
a proposition. A Basic Belief Assignment (BBA) describes a mapping e, also
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called mass e, from the power set 2θk to [0, 1] ∈ R such that
∑
A∈2θ e (A) = 1

and e (∅) = 0. The basic probability assigned to θk is a measure of the belief
that has not been assigned to any of the proper subsets of θ, describing the re-
maining uncertainty about the hypotheses. Complete ignorance is represented
by e (θk) = 1.

We consider the FG/BG segmentation FGt =
{
FG1

t , . . . , FG
C
t

}
of each

camera c, obtained by the method described in Chapter 5, as a distinct piece
of evidence, and denote the BBA representing this evidence by eck,t for the

kth cell of a evenly-spaced grid of camera c. Applying the Dempster's rule of
combination [Dempster 68], we can fuse the evidences eck,t of each camera c.
More precisely, let us de�ne the fused evidence as ek,t, then we obtain

ek,t (a) = m1
k,t (a)⊕, . . . ,⊕,mC

k,t (a) ,

where a ∈ 2θk\∅ and ⊕ is Dempster's rule of combination as described
in [Dempster 68], [Tessens 10]. Note that Dempster's rule of combination is
commutative, i.e., the order of the fused cameras is irrelevant.

This concludes to

p (mk,t = 1|It) ≈ p (mk,t = 1|FGt) = ek,t (occ) ,

and therefore describes the occupancy mapping for a speci�c cell k at time t.
We only consider the hypothesis θ = occ, since we want to know how likely it
is that this cell is occupied by a person.

The evidence eck,t per camera is derived as follows: consider a rectangular
cuboid of a certain height and width centered at cell k. The height describes
the average height of a person (≈ 1.80 m) and the width corresponds to the
resolution of the cell k. Each cuboid describes an image region in each camera
c, consisting of foreground and background pixels obtained by the FG/BG
segmentation, denoted as f ck,t and b

c
k,t, respectively. Note that, if the cuboid is

outside the viewing frustum of a camera, the fractions f ck,t and b
c
k,t are zero, or

otherwise, add up to one. Then the evidence of each hypotheses is calculated
as follows:

ek,t (occ) = gkf
c
k

ek,t (nocc) = bck

ek,t (θ) = 1− ek,t (occ)− ek,t (nocc) .

The factor gk re�ects the limited resolution of the cameras, which can cause
uncertainties due to persons in the neighboring cell(s) (see [Morbee 10], [Mor-
bee 11] for details). This is a scene-dependent factor and can be precomputed
based on the calibration data of each camera. Note that in the Dempster-Shafer
framework, the evidences ek,t (occ) and ek,t (nocc) do not necessarily have to
add up to one (in contrast to a probabilistic approach).

The evidence eck,t of the c-th smart camera needs to be transmitted to the
fusion center for each cell. All evidences together constitute a map ect of each
smart camera and is referred to as evidence map. This evidence map of each
camera de�nes the communication load of the camera network.
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Figure 4.5: Camera Coverage of the setup. This coverage map is a top-down view
of the ground plane. The map is an evenly-spaced grid, indicating the number of
cameras in each cell. Red areas re�ect more than 3 cameras in a cell decreasing in
number towards blue areas, where no cameras observe a cell.

4.2.4 Calculation of the Best Estimate

As stated in Section 4.2.1, the optimization is a highly-complex and intractable
problem since it requires simultaneous optimization of all state vectors. There-
fore, we optimize every state xmt independently, as shown in Equation 4.1. This
approximation is recursively correct: If all locations estimated up to time t are
correct, then the product of all estimates (Equation 4.1) results in an optimum.

The best estimate, denoted as x̂mt , of each state vector xmt , is obtained as
the expectation of the probability distribution p (xmt |I1:t):

x̂mt =

K∑
k=1

p (xmt = xk|I1:t)xk. (4.11)

Note that this equation evolves from the histogram �lter decomposition of the
continuous state xmt .

4.3 Results

In order to provide an evaluation of the presented approach, we conducted
several experiments using the collected video data of di�erent scenarios. The
scenarios were conducted under di�erent circumstances: people walking around
in a room without or equipped with furniture, and people in multiple meeting
scenarios. Both scenarios include up to four people and changing environmental
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Figure 4.6: Real-time Performance. The real-time performance of the proposed
system highly depends on the resolution of the ground plane and the number of
people in the scene. Here, the processing time for an increasing number of people
and di�erent ground plane resolutions is shown. For a coarse resolution of the ground
plane (≈ 10 cm) the performance is acceptable, but does not scale very well.

conditions (esp. with and without lighting changes). In total, we have collected
more than 120 minutes of data. The applications of the current approach fall
into the domain of surveillance and behavior analysis. Here, the performance of
the proposed method is evaluated in terms of real-time performance, accuracy
(up to twice the width of a person) and precision (in terms of number of object
losses and switches).

We provide qualitative and quantitative results and explain the advantages
and disadvantages of the current system that led to the the research proposed
in Chapter 5.

4.3.1 Data Sets

All our experiments were conducted in a room with the size of 8.8×9.2 m, using
a camera network. The data sets contain people walking around in the room,
observed by calibrated cameras (780× 580 pixels at 20 FPS) with overlapping
views.

Recordings were taken for several minutes during which ground truth posi-
tions of each person were manually annotated in the image plane at one second
intervals. This manual annotation process was conducted by �nding the feet
positions of individual (usually on the ground plane) in each camera image.
Using the camera calibration parameters, we then calculated the ground truth
positions of each individual on the ground plane in real world coordinates (xw
and yw coordinates, zw = 0).

The recorded sequences describe di�erent aspects of a tracking system. Se-
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quence #01 was conducted with one single person for one minute. In sequence
#02, three people are walking around in the room for several minutes, fol-
lowed by sequence #03 including four people walking around Sequences #04
to #10 describe meetings up to four participants for about twenty minutes. In
sequences #11 to #13 up to three people are waling around for about 10 min-
utes to test the reliability of our proposed tracking system. Finally, sequences
#14 to #21 were conducted under changing light conditions with up to four
people walking around in the room, even equipped with furniture such as tables
and chairs. Each of them last for about �ve minutes.

4.3.1.1 Camera Coverage of the Setup

The coverage map of the room, as shown in Figure 4.5, indicates a close to
ideal setup, since almost every position on the ground plane is covered by at
least three cameras. The coverage map was created for a setup without any
furniture. Therefore, the coverage map of a setup with furniture will di�er from
the one shown in Figure 4.5. Nevertheless, the coverage map re�ects how well
the setup could perform in the ideal case.

4.3.2 Real-time Performance

The current approach is only of limited use for real-time applications, since the
performance depends highly on the grid size used for the histogram �lter and
the number of people in the scene. In Figure 4.6, the processing time of one
sequence was calculated for increasing numbers of people, as well as di�erent
ground plane resolutions. Note that the scale of the time-axis is logarithmic.
The o�set at the time-axis describes the processing time needed to calculate an
occupancy map at the fusion center. As described in Section 3.2, the main part
of the computation takes places at the fusion center. As can be seen in Figure
4.6, the processing time scales more or less linear to the number of people,
which is clearly expected. Due to the nature of histogram �lters, the approach
is computationally intensive, which is translated into an exponential increase
of the processing time for a �ner resolution of the ground plane. For a coarse
resolution of the ground plane (≈ 10 cm) the performance is acceptable, but
still does not scale very well. Moreover, the processing times shown in Figure
4.6 only re�ect the computational cost at the fusion center and does not take
the network load into account. For instance, the network load of an evidence
map per smart camera for 1 cm ground plane resolution would be about ≈ 29
MBytes/second. Nevertheless, we reached approximately 5 FPS for a coarse
resolution (≈ 10 cm) in sequences with up to four people on an average PC.

4.3.3 Performance of the Proposed Approach

We express the performance of the proposed tracker approach in terms of preci-
sion and accuracy. Precision hereby refers to the total number of object losses
(NoOL) and the total number of object switches (NoOS). The latter describes,
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Figure 4.7: Example sequence under stable conditions. At the top, the tracking error
for each individual is reported as the distance to the ground truth. At the bottom,
the frame-by-frame based total average tracking error for a sequence with up to three
people is shown. Note that there are no object losses nor switches in this example
sequence. The total average tracking error over the whole sequence is about 14.6 cm.

in contrast to an object loss, two objects switching their positions with respect
to the ground truth positions. Such a switch can occur in our approach due
to a lack of an appearance model, especially if two individuals are in close
proximity. We consider people as lost by the tracker if the Euclidean distance
between their estimated position and the ground truth position is bigger than
80 cm (twice the assumed width of a person). Accuracy describes the Euclidean
distance between the ground truth positions of individuals and the positions
estimated by the proposed tracker approach, and is referred to as the total
average tracking error (TATE). In the following section we focus on di�erent
aspects of the proposed approach.

All sequences were processed with a grid size of 10 cm. The grid size is highly
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Table 4.1: Performance of the proposed approach without lighting changes.

Sequence Accuracy Precision
TATE [cm] NoOL NoOS OL/min

#01 19.9 0 0 0.0
#02 14.6 0 0 0.0
#03 12.5 0 0 0.0
#04 20.9 0 0 0.0
#05 20.4 0 2 0.0
#06 17.9 6 1 1.4
#07 23.1 28 3 3.4
#08 22.9 12 1 0.8
#09 22.9 37 1 2.0
#10 19.8 17 0 1.2
#11 17.8 13 0 1.1
#12 15.4 1 0 0.1
#13 15.4 12 0 1.1

correlated to the computational costs of the proposed algorithm. Furthermore,
the width and height of a person was assumed to be on average 40 and 180
cm, respectively. The width and height of a person is needed to calculate an
occupancy map as described in Section 4.2.3.

4.3.3.1 Performance without Lighting Changes

First, we explored the performance of the proposed method under stable con-
ditions. In Figure 4.7, the performance of an example sequence with up to
three people is shown. Here, there are neither object losses nor switches. The
total average tracking error is about 14.6 cm. In this �gure, the accuracy is
reported on a one-second basis and compared to the ground truth. Moreover,
results are also depicted for each individual present in this sequence. As can be
seen, the tracking error of each individual is not greater than 35 cm. However,
taking the coarse grid resolution of 10 cm into account, the results are already
reasonable.

Table 4.1 summarizes the overall performance of the proposed approach for
sequences that include up to four people. Some sequences represent meeting
scenarios which also include furniture (tables and chairs). The total average
tracking error (TATE) of all processed sequences is about 18.3 cm, which is
twice the grid size used in the approach. And on average, we achieved 0.6
object losses per minute.

The results show that the proposed method works reasonably well in case
of stable conditions with up to four people. Nevertheless, there is still a huge
number of object losses in some sequences due to people sitting still for a while,
causing the foreground blobs to vanish. This results in low evidences in the
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Figure 4.8: Example frame of a challenging sequence. Here, an example frame of a
sequence under changing light conditions is shown. As can be seen, even the human
eye has di�culties to detect the individuals in this frame. The proposed method
su�ers from missing foreground blobs on the individuals and therefore fails to track
the individuals correctly (green cuboid). The movie can be found in [Grünwedel 13b].

occupancy maps for these individuals, the reason why a person gets lost in the
tracking sequences.

4.3.3.2 Performance with Lighting Changes

As a second step, we explore the performance of the proposed method under
changing light conditions. In Figure 4.8, an example frame illustrates the dif-
�culties which arise under such circumstances. The scene is very dark and
even the human eye has di�culties judging where people are located. In this
particular example frame, the track of an individual (green cuboid) was lost.
Such a situation arises when the foreground blobs of all cameras do not agree
completely, which can lead to a low evidence on the ground plane. This low
evidence a�ects the tracking algorithm, resulting in tracking losses.

In Figure 4.9, the performance of the whole sequence is shown. Lots of
object losses (in total 17) are indicated, caused by the aforementioned issues.
Moreover, the total average tracking error (TATE) of the whole sequence is
about 32.9 cm and much bigger than, for example, the one in Figure 4.7. That
implies that changes in illumination have a strong in�uence on the accuracy of
the proposed tracking approach.

Table 4.2 summarizes the overall performance of the proposed approach for
sequences under changing light conditions that include up to four people. The
total average tracking error (TATE) of all processed sequences under changing
light conditions is about 24.6 cm. And on average, we achieved 8.3 object losses
per minute.
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Figure 4.9: Example sequence under changing light conditions. From the top to the
bottom row, the tacking error for each individual is reported as the distance to the
ground truth, followed by the total average tracking error and the number of object
losses on a frame-by-frame basis. The overall total average tracking error of the whole
sequence is about 32.9 cm with 13.6 object losses per minute.

The results show a rather poor performance in case of changing light con-
ditions. Here, the proposed approach reaches its limits due to mistakenly low
evidences in the occupancy maps if light conditions are poor. We will give a
more detailed explanation of this issue later (Section 4.3.5).
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Table 4.2: Performance of the proposed approach under changing lighting conditions.

Sequence Accuracy Precision
TATE [cm] NoOL NoOS OL/min

#14 21.4 2 1 1.7
#15 32.9 17 0 13.6
#16 36.3 19 0 15.4
#17 17.8 1 1 0.9
#18 21.9 36 9 5.7
#19 17.7 10 1 1.6
#20 24.4 62 0 11.4
#21 24.7 91 0 16.3

4.3.3.3 In�uence of Feedback on the FG/BG Segmentation

In this experiment we explore the in�uence of feedback to the FG/BG seg-
mentation method, by restricting regions in the background modeling that are
not updated. The procedure is as follows: First, the proposed tracking ap-
proach obtains an estimate of each individual. A cuboid around the estimate
of each individual is then projected onto each camera image and marks the
image region in which the background modeling is prevented from updating.
In that way, people who are sitting still for a long time will still be marked as
foreground and do not slowly become part of the background. This improves
the performance of the proposed tracking approach, as shown in Figure 4.10.
The latter also shows that the number of object losses decreases to only �ve
losses for this twenty-minute sequence. This results in an average tracking loss
of 0.3 objects per minute. Here, the improvement of the proposed approach by
using feedback is clearly visible. An evaluation of the feedback for the FG/BG
segmentation method can be found in Chapter 3.5.

4.3.3.4 In�uence of Various Motion Models

As a next step, we explored the in�uence of two di�erent motion models, de-
scribed in Section 4.2.2, on the performance of the proposed method. One
model uses an exponentially decreasing distribution (see Equation 4.4) to de-
scribe motion and the other an uniform distribution within the allowable dis-
tance dmax de�ned by the maximal speed of a person. Both models are rather
similar, but the �rst one favors a person that is standing still whereas the lat-
ter one assigns the same probability to any possible location with the allowable
distance dmax.

Figure 4.11 shows the performance in terms of total average tracking error
(TATE) in an example sequence. As expected, the di�erence is very small.
The exponentially decreasing model has a TATE of 10.3 cm over the whole
sequence whereas the other model has a TATE of 12.5 cm. Therefore, both
models behave similar in the proposed method. Although, running can possibly
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Figure 4.10: In�uence of feedback on the FG/BG segmentation algorithm. In case
of feedback, the total average tracking error (TATE) slightly improves, resulting in
about 18.8 cm. In the case of no feedback, the TATE is on average about 22.9 cm.
More importantly, the number of object losses decrease from 37 (no feedback) to
only �ve (with feedback). Here, the improvement of the proposed approach by using
feedback is clearly visible.

be better modeled by the uniform model since this model does not penalize the
speed of an individual.

4.3.4 In�uence on the Camera Image Resolution

In this experiment, we explore the in�uence of di�erent image resolutions of
a camera network on the creation of an occupancy map. This is especially of
interest to reduce costs since regular high-resolution cameras, which are usually



4.3 Results 75

200 400 600 800 1000 1200 1400 1600 1800
Time [frame]

0

10

20

30

35

To
ta

l A
ve

ra
ge

 T
ra

ck
in

g 
Er

ro
r 

[c
m

]

 

 Uniform Exponentially decreasing

Figure 4.11: In�uence of di�erent motion models. We explored the in�uence of
two di�erent motion models, of which one is exponentially decreasing and the other
uniform, on the performance of the proposed method. The di�erence between the
models is rather small. The exponentially decreasing model has a TATE of 10.3 cm
over the whole sequence, whereas the other model has a TATE of 12.5 cm.

used in camera networks, make tracking systems expensive. Moreover, with the
use of regular high-resolution cameras, privacy issues arise in such camera net-
works. Furthermore, their high power consumption precludes battery usage, re-
quiring more energy-e�cient solutions. One possibility is the use of low resolu-
tion visual sensor networks (e.g., mouse sensors) [Hengstler 06], [Hengstler 07],
but their limited resolution could degrade the accuracy of an occupancy map.
It is not clear which resolution is su�cient to construct an accurate occupancy
map to perform tracking.

For this purpose, we simulate a visual sensor network to determine the min-
imal required image resolution of a camera network that is needed to construct
an occupancy map. We used a regular camera network and resized the images
of each camera to simulate low resolution sensors. In Figure 4.12, di�erent
resolutions of a camera image are shown. As can be seen in Figures 4.12c and
4.12d, it is very di�cult to provide evidence of the location of people in the
scene.

In Figure 4.13, we illustrate the problem of low-resolution camera images.
Here, as an example, occupancy maps for di�erent resolutions are depicted. As
can be seen in Figure 4.13h, evidence of one person on the ground planes is
missing due to incorrect results of the FG/BG segmentation method, which is
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(a) 256× 190 pixels (b) 128× 96 pixels

(c) 64× 48 pixels (d) 32× 24 pixels

Figure 4.12: Input images for di�erent resolutions. We resized the input images to
di�erent resolutions. As can be seen, for (c) and (d) it is very di�cult to recognize
the whereabouts of di�erent individuals.

caused by the low resolution of these cameras.

To provide an evaluation of di�erent camera resolutions and to determine
the minimal resolution needed to create an accurate occupancy map, we choose
two measures: The n and p measures, used already in Chapter 3.5.3.1 and
explained in [Van Hese 11], and the performance of the proposed tracking
approach in terms of accuracy and number of object losses.

To recapitulate, n represents a measure of evidence at the person's positions
(within a radius of 10cm, n = 1 is the ideal case) and p a measure of no evidence
despite these positions (p = 1 is the ideal case).

Table 4.3 summarizes our �ndings. We see that there is a signi�cant drop
in terms of accuracy and the n and p measures for the resolution 32 × 24,
compared to the other resolutions (256×190, 128×96 and 64×48). Moreover,
the performance of the proposed tracking approach, using the lowest resolution
32×24, often fails due to inaccurate occupancy maps, meaning that the tracker
produces inaccurate results (80.18 cm mean distance error from the ground
truth) leading to an increase in object losses.
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(a) 256× 190 pixels (b) 128× 96 pixels (c) 64× 48 pixels (d) 32× 24 pixels

(e) 256× 190 pixels (f) 128× 96 pixels (g) 64× 48 pixels (h) 32× 24 pixels

Figure 4.13: Resulting occupancy maps for di�erent image resolutions. As an ex-
ample, we show the results obtained by a FG/BG segmentation method (upper row,
(a)-(d)) for a certain camera, and the corresponding occupancy maps (lower row,
(e)-(h)). Here, foreground is indicated in black in the FG/BG segmentation results.
Compared to (a), (b) and (c), the result of the FG/BG segmentation method is poorly
in the lowest resolution (32× 24 pixels), and therefore the corresponding occupancy
map (h) completely misses the evidence of one person.

Table 4.3: Evaluation of di�erent camera resolutions.

Resolution Measures Performance
n p TATE [cm] NoOL

256× 190 0.88 0.74 13.89 0
128× 96 0.88 0.70 20.03 1
64× 48 0.81 0.66 29.67 7
32× 24 0.49 0.66 80.18 42

In summary, we can conclude that a resolution of 64× 48 pixels is su�cient
to create an acceptable occupancy map to track people. This implies that a
visual sensor of around 64 × 48 pixels is a reasonable choice. Furthermore,
such sensors are cheap and the increase in object losses can be compensated by
an increased amount of sensors compared to a high-resolution camera setup.
Hence, a mouse sensor could already be a cheap alternative to high-resolution
cameras.

4.3.5 Limitations of the Proposed Tracking Approach

In this section we discuss the limitations of the proposed tracking approach
that led to the distributed tracking approach presented in the next Chapter.

First, the main problem of the presented approach is the fusion strategy of
occupancy maps. That means, if an occupancy map is poor due to noise or
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Figure 4.14: Limitation of the proposed tracking approach based on occupancy maps.
Here, the limitation of the proposed algorithm is illustrated. In (a), an occupancy
map is created from almost ideal FG/BG segmentation results. In (b), the FG/BG
segmentations are noisy (in fact only for one person - red rectangle). As can be seen,
using the noisy input for a certain person (red rectangle) results in lower evidence
on the ground plane. For FG/BG segmentation results in (c), the evidence for this
individual vanishes completely.
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imperfect results of a FG/BG segmentation algorithm, then the tracking will
most likely fail, i.e., objects will be lost by the tracker. Figure 4.14 illustrates
the problem. In Figure 4.14a, we see almost perfect FG/BG segmentation
results of each camera. Therefore, in the resulting occupancy map, people are
clearly distinct from each other. If a FG/BG segmentation result is noisy, i.e.,
parts of the foreground is missing (red rectangle in Figure 4.14b), the evidence
in the occupancy map is already lower or partially missing for this person.
Finally, if the foreground blob of a person is entirely absent (Figure 4.14c) due
to, for example, poor lighting conditions, then there is no resulting evidence
left in the occupancy map. This behavior has, of course, a signi�cant impact
on the tracking results, especially in the case of lighting changes, as shown in
Section 4.3.3.2.

Secondly, the proposed approach does not scale well. The main part of
the processing takes place in the fusion center of the camera network. An
evidence map of each camera is sent to the fusion center to calculate the �nal
occupancy map. If additional image features need to be integrated into the
tracking approach, they need to be transmitted to the fusion center as well.
This in�uences the scalability of the proposed approach. As stated in Section
4.3.2, the network load depends strongly on the granularity of the ground plane.
Additional image features increase the network load and the processing time
at the fusion center. Here, a distributed tracking approach could help to shift
the computation load towards the smart cameras. In Chapter 5, we introduce
this new approach and show its advantages.

4.4 Conclusions

In this chapter, we presented a tracking approach based on occupancy maps.
We showed the performance of the proposed approach in terms of accuracy
and precision, but also its limitations which led to the research proposed in
Chapter 5.

The limitation of the proposed tracking approach lies mainly in the sensi-
tivity of occupancy maps, which depend on the FG/BG segmentation results
and the scalability of the approach. Hence, if the FG/BG results are poor or
noisy, the evidence in an occupancy map can be low, or even vanish, for a par-
ticular individual. This leads to a poor performance for the proposed tracking
approach and potentially to additional object losses. Future work could focus
on solving the aforementioned issues by incorporating additional features that
achieve robust tracking. The drawback of the proposed framework lies in the
communication between smart cameras and the fusion center. Here, the incor-
poration of additional features leads to an increase in the communication load
and might therefore pose a potential problem.

Parts of this research have been published in the Proceedings of the
IEEE/ACM International Conference on Distributed Smart Cameras (ICDSC)
[Grünwedel 11a] and the Proceedings of the second International Conference
on Positioning and Context-Awareness [Van Hese 11]. This research is also the
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basis of the following chapter.



5
Distributed Multi-Camera

Tracking with a Feedback

Loop

Real-time tracking of people is an essential component of many computer vision
applications, of which security and surveillance of individuals for path-retracing
is the best known application [P�ugfelder 10], [Morris 08]. However, other
applications are emerging. For instance, in video-conferencing, positional data
for each meeting attendant can be very valuable. It can be used to de�ne regions
of interest containing people, so as to limit more detailed processing to those
areas. This can be helpful to focus pan-tilt-zoom cameras (PTZ camera) on
speci�c people [Aghajan 09], to determine when they enter and leave the room,
to determine their identity even when they do not currently face a camera, or
helping to infer some activities [Fathi 11] such as getting a cup of co�ee, . . .

In the above applications, which focus on individual tracks of individual
people, avoiding tracking loss is essential, i.e., tracks of individuals should not
be lost due to occlusions and individuals should not be mixed up when they get
close together. One way to avoid this problem is to rely on high-level feature
analysis [Babenko 11], e.g., to periodically re-identify people. Such algorithms
are computationally intensive and it is often better to restrict their usage. For
instance, they can be activated when there is doubt about the current tracks
or they can be run every few seconds only. Alternatively, high-level algorithms
can be used to correct tracking losses when they are already executed for other
purposes, as exempli�ed in our experimental setup. Here, we analyze people's
faces when they are entering the room or when they are seated in front of
a web-cam [Deboeverie 11]. This information can correct some tracking loss
problems, but often with a large delay. In conclusion, while algorithms relying
on high-level analysis are certainly valuable, it is still very important for any
tracking algorithm to minimize tracking loss in the �rst place.

In addition, tracking accuracy is an important requirement in some of the
above applications. On the one hand, a higher tracking accuracy helps to reduce
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tracking losses [Aghajan 09], thus a reduced accuracy is a sensitive indicator of
�near losses�. On the other hand, a high accuracy is needed for some types of
detailed behavior analysis, e.g., to detect interactions between people (people
who know each other well stand closer to each other) [Fathi 11]. For instance,
in video-conferencing applications people sometimes move close to one another.
In such an application, the tracking results need to be at least as accurate as
the width of a person.

Reliable accurate tracking of multiple people in crowded scenes is still a very
challenging task, mainly due to frequent occlusions and environmental changes.
Even detecting and tracking a single non-occluded person sometimes poses
problems for state-of-the-art single-camera tracking algorithms, e.g., due to
poor illumination or lighting changes. Tracking multiple people in the presence
of furniture and other occluding obstacles, poses many additional problems. In
this case, the problems are greatly reduced by using a top view rather than a
side view camera.

While tracking may be possible with a single top-view camera [Ozturk 09],
joint analysis of multiple camera streams increases the robustness in most ap-
plications [Aghajan 09], especially in highly cluttered indoor scenes. Moreover,
most applications need side view cameras to enable more detailed analysis or
visualization (e.g., of people's faces), so one might as well use them for people
tracking.

More speci�cally, the principles of triangulation can help to estimate the po-
sitions of people with high accuracy from side-view cameras. If enough cameras
are available, problems due to occlusions can also be avoided and a top-view
camera may not even be needed.

It should be noted that other applications rely on accurate statistics rather
than accurate individual tracks. For instance, in elderly care, behavior analysis
based on track statistics such as walking speed, track smoothness and aver-
age activity levels can yield important information about physical and mental
health degradation over long periods of time [Kröse 11]. Nevertheless, achiev-
ing a certain minimal accuracy is always important; for example, to be able to
distinguish between the kitchen and the living room. Similarly, in a work envi-
ronment, statistics about the time workers spend sitting, walking or standing,
can help to pinpoint productivity problems or potential health hazards such as
taking too few breaks. In marketing applications, they can provide informa-
tion about the e�ciency of billboards, etc. Moreover, in retail stores statistics
about the whereabouts of people result in the e�ectiveness of advertisements
or promotions. All these applications can tolerate some errors in individual
tracks, which is important since reliable tracking over long periods of time in
di�cult environmental conditions is still a major problem. For this reason,
the latter applications may actually be the easier ones to bring into practice.
However, even in these applications we should strive for minimal tracking loss
and maximal accuracy.

In this chapter, we also focus on real-time, low-latency and scalable track-
ing of multiple people, which adds another level of complexity compared to
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state-of-the-art methods as published by [Berclaz 11]. However, real-time and
low-latency operation is needed in many indoor tracking applications since they
need to react quickly to changes in people's positions. Here, selecting appropri-
ate high-resolution views for display and running detailed analysis algorithms
is required. Examples of such applications include surveillance, building oc-
cupancy monitoring, tele-classing (to focus one or more cameras on the mov-
ing presenter), etc. These applications typically involve long-term monitoring.
Moreover, even in o�-line applications (such as studying motion patterns) fast
operation is essential so that the analysis can keep up with the data acquisition;
faster than real-time operation may be required.

An often overlooked problem in multi-camera research is that of scalability:
centralized processing of multiple video streams creates not only a computing
but also a communication bottleneck. From this point of view, multi-camera
tracking approaches can be categorized into centralized, decentralized and dis-
tributed tracking approaches, as shown in [Taj 11]. Centralized approaches
transmit all video streams to one or more fusion centers (servers) and process
the video on these fusion centers. The fusion centers need to be very powerful
computers and need to be able to sustain high communication bandwidths.
Decentralized and distributed tracking approaches group cameras into clusters
which communicate with a local fusion center (decentralized) or with each other
(distributed tracking).

Combining real-time, low-latency, scalability, accuracy and tracking loss re-
quirements is highly non-trivial. In recent years it has become possible, with
the deployment of smart networked cameras, to shift the computation load to-
wards the camera [Hengstler 06], [Hengstler 07], [Soro 09]. Therefore, in this
chapter, we consider a decentralized processing architecture in which the most
compute-intensive video processing is performed within smart cameras. In fact,
since the requirements on the fusion center are so low, it is even possible to
run the fusion center algorithms on each camera and end up with a distributed
architecture. In this case, a camera essentially fuses its estimates with informa-
tion received from neighboring cameras [Taj 11]. In our architecture, no video
transmission is needed for the purpose of tracking, not even for regions of in-
terest within the camera views. When video transmission is needed for other
purposes, the positional information provided by the tracking system can help
to reduce the overall video bandwidth by restricting transmission to regions of
interest. However, many detailed image analysis algorithms, e.g., face recogni-
tion, can run on a single camera and do not require video transmission.

In our system, each camera �rst performs low-complexity foreground/-
background (FG/BG) segmentation, to segment the scene into moving blobs
on a static background. The FG/BG algorithm is based on edge statistics and
is more robust against light changes than other algorithms (see Chapter 3).

Next, each camera groups the blobs into bounding boxes (�cuboids�) with
respect to a world coordinate system, which most likely correspond to indi-
vidual persons. Since we assume calibrated cameras, we are estimating the
person's cuboid in world coordinates rather than in image coordinates. This
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allows a physical motion model to be expressed more easily than a model in
the image domain where apparent speeds depend on the position of the person
w.r.t. the camera. Furthermore, the estimates of a cuboid in world coordinates
can be directly transmitted to a fusion center or even to other cameras without
knowing the relationship between the image domain and the world coordinate
system of this camera.

One approach would be to track the motion of each blob using advanced
motion estimation techniques in a smart camera; more speci�cally, using pixel
based techniques such as optical �ow as in [Grünwedel 12a] or by tracking
SIFT, SURF, FAST, etc. features within the blobs [Anjum 09]. We rather aim
to show that tracking is possible using simple FG/BG segmentation only, in
combination with extremely simple blob analysis: For blob tracking, we rely
on feedback from the fusion center on the most recent positions, speeds and
geometries of individuals in the scene. Based on this feedback, we perform
probabilistic occlusion reasoning in the camera to identify which blobs belong
to which cuboid. The analysis also yields updated cuboid parameters (e.g.,
positions).

Importantly, our method does not involve sophisticated motion estimation
in each camera; however, if motion estimation needs to be performed anyway
to support more detailed video analysis for other purposes, our method can be
modi�ed to also use available motion estimation information.

We will demonstrate that our approach works reasonably well, i.e., that a
simple analysis of changes in pictures, rather than motion estimation results, is
reliable and accurate for tracking multiple people in a multi-camera network.
Speci�cally, we can track up to four people using as little as six cameras without
tracking losses in moderately complex environments, and less than two tracking
losses per minute in sequences with abundant occlusion. The average accuracy
is about 12 cm. These results are as good as state of the art algorithms as
reported by [Berclaz 11], [Fleuret 08]. However, we achieve those results in a
real-time, low-latency, and scalable system, requiring low computational and
network resources. In contrast, the methods in the cited papers are o�-line
methods. Moreover, the method of [Fleuret 08] and [Berclaz 11] uses images
of up to �ve seconds in the future and hence an on-line version of that method
would incur a delay of about �ve seconds.

Our system has a very low communication overhead: a frequency of 10
updates per second alone is su�cient for each camera to transmit the parame-
ters (position, speed, width and height) together with a reliability measure of
each tracked cuboid to the fusion center and nothing else. These geometrical
descriptors are integrated on the fusion center, which then returns fused de-
scriptors for all individuals to all smart cameras. The resulting transmission
bandwidths from the camera to the fusion center and back are in the order
of ≈ 900 Bytes/second per person for each camera. The low communication
overhead results in a highly scalable system. Moreover, it is an asset in battery
operated smart cameras, where battery lifetime is mostly limited by commu-
nication power [Taj 11]. It is also an asset in ad-hoc temporary setups, where
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wireless networks are preferred to avoid building works for installing cables.
The basic statistical estimation framework in our system, in the fusion cen-

ter, is a Bayesian estimator. In each smart camera we use one of the three
approaches: a Histogram �ltering (HF) approach, a Particle �ltering (PF) ap-
proach, or an approach with no local state estimation (NLE). Each approach in
the camera obtains estimates for each person based on FG/BG segmentation
and the feedback from the fusion center. Since those estimates are in world
coordinates, uncertainties are introduced by the back-projection from the im-
age domain to the world coordinate system. Nevertheless, the fusion center
uses a linear Kalman Filter (KF) to obtain a joint decision of all cameras for
each person. The �nal estimates are fed back to each camera to minimize the
uncertainties of the camera estimates.

The remainder is structured as follows: In Section 5.1, we discuss related
work. Section 5.2 describes the overall decentralized system architecture con-
taining a Section 5.2.2 describing the video processing and cuboid estimation
within each camera. Furthermore, in Section 5.2.3 the information fusion at
the server side is explained. Section 5.3 presents experiments to demonstrate
the tracking performance (accuracy, precision) and computational and commu-
nication overhead. We compare our methods to [Berclaz 11]. We designed an
experimental setup and evaluate our method based on test data from that setup.
We also show results on a publicly available data set of [Berclaz 11], [Fleuret 08].
The results show that our system performs as accurately and robustly as the
other methods, but has the advantage of being real-time and low-latency. More
importantly, it is highly scalable and imposes little communication overhead.
Section 5.4 concludes the chapter.

5.1 Related Work

In this section, we provide an overview of state-of-the-art approaches in context
with our proposed system architecture. We consider both single- and multi-
camera approaches since there are single-camera approaches with extension to
multi-camera methods, as well as di�erent conceptional architectures. Several
reviews about both approaches and conceptional architectures exist. In Yilmaz
et al., single-camera tracking approaches are discussed [Yilmaz 06]. Smith
et al. [Smith 06], Liu et al. [Liu 07], Aghajan et al. [Aghajan 09] and Taj
et al. [Taj 10], [Taj 11] focus on conceptional architectures and multi-camera
tracking approaches to which the reader is referred to for more details.

5.1.1 Monocular Approaches

Monocular approaches have been an active research topic in the past two
decades, ranging from detection to tracking algorithms for a single or multiple
target(s) using only one speci�c camera view. Most algorithms use features
which range from simple cues, such as color, shape or texture, to more com-
plicated ones as classi�cation with on-line adaptation. Blob-tracking is one
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of the most popular low-cost approaches for tracking of objects [Collins 03].
Usually blobs are detected on a frame-by-frame basis and are tracked by com-
paring their shape, location and appearance from one frame to another. This
approach is followed, even in the case of occlusions.

The BraMBLe tracker [Isard 01], for example, is a Bayesian multi-blob
tracker which computes the likelihood for each blob based on a known back-
ground model and appearance model of tracked people. It uses particle �lter-
ing to track an unknown number of people. Problems arise when object blobs
merge with blobs of other close-by objects or with blobs of occluding objects,
degrading the performance of this tracker. However, tracking can be improved
by taking more cues into account.

In Giebel et al., Bayesian tracking based on particle �lters is combined with a
detector using learned spatio-temporal shapes to perform multi-cue 3D object
tracking in a single camera [Giebel 04]. Their spatio-temporal object repre-
sentation involves a set of distinct linear subspace models or Dynamic Point
Distribution Models (DPDMs) and is learned fully automatically from training
data. Furthermore, the representation is enriched with texture information by
means of intensity histograms and 3D measurements provided by a stereo sys-
tem. The results are tested on a small data set and are quite impressive but
require shape, texture and image depth information to reliably track objects.
The approach can be categorized into the group of more complex techniques
that require a signi�cant computation time.

A similar approach is the one of Babenko et al. [Babenko 11]. The authors
present a tracking technique based on the concept of �tracking by detection�.
Their approach uses Multiple Instance Learning (MIL) to train a discriminative
classi�er in an on-line manner to separate the object from the background,
based on Histogram of Oriented Gradients (HOG) features. The algorithm is
designed to track one object.

Smith et al. use particle �ltering based on Markov chain Monte Carlo op-
timization to track people and handle entrances and departures using a �xed
camera [Smith 05]. Their framework uses a joint multi-object state-space for-
mulation to recursively estimate the multi-object con�guration and e�ciently
search the state-space by using particle �ltering. As a global appearance model,
binary images based on background subtraction, together with foreground and
background color statistics, are used to discriminate between di�erent objects
in the scene.

However, there is an important di�erence between those papers and our
approach: Our proposed system architecture utilizes fusion of multiple camera
views simultaneously and a feedback channel for incorrect associations that
combines the task of detection and tracking seamlessly.

5.1.2 Multi-camera Approaches

Detection and tracking of multiple, possibly occluded, people in complex en-
vironments is a challenging task which makes multiple cameras indispensable:
The di�erent viewpoints o�ered by multiple cameras decrease the number and
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size of occluded regions. Also, multiple cameras simplify 3D analysis of a scene
and provide redundant information which can help to improve robustness.

A series of papers addressed multi-target tracking using the principle of
associating objects in multiple views. For example, in [Nakazawa 98], human
tracking is performed using template matching to track moving people. A
state transition map together with action rules is used to coordinate between
cameras. The state of the state transition map consists of three kinds of areas
according to the camera coverage: areas visible to only one camera, areas visible
to multiple cameras and areas visible to no camera. This state transition map
stores the camera and view parameters of all cameras, while the action rules
instruct each camera how to act.

Cai et al. [Cai 98] adopted an almost optimal view selection approach: their
tracker is a single-camera one, based on a Bayesian classi�cation scheme. How-
ever, the tracker switches to another camera as soon as the current camera has
no longer a good view of the tracking target. A switch to another camera is
predicted by the tracking system for the position of an object along a spatial-
temporal domain. As internal state, the tracker gathers sample pictures of
upper human bodies as seen from various viewing angles. Non-human moving
objects are excluded using Principal Component Analysis (PCA).

Bayesian networks are another popular approach to address the problem
of multi-camera tracking. Chang et al. [Chang 01] used a Bayesian network
approach to combine features based on geometry (epipolar geometry, homogra-
phies, and landmarks) and recognition (height and appearance) for matching
objects between consecutive image frames and multiple camera views. Dock-
stader et al. also used Bayesian networks to track objects and resolve occlusions
in multiple calibrated cameras [Dockstader 01]. Nillius et al. [Nillius 06] as-
sume the existence of an isolated track graph and focus more on the high-level
tracking task. The goal of the paper is to associate the identities of those graph
tracks. The problem is formulated as a Bayesian network inference which uses
standard message propagation to �nd the most probable set of paths in an
e�cient way. Results of the multi-object tracking is applied on soccer players.

Stereo vision is used in [Krumm 00], [Darrell 01], [Mittal 03]. For example,
Krumm et al. use a stereo camera approach wherein depth information from
multiple stereo cameras are combined in 3D space [Krumm 00]. Firstly, back-
ground subtraction is performed and then human-shaped blobs are detected in
3D space. Afterwards, a distribution for each person based on color histograms
is used to identify and, together with the blobs, track multiple people.

Nevertheless, the underlying problem of any feature type (like appearance,
color, blob shapes, etc.) remains: they are easily corrupted due to occlusions
or environmental and lighting changes.

Khan et al. use a homographic occupancy constraint to fuse foreground
evidence, retrieved by a background subtraction method from multiple cameras
by geometrical constructs [Khan 06], [Khan 09]. The homographic occupancy
constraint interprets foreground as scene occupancy by non-background objects
and states that pixels corresponding to occupancies on a reference plane will
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consistently warp to foreground regions in every view. Their method resolves
occlusions by localizing people on multiple reference planes and attempts to
�nd image locations of scene points that are occupied by people.

Similar work was presented in [Mittal 03], [Franco 05], [Berclaz 06] and
[Fleuret 08]. Fleuret et al. estimate probabilities of occupancy on the ground
plane given binary images obtained by background subtraction [Fleuret 08].
They use a generative model representing humans as simple rectangles to ap-
proximate the probabilities of occupancy at every location as the marginals of
a product law, minimizing the Kullback-Leibler divergence from the condition
posterior distribution. Optimal tracks are computed from the raw observations
by a greedy search strategy based on Dynamic Programming.

In a later extension [Berclaz 11], the trajectory estimation is treated as a
constrained �ow problem. This results in a convex optimization problem which
is solved using the k-shortest paths algorithm. The results show a very good
performance on di�cult real-word applications.

Many of the aforementioned papers represent the accumulated knowledge
about the location of people by occupancy maps, inspired by the research on
robot navigation using range sensors [Elfes 89], [Thrun 03]. However, occu-
pancy maps based methods usually perform poorly when humans are partially
hidden, e.g., by furniture, or if the input data (as a result of background sub-
traction) is noisy or even not existent due to environmental changes in at least
one of the cameras. The main reason is the assumption that pixels correspond-
ing to occupancies will warp to foreground regions in every camera view. This
assumption is not always valid and can therefore lead to errors in some of the
occupancy maps, eventually resulting in tracking errors.

The major di�erence to our approach is that we calculate a local estimate of
individuals in each camera directly. Our approach obtains global estimates of
individuals using a Bayesian estimator in a continuous state space with respect
to a world coordinate system, rather than a discretization of the ground plane
into grid cells. Each camera makes its own estimates for each person and a
global (�nal) estimate is obtained by the fusion of all camera estimates at the
fusion center side. This has the advantage that cameras can make mistakes as
long as the global estimates are correct. If this is not the case, then the whole
system will break down due to insu�cient information, but this will happen in
both approaches.

In Taj et al. [Taj 09], a centralized tracking approach is presented where the
input data from each camera view is projected on a top-view through the multi-
level homographic transformation of [Delannay 09], which projects foreground
evidence to planes parallel to the ground plane. The projected planes are added
up to generate a detection volume. The method adopts a track-before-detect
(TBD) approach to keep track of possible humans in the scene. In the TBD
approach the entire image is considered as a measurement which is a highly
non-linear function of the target state. The target state consists of the position
and speed of an object and the intensity of the image. In their approach,
tracking is solved by employing non-linear state estimation techniques such as
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particle �ltering.

Anjum et al. used an unsupervised inter-camera trajectory correspondence
algorithm to link objects across a multi-camera network [Anjum 09]. Object
association is implemented as a hybrid approach using local trajectory pairs es-
timated by multiple spatio-temporal features. Then image-plane re-projections
of the matched trajectories are employed to resolve con�icting situations.

The latter approaches have high-data transfer rates due to the nature of
centralized processing and therefore a lack of scalability and energy e�ciency.
However, our proposed approach is scalable, e�cient with respect to the com-
munication bandwidth, and operates in real time due to the limited data ex-
change between cameras and the fusion center.

Other approaches for visual tracking range from Bayesian �ltering algo-
rithms to Probabilistic Graphical Models (PGMs). In Dore et al., a state-of-
the-art review of Bayesian state estimation and PGMs, with respect to tracking
applications, is provided [Dore 10]. In particular, in computer vision and video
processing, algorithms have been proposed based on di�erent types of PGMs
such as Hidden Markov Models (HMMs) or Kalman �lter. In their review,
the authors describe PGMs as a statistical framework suitable for handling
complex object representations. This framework enables consistent formal-
ization and handling of uncertainties of visual observations. Moreover, this
framework allows e�cient solutions for complex problems, meeting real-time
requirements. One important step in these approaches is to model data as-
sociation. Here, one commonly uses the Joint Probabilistic Data Association
Filter (JPDAF) [Bar-Shalom 87], [Kirubarajan 04]. In Kirubarajan et al., an
overview of the PDA technique and its application for di�erent tracking scenar-
ios is presented [Kirubarajan 04]. This �lter deals with multiple observations,
assuming that an object emerges only by one true measurement and jointly
estimates the solution for all objects.

Rasmussen et al. [Rasmussen 01] use a constrained JPDAF �lter for their
randomized tracking algorithm which oversees correspondence choices between
the tracker and image features. The algorithm is applied to three di�erent
kinds of tracking modalities, namely homogeneous regions, textured regions,
and contours described as snakes. In addition, they consider depth ordering
of tracked objects relative to the camera, resulting in the ability to predict
occlusions between objects and allowing likelihoods coming from di�erent cues.

Maggio et al. [Maggio 08] propose a �ltering framework for multi-target
tracking based on particle �ltering and data association, using graph match-
ing. Their tracker is able to compensate for missing detections and to remove
noise and clutter produced by the detector. In their approach, a novel particle
resampling strategy is proposed, and, moreover, the dynamic and observation
models are adapted to cope with various object scales.

There are some shortcomings of the JPDAF: the JPDAF does not consider
situations in which multiple measurements can be assigned to one object or
where the same measurement is represented by two objects. Moreover, by
using a JPDAF for data association, the processing time increases signi�cantly
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with the number of objects, since all possible hypotheses need to be calculated.
It also cannot handle objects entering, or already tracked objects exiting, the
�eld of view.

Another approach for data association is Multiple Hypothesis Tracking
(MHT) [Reid 79]. In the MHT algorithm, several correspondence hypotheses
for each object at each time are maintained and assessed. Using this approach,
the correspondence decision is deferred until the most likely set of observation
correspondences is found. In MHT, the probability of each potential track is
calculated, and typically only the most probable of all the tracks is reported.
The algorithm has the ability to create or terminate tracks of objects, entering
or exiting the �eld of view. Moreover, it can also handle occlusions in a way
that the continuation of a track is found even if some of the measurements from
the object are missing. MHT makes associations in a deterministic sense and
exhaustively enumerates all possible associations.

A particle �ltering approach that handles multiple measurements to track
multiple objects has been proposed by [Hue 02]. In their method, data associ-
ation is handled in a similar way as in MHT, however, the state estimation is
achieved through particle �lters.

In comparison with the latter approaches, we use a Bayesian �ltering ap-
proach. These approaches provide e�cient solutions [Dore 10], useful to achieve
a scalable and e�cient communication load due to limited data exchange be-
tween cameras and the fusion center. However, in our proposed method each
camera sends a local estimate per person to the fusion center, together with
a reliability measure. The fusion center hereby fuses these local estimates for
a speci�c person of all cameras to one global estimate. The data association
strategy is described in a bottom-up manner, meaning that evidence for a spe-
ci�c person is gathered locally in a camera. In the special case of occlusions,
where a concrete data association strategy is needed since it could introduce
ambiguities, we use probabilistic foreground modeling (see Section 5.2.2.1) to
perform occlusion reasoning. Furthermore, we use an approach with no local
state estimation, like in MHT, to explore the posterior probability, taking all
current measurements into account. However, we do not yet keep track of dif-
ferent hypothesis over time. This particular idea and the exchange of several
possible hypothesis of a single object can lead to further improvements of our
method.

5.2 The Proposed System

In this section, we describe our proposed decentralized tracking approach. Here,
the fusion center only operates on numbers (the states of people) and not on
images. This allows the construction of huge smart camera networks without
straining network and big computational resources. It also only requires simple
processing within the smart cameras, leaving precious resources for other video
processing algorithms if needed. We have built such a system with one fusion
center and six (smart) cameras (cp. Figure 2.5).
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Figure 5.1: Decentralized system architecture. In the camera-based tracking block,
executed on a smart camera, features (foreground blobs) are extracted from the input
video. Then the local states of all people (the position on the ground plane, speed,
width and height of each person) are estimated. Afterwards a compact representation
is sent to the fusion center which fuses the individual estimates into a global estimate,
resulting in the best possible global state for each person. These states are fed back
to each camera to correct possible mistakes.

Figure 5.1 shows a block diagram of the proposed system architecture. First,
each smart camera computes features from the input video, i.e., FG/BG seg-
mentation using the method described in Chapter 3. Simultaneously, each
smart camera receives feedback from the fusion center about the number of
people, their positions, sizes and speed in the scene at time t − 1. Of course,
this estimate is slightly outdated as it is based on previous observations. How-
ever, especially at high frame rates this feedback enables an accurate estimate
of the locations where people can be expected.

Each smart camera combines this feedback in one of the following ap-
proaches to a local state estimation per person, which we call camera-based
tracking :

• Histogram �ltering (HF): Each smart camera calculates a local es-
timate of the most likely state of each person based on a Bayesian ap-
proach, namely the Histogram �lter, using FG/BG segmentation and the
feedback from the fusion center. For this purpose, the ground plane is
discretized in an evenly-spaced grid in which each cell represents a possi-
ble hypothesis. A reliability measure of each hypothesis is then calculated
using the FG/BG models. The di�erence to the previous approach is that
the estimate is kept locally and updated in a Bayesian framework. How-
ever, a compact representation per person, approximated as a Gaussian
distribution, is then sent to the fusion center.

• Particle �ltering (PF): This approach is similar to the histogram �lter-
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ing approach. The di�erence lies in the representation of the underlying
probability distributions of each person. Instead of a histogram �lter, a
particle �lter is used which should speed up the processing time.

• No local state estimation (NLE): The smart camera uses this feed-
back to generate a number of hypotheses around the predicted location
and size of a person at time t. It then tests these hypotheses using ev-
idence from the FG/BG models. The result of this analysis is a set of
zero or more cuboids describing the position, size and speed of people in
world coordinates. Based on a reliability measure of each hypothesis, the
distribution of these hypothesis is approximated using a Gaussian distri-
bution. Therefore, a compact representation of each individual is then
sent to the fusion center.

The appearance of new people is handled by one single smart camera which
observes a region of interest in the desired camera view. If enough foreground
is found in this region of interest, then a new person is initialized in this smart
camera at a �xed location on the ground plane. On the one hand, the current
estimate of this smart camera is distributed to the fusion center which, on the
other hand, communicates the estimate of the new person to the remaining
smart cameras.

The fusion center gathers data from each smart camera and calculates an
overall global estimate of the most likely state of each person, using an approach
we call consensus tracking. It then distributes this information back to the
cameras.

5.2.1 Problem Formulation

Our goal is to perform tracking of an a-priori unknown number of people. In
this section, we formulate this problem as an estimation of the most probable
global state of a hidden Markov process, given a set of local estimates of each
camera obtained at each time t, denoted as consensus tracking (Figure 5.1).

As shown in Figure 5.2, we will model an individual as a cuboid of width
ww and height hw at the location (xw, yw) on the ground plane, moving at
instantaneous velocity v = (ẋw, ẏw). All of these quantities are expressed
w.r.t. a world coordinate system as indicated by the subscript w. They are
di�erent for each person m = 1, . . . ,M and vary over time as the person moves.
Together they constitute an unknown global state vector xmt per person:

xmt = (xw, ẋw, yw, ẏw, ww, hw)
T
. (5.1)

At �rst, we will focus on the mathematical description of the consensus
tracking, i.e., the tracking at the fusion center. Every camera c calculates a
local estimate of each person m, denoted as x̂c,mt , and sends the estimates
together with a reliability measure, Pc,mt , to the fusion center. We will explain
in detail how these estimates are calculated in a smart camera.
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Figure 5.2: Person model. A person is modeled as a �cuboid� with an attached
speed vector. The cuboid model is described by its state, which is composed of: the
location (x, y) on the ground plane, the speed v = (ẋ, ẏ), the width and height (w, h).
All of these numbers are expressed w.r.t. a world coordinate system.

Since every camera calculates the estimates x̂c,mt of each person locally
and sends a compact representation of each person m to the fusion center, it
is appropriate to assume that all xmt are independent random variables, i.e.,
that states of individuals are independent of states of others. Moreover, this
compact representation is essential for a real-time tracking system since the
communication load is reduced.

Therefore, for a particular global state xmt of person m, only the local

estimates Zmt =
(
x̂1,m
t , . . . , x̂C,mt

)
of all cameras are important. This results in

a direct data association of local estimates Zmt to the global state xmt , i.e., the
fusion center gets the local estimates of each camera c for a speci�c person m.
In Section 5.2.2, we will explain why we can assume such a data association.

Given the vector Zmt =
(
x̂1,m
t , . . . , x̂C,mt

)
, i.e., the set of local estimates of

the m-th individual in C cameras at time t, our task is to �nd the global state,
xmt , as the posterior joint probability

p (xmt |Zm1:t) .

Using Bayes' theorem and the Markov assumption as shown in [Thrun 05],
we obtain for all individuals that

p (xmt |Zm1:t) = η · p (Zmt |xmt ) p
(
xmt |Zm1:t−1

)
, (5.2)

where η = p
(
Zmt |Zm1:t−1

)−1
. The distribution p (Zmt |xmt ) is the likelihood of
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observing Zmt given the global state at time instance t, whereas p
(
xmt |Zm1:t−1

)
is the predicted posterior probability computed at time t − 1. The likelihood
p (Zmt |xmt ) speci�es the probabilistic law according to which the local estimates
Zmt are generated from the global state xmt .

The predicted posterior probability p
(
xmt |Zm1:t−1

)
is given as follows

p
(
xmt |Zm1:t−1

)
=

∫
p
(
xmt |xmt−1

)
p
(
xmt−1|Zm1:t−1

)
dxmt−1. (5.3)

Here, each person is treated separately, i.e., the fusion center uses a global
Bayesian estimator for each person m, which results in an e�cient solution
suited for real-time applications with limited data exchange.

The following two sections will explain in detail the estimation of the local
estimates, x̂c,1t , . . . , x̂c,Mt , namely the camera-based tracking on the camera side
(Section 5.2.2), and the estimation of p (xmt |Z1:t), i.e., the global Bayesian
estimator per person m, denoted as consensus tracking on the fusion center
(Section 5.2.3).

5.2.2 Video Processing and Tracking in Smart Cameras

In this section, we outline the calculation of the local estimates x̂c,1t , . . . , x̂c,Mt in
each camera c, using one of the three approaches: a Histogram �ltering (HF)
approach, a Particle �ltering (PF) approach, or an approach with no local
state estimation (NLE). Note that all of the proposed approaches rely only on
FG/BG segmentation images as features.

Furthermore, the approaches use not only the current camera's foreground
mask, but also feedback from the fusion center, which consists of the global
posterior distributions of the global people's state xmt−1 at the earlier time
instance t − 1, calculated by a Bayesian estimator on the fusion center. The
distribution for each person m is modeled as a Gaussian with the mean µmt−1

(the most likely global state of person m) and covariance matrix Km
t−1. Section

5.2.3 explains in detail how these distributions are estimated.

The local estimate of the people at time t in each camera c is computed
from the posterior joint probability of the local states xc,1t , . . . ,xc,Mt , given the
images of camera c acquired until time t

p
(
xc,1t , . . . ,xc,Mt |Ic1:t

)
.

Note that xc,mt describes the local state vector, whereas xmt is the global state
vector.

Applying Bayes' theorem and the Markov assumption, we obtain, as shown
in [Thrun 05], for all local states that

p
(
xc,1t , . . . ,xc,Mt |Ic1:t

)
= η · p

(
Ict |x

c,1
t , . . . ,xc,Mt

)
p
(
xc,1t , . . . ,xc,Mt |Ic1:t−1

)
,

(5.4)
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where η = p
(
Ict |Ic1:t−1

)−1
. The distribution p

(
Ict |x

c,1
t , . . . ,xc,Mt

)
is the

likelihood of observing Ict given all local state vectors at time t, whereas

p
(
xc,1t , . . . ,xc,Mt |Ic1:t−1

)
is the predicted posterior probability from time t− 1.

The likelihood p
(
Ict |x

c,1
t , . . . ,xc,Mt

)
speci�es the observation model, i.e., the

probabilistic law according to which the images Ict are generated from the local

state vectors xc,1t , . . . ,xc,Mt in camera c. Unfortunately, estimating the likeli-
hood is a highly-complex and intractable optimization problem since it requires
simultaneous optimization over all local state vectors and strongly depends on
features to represent the likelihood.

Therefore, we simplify Equation (5.4) and assume that all xc,mt are indepen-
dent random variables, i.e., that people's trajectories are independent of those
of other people, and moreover, that individuals are not occluded in any of the
camera images I1:t:

p (xc,mt |Ic1:t) =

M∏
m=1

p (xc,mt |Ic1:t) .

Taking into account the assumed conditional independence of the local state
vectors, and moreover, assuming that the projection of a person does not over-
lap with those of any other person, the posterior probability is well approxi-
mated as the estimation of its marginals, resulting in

p (xc,mt |Ic1:t) = η · p (Ict |x
c,m
t )︸ ︷︷ ︸

Likelihood

∫
p
(
xc,mt |x

c,m
t−1

)︸ ︷︷ ︸
Motion model

p
(
xc,mt |Ic1:t−1

)
dxc,mt−1. (5.5)

While the assumption of independent random variables is not very restric-
tive in practice, the assumption of conditional independence is clearly violated
when one person occludes another. Note that a single person is rarely occluded
in all cameras simultaneously. Therefore, we will treat the occlusion problem
separately in the next Section. While the approximation of (5.4) may be poor
in some cameras, resulting in a bad local estimate x̂c,mt of person m in camera
c, we assume that the local estimate x̂c,mt of person m is correctly estimated in
the other smart cameras.

Let us now consider the partition of the state into a set of concrete sam-
ples, for example into an evenly-spaced grid (cp. Chapter 4, Figure 4.2). The
continuous state xc,mt is now approximated by a discrete one, i.e., the center
of the cell to which xc,mt = xk belongs. Each cell xk is pairwise disjointed,
i.e., xk ∩ xl = ∅ for each k 6= l, and describes a cell of the state space. All
xk together constitute the whole ground plane. For convenience, from now on
xc,mt denotes a discrete random variable, describing a set of possible values xk.

Therefore, the posterior probability p (xc,mt |Ic1:t) becomes a discrete prob-
ability distribution. As shown in [Thrun 05], Equation (4.2) can be approxi-
mated for discrete values xk of xc,mt as

p (xc,mt = xk|Ic1:t) = η · p (Ict |x
c,m
t = xk)︸ ︷︷ ︸

Likelihood

p
(
xc,mt = xk|Ic1:t−1

)
, (5.6)
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k overlay

Figure 5.3: Occlusion reasoning. The principle of occlusion reasoning is to relate
the projection Ωc,m

k of the local state xc,m
t = xk to the image produced by FG/BG

segmentation FGc
t . From the input image (a), the foreground mask (b) is calculated.

The projection Ωc,m
k for a particular representation xk of the local state xc,m

t is shown
in (c) and compared to the foreground mask (d).

where

p
(
xc,mt = xk|Ic1:t−1

)
=
∑
i

p
(
xc,mt = xk|xc,mt−1 = xi

)︸ ︷︷ ︸
Motion model

p
(
xc,mt−1 = xi|Ic1:t−1

)
The following sections will explain the estimation of the likelihood (obser-

vation model) and the three approaches which are based on Equation (5.6).

5.2.2.1 Observation Model

In this section, we explain the estimation of the likelihood p (Ict |x
c,m
t ). Since the

proposed approaches solely rely on FG/BG segmentation images as features,
we can simplify the likelihood to

p (Ict |x
c,m
t = xk) = p (FGct |x

c,m
t = xk) .
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However, the assumption that the likelihood p (FGct |x
c,m
t ) depends solely on

the individual xc,mt , as assumed in Equation (5.5), is not fully valid. Especially
if people are in close proximity (e.g., in case of occlusions) this assumption
will not hold, and therefore the FG/BG segmentation results in a common
foreground blob.

Whether or not a particular part of a persons silhouette is detected as
foreground in the camera, depends, of course, not only on geometrical consid-
erations, but also on the speed of the person (immobile persons are invisible
in FG/BG segmentation), the appearance (persons with the same color as the
background are invisible), etc. In case of no occlusion, a foreground blob can be
considered to belong to a single person and the likelihood estimation is straight
forward. In the case of occlusions, this representation cannot be guaranteed
and the FG/BG segmentation results in common foreground blobs, represent-
ing the presence of other people as well. Hence, we need to treat the occlusion
problem separately.

In this context we use probabilistic foreground modeling to perform occlu-
sion reasoning, i.e., we relate the projection of xc,mt = xk to the image FGct
produced by FG/BG segmentation. In the following we will explain how we
are calculating the likelihood p (Ict |x

c,m
t = xk) using probabilistic foreground

modeling.
Let Ωc,mk be the image area obtained by the projection of the cuboid model

(cp. Figure 5.2) associated with the local state xc,mt = xk onto the image of
camera c. We de�ne Ωc,mt (i) as a binary image where the pixel i is described as
being part of this projection, denoted as �1�, or, if not, denoted as �0�. Such an
image is a function of xc,mt = xk. Furthermore, let FGct (i) be a binary image
which represents the result of the FG/BG segmentation on camera c at time t.

To understand the likelihood estimation, let us �rst consider the simple
case in which we have no occlusions in the cameras and only a single person is
present. In this simple case, and to calculate the likelihood p (FGct |x

c,m
t = xk)

for xc,mt = xk, we need to take the projection Ωc,mk within the image of camera
c into account (Figure 5.3). We model the image FGct produced by FG/BG
segmentation as if it was the ideal image with some random noise.

Since the error increases empirically with the area of the ideal image Ωc,mk ,
we introduce a normalized pseudometric d to account for this. For the binary
image Ωc,mk , we denote by |Ωc,mk | the sum of its pixels with value �1�, and by ⊗
the product per pixel of two images. Then, we de�ne d as

d (Ωc,mk ,FGct) = 1−
(
|Ωc,mk ⊗ FGct |
|Ωc,mk |

)(
1−
|(1− Ωc,mk )⊗ FGct |

|FGct |

)
, (5.7)

where (1− Ωc,mk ) denotes the complement of Ωc,mk . The �rst factor of the
pseudometric d describes how well the cuboid person model matches the given
foreground mask, whereas the latter speci�es how much foreground is repre-
sented outside the person model. The model is reasonable since it measures the
agreement between our assumed person model (Figure 5.2) and the observed
foreground mask.



98 Distributed Multi-Camera Tracking with a Feedback Loop

(a) Input image (b) FGc
t

Figure 5.4: Probabilistic foreground modeling. From the input image (a), the fore-
ground mask (b) is calculated. Here, the projection of the remaining local state
vectors (gray dashed line) and the current local state vector (red line) is shown. Us-
ing this likelihood function it is possible to �nd the best estimate of the current local
state xc,m

t despite occlusions by other people.

Also, we model the conditional distribution p (FGct |x
c,m
t = xk) of the

FG/BG segmentation images, given the true hidden state as a density decreas-
ing with the pseudometric d (Ωc,mk ,FGct). This pseudometric d is the distance
between the image produced by the FG/BG segmentation, and an image Ωc,mk ,
obtained by the projection of the cuboid model, at the location xc,mt = xk.
Hence, we end up with the following model:

p (FGct |x
c,m
t = xk) =

1

σ
e−

1
σ d(Ωc,mk ,FGct).

The parameter σ accounts for the quality of the FG/BG segmentation. The
value of σ was �xed arbitrarily to 0.01, but experiments demonstrated that the
algorithm is not sensitive to that value.

However, there are rarely no occlusions in practice. For the purpose of
the following discussion, consider that at each time t a person may be fully
or only partially visible in the camera of interest due to occlusions by other
people. Therefore, the foreground mask FGct includes multiple or even com-
mon foreground blobs, describing the presence of several people. In contrast
to Equation (5.7), in which we assumed that a foreground blob represents the
presence of a single person at location xc,mt = xk, we need to take the lo-

cations of the remaining local state vectors xc,1t , . . . ,xc,m−1
t ,xc,m+1

t , . . . ,xc,Mt
into account. To calculate the likelihood p (FGct |x

c,m
t = xk) for a particular

representation xk of a person, we �x the remaining local state vectors to their
estimates x̂c,1t , . . . , x̂c,m−1

t , x̂c,m+1
t , . . . , x̂c,Mt obtained at time t − 1. Further-

more, let Ωc,mt−1 denote the projection of the cuboid model (cp. Figure 5.2)
associated with these estimates at time t− 1.

Let OMc,m
t be an occlusion map for an individual m, which combines all
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projections of the remaining individuals xc,1t , . . . ,xc,m−1
t ,xc,m+1

t , . . . ,xc,Mt as

OMc,m = ⊕Mn=1
n 6=m

Ωc,nt−1, (5.8)

where ⊕ denotes the �union� between binary images. The occlusion map OMc,m
t

for an individual m characterizes the projections for all individuals, except for
individual m. Note that the occlusion map OMc,m

t is still a binary image.
Therefore, the new psydometric d can be calculated as

docc (Ωc,mk ,FGct) = 1−
(
|Ωc,mk ⊗ FGct |
|Ωc,mk |

)(
1−
|(1− Ωc,mk )⊗ (FGct ⊗OMc,m

t )|
|FGct ⊗OMc,m

t |

)
.

The �rst factor is the same as in Equation (5.7), and describes how well the
cuboid person model matches the given foreground mask. The latter speci-
�es how much foreground is represented outside the person model despite the
foreground blobs, representing the remaining local state vectors. The model is
reasonable since it measures the agreement between our assumed person model
(Figure 5.2) and the observed foreground mask, taking occlusions into account.

Therefore, the conditional distribution p (FGct |x
c,m
t = xk) in the case of oc-

clusion is as follows:

p (FGct |x
c,m
t = xk) =

1

σ
e−

1
σ docc(Ωc,mk ,FGct). (5.9)

In summary, using this likelihood function, it is possible to �nd the best esti-
mate of the current local state xc,mt despite occlusions with other people.

5.2.2.2 Histogram Filtering Approach (HF)

In this section, we describe the estimation of the local state xc,mt in each cam-
era based on a histogram �ltering approach. The goal is to estimate the local
state xc,mt of each person in camera c on a frame-by-frame basis. This has
the advantage that a smart camera can track people independently for a cer-
tain number of frames, even in cases of occlusion, of course, with a certain
probability of failure. Furthermore, this approach operates on the frame rate
of the smart camera itself. This is an advantage over the later-explained ap-
proach with no local state estimation (Section 5.2.2.4) which is depending on
the feedback frequency from the fusion center. Furthermore, the feedback from
the fusion center makes sure that possible failures in the local state estimation
are corrected. We compare the local states xc,mt to the feedback from the fu-
sion center and re-initialize the �lter from the current feedback if we encounter
a reasonable failure (i.e., the distance is bigger than the assumed width of a
person). The decentralized system architecture could take advantage of this
design and further reduce the communication load. For instance, a smart cam-
era could only be corrected when it is de�nitely wrong, which saves bandwidth,
and hence, energy.

As already addressed in Chapter 4, let us consider the partition of the
ground plane into an evenly-sized grid with a �xed resolution. This particular
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�ltering approach is called histogram �lter [Thrun 05] and is a particular repre-
sentation (actually an approximation) of the posterior distribution p (xc,mt |Ic1:t)
of Equation (5.6).

As already mentioned at the beginning of Section 5.2.2, we use a discrete
representation of the posterior distribution p (xc,mt |Ic1:t). The continuous state
xmt is now approximated by a discrete one, i.e., the center of the cell to which
xmt = xk belongs. Each cell xk is pairwise disjointed, i.e., xk ∩ xl = ∅ for
each k 6= l, and describes an area (cell) on the ground plane. All xk together
constitute the whole ground plane.

Therefore, we recursively estimate the local state xc,mt , according to Equa-
tion (5.6). Here, the motion model is the same as explained in Section 4.2.2
and describes a very simple and unconstrained motion model in which a human
can move for a certain distance in any direction at each time instance. The cal-
culation of the likelihood p (Ict |x

c,m
t = xk) for the local state xc,mt is explained

in Section 5.2.2.1, using probabilistic foreground modeling.
The resulting posterior distribution p (xc,mt |Ic1:t) is approximated by a Gaus-

sian, Nxc,mt
(x̂c,mt ,Pc,mt ), with the mean x̂c,mt , and a corresponding covariance

matrix Pc,mt . This limits the data exchange between cameras and the fusion
center to a few parameters per person, and is important for a real-time, low-
latency and scalable multi-camera system. Here, the mean x̂c,mt of the Gaussian
is obtained by:

x̂c,mt = η

K∑
k=1

p (xc,mt = xk|Ic1:t)xk,

where η =
(∑K

k=1 p (xc,mt = xk|Ic1:t)
)−1

.

Furthermore, the covariance matrix Pc,mt is estimated over all K cells using
the mean x̂c,mt :

Pc,mt = η

K∑
k=1

(xk − x̂c,mt ) (xk − x̂c,mt )
T
,

where η =
(∑K

k=1 p (xc,mt = xk|Ic1:t)
)−1

. The covariance matrix Pc,mt is of vital

importance since it is a reliability measure of the local estimate which is sent
to the fusion center.

5.2.2.3 Particle Filter Approach (PF)

In this section, we describe the estimation of the local state xc,mt in each camera
based on a particle �ltering approach. The particle �lter is an alternative
non-parametric implementation of the Bayes �lter. Just like histogram �lters,
particle �lters approximate the posterior p (xc,mt |Ic1:t) by a �nite number of
sample. However, the di�erence is the way these samples are generated. The
basic idea of a particle �lter is to represent the posterior distribution xc,mt by
a set of random local state samples drawn from this posterior distribution.
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A detailed discussion of this �ltering approach and its theory can be found in
[Thrun 05]. The advantage of this �ltering approach is of computational nature:
it is faster than the histogram �ltering approach. We include this �ltering
approach in our system since it is well-known, and therefore an alternative
to the histogram �lter and the later discussed approach with no local state
estimation.

As already mentioned, we use a discrete representation of the posterior dis-
tribution p (xc,mt |Ic1:t). The continuous state xmt is approximated by a �nite
number of K samples (particle). Each particle xmt = xk is a concrete instan-
tiation of the local state xmt at time t. In practice, the number of particles is
essential, since a higher number of particles increases the processing time. In
our experiments, we used 100 particles to represent the posterior distribution.

The �rst step in a particle �lter is to sample from the probability distri-
bution that describes the motion model (cp. Equation (5.6)). In the second
step, the likelihood for each particle xk is calculated based on the likelihood
distribution p (Ict |x

c,m
t = xk). The estimation was previously explained in Sec-

tion 5.2.2.1, using probabilistic foreground modeling. Then, the current set of
particles is resampled. This procedure is the key idea of a particle �lter and
describes the sampling of new particles according to the likelihood distribution.
Finally, we approximate again the resulting posterior distribution p (xc,mt |Ic1:t)
by a Gaussian, Nxc,mt

(x̂c,mt ,Pc,mt ), with the mean x̂c,mt , and a corresponding
covariance matrix Pc,mt . The estimation of these parameters is the same as in
Section 5.2.2.2.

5.2.2.4 Approach with no Local State Estimation (NLE)

In this section, we describe the estimation of the local state xc,mt in each camera
based on an approach with no local state estimation. In this approach, each
camera does not estimate the local state recursively, as described in the previous
approaches. Followed by Equation (5.6), we approximate the predicted local
posterior distribution p

(
xc,mt |Ic1:t−1

)
from time t − 1 by the feedback of the

fusion center

p
(
xc,mt |Ic1:t−1

)
≈ p

(
xmt−1|Z1:t−1

)
,

described as a normal distribution Nxmt−1

(
µmt−1,K

m
t−1

)
. Here, p

(
xmt−1|Z1:t−1

)
is the predicted global state xmt−1. Using the uncertainties described in the
covariance matrix Km

t−1 of the feedback, we can create an uncertainty area
Wm
t around the last-known state xmt−1 of the person m at time instance t− 1.

For this uncertainty area Wm
t , we only consider possible locations of person

m on the ground plane and treat the remaining state variables of xmt−1 as
constant. The assumption is that person m cannot have moved outside of Wm

t

by time t. This is reasonable since the predicted global posterior distribution
p
(
xmt−1|Z1:t−1

)
re�ects this fact and, furthermore, includes the motion model

carried out at the fusion center.
Within this area, we distribute K possible samples, denoted as xc,mt = xk ∈

Wm
t with k = 1, . . . ,K, according to the predicted global posterior distribu-
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x y

kxsample

Figure 5.5: Approach with no Local State Estimation. Using the uncertainties de-
scribed in the covariance matrix Km

t−1 of the feedback, we can create an uncertainty
area Wm

t around the last known position of the person m. Within this area we
distribute possible samples xc,m

t = xk ∈Wm
t .

tion p
(
xmt−1|Z1:t−1

)
, which is described as a normal distribution. Then, the

likelihood p (Ict |x
c,m
t = xk) for each sample xk is calculated. The result is a

good approximation of the posterior distribution p (xc,mt |Ic1:t) of each person
m in camera c around the last-known global state xmt−1. The calculation of
the likelihood p (Ict |x

c,m
t = xk) for the local state xc,mt is explained in Section

5.2.2.1, using probabilistic foreground modeling.

For a scalable and e�cient communication load, limited data exchange
between cameras and the fusion center is essential. Therefore, the re-
sulting posterior distribution p (xc,mt |Ic1:t) is approximated by a Gaussian,
Nxc,mt

(x̂c,mt ,Pc,mt ), with the mean x̂c,mt , and a corresponding covariance matrix
Pc,mt . The mean x̂c,mt of the Gaussian is chosen as the mean of the posterior
distribution p (xc,mt |Ic1:t), i.e.:

x̂c,mt = η

K∑
k=1

p (xc,mt = xk|Ic1:t)xk,

where η =
(∑K

k=1 p (xc,mt = xk|Ic1:t)
)−1

. The covariance matrix Pc,mt is esti-

mated from all K samples and the mean x̂c,mt . Moreover, the covariance matrix
Pc,mt is of vital importance since it is a reliability measure of the local estimate
that is sent to the fusion center.
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Figure 5.6: Fusion of the local estimates from each camera. The local posterior
p (xc,m

t |Ic1:t) of person 1, sent by each smart camera c, is shown at time t. Here, the
positional component of the mean x̂c,1

t and the covariance matrix Pc,m
t are visualized

for each camera (1 to 6). Since the posterior is approximated by a Gaussian distribu-
tion, it can be depicted as an ellipsis with the semi-major and semi-minor axis, derived
from the diagonal of the covariance matrix Pc,m

t . For a better display, the semi-major
and semi-minor axis are four times the standard deviation of the covariance matrix.
The �nal fusion result is illustrated as a red ellipsis.

5.2.3 Consensus tracking approach

In this section, we describe the estimation of the global state xmt . The goal is

to fuse the likelihood distributions p
(
x̂1,m
t , . . . , x̂C,mt |xmt

)
of each camera c to

a �nal decision p (xmt |Zm1:t) for each person m (cp. Equation 5.2). Consensus
tracking uses a global Bayesian estimator per person (Figure 5.1). In any case,
in the camera-based tracking of each smart camera c, the local state poste-
rior distribution p (xc,mt |Ic1:t) of each person m is approximated by a Gaussian
distribution Nxc,mt

(x̂c,mt ,Pc,mt ) and the parameters are sent to the fusion cen-
ter. In this way we ensure that the communication is low and, therefore, saves
bandwidth and energy.

To estimate the global state xmt of each person m, we use a Bayesian �lter
which calculates the posterior probability based on a motion model and the
acquired local estimates x̂1,m

t , . . . , x̂C,mt from every smart camera (cp. Figure
5.6). The Bayesian �lter algorithm is a recursive estimator and splits Equation
(5.2) up into a prediction and a correction step. As de�ned in Equation (5.3),
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the prediction step is as follows

p
(
xmt |Zm1:t−1

)
=

∫
p
(
xmt |xmt−1

)
p
(
xmt−1|Zm1:t−1

)
dxmt−1.

Here, the state transition probability p
(
xmt |xmt−1

)
describes the motion model

for person m and p
(
xmt |Zm1:t−1

)
is the predicted posterior probability. The

correction step takes the local estimates x̂1,m
t , . . . , x̂C,mt from each smart camera

into account and is de�ned (Equation (5.2)) as

p (xmt |Zm1:t) = ηp
(
x̂1,m
t , . . . , x̂C,mt |xmt

)
p
(
xmt |Zm1:t−1

)
,

where η = p
(
Zmt |Zm1:t−1

)−1
. The likelihood distribution p (Zmt |xmt ) is the fu-

sion of all local estimates Zmt =
(
x̂1,m
t , . . . , x̂C,mt

)
from every smart camera

(cp. Figure 5.7).
As a particular implementation of the Bayesian �lter in our proposed

tracker, we use a linear Kalman �lter [Kalman 60], denoted as global Kalman
�lter. The Kalman �lter represents the posterior probability p (xmt |Zm1:t) by
the moments, the mean µmt (the most likely global state of person m) and the
corresponding covariance matrix Km

t . In other words, the Kalman �lter is a
parametric �ltering approach and estimates the parameters of the following
normal distribution

Nxmt
(µmt ,K

m
t ) .

A linear Kalman �lter assumes that the evolution of a persons state over
time is described by the following state transition equation:

xmt = Atx
m
t−1 + Btut + εt (5.10)

in which εt is a multivariate Gaussian random variable. Here, xmt and xmt−1

are state vectors, and ut is the control vector at time t. Since we do not have
control data in our system, we can omit the term Btut. At is thereby the state-
transition matrix and εt the process noise. This is referred to as the prediction
step. We use the constant velocity model in the state-transition modeling At,
which is de�ned as

At =

 F 02×2 02×2

02×2 F 02×2

02×2 02×2 diag (1, 1)

 ,F =

[
1 dt
0 1

]
. (5.11)

The vector εt is modeled as a multivariate Gaussian random variable with zero
mean and the covariance Qt. The covariance Qt can be expressed as

Qt =

D (σẋ) 02×2 02×2

02×2 D (σẏ) 02×2

02×2 02×2 diag
(
σ2
w, σ

2
h

)
 ,D (σ) =

[
σ2

3 dt
3 σ2

2 dt
2

σ2

2 dt
2 σ2dt

]
. (5.12)
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Figure 5.7: Fusion example for di�erent numbers of cameras over time. The fusion
result at the fusion center for di�erent numbers of cameras is shown. As explained in
Figure 5.6 as a reliability measure, an ellipse of the covariance matrix Pc,m

t is drawn
around the fusion result. As can be seen in a, the fusion center is rather unsure about
the position of the person if only one camera is used for fusion, compared to ground
truth (GT). In the other cases, the accuracy and precision increases with the number
of cameras.

where
(
σ2
ẋ, σ

2
ẏ

)
are variances for velocity noise, and

(
σ2
w, σ

2
h

)
the variances de-

scribing the noise for width and height of a person. dt refers to the time
di�erence between two time instances.

The Kalman theory assumes that states cannot be observed directly. There-
fore, in the correction step available inputs Zmt which are a linear function of
the unknown global state xmt , are incorporated into the Kalman �lter as follows

Zmt = Ctx
m
t + δt. (5.13)

Here, Ct corresponds to the measurement update matrix. The distribution of
δt is a multivariate Gaussian with zero mean and covariance Rt. As already
mentioned, Zmt describes the local estimates x̂1,m

t , . . . , x̂C,mt from every smart
camera.

The measurement update matrix Ct and the measurement noise Rt are
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described as follows:

Ct =

C
1,m
t
...

CC,m
t

 ,Rt =

P
1,m
t · · · 06×6

...
. . .

...

06×6 · · · PC,mt

 . (5.14)

Here, the measurement update matrix Cc,m
t for each person m and a speci�c

camera c are given by an identity matrix. The covariance matrices Pc,mt are
the covariances of the local estimates from the smart cameras.

The equation above states that all local estimates for each person m from
every camera are taken into account. Note that it is possible that a camera
does not have any information about a speci�c person due to the fact that the
person is not seen by this camera or is occluded by other persons or furniture.
In this case, the measurement update matrix Cc,m

t of this camera c is set to
a zero matrix, so that this local estimate is not taken into account for the
joint decision. It is also worth mentioning that we use the covariance matrix of
each person m of a camera c to model the measurement noise. This covariance
matrix is a qualitative measure of the reliability of the local estimate x̂c,mt from
each camera c.

Finally, the global estimates xmt of each person m are fed back to every
camera to correct for possible mistakes. This feedback is essential since the
tracking of each individual camera can be inaccurate, e.g., in situations where
a camera cannot contribute or gather any information.

For example, if a person is completely occluded for one camera, this camera
does not contribute any information about this person, but also cannot estimate
any further local state of this person. In this particular case, the only way for
this camera to keep track of the person is by using the feedback of the fusion
center, which is based on the input of all cameras. That's why the feedback is
very important for the overall performance of the system.

5.3 Results

In order to evaluate our approach, we conducted several experiments using
our collected video data for two di�erent scenarios: an indoor scenario and
a meeting scenario. Those scenarios fall into the domain of surveillance and
behavior analysis of meetings (smart meetings). Here, the overall performance
of our proposed system architecture is evaluated in terms of accuracy up to a
certain degree (up to twice the width of a person) and the precision (in terms of
number of object losses and switches). Furthermore, we provide qualitative and
quantitative results and compare the three camera-based tracking approaches:
the Histogram �ltering (HF) approach, the Particle �ltering (PF) approach,
and the approach with no local state estimation (NLE).

In the indoor scenario, people were observed while walking in a room with-
out furniture. In the meeting scenario the room was equipped with furniture
(tables and chairs) and people were observed while having a meeting: entering
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Figure 5.8: Calibration accuracy. In (a), the intrinsic calibration error of each cam-
era is very small and therefore the calibration of an individual camera very accurate.
To evaluate the overall accuracy of the calibration, we compared estimated 3D co-
ordinates to manually measured reference points. In (b), the error to each reference
point is shown with an average accuracy of 0.56 cm.

the room, shaking hands with each other, walking around the table to �nd a
place to sit, sitting, moving chairs to sit at another position, standing (to give a
presentation), and leaving the room. In total, we have collected more than 120
minutes of data. All videos were recorded using a six-camera setup, consisting
of four side-view and two top-view cameras, operating on a frame rate of 20
FPS. The cameras were mounted at ceiling height (3m approximately), and
extrinsically calibrated and synchronized up to frame accuracy. Furthermore,
the width and height of a person was assumed to be on average 40 and 180 cm,
respectively.

Our proposed framework was implemented in C++, in a client-server fash-
ion. In the experiments we performed, each camera was connected to a PC
(a client), with a single-core 2.8 GHz processor to simulate a �smart camera�.
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All smart cameras were connected to another single PC, with a single-core 2.8
GHz processor which functions as the fusion center.

The purpose of the experiments was to test several important attributes of
the framework: the calibration accuracy, the real-time performance and scal-
ability and the performance of the proposed system architecture in terms of
accuracy and precision. Furthermore, we compared our results with the state-
of-the-art method of [Berclaz 11]. In this section, we present experimental
results for each of these attributes separately.

5.3.1 Calibration Accuracy

We calibrated the cameras using the calibration method of [Bouguet 99] for the
side cameras, and the method of [Kannala 06] for the top cameras. To obtain
the calibration of each camera, we used a checkerboard pattern for intrinsic
calibration and manually measured reference points in the scene for extrinsic
calibration. We used the above mentioned methods to obtain the intrinsic and
extrinsic calibration of each camera. As shown in Figure 5.8a, the intrinsic
calibration of each camera is very accurate with an average error per camera
below one pixel. To measure the overall accuracy of all cameras, we used the
obtained calibration results to compute the 3D coordinate of each reference
point. Furthermore, we compared the results to our manually-measured ref-
erence points and obtained an overall accuracy of 0.56 cm (Fig. 5.8b), which
is the mean of the square-root distance between the obtained and measured
reference points.

The results show that our calibration procedure is quite precise and that 3D
coordinates of objects in the scene can be obtained from 2D image points with
su�cient accuracy. This is of vital importance for the accuracy of a tracking
approach. Therefore, given the calibration accuracy of our multi-camera setup,
our proposed tracking approach reports a very high accuracy which we will
outline in the following sections.

5.3.2 Real-time Performance and Scalability

We tested two important aspects: the real-time performance of the whole sys-
tem which is limited by the tracking time on the camera side, and the scalability
which is limited by the tracking time on the fusion center. We conducted all
experiments with the three approaches at the camera side (see Section 5.2.2).

To test the real-time performance we measured the tracking execution time
on each camera for a di�erent number of observed people (one to four people).

To get an average execution time for one camera, we used all test sequences
and averaged execution times over the number of sequences and all cameras.
The results are shown in Figure 5.9a.

We see that tracking time on the camera is less than 25 ms per frame, which
is faster than real time (50 ms - 20 FPS with a resolution of 780× 580 pixel).
As expected, the camera-based tracking time depends linearly on the number
of viewed people due to the �ltering approach on the camera side, where a
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Figure 5.9: Real-time performance and scalability. In (a), the dots show the mea-
sured data and the dashed line the estimated timing depending on the number of
people (up to 10 people) and the used approach (HF, PF, NLE). Due to the nature
of the approach at the camera side, the computation time increases linearly with the
number of people. In (b), the points show the measured data and the dashed line the
estimated timing for up to 20 cameras and up to four persons. The estimated lines
assume that a person is always seen by all cameras which is, in practice, not the case.
That is why there is a di�erence between the measured points and the estimated lines.

�lter is assigned to each person visible in the camera view. This means that
an increase in the number of viewed people increases just the number of used
�lters, like the global Kalman �lters in the fusion center. Accordingly, the lines
in Figure 5.9a represent the camera tracking time of each approach, estimated
for more than four people . We see that up to 10 people can be tracked on a
camera side at 20 FPS. Such a performance is suitable for most applications
since only in very crowded environments one camera will have more than 10
people in its �eld of view.

We also compared the averaged execution times of the three camera-based
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Figure 5.10: Example sequence of a meeting scenario. At the top, the tracking error
for each individual is reported as the distance to the ground truth. At the bottom,
the total average tracking error (TATE) on a frame-by-frame basis for a sequence
with up to four people is shown. Note that there are no object losses, but three
object switches (the peaks) in this example sequence. The total average tracking
error (TATE) over the whole sequence is about 11.2 cm.



5.3 Results 111

Figure 5.11: Example frame of a meeting scenario. Here, an example frame of a
meeting sequence (the same as in Figure 5.10) is shown. As can be seen, our proposed
multi-camera system reports accurate tracking results of each individual. The movie
can be found in [Grünwedel 13b].

approaches. Here, the PF approach performs slightly better than the HF ap-
proach. The NLE approach is the fastest since no local �ltering is needed and
the results are immediately send back to the fusion center. Nevertheless, this
approach only operates at the feedback frequency of the fusion center.

Furthermore, if we relate this result to the scalability of the proposed multi-
camera system, we see that the compact representations from 20 cameras can
be fused at 25 FPS and fed back to the cameras. This refers to the slowest case
in which each camera tracks 10 people. Therefore, even in very crowded envi-
ronments, the use of more cameras that observe less people per camera (e.g.,
with a narrower �eld of view) can be a solution to cope with the real-time lim-
itations of the camera-based tracking, still keeping the real-time performance
of the whole system.

To test the scalability, we varied both, the number of tracked people and
the number of cameras connected to the fusion center. The obtained results
are shown in Figure 5.9b. Since each person is usually not visible in all cameras
connected to the fusion center, the fusion time is shorter than the one given by
a linear function, because some cameras do not contribute with a measurement
for each person. Therefore, the lines in the graph of Figure 5.9b represent the
maximal fusion time as a function of the number of cameras connected to the
fusion center and the number of tracked people.

We see that it is possible to fuse information from many cameras in real-time
at 20 FPS (e.g., from 20 cameras for 10 tracked people). Also, the fusion time
and the number of cameras in which the person is observed correlate in a linear
fashion due to the addition of observations from c cameras, which increases
only the number of measurements for a given person whilst the dimension of
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Table 5.1: Performance of the histogram �ltering approach (HF).

Sequence Accuracy Precision
TATE [cm] NoOL NoOS OL/min

#01 9.3 0 0 0.0
#02 7.1 0 0 0.0
#03 7.5 0 0 0.0
#04 13.7 0 0 0.0
#05 12.4 0 1 0.0
#06 11.2 0 3 0.0
#07 16.4 6 2 0.7
#08 11.6 4 3 0.3
#09 13.7 6 2 0.3
#10 10.2 0 0 0.0
#11 9.6 0 0 0.0
#12 10.0 0 0 0.0
#13 9.6 0 0 0.0

the measurement vector remains the same. Such an e�ciency enables highly
scalable tracking systems that could deploy su�cient number of cameras for
any area and any amount of people that need to be observed. Note that the
estimated scalability could be further increased by using multi-core processing
units or by optimizing the implementation for hardware accelerated processing
(e.g., GPU processing).

5.3.3 Performance of the Proposed System Architecture

We express the performance of our proposed tracker in two ways: as precision,
i.e., the total number of object losses (NoOL) and the total number of object
switches (NoOS), and as accuracy, i.e., the Euclidean distance between the
ground truth positions of people and positions estimated by the tracker (the
total average tracking error (TATE)).

We created ground truth by manually annotating the ground positions of
people at one second intervals in all video sequences. This manual annotation
process was conducted by �nding the feet positions of individual (usually on
the ground plane) in each camera image. Using the camera calibration pa-
rameters we then calculated the ground truth positions of people in real world
coordinates (x and y coordinates, z = 0). The Euclidean distance between
these positions and the real world positions computed by the tracker is used
to express the accuracy. For the precision, the number of object losses, we
consider that people are lost by the tracker if the Euclidean distance between
their estimated position and the ground truth position is bigger than 70 cm
(twice the assumed width of a person). In contrast to an object loss, an object
switch occurs when two objects are switching their positions with respect to
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Table 5.2: Performance of the particle �ltering approach (PF).

Sequence Accuracy Precision
TATE [cm] NoOL NoOS OL/min

#01 6.5 0 0 0.0
#02 6.0 0 0 0.0
#03 7.2 0 0 0.0
#04 14.4 1 0 0.1
#05 13.2 0 1 0.0
#06 10.1 0 2 0.0
#07 14.4 1 3 0.1
#08 11.8 2 2 0.1
#09 14.8 2 2 0.1
#10 10.7 0 0 0.0
#11 7.6 0 0 0.0
#12 9.2 0 0 0.0
#13 8.9 0 0 0.0

the ground truth positions. In our approach, such a switch can happen due
to a lack of an appearance model, especially if two individuals are in close
proximity.

We conducted several experiments under di�erent circumstances: several
indoor scenarios of people walking around in a room equipped with and without
furniture and multiple meeting scenarios. Both scenarios include up to four
people and changing environmental conditions (esp. with and without lighting
changes). In total, we have collected more than 120 minutes of data. The
sequences #01 to #21 to which we refer to are the same as explained in Section
4.3.1. In the following section we focus on di�erent aspects of our multi-camera
system.

5.3.3.1 Overall Performance of the Proposed Multi-camera System

The average accuracy and precision over the 120 minutes of data for our pro-
posed tracker are 11 cm total average tracking error and 0.4 object losses per
minute. The results are very promising and show the robustness of our multi-
camera system. The evaluation also includes some very di�cult cases, i.e., we
tested our tracking system under severe occlusions. Furthermore, in Section
5.3.3.3 a detailed evaluation of the used sequences for all three camera-based
tracking approaches can be found (Table 5.1, 5.2 and 5.3). Additionally, Table
5.5, 5.6 and 5.7 show the performance under changes in illumination.

An example of our tracking results is shown in Figure 5.10 and 5.11. As
can be seen, the tracking results are very accurate (TATE of 11.2 cm). In
this particular sequence, we have three object switches due to a lack of an
appearance model.
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Figure 5.12: Performance for di�erent numbers of cameras. The comparison was
done between four side cameras (gray line), two top-view cameras (dashed line) and
the complete setup, based on top and side views (black line). The best results are
achieved by using top and side cameras together. Especially the use of top-view
cameras improves the accuracy of the tracking results.

5.3.3.2 Performance for Di�erent Number of Cameras

At �rst, we show the in�uence of the number of cameras on our proposed
multi-camera system. For this experiment we used an indoor meeting sequence
(Sequence #6 of Table 5.1) in which four people are walking around, shaking
hands or are giving a presentation. We conducted this experiment using the
HF approach for camera-based tracking. In Figure 5.12, a comparison between
di�erent numbers of cameras is shown. For this indoor sequence we compare
four side cameras, two top-view cameras, and the complete setup, consisting of
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Table 5.3: Performance of the approach with no local state estimation (NLE).

Sequence Accuracy Precision
TATE [cm] NoOL NoOS OL/min

#01 13.0 0 0 0.0
#02 10.0 1 0 0.7
#03 11.2 0 1 0.0
#04 10.5 0 0 0.0
#05 15.6 1 2 0.4
#06 11.4 1 1 0.2
#07 15.6 9 3 1.1
#08 10.8 7 2 0.5
#09 14.4 8 0 0.4
#10 12.1 5 0 0.4
#11 12.2 1 0 0.1
#12 11.7 0 0 0.0
#13 11.2 0 0 0.0

six cameras.

The results show that using only side-view cameras is not enough for ac-
curate people tracking. Here, we have one object loss. Due to occlusions by
furniture and one another, it is more di�cult to accurately locate people's
ground position using only side-view cameras. We also have multiple peaks,
describing the occlusion problem. However, using only the top-view cameras
improves the results since there are less occlusions in top-view cameras. To
further improve the accuracy of the system and, therefore, achieve the best
accuracy, top and side views have to be combined, i.e., by using all available
six views in our setup.

5.3.3.3 Comparison of the three Camera-based Approaches

In this section, the comparison between the three camera-based tracking ap-
proaches is discussed: the Histogram Filtering (HF) approach (Section 5.2.2.2),
the Particle Filtering (PF) approach (Section 5.2.2.3), and the approach with
no local state estimation (NLE) (Section 5.2.2.4). Here, we used several di�er-
ent sequences to observe the performance for both methods (Table 5.1, 5.2 and
5.3). All sequences were processed with a ground plane resolution of 10 cm, in
case of the HF and NLE approach, and with 100 particles in case of the PF
approach.

In Figure 5.13, the results for a meeting scenario with four attendees are
shown as an example. We see that the accuracy of the tracker performs similar
for all approaches. The main di�erence is the number of object losses, which is
highest for the approach with no local state estimation (NLE): in this case six.
This is caused by the fact that the other two �ltering approaches do not depend
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Figure 5.13: Comparison of the three camera-based approaches. This comparison
shows the performance of the three camera-based tracking approaches (HF, PF, NLE).
It can be seen that the accuracy is nearly the same for all approaches. The NLE
approach produces more object losses than the other two. This is caused by the fact
that the other two approaches do not depend on the feedback frequency and operate
at the camera frame rate.
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Table 5.4: Comparison between di�erent feedback frequencies.

HF NLE
Freq. (ms) TATE (cm) NoOL NoOL TATE (cm) NoOL NoOL

50 11.1 0 6 10.2 2 4
100 11.7 0 6 11.4 1 1
200 11.9 2 4 13.0 3 2
500 12.5 1 10 18.8 34 10
1000 14.9 4 12 21.8 55 4

on the feedback frequency of the fusion center and operate on the camera frame
rate. In general, it is an advantage to keep a local estimate of each person on
the camera side.

In Table 5.1, 5.2 and 5.3, the performance of each camera-based approach is
shown. As can be seen, the HF and PF approach report very accurate results
with no or few object losses. The NLE approach, on the other hand, has a
rather high number of object losses, whereas the accuracy is comparable.

In summary, the HF and the PF approach are the best choice for camera-
based tracking and should be further explored. Also, it is of vital importance
to include appearance modeling so that object losses can be further reduced.

5.3.3.4 In�uence of Feedback and Feedback Frequency

The feedback loop is an essential part in the proposed system architecture.
To demonstrate the use of feedback from the fusion center, we performed two
experiments. At �rst, we tested the in�uence between feedback in the system
and no feedback at all (Figure 5.14). Secondly, we evaluated the in�uence
of di�erent feedback frequencies between the cameras and the fusion center
(Figure 5.14). For both experiments we used an indoor scenario with up to
four people walking around (Sequence #3).

In Figure 5.14, the results demonstrate clearly that the use of a feedback
loop between the fusion center and the smart cameras is required. There is a
big di�erence in accuracy and precision. This is mainly because a single smart
camera cannot recover from its own mistakes and cannot even know that it
made one. In the case of mistakes, the camera keeps sending wrong information
to the fusion center where they are still taken into account, leading to wrong
estimates. The system starts to fail and cannot recover from these mistakes.
This indicates that feedback from the fusion center is of vital importance for a
robust multi-camera system. Possible improvements could be: the fusion center
detects mistakes made by the camera and only send feedback to the cameras
which are starting to fail. This could further improve the communication load
and therefore be more energy e�cient.

In Table 5.4 the in�uence of di�erent feedback frequencies is shown. We
evaluated the in�uence for two camera-based methods, the histogram �ltering
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Figure 5.14: In�uence of feedback from the fusion center. To demonstrate the use of
feedback from the fusion center we explored the di�erence between feedback and no
feedback. The results clearly show that accuracy and precision is much better when
feedback is used in the system.

(HF) approach and the approach with no local state estimation (NLE). The
results show that even with a feedback of 200 ms the HF approach produced
very reasonable results. As already mentioned, the feedback mechanism could
be further explored to reduce the communication load and save bandwidth and
therefore energy. In general, the two approaches with local state estimation
(HF and PF) produced better results than the one without (NLE).

In another experiment we explore the in�uence of feedback on the FG/BG
segmentation method, aiming to restrict regions in the background modeling
that are not updated. The procedure is as follows: First, the proposed tracking
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Table 5.5: Performance of the histogram �ltering approach (HF) for challenging test
cases.

Sequence Accuracy Precision
TATE [cm] NoOL NoOS OL/min

#14 10.3 0 0 0.0
#15 12.5 2 0 1.6
#16 11.2 2 0 1.6
#17 9.4 0 0 0.0
#18 10.6 0 1 0.0
#19 14.0 19 1 3.4
#20 11.7 2 1 0.4
#21 10.5 0 0 0.0

Table 5.6: Performance of the particle �ltering approach (PF) for challenging test
cases.

Sequence Accuracy Precision
TATE [cm] NoOL NoOS OL/min

#14 8.5 0 0 0.0
#15 10.3 2 0 1.6
#16 10.6 2 0 1.6
#17 8.2 0 0 0.0
#18 9.2 0 0 0.0
#19 13.1 25 0 4.5
#20 10.3 4 0 0.7
#21 9.3 0 0 0.0

Table 5.7: Performance of the histogram �ltering approach (HF) for challenging test
cases.

Sequence Accuracy Precision
TATE [cm] NoOL NoOS OL/min

#14 10.6 0 0 0.0
#15 12.2 2 0 1.6
#16 13.6 3 0 2.4
#17 10.2 0 0 0.0
#18 11.4 0 0 0.0
#19 15.9 28 1 5.0
#20 13.4 4 0 0.7
#21 11.4 0 0 0.0
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Figure 5.15: In�uence of feedback on the FG/BG segmentation. The total average
tracking error (TATE) is the same in both cases. More importantly, the number of
object losses decrease from 6 (no feedback) to only one loss (with feedback). Here,
the improvement of the proposed approach, i.e., using feedback to the FG/BG seg-
mentation, is visible.

approach obtains an estimate of each individual. A cuboid around the estimate
of each individual is then projected onto each camera image and marks the
image region in which the background modeling is prevented from updating.
In that way, people who are sitting still for a long time will still be marked as
foreground and do not slowly become part of the background. This improves
the performance of the proposed tracking approach, as shown in Figure 5.15.
The latter also shows that the number of object losses decrease to only one
loss for this twenty-minute sequence. This results in an average tracking loss of
0.1 objects per minute. Here, the improvement of the proposed multi-camera
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system due to the use of feedback to the FG/BG segmentation method is clearly
visible. A detailed evaluation of the feedback for the FG/BG segmentation
method can be found in Chapter 3.5.

5.3.3.5 Challenging Test Cases

At �rst, we tested our proposed tracker on a sequence containing changing light
conditions with four people. We tried several setups and evaluated the one, in
which the light changes in di�erent ways: sudden and continuous light changes
as well as changes only in parts of the scene.

In Figure 5.16 we show the results of our experiment. In this particular
sequence we only have two object losses. The total average tracking error
is around 11.7 cm. The results are really impressive since some cameras do
not see anything for several seconds (Figure 5.17). In those cases the camera-
based tracking does not send any information to the fusion center and the fused
estimates of each person are only calculated from the cameras which contribute
information to the whole system.

In summary, we are able to track people even under challenging light condi-
tions like sudden and/or continuous light changes. The results bene�t from the
robust FG/BG segmentation, especially against lighting changes (see Chapter
3). Improvements can be made by including a light map which models the light
intensities to improve the foreground masks of the FG/BG segmentation.

In our second experiment we tested our method under severe occlusions
for over 6 min of data (sequence #18). The experiment includes four people
walking around in an area of 5 m by 8.8 m. This sequence contains tables and
chairs resulting in partly occluded people. The results are shown in Figure
5.18. The accuracy for this six-minute sequence is 10.6 cm, which is still below
the width of a person and therefore accurate enough for localization. Of course,
sometimes the TATE is close to 40 cm (approx. the width of a person) which is
mainly due to switches of identities. As show in Figure 5.18 we do not have any
object losses, but object switches (cp. Table 5.5). If people are too close to each
other, object switching might happen due to the lack of an appearance model
for a person. To illustrate this issue, example frames are shown in Figure 5.19.
Nevertheless, even in such a di�cult case, our tracker is able to keep track of
the people in the scene.

One way to improve the multi-camera system is the use of an appearance
model. However, appearance modeling of people remains challenging since their
appearance can change rapidly in a camera view. To model the appearance,
taking the aforementioned problems into account, is one of our future research
goals.

In a third experiment we tested our proposed multi-camera system with an-
other meeting setup, installed at Alcatel Lucent within the �iCocoon� Project
(cp. Chapter 2). The experiment includes three people in a narrow meeting
room with an area of approx. 6 by 4 m. This sequence contains also tables
and chairs resulting in partly occluded people. In Figure 5.20, the total aver-
age tracking error (TATE) and the number of object losses is depicted. The
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Figure 5.16: In�uence of changing light conditions. To demonstrate the robustness
against light changes for the multi-camera system, we conducted an experiment with
sudden and continuous light changes as well as changes only in parts of the scene.
The results are promising and show the robustness of our system. Note that we have
four objects in this sequence.
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(a)

(b)

Figure 5.17: Example frames of changing light conditions. Two sample frames from
a sequence containing four people under changing light conditions are shown. This
scene contains sudden and continuous light changes as well as changes only in parts
of the scene. Note that parts of the scene are really dark, but our tracker is able to
still localize the people in the scene. The movie can be found in [Grünwedel 13b].

accuracy for this sequence is about 35.6 cm and therefore accurate enough to
localize a person. Here, there are many object switches due to the close prox-
imity of participants (Figure 5.21), and also object losses. Note that the setup
is not ideal since the side-view cameras observe a very narrow area. Additional
di�culties are imposed by the furniture. Nevertheless, our proposed tracker is
able to keep track of the people in this meeting sequence.
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Figure 5.18: In�uence of severe occlusions: We tested our tracker under severe
occlusions for over 6 min. The average accuracy for this six-minute sequence is 10.6
cm, which is still below the width of a person and therefore accurate enough for
localization. Note that we do not have any object loss for this sequence.
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(a)

(b)

Figure 5.19: Example frames of severe occlusions. Two sample frames from a se-
quence containing severe occlusions by furniture and people are shown. Note that,
even in this di�cult case, our tracker is still able to localize the people in the scene.
The movie can be found in [Grünwedel 13b].

5.3.4 Comparison with a State-of-the-Art Method

We compared our proposed tracker with the state-of-the-art multi-camera
tracking approach of [Berclaz 11]. At �rst, we made a comparison with two
of our sequences, an indoor sequence and a meeting sequence with up to four
people. The results we obtained are similar to the state-of-the-art tracker
of [Berclaz 11].

The tracker of Berclaz et al. was con�gured with a grid cell size of 10 by 10
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Figure 5.20: Evaluation of another meeting setup: We tested our tracker with
another meeting setup, installed at Alcatel Lucent. The average accuracy for this is
35.6 cm and much higher than the previous results.

cm as well as our input from the results of the FG/BG segmentation method.
As di�erently described in their paper, however, their publicly available tracker
did not use any color information to perform tracking.

We tested di�erent grid cell sizes (10, 20 and 30 cm), whereby 10 by 10 cm
achieved the best results.

The proposed multi-camera system used the HF camera-based tracking ap-
proach (Section 5.2.2.2) with a ground plane resolution of 10 cm. Furthermore,
the width and height of a person was assumed to be on average 40 and 180 cm,
respectively.
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(a)

(b)

Figure 5.21: Example frames of another meeting setup. Two sample frames from
a sequence containing three people in another meeting setup, installed at Alcatel
Lucent, are shown. This scene contains many occlusions by furniture and people.

5.3.4.1 Comparison on our Test Data Sets

First, we show the performance of an indoor sequence with up to four people
(Figure 5.22) demonstrating that the performance of both trackers is similar.
With our proposed tracker we achieve an accuracy of 7.5 cm compared to 16.6
cm of Berclaz et al. There are no object losses in this sequence.

In our second experiment we chose a more challenging meeting sequence for
comparison. Our tracking results for this meeting sequence were already shown
in Figure 5.13. The tracker of Berclaz et al. performed poorly on this sequence,
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Figure 5.22: Comparison of an indoor sequence. We compare our proposed tracker
with the state-of-the-art tracker of [Berclaz 11]. The total average tracking error
(TATE) is smaller than the one of [Berclaz 11] (proposed tracker: 7.5 cm, tracker of
Berclaz et al.: 16.6 cm). There are no object losses for this sequence.

so we are not providing a numerical comparison. This is mainly due to the fact
that, after a person sits down, the FG/BG results vanish since their tracker is
not suited for these circumstances. In such situations their tracker calculates
the shortest path to exit the room which would lead to huge inaccuracies and
tracking losses.

5.3.4.2 Comparison with Public Data Sets

To compare our proposed tracker with a public data set, we chose a data set
provided by the CVLAB1 at EPFL [Berclaz 11]. They used three cameras with
a small overlapping area in an outdoor scenario. Up to �ve people can be seen
in this sequence. We conducted ground truth at one-second intervals for one
of their sequences and chose it for comparison. The results are depicted in
Figure 5.23. The overall accuracy of our tracker for this sequence is 23.8 cm
which is still very good, considering the use of only three cameras (Figure 5.24).
Berclaz et al. [Berclaz 11] did not provide numerical results on this public data
set. Therefore, we run their method on the data set to obtain numerical results
for comparison. The tracker of [Berclaz 11] shows an overall accuracy of 25.4
cm on this sequence.

1Data available at http://cvlab.epfl.ch/data/pom

http://cvlab.epfl.ch/data/pom
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Figure 5.23: Performance on an outdoor data set [Berclaz 11]. For a comparison
with a public data set, we chose an outdoor data set provided by the lab of CVLAB at
EPFL [Berclaz 11]. It is worth mentioning that the data set uses only three cameras
which do not have a big overlapping area. The results of both methods are still very
good despite some object losses which are due to lack of an appearance model and
the poor coverage of the scene.

In summary, the tracking approaches perform similar and the results of both
trackers are very good in terms of accuracy and precision. Both trackers have
the same accuracy and number of object losses. It is worth mentioning that
the implementation of the tracker of Berclaz et al. optimizes trajectories over
the whole sequence and can therefore cope better with object losses. However,
it cannot work on-line. The method described in [Berclaz 11] uses images of
up to �ve seconds in the future and hence an on-line version of this method
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Figure 5.24: Performance on an outdoor data set [Berclaz 11]. The sample frame
from the public data set, provided by the lab of CVLAB at EPFL [Berclaz 11], is
shown. The overall accuracy of our tracker for this sequence is 23.8 cm which is
still very good, considering the use of only three cameras. The movie can be found
in [Grünwedel 13b].

would incur a delay of about �ve seconds. Our proposed tracker works on a
frame-by-frame basis and instantaneously calculates the best estimates of the
people that were tracked.

5.3.5 Real-Time Demonstrator

We have implemented the multi-camera system architecture using a camera net-
work as explained in this chapter. The system was installed at Hogeschool Gent
to track multiple individuals in real time. The network consists of six color cam-
eras (four side and two top-view cameras) with a resolution of 780× 580 pixel,
each connected to an Intel Core 2 Duo/2.8GHz processor. Each color camera
and the attached computer simulate a smart camera. A fusion center with
the same processor completes the system architecture. The cameras observe a
scene of approx. 9×5 m. Each smart camera performs foreground/background
segmentation, as explained in Chapter 3, and calculates an estimate for each
individual based on one of the three camera-based approaches (Section 5.2.2.2,
5.2.2.3 or 5.2.2.4). A compact representation of each individual, represented as
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a Gaussian distribution, is sent to the fusion center. The fusion center calcu-
lates a �nal estimate based on the input of the smart cameras, using a Bayesian
estimator (cp. Section 5.2.3). After a �nal estimate of each individual is calcu-
lated, the fusion center sends the results back to each smart camera to correct
potential mistakes. Our multi-camera system operates at 10 FPS.

At the moment, our multi-camera system provides a reasonable accuracy
and precision. Future work will extend the real-time demonstrator by an ap-
pearance model to handle possible object switches.

5.4 Conclusions

In this chapter, we presented a novel decentralized multi-camera system ar-
chitecture for real-time video processing applications that can track humans
within a network of cameras. This is achieved by distributing tasks between
cameras and a fusion center to obtain a common fusion result from multiple
camera views. On the fusion center, only high-level compact information, sent
by each individual smart camera, are taken into account. Hereby, each smart
camera estimates the likelihood via a camera-based tracking method.

We evaluated our proposed system architecture on multiple sequences, even
in cases of severe occlusion and with/without light changes. Experimental re-
sults show a reasonable accuracy and precision, su�cient for many applications
such as surveillance or behavior analysis of people in meetings, even in cases of
occlusions.

There are several possible extensions to this work. One possibility is to
incorporate more advanced methods to model the appearance of a person.
Another extension could be a more detailed study of the feedback loop.

This research resulted in one publication in the ACM Transactions on Sensor
Networks [Grünwedel 14]. Furthermore, several papers have been published
in the proceedings of international conferences [Grünwedel 12a], [Jela£a 11],
[Demeulemeester 11], [Guan 12].



132 Distributed Multi-Camera Tracking with a Feedback Loop



6
A Best View Selection in

Meetings

Human activity analysis is an important part of ambient intelligence and com-
puter vision. Its goal is to automatically analyze ongoing activities from one
or multiple unknown video streams, which can then be correctly classi�ed into
a set of activities [Aggarwal 11]. Many applications are already available to
support people in carrying out their everyday life activities and tasks, such as
automatic light control, elderly care, meeting analysis (smart meetings), etc.

Especially in the last decade, smart meetings became more and more impor-
tant [Banerjee 05], [Rienks 06], [Yu 10], [Grünwedel 12b], [Xie 12]. Nowadays,
due to the tremendous amount of meetings, people are often unable to attend
all of them, even though it would be required. For those absent people, an au-
tomatic meeting summary is useful and time-saving. However, the traditional
note-taking is ine�cient, incomplete, or even inaccurate [Jaimes 05].

In this context, making use of low-level data, such as positional data for each
meeting attendant [Grünwedel 12a], [Grünwedel 11a], [Jela£a 11], [Fleuret 08],
[Berclaz 11] or detailed face analysis [Deboeverie 11], could help high-level
analysis to understand, describe and explore the dynamics in meetings (smart
meetings). Here, activities range from events, like �who is talking� or �who is
looking at who� to more complex ones such as �who is the main speaker�, �who
is paying attention in the meeting, who does not�, . . .

In general, these activities include environmental layouts, personal behav-
iors of each attendee, or overall behaviors of participants. Exploring environ-
mental layouts and analyzing human behaviors are auxiliary and bene�cial for
each other. With these activities, relevant services can be provided to meeting
participants, such as reporting all events in the meeting, evaluating the meeting
e�ectiveness and e�ciency, etc.

However, the detection of such activities is still very challenging. Low-level
data can be corrupted or imprecise due to environmental changes and inherent
errors of the employed algorithms (cp. Chapter 4 and 5). Therefore, low-level
data cannot be assumed to be correct or very precise at all times.

In this chapter, we present an approach to understand the dynamics in
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(a) Best view selection example

(b) Setup overview

Figure 6.1: Example of best view selection. In (a), a collection of available video
streams are shown in which the most informative stream is chosen (red box). The
selection is based on the analysis of the participant's orientation in portable close-
up cameras (emphasized in red, (b)) for a certain time period. The participants
relation to others and their orientation is estimated using �xed ambient cameras; one
of the following views is selected: Person 1, Person 2, Person 3, Screen or White
board [Grünwedel 13a].
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meetings using a multi-camera setup, consisting of �xed ambient and portable
close-up cameras. Here, �xed ambient cameras are used, for example, to track
meeting attendees or to observe a certain area in the meeting such as a white
board or a screen (Figure 6.1a). On the contrary, portable close-up cameras,
such as laptop cameras, usually have only one speci�c participant in the �eld
of view. These cameras can be used for detailed face analysis, but are also
susceptible to small movements and therefore an on-line calibration process is
needed.

Meeting analysis is a challenging task due to the complexity of detected
activities. There are lots of possible applications for meeting analysis, for
instance creating a complete protocol of a meeting, or behavioral analysis of
the meeting (balanced meeting). In our approach we focus on, as a particular
application, detecting the best view within a multi-camera network, which is
then streamed as a representative view to a remote participant (Figure 6.1).
The best view hereby refers to the most informative video stream within the
multi-camera setup. We focus on the detection of activities in a certain time
period rather than on a frame-by-frame basis. The best view is detected by
analyzing the head orientation of the participants in the meeting.

Our contribution to this approach is threefold: First, we estimate the ex-
trinsic parameters of the close-up cameras using head positions in the ambient
cameras and the corresponding close-up cameras. Our algorithm �nds the best
set of corresponding points to estimate the extrinsic parameters of a close-up
camera. Then, the head poses (position and orientation) are estimated on a
frame-by-frame basis, and then used to �nd common viewing areas where peo-
ple look at for a certain time period. Finally, these areas are analyzed and used
to detect overlapping areas based on the consensus of people in the meeting.
Therefore, we can select the most informative view in which an activity takes
place. In summary, the novelty of the approach is hereby the calibration of
close-up cameras based on head positions in the ambient cameras, in combi-
nation with the use of attendees' head poses, to select the most informative
view for a remote participant, compared to other smart meeting systems, such
as [Yu 10].

The remainder is structured as follows: In Section 6.1 we discuss related
work of smart meetings. Section 6.2 describes the proposed approach, con-
sisting of three parts: the estimation of the extrinsic parameters for close-up
cameras in Section 6.3, �nding overlapping areas based on the orientation of
people in Section 6.4, and the detection of the most informative view for a
remote participant in Section 6.5. Section 6.6 outlines the extension of this
work. In Section 6.7, we present experiments to demonstrate our approach.
The results show that we are able to detect the most important view for a
remote participant. Section 6.8 concludes the chapter.
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6.1 Related Work

In this section we provide an overview of state-of-the-art approaches for smart
meetings.

Determining the rigid motion to relate a pair of cameras is a well-studied
problem [Tsai 92], [Bouguet 99], [Kannala 06] and has been extended to a
multiple-camera scenario [Triggs 00]. Solving this classical problem usually
requires a set of matched image correspondences in each of the views.

In this work we consider face locations of occupants in the environment to
construct the correspondences for close-up camera calibration, because they can
be uniquely identi�ed and robustly tracked [Kim 08], [Murphy-Chutorian 09].
In their paper, Kim et al. track faces using a combination of generative and
discriminative models in a particle �ltering framework. The generative term
conforms the particles to the space of generic face poses while the discrimina-
tive one ensures rejection of poorly aligned targets. Their approach reports
successful face tracking results on over 80% of all videos, without video or
person-speci�c parameter tuning. In [Murphy-Chutorian 09], the inherent dif-
�culties in head pose estimation are discussed and a survey describing the
evolution in the �eld is presented. A comparison of several systems, focusing
on their ability to estimate coarse and �ne head pose, is provided.

Smart meeting systems have been designed to automatically archive, ana-
lyze and summarize meetings, which are arguably the most important means
of information distribution and exchange [Yu 10]. While many proposed smart
meeting systems consider sensors of multiple modalities [Mikic 00], [Cutler 02],
including audio and video, we focus on visual sensors only and build a high-level
semantic attention detector using features extracted from them. For instance,
in [Zaki 12], the design of an assistive system, operating in smart meetings,
is presented that infers activity patterns resulting from the perception of hu-
man behavior in those environments. Their research includes activities such as
presenting, walking, explaining slides and answering questions.

Head orientation is a good indicator for focus of attention, and can be used
to infer social attention and human interaction [Chen 11]. Chen et al. propose
an approach that fuses information from a network of visual sensors for the
analysis of human social behavior. A discriminative interaction classi�er is
trained based on the relative head orientation and distance between a pair of
people. Human interactions between two people are explored.

In a meeting application scenario, the participants' focus of attention can
also be used as an index in an archive [Stiefelhagen 99]. In Stiefelhagen et al.,
a panoramic camera captures low resolution images of participants in a round-
table meeting, and a Hidden Markov Model (HMM) is employed to estimate
the head poses. However, only pan and tilt angles are estimated, and people are
assumed to be seated around the table. In [Stiefelhagen 02], a head-mounted
eye and head tracking system was used to track the head orientation and gaze
direction of a meeting participant. It was shown that head orientation con-
tributes to 68.9% of overall gaze direction, and head orientation alone achieves
high accuracy in meeting analysis.
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Figure 6.2: Approach overview. In the �rst step, the extrinsic parameters for the
portable close-up cameras are estimated using �xed ambient cameras and facial infor-
mation of each participant. In the second step, the head position and orientation are
used to �nd common areas where people look at for a certain period of time. Finally,
these areas are analyzed and used to detect the most important view in the meeting.

In our work, we use a vision-based head tracker to estimate the full six
degree-of-freedom head poses with portable cameras. No intrusive sensors are
needed, and by recovering the relative position between the portable close-up
cameras and the �xed ambient cameras in the meeting room, focus of attention
is not restricted to meeting participants only but can be on interesting regions
within the environment.

6.2 Overview of our Approach

In this section we describe the proposed approach for understanding the dy-
namics in meetings; in particular to detect the most informative video stream
for a remote participant based on a multi-camera setup.

The multi-camera setup consists of �xed ambient and portable close-up
cameras. There are more possible applications for our proposed approach,
such as to focus Pan-Tilt-Zoom (PTZ) cameras within a meeting on speci�c
people for a more detailed analysis, or, to automatically report what happened
during a meeting.

Figure 6.2 depicts a block diagram of our proposed approach. First, we
estimate the extrinsic parameters for the portable close-up cameras. This is
needed since close-up cameras are usually laptop-cameras and are placed by the
participants themselves. This makes a pre-calculated calibration impossible.
Furthermore, participants adjust their cameras or move their cameras during
the meeting. Therefore, the calibration of close-up cameras has to be done
automatically and instantaneously by checking the parameters with a certain
frequency.

In the second step, we �nd overlapping areas based on the orientation of
people, i.e., an overlapping area is de�ned as an area at which most of the
participants are looking. This consensus decision refers to the fact that if
people are constantly looking at a certain area, an important activity is hap-
pening there. As shown in Figure 6.1b, there are three attendees present in the
recorded meetings. The consensus decision refers to �ve possible views: Person
1, Person 2, Person 3, the Screen or the White board. Of course, it is possible
that no consensus is found due to errors in the head pose estimation or the fact
that the attendees do not focus on a speci�c area. Nevertheless, especially for
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the last case, we focus only on the detection of an overlapping area in a certain
time period rather than on a frame-by-frame basis. Therefore, we will still be
able to understand the dynamics in meetings from a high-level perspective.

In the �nal step, the most informative view for a remote participant is
chosen based on the detected overlapping areas of the participants.

6.3 Estimation of the Extrinsic Parameters of

Close-up Cameras

In this section we outline the estimation of extrinsic parameters for close-up
cameras. The extrinsic parameters of a close-up camera are needed to relate
the head position and orientation of a participant to a common coordinate
system, resulting in common viewing areas.

At �rst, participants are tracked using the calibrated ambient cameras
[Grünwedel 14], [Kim 08]. Making use of multi-camera tracking algorithms,
such as the one explained in Chapter 5, enables the estimation of a set of N

head positions
{
hnw = (xw, yw, zw)

T
}

;n = 1, . . . , N for each participant in the

close-up camera w.r.t. a common coordinate system w [Murphy-Chutorian 09].
Assuming we have only one participant per close-up camera, we are tracking
the face of the participant in real-time, using, for instance, an approach pre-
sented in [Kim 08] for at least 10 s, resulting in a su�cient number of head

positions
{
hnc = (xc, yc, zc)

T
}

;n = 1, . . . , N w.r.t. the close-up camera coor-

dinate system c. Of course, head positions can include outliers which will be
excluded later on. Each head position is estimated in a 3D coordinate system.
Note that the head position hnc , obtained from the close-up camera images,
describes the position in the image plane and the distance from the camera.
Therefore, these head positions are also reported in a 3D camera coordinate
system c.

The �nal task is to �nd a transformation according to the following equation
[Arun 87], [Umeyama 91]:

hnc = Rhnw + T + δnw,

where R is a rotation matrix, T a translation vector, and δnw a noise vector.
Arun et al. [Arun 87] describe an algorithm to �nd the least-square solution of
R and T based on the Singular Value Decomposition (SVD). Here, R and T
are found by minimizing:

K =

N∑
n=1

‖hnc − (Rhnw + T)‖2. (6.1)

In their paper, the authors show that, by decoupling the translation T from
the rotation component R, it is possible to estimate the least-square solution
of R, i.e., if the least-squares solution to (6.1) is R̂ and T̂, then {hnw} and{
hnc = R̂ hnw + T̂

}
have the same centroid.
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Therefore, Equation (6.1) can be rewritten as

K =

N∑
n=1

‖(hnc − µc)−R (hnw − µw)‖2, (6.2)

where µw is the mean of the point set {hmw }, and µc the mean of {hmc }. Then,
the original least-squares problems of Equation (6.1) is reduced to two steps

1. Find R̂ to minimize K in (6.2).

2. The translation is found by T̂ = µc −Rµw.

To �nd R̂, the SVD of a matrix H needs to be calculated, where H is de�ned
as follows:

H =

N∑
n=1

(hnw − µw) (hnc − µc)
T
.

However, the noise vector plays a vital role, as stated in their paper [Arun 87].
If the noise is too large, it might not be possible to �nd a valid solution for the
SVD of H. In this case, a RANSAC based method [Fischler 81] needs to be
used to �nd a subset of {hmw } and {hmc } to compete against outliers.

6.4 Finding Overlapping Areas Based on the

Orientation of People

By performing head pose estimation [Murphy-Chutorian 09] and using the ex-
trinsic parameters for a close-up camera, we are able to relate the head position
and orientation to a common coordinate system, as shown in Figure 6.3. There-
fore, it is possible to �nd common viewing areas based on the head position
and orientation of each participant.

The head pose consists of a translation and rotational component w.r.t. the
camera coordinate system. The three degrees of freedom of a human head
can be described by the egocentric rotation angles pitch, roll, and yaw. Pitch
describes the motion of turning one's head up or down, yaw means that one
person turns his or her head left or right, and roll describes moving one's heads
towards one's shoulders.

In our approach we are interested in the head movement and the rotation
angles pitch and yaw to analyze people's looking behaviors in a meeting.

The head's yaw rotation angle ranges from [−90◦, 90◦], resulting in a viewing
area of 180◦ for each participant. We divide this viewing area (semicircles) into
K evenly-spaced angular zones. In Figure 6.3, semicircles illustrate these K
viewing zones for each participant, labeled counter-clockwise. Note that these
semicircles are only used for illustration and the viewing areas are not limited
to these semicircles. For example, the position of Person 1's head is the center
of the semicircle (red semicircle in Figure 6.3). Within the semicircle, the
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Figure 6.3: Viewing zones of each participant. The semicircles represent K viewing
zones of each participant, established from the extrinsic parameters of the portable
close-up camera viewpoints. The head of each participant is the center of each semi-
circle.

di�erent viewing zones are shown. This semicircle is obtained by the head pose
estimation and the calibrated portable close-up camera, described in Section
6.3.

Given the yaw rotation angle α, the number of viewing zones z can be
calculated using the following formula:

z = bα+ 90◦

180◦
N + 1c,

where bxc is the greatest integer function, rounding the variable x to the nearest
integers less than, or equal to, x. Besides, the pitch rotation angle is classi�ed
into two zones; �looking up� (zone 1) and �otherwise� (zone 2).

To understand the dynamics in a smart meeting, speci�c activities need
to be detected that are of importance for an application. In our particular
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Table 6.1: Relation between viewing zones of each person and the possible interesting
areas. Here, the number in each cell describes the viewing zone of each person as
illustrated in Figure 6.3.

Interesting area
Person 1 Person 2 Person 3

yaw pitch yaw pitch yaw pitch

Person 1 - - 5 2 4 2
Person 2 5-7 2 - - 6,7 2
Person 3 8-10 2 2,3 2 - -
Screen u u 2,3 1 1,2 1

White board 11-15 1 4,5 1 3,4 1

application we are interested in determining the most informative view for a
remote participant.

During a meeting, participants usually perform one of the following activi-
ties: a person talks while the other participants usually look at him or her; a
person explains certain information on the screen or the white board while the
other participants look either at the screen or the white board, i.e., there are
some speci�c areas in a smart meeting room which are of interest for a remote
participant.

Therefore, we de�ne an activity as the area viewed by most participants
which is determined by the consensus of the people's orientation. Since we
have three participants in our particular meeting setup, a white board and a
screen, we only focus on these �ve so-called interesting areas.

In Table 6.1, the relation between viewing zones of each participant and the
interesting areas are depicted for this speci�c smart meeting setup. We use a
decision-based system to detect an activity. In the table, the symbol u means
that the viewing zone is unknown. This restriction for the setup is imposed due
to the fact that Person 1 needs to turn around to see the screen and therefore
will not be seen by the close-up camera. The viewing areas of Person 2 and 3
are divided into 8 separate zones. However, due to the proximity of Person 2
and 3, it is challenging to di�erentiate the looking behavior of Person 1 with
only 8 zones (cp. Figure 6.3). Therefore, we divide the viewing area (semicircle)
of Person 1 into 16 zones. For Person 1, looking at the white board is classi�ed
by a yaw rotation angle in zone 11 to 15 and pitch rotation angle in zone 1.
Looking at Person 2 is distinguished from Person 3 by a yaw rotation angle in
zone 5 to 7 and a pitch rotation angle in zone 2. Hence, the behavior of looking
at Person 3 from the point of view of Person 1 is detected by a yaw rotation
angle in zone 8 to 10 and a pitch rotation angle in zone 2. In case Person 1
turns back and looks at the screen, the viewing zone is unknown because the
head pose estimation fails.

Areas viewed by most participants and hence focused attention, are detected
based on the consensus of the participants. If all of the three people look at
the white board, we consider the white board as the most informative area for
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all participants in the meeting room. There is another case: one person gives a
presentation in front of the white board and others look at him. The close-up
cameras cannot capture the presenter thus his viewing zone is unknown. In this
case, the white board will be the most informative area as well. If two of the
three people look at the third one, we consider the third person to speak and,
therefore, to be the most informative area. This approach is rather heuristic.
An extension of this work is provided in Section 6.6.

6.5 Detecting the Most Informative View for a

Remote Participant

In this section we describe the detection of the most informative view for a
potential remote participant, using the frame-by-frame detections of Section
6.4.

This high-level behavioral analysis is one particular application of the pro-
posed approach. We hereby assume that views should not switch too frequently
for a remote participant. Furthermore, to cope with noisy detections, we make
a decision for the best view for a certain period T . In our experiments, we
chose T = 10 s. Within this period we count the frequency of each interesting
area and choose the one with the highest frequency.

6.6 Extension of the Proposed Approach

An extension of this work, presented in this chapter, has been performed in
close collaboration with my colleague Xingzhe Xie and, therefore, the concepts
presented here will also appear in her PhD thesis. However, the focus of this
Section is to provide an overview of the extension. For more details the reader
is referred to Xingzhe's PhD thesis.

In general, the goal is to derive high-level activities from low-level data,
which can be corrupted or imprecise due to environmental changes and inher-
ent errors of the employed algorithms. However, the robustness of behavioral
analysis in smart meetings can be improved by using hierarchical Bayesian
Networks (BNs) [Aghajan 09] [Wang 09].

Therefore, a general framework based on three di�erent layers is introduced,
which is based on a probabilistic modeling rather than a heuristic approach as
presented in Section 6.4. In this way we keep track of information in the past
and provide evidence on how likely an activity happens at the current time
instance. The extension of the proposed approach consists of three layers:

1. Basic features: Basic features are extracted from raw video or audio
data, such as foreground/background segmentation, head pose or mouth
movement. The idea is that every (ambient or close-up) camera extracts
as many features as possible to be used to infer behaviors. These features
are usually obtained on a frame-by-frame basis.
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2. Simple behaviors: Simple behaviors are de�ned as a person performing
a series of actions and, therefore, visual and audio features are combined
to infer activities such as the presence of a person for a certain camera
view, interesting areas for each attendee to look at, or speaker detection.
These simple behaviors are obtained between two di�erent time instances
t1 and t2 (for example at one second intervals).

3. Complex behaviors: Complex behaviors are de�ned as a series of
simple behaviors of di�erent persons. Such behaviors are application-
dependent and can represent typical situations in a meeting, e.g., all
meeting attendees are sitting and listening to the main speaker.

This framework can be used to determine di�erent aspects in a meeting, e.g.,
to �nd the most informative view, to create a meeting protocol, to provide
behavioral analysis of the meeting (balanced, dominant, attentive, interactive),
etc.

6.7 Results

In order to provide an evaluation to determine the most informative view for a
remote participant, we conducted several experiments using the collected video
data from the Wireless Sensor Networks Lab at Stanford University. In our
scenarios, three participants were present in all meetings and observed by up
to three ambient cameras and three portable close-up cameras (cp. Figure 6.1).
Each portable close-up camera and two �xed ambient cameras, one pointing at
a screen and one at a white board, serve as possible video streams for a remote
participant. In total, we have collected more than 120 minutes of data. Here,
we evaluated every step of Figure 6.2 separately.

Head pose estimation was performed with the real-time face tracking soft-
ware FaceAPI [Machines 09]. Furthermore, as already mentioned, a decision
about the best view for a remote participant was calculated every T = 10 s.

At �rst, we evaluated the accuracy of the extrinsic parameters for a close-
up camera. Therefore, we manually annotated four di�erent point sets of head
positions using the calibrated ambient cameras at one-second intervals, result-
ing in 3D head positions for a participant w.r.t. a common coordinate system.
Furthermore, we calibrated the close-up camera for comparison. To obtain the
extrinsic parameters for the close-up camera, we estimated the head pose (po-
sition and orientation) w.r.t. the camera coordinate system (Figure 6.4). To
measure the accuracy of our approach, we calculated the Euclidean distance
between the calibrated camera center and the estimated camera center of the
close-up camera.

In Table 6.2, we show the results of this calculation in which the accuracy
is at most around 35 cm. This is of su�cient accuracy for our particular
application since we are only interested in a rough estimation of the viewing
areas of each participant. Therefore, the calibration of the close-up cameras do
not need to be very precise.
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Figure 6.4: Point correspondence for one frame. In this example, the annotated
GT point and the head pose (position and orientation) are used to estimate the
extrinsic parameters for a portable close-up camera. Note the noise for this point
correspondence is quite large. Therefore, we favor a RANSAC like approach to cope
with noisy correspondences.

Table 6.2: Accuracy of the extrinsic parameters for a close-up camera.

Set Error in x Error in y Error in z Total Error

1 1.02 cm 20.98 cm 13.66 cm 25.06 cm
2 7.42 cm 17.21 cm 25.55 cm 31.67 cm
3 10.11 cm 19.55 cm 25.56 cm 33.73 cm
4 3.36 cm 9.38 cm 4.30 cm 10.85 cm

In a second experiment we evaluate the detection of interesting areas for
several sequences. In Figure 6.5a and 6.5b, the results of one short clip for
Person 2 are shown. The yaw rotation angle is transfered into yaw rotation
zones (viewing zones) as shown in Figure 6.5b. To verify the detection of
viewing zones for each person, we manually annotated a representative 25-
seconds clip at one second intervals (Figure 6.6). In this sequence, Person 1
focuses mostly on Person 3. Person 2 looks at the white board at �rst, then
at Person 1 and �nally at Person 3. Person 3, on the other hand, seems to be
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Figure 6.5: Yaw rotation angle and its corresponding zones. This �gure depicts the
yaw rotation angle and the viewing zones of Person 2. The yaw rotation angle (a) is
discretized into eight viewing zones (b). These zones are used to detect the looking
behavior of a particular participant.
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(c) Interesting areas for Person 3

Figure 6.6: Activity detection for each participant. We manually annotated a 25-
seconds clip for each participant at one second intervals. Our approach shows a high
accuracy for the detection of the person's interesting areas, except in cases where the
interesting area is unknown. This is due to the fact that the estimation to detect the
head pose of this person failed and, therefore, an interesting area cannot be detected.
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Figure 6.7: Overlapping areas. We compared the detected overlapping areas to
manually annotated GT at one-second intervals. No overlapping area (unknown area)
is found if people focus on di�erent objects, or if the head pose estimation fails. In
general, our method reports a robust performance in �nding common overlapping
areas of meeting participants.

active during this sequence due to an alternating focus of Person 1 and Person
3. As a result, our algorithm shows high accuracy to detect the interesting
areas of each person, except in cases where the interesting area is unknown.
This is due to the fact that the estimation to detect the head pose of this person
failed and, therefore, an interesting area cannot be detected.

Finally, we obtain the overlapping area based on the consensus of all par-
ticipants (cp. Figure 6.6), resulting in an activity. In Figure 6.7, the detected
activities are compared to manually annotated GT at one second intervals.
From the ninth to the sixteenth second, Person 2 and Person 3 look towards
Person 1. After that, Person 3 starts talking and becomes the focus. It is
possible that people focus on di�erent objects, leading to no overlapping areas.
Furthermore, the overlapping area can be unknown due to head pose failure.
Nevertheless, our method is able to �nd common overlapping areas.

To evaluate the overall performance of our proposed approach, we presented
60 ten-seconds clips out of 120 minutes of recordings to three people not in-
volved in this research, and asked them to choose a best view out of the pre-
sented �ve video streams. In this context, we created ground truth (GT).
Anyhow, this manual selection is subjective since it re�ects people's decisions
and people do not necessarily need to choose the same view. We compared
our presented approach to a motion estimation method [Farneback 00], which
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Figure 6.8: Overall performance. 60 ten-seconds clips out of 120 minutes of record-
ings were presented to three people not involved in this research for annotation (man-
ual selection 1, 2 and 3).
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measures the overall motion of every view and chooses the one with the highest
motion over the ten-seconds period. Despite that the manual selections are
quite di�erent, as can be seen in Figure 6.8, our approach shows clearly a good
accuracy. The di�erences between manual selection and our approach can be
explained by the limited features we used to make a decision for the most in-
formative video stream and by the looking behavior of people, that latter of
which does not always correspond to the speaker. The overall performance is
calculated as the average of the comparison between the presented approach,
or the motion estimation, to the manual selections. Compared to the �rst and
second manual selection we achieve an overall performance of 74%, which is in
contrast to the motion estimation method that only achieves 26%. The third
manual selection is quite di�erent from the other GTs. This could be explained
by a potential di�erent focus of the person who selected the most informative
view. Compared to this observer, both approaches achieve a performance of
43%, which is not very accurate.

In summary, our proposed approach performs better than the motion esti-
mation method that measures the overall motion of each view and chooses the
one with the highest motion over a ten-seconds period. It is worth mentioning
that the comparison to manual selections is subjective since it can be biased to-
wards the preference of a certain person. Nevertheless, our approach describes
a basic scheme and can be extended by more features to be more robust and
detect more activities.

6.8 Conclusion

In this chapter, we presented a novel approach to understand the dynamics in
smart meetings within a multi-camera setup, consisting of �xed ambient and
portable close-up cameras. Our approach is threefold: at �rst, we estimate the
extrinsic parameters of the portable close-up cameras, using the head positions.
Next, we �nd common overlapping areas that are re�ecting the viewing behav-
ior of participants. These areas are found using the head pose (position and
orientation) of each participant recorded by the close-up cameras. In the third
and �nal step, we detect the most frequent interesting area within a certain
time period and use this area to chose the most informative view. We evalu-
ate every step of our proposed approach and show that our approach performs
better than a simple motion estimation method.

There are many possible extensions to this work. One direction could be
the incorporation of more features such as to increase robustness and to detect
more activities. This could potentially lead to more complex applications, for
instance creating a complete protocol of a meeting.

Several papers have been published in the proceedings of international con-
ferences [Grünwedel 12b], [Xie 12]. Note that the paper [Grünwedel 12b]
won the �Best Paper Award� at the International Conference on Distributed
Smart Cameras (ICDSC) 2012. Furthermore, one journal paper is in prepara-
tion [Xie 13].
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7
Conclusions

Now this is not the end. It is not even the beginning of the end. But it is, perhaps,
the end of the beginning.

�Winston Churchill

In this thesis, we deployed techniques ranging from low-level over mid-
level to high-level approaches, speci�cally designed for multi-camera networks.
Speci�cally, we developed a multi-camera tracking system, focusing on real-
time, low-latency and scalable tracking of multiple people, in which the most
compute-intensive video processing is performed within the smart cameras.

7.1 Overview of Contributions

We have considered three di�erent types of approaches, using a multi-camera
network: low-level, mid-level and high-level approaches

7.1.1 Low-level Approaches

Many techniques use foreground/background segmentation methods as part of
their work �ow. For instance, tracking algorithms may focus on foreground
regions to detect moving objects (and therefore speed up object-matching),
or to track objects in space and time. The following properties are usually
expected from a detection algorithm: accurate detection of moving objects (in
space and time), robustness to changing environmental conditions, especially
changes in illumination, real-time processing, and low latency. The last two
properties are essential for tracking applications, the latter on which we will
focus further.

As a low-level approach, we designed a novel low-level foreground detection
algorithm for real-time tracking applications, concentrating on di�cult and
changing illumination conditions. In Chapter 3, we proposed two new meth-
ods to separate foreground from background to detect moving objects, using
either image gradients or image intensities in real time. The main idea is to
apply a decision-tree-like approach to FG/BG segmentation, i.e., we calculate



152 Conclusions

statistical measures at each node of the tree to classify a pixel either as fore-
ground or as background. As statistical background model we used a long-
and a short-term weighted average, based on di�erent learning factors. In the
proposed approaches we either used image gradients or image intensities as
statistical features for foreground and background regions. In particular, the
approaches concentrated on the aforementioned tracking approaches in di�cult
and changing illumination conditions, and adapt fast to such changes.

We compared the results of the proposed methods with the results of two
state-of-the-art FG/BG segmentation techniques. Results were obtained for
several indoor sequences with/without local and global lighting changes. We
showed that the proposed methods, using either image gradients or image in-
tensities, performed best in sequences exposed to changes in illumination, com-
pared to state-of-the-art methods.

7.1.2 Mid-level Approaches

The main part of this dissertation focuses on a detailed analysis of two novel
state-of-the-art real-time tracking approaches: a multi-camera tracking ap-
proach based on occupancy maps and a distributed multi-camera tracking ap-
proach with a feedback loop.

The use of multiple, overlapping cameras becomes necessary when applica-
tions need to accurately detect and track people in complicated environments
such as for surveillance tasks or in retail stores or other indoor environments,
or when the number of people is large. For example, to compute the precise po-
sitions of people, multi-camera tracking techniques intend to resolve occlusions
by providing redundant 3D information about objects in the scene. Monitoring
the activities of people, such as the number and whereabouts in a room, is es-
sential for these types of applications. Tracking approaches based on occupancy
maps provide a solution in many of the aforementioned applications.

The multi-camera tracking approach based on occupancy maps, described
in Chapter 4, can be considered as a centralized approach, i.e., the main part
of the computation takes place at a fusion center, a central processing unit,
which receives data from cameras in the network. The focus of this research
was the development of a real-time tracking application based on Bayesian
�ltering strategies which can potentially be used on smart cameras. The use
of occupancy maps was based on previous work of Tessens et al. [Tessens 10]
and Morbee et al. [Morbee 11].

We provided qualitative and quantitative results on several indoor sequences
(meeting scene) even under occlusions (by furniture and other people). On one
hand, the results showed that we were able to track multiple people using
a camera network. The performance of our tracker was su�cient to obtain
trajectories of people for the tested sequences. On the other hand, the approach
imposed restrictions on, for example, the real-time processing. We pointed out
the limitations of the proposed approach and its restricted use down to a few
applications.
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Real-time tracking of people is an essential component of many computer
vision applications. For instance, in video-conferencing, positional data for
each meeting attendant can be very valuable.

As discussed in Chapter 5, the distributed multi-camera tracking approach
with a feedback loop was designed as a decentralized processing architecture
in which the most compute-intensive video processing is performed within the
smart cameras. In fact, since the requirements on the fusion center are so low,
it is even possible to run the fusion center algorithms on each camera and end
up with a distributed architecture. In particular, this approach focused on
real-time, low-latency and scalable tracking of multiple people. The feedback
loop ensures that the cameras are up-to-date about the most recent locations
and motion states of tracked objects. In our architecture no video transmission
is needed for the purpose of tracking, not even for regions of interest within
the camera views.

In our system, each camera �rst performs low-complexity FG/BG segmen-
tation to segment the scene into moving blobs on a static background. Next,
each camera groups the blobs into bounding boxes (�cuboids�) with respect to
a world coordinate system, which most likely correspond to individual persons.
Then, the camera transmits a compact high-level description of moving objects
to the fusion center, which fuses these data using a Bayesian approach. Here,
we do not assume that a camera is accurate and precise in object tracking.
Thus, a camera can make mistakes which are corrected using the feedback of
a cooperative decision, using all available cameras in the network.

The performance of the proposed system was evaluated in terms of preci-
sion and accuracy on indoor and meeting scenarios. We demonstrated that
our approach works reasonably well, i.e., that a simple analysis of changes in
pictures, rather than motion estimation results, is reliable and accurate for
tracking multiple people in a multi-camera network. The average accuracy was
about 12 cm and we achieved those results in a real-time, low-latency, and scal-
able system, requiring low computational and network resources. Furthermore,
a comparison to state-of-the-art methods was provided, which showed that our
system performed at least as good as other methods.

7.1.3 High-level Approaches

Human activity analysis is an important part of ambient intelligence and com-
puter vision. Its goal is to automatically analyze ongoing activities from one
or multiple unknown video streams to then be correctly classi�ed into a set of
activities. Many applications are already available to support people in carry-
ing out their everyday life activities and tasks, such as automatic light control,
elderly care, meeting analysis (smart meetings), etc.

In Chapter 6, as a high-level application, we have proposed an approach
to understand the dynamics in meetings - so called, smart meetings - using a
multi-camera setup, consisting of �xed ambient and portable close-up cameras.
Here, �xed ambient cameras were used to keep track of the meeting attendees or
to observe a certain area in the meeting, such as a white board or a screen. On
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the contrary, portable close-up cameras such as laptop cameras, usually have
only one speci�c participant in the �eld of view. For this purpose it is vital to
automatically analyze ongoing activities from one or multiple unknown video
streams (i.e., correctly classify a video stream into a set of activities). Making
use of low-level data, such as FG/BG segmentation, and mid-level data, such
as positional data of meeting attendants obtained by a multi-camera system
or face analysis, helps to de�ne models for several activities. For example, to
automatically create a complete protocol of a meeting, or to perform behavioral
analysis of the meeting (balanced meeting). We proposed, as a particular ap-
plication, the detection of the best view within a multi-camera network, which
is streamed as a representative view to a remote participant. Our contribution
to this approach was threefold: At �rst, we estimated the extrinsic parameters
of the close-up cameras, using head positions in the ambient cameras and the
corresponding close-up cameras. In the second step, the head poses (position
and orientation) were used to �nd common areas where attendees look at for
a certain time period. In the third step, these areas were analyzed and used to
detect overlapping areas based on the consensus of meeting attendees.

We provided qualitative and quantitative results on several experiments,
using the collected video data from the Wireless Sensor Networks Lab at Stan-
ford University. Here, we evaluated every step of our proposed approach and
showed that our approach performs better than a simple motion estimation
method.

7.1.4 Future Research

Most importantly, the approaches, proposed in this PhD thesis, require con-
trolled circumstances to function properly.

Although, the novel low-level foreground detection algorithm, described in
Chapter 3, is an important step towards increased robustness against, in this
case, illumination changes, since the problem of changing light conditions is
still challenging. Minor drawbacks of the proposed algorithm are the not yet
fully light-insensitive thresholds. Here, further exploration to automatically
adapt the thresholds to the lighting changes is required. Furthermore, tracking
approaches should make use of moving edges detected by the foreground de-
tection approach based on image gradients, since edges are a common feature
of choice in these applications.

In their current state, the proposed tracking approaches, using a multi-
camera network presented in Chapter 4 and 5, require the multi-camera network
to be fully calibrated. This implies that the internal and external calibration
parameters of the cameras must be known, i.e., the focal distance, pixel density
of the image sensor and the pixel coordinates of the optical center, as well as
the relation to a global coordinate system. This puts important constraints on
possible applications for such multi-camera networks. On the one hand, the
internal calibration parameters are easier to obtain, and can be considered to be
constant over time. Though, this is not completely true since a small change on
the lens of a camera makes internal calibration necessary. On the other hand,
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external calibration parameters are more sensitive and a small displacement
of the camera leads to inaccuracy and wrong results. Therefore, calibrating a
camera network is time-consuming and requires special skill. Furthermore, the
cameras must be mounted very solidly to keep a camera network calibrated, and
occasional calibration updates must be performed. There are some methods of
automated camera calibration in literature, which rely mainly on the detection
of features in camera views. This can be critical if, for example, the scene
contains large homogeneous regions, such as walls.

Furthermore, the meta-data of the smart cameras, which is sent to the
fusion center, need to be synchronized, i.e., sent at the same time instant. In
practice, this is almost impossible without speci�c hardware synchronization.
Delays can occur for many reasons, such as di�erent processing times of the
used algorithms or network delays. Ideally, the data received by the fusion
center should not be outdated, i.e., the data sent by each camera in the network
should be synchronized. Here, a high frequency of data transmission between
the smart camera and the fusion center has the least in�uence on outdated
data. A lower frequency could lead to tracking inaccuracy due to the fusion of
outdated information.

Moreover, at the moment both tracking approaches, described in Chapter
4 and 5, rely only on foreground/background segmentation. This limitation
can cause problems if people are in close proximity. Because people are in close
proximity, the tracked objects can be easily switched. Therefore, an appearance
model of each tracked individual could possibly solve this issue. Appearance
models based on color features, which split the body area in several subparts
with dedicated color distributions, has proven su�cient in practice and should
be considered as possible extension to our approaches.

An important research goal for the future is to develop methods that co-
operatively feed system level information back to the basic image processing
algorithms. For instance, as already exempli�ed in Chapter 4, feedback from a
tracking algorithm to a foreground/background segmentation method can help
to improve segmentation. In this way, the FG/BG segmentation method can
be informed about image regions that are representing foreground objects.

7.1.5 Summary of Contributions

To summarize, the main contributions of this thesis are:

• a novel low-level foreground detection algorithm for real-time applica-
tions, focusing on di�cult and changing illumination conditions [Grün-
wedel 11b], [Grünwedel 13];

• a novel centralized multi-camera tracking approach based on the use of
occupancy maps [Grünwedel 11a];

• a novel decentralized multi-camera system with a feedback loop, focusing
on real-time, low-latency and scalable tracking of multiple people [Grün-
wedel 12a], [Grünwedel 14];
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• a novel framework for understanding the dynamics in meetings using a
multi-camera network [Grünwedel 12b].

In total, the research during this PhD resulted in one publication in an
international peer-reviewed journal [Grünwedel 14]. One article is under revi-
sion [Grünwedel 13] and one in preparation [Xie 13]. Furthermore twelve pa-
pers have been published in the proceedings of international conferences [Grün-
wedel 11a], [Grünwedel 11b], [Van Hese 11], [Jela£a 11], [Demeulemeester 11],
[Grünwedel 12a], [Grünwedel 12b], [Xie 12], [Nyan 12], [Guan 12], [Heyman 12]
and [Nyan 13].
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