Functionalisation of electrospun nanofibre membranes with titaniumdioxide nanoparticles.

N., Daels*, A., Goethals*, K., De Clerck*, S.W.H., Van Hulle **

* * Ghent University, Department of Textiles, Technologiepark 907, B-9052 Gent, Belgium
** Ghent University, Department of Mathematical Modelling, Statistics and Bioinformatics, Coupure Links 653, B-9000 Gent, Belgium

Abstract: Electrospun nanofibre membranes have a high water flux in comparison to other microporous structures. In this research the added value of functionalisation of nanofibers with titanium dioxide nanoparticles (nTiO2) is evaluated. Titaniumdioxide nanoparticles have been used in this study because of their low cost and advanced oxidation properties. This leads to efficient removal of pathogens and recalcitrant molecules in water. Preliminary tests with nanofibre membranes functionalised with TiO2 performed in this study indicated an enhanced removal of methylene blue, used as indicator, with 40 to 80% after 6 hours illumination with UV-A.

Keywords: electrospinning; microfiltration; nanofibres; non-woven; photocatalytic; titaniumdioxide; UV-A;

Introduction

The electrospinning technique is a process for making continuous nanofibres in a non-woven form. This process spins fibres ranging from 80 nm diameter to several hundred nanometers. The production technique gives the possibility to introduce functional agents on the surface of the nanofibres. Titaniumdioxide nanoparticles have been used as a functional agent for the nanofibre membranes because of their antibacterial properties and the possibility to oxidize organic material offering a high efficiency at low cost. A possible application of these functionalised nanofibers is WWTP effluent filtration in view of water re-use. In order to assess these functionalised nanofibers tests with methylene blue were performed. In a later stage also tests with a standard mixture of humic acids and real waste water effluent will be performed.

Material and Methods

Two possible ways of functionalisation are being studied: dip-coating and in-line functionalisation (Decostere et al., 2009). Two titaniumdioxide-solutions have been tested. Degussa P25 (Sigma Aldrich), offering a mixture of anatase and rutile TiO2 in the range of 25 nm and a synthesized colloid consisting of faceted, single-crystalline,
anatase TiO$_2$ nanoparticles (nTiO$_2$) with an average size of about 6 nm (Mihailovic et al., 2010). Photocatalytic activity of the nanofibre membranes functionalised with TiO$_2$ was assessed by degradation of methylene blue. The membrane was put in a methylene blue solution (10 mg/l) and illuminated by ULTRA-VITALUX lamp, 300W (Osram) for 6 h. Contact tests were performed by adding 2 ml E. Coli on a nanofibre membrane under UV-A light for 15 minutes.

Results and Conclusions

Preliminary tests with nanofibre membranes functionalised with TiO$_2$ indicated an enhanced efficiency on the removal of methylene blue with a removal of 40% (in-line functionalisation) to 80% (post-functionalisation) of the colour after 6 hours illumination with UV-A. These are promising results on lab scale.

![Figure 1.1: removal efficiency by different functionalised nanofibre membranes of methylene blue (intensity at 664 nm) after illumination with UVA. PA= non-functionalised polyamide nanofibre membrane. In-line: 0.1 ml TiO$_2$ added to 20 ml spinning solution.](image)

Contact tests were done on E-coli. A nanofibre membrane in-line functionalised with 0.1 ml nTiO$_2$ give a 2 log$_{10}$ higher removal then a non functionalised PA 6 nanofibre membrane. Future tests will be done on the use of the functionalised membranes on pilot-scale, giving us an idea on the biofouling-enhancement of the added functionalisation. This will be performed with methylene blue, a standard mixture of humic acids and real waste water effluent.

References

