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ABSTRACT 

A screening in a sugar snaps packaging company showed a converged build-up of aerobic 

psychrotrophic plate count (APC) (ca. 6.5 log CFU/100 mL), yeasts and molds (Y&M), and 

lactic acid bacteria (LAB) (both ca. 4.5 log CFU/100 mL) in the wash water in the absence of 

water sanitizer, and a low build-up of chemical oxygen demand (30 ± 5 mg O2/L) and 

turbidity (5.2 ± 1.1 NTU).  

 

Decontamination experiments were performed in the lab with Purac FCC 80® (80% L(+) 

lactic acid), two other commercial water sanitizers based on organic acids (Natraphase-

ABAV®, and Natraphase-FVS®) and chlorine to evaluate their performance in reduction of 

the sugar snaps microbial load as well as their functionality as disinfectant of the wash water 

to avoid cross-contamination. 

 

An additional 1 log reduction of APC on the sugar snaps was achieved with lactic acid in the 

range 0.8 to 1.6 %, ABAV 0.5 %, and free chlorine 200 mg/L when compared to a water 

wash, while no significant difference in the numbers of Y&M was obtained when washing in 

sanitizer compared to water. There was no significant influence of the studied concentration 

and contact time on decontamination efficiency. Treatment with lactic acid 0.8% resulted in a 

lower APC contamination on the sugar snaps than on the untreated and water washed samples 

for 10 days. Chlorine 200 mg/L was the only treatment able to maintain the Y&M load lower 

than the untreated samples throughout the entire storage duration. The use of water sanitizers 

could not extend the sensorial shelf-life. Microbial loads were not indicative/predictive for 

visual microbial spoilage (shelf-life limiting factor), whereas maturity and amount of damage 

at the calyx end of the pods were.  
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The APC wash water contamination (5.2 log CFU/100 mL) was reduced significantly by 

chlorine 20 to 200 mg/L (to 1.4 log CFU/100 mL), ABAV 0.5 to 1.5 % (to 2.7 log CFU/100 

mL), FVS 0.5 % (to 2.7 log CFU/100 mL) and lactic acid 0.8 to 1.6% (to 3.4 log CFU/100 

mL). Only the use of chlorine enabled the reduction of the Y&M wash water contamination 

significantly (from 3.4 to 1.4 log CFU/100 mL). The low physicochemical build-up of the 

sugar snaps wash water during the industrial washing process makes free chlorine attractive as 

water disinfectant to prevent bacterial and fungal cross-contamination, whereas the sanitizers 

based on organic acids are not, due to their weak water disinfection efficiency. 

1. INTRODUCTION 

Most grown sugar snaps (Pisum sativum var. macrocarpon) in the world are produced for 

local markets. In the last decades however, there has been a rise in the production of non-

traditional export crops, including sugar snaps. Industrialized countries import large quantities 

of sugar snaps from tropical developing countries (such as Kenya and Guatemala), in order to 

have a year round supply and because of the high labor costs involved with picking 

(Humphrey et al., 2004; Messiaen et al., 2004). The main spoilage microorganisms on beans 

and peas are Pythium butleri, the fungal plant pathogens Rhizoctonia solani, Sclerotinia spp, 

and Botrytis cinerea and the pectinolytic bacterium Erwinia carotovora that break down the 

pectic substances of the middle lamella, with consequential loss of mechanical protection and 

rigidity (Brummell, 2006; Tournas, 2005; Walker et al., 1998). The production of acid or 

antimicrobial compounds by native microbial flora may interfere with the colonization, 

survival and proliferation of foodborne pathogens (a.o. Salmonella spp., pathogenic 

Escherichia coli, Listeria monocytogenes) (Johnston et al., 2009; Liao and Fett, 2001; Shi et 

al., 2009; Teplitski et al., 2011). On the other hand, the chances of bacterial pathogen 
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proliferation on and internalization in fresh produce are improved by the disruptive actions of 

certain fungal and bacterial spoilage microorganisms on the plant tissues (Brandl & Sundin, 

2013; Critzer and Doyle, 2010; Ryser et al., 2009). Sugar snaps from Guatemala, which can 

be consumed either raw or cooked, have been the suspected vector of a Shigella dysenteriae 

outbreak in Sweden (May-June 2009) (Lofdahl et al., 2009) and a second Cyclospora 

cayetanensis outbreak (June 2009) was also reported in Sweden, with sugar snaps from Kenya 

as the suspected source (Insulander et al., 2010).  

 

Organic acids applied at relatively low concentrations exhibit inhibitory effects on microbial 

growth and are used to preserve acid foods and beverages. At higher concentrations organic 

acids can be used as decontaminants of food products such as fruits and vegetables and meat 

carcasses to improve food safety and quality (Virto et al., 2006). Organic acids are weak 

acids, and therefore they exist in a pH dependent equilibrium between the dissociated and 

undissociated state. The uncharged, undissociated acid can diffuse across the plasma 

membrane of microorganisms. Inside the cell the organic acid deprotonates, causing a pH 

drop and accumulation of toxic anions. As such, membranes can be disrupted, the proton 

motive force dissipated, essential metabolic reactions inhibited, and the intracellular pH 

homeostasis stressed (Brul and Coote, 1999; Capozzi et al., 2009).  

Chlorine is the most used water disinfectant in fresh produce washing processes because of 

the low cost, the proven ability to rapidly inactivate suspended bacteria, and the minimal 

impact on the nutritional and sensorial fresh produce quality. Drawbacks of chlorination are 

the possibility of chlorine gas generation in the working environment when incorrectly 

applied (i.e. below pH 5 and excessive dosing), the rapid decomposition in the presence of 

organic matter, and most notoriously the possibility of creating harmful disinfection by-
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products in the wash water. However, studies on uncut carrots and fresh-cut lettuce have 

shown that only negligible or undetectable amounts of disinfection by-products were detected 

on the final product when a final rinse with tap water is applied (Klaiber et al., 2005; Van 

Haute et al., 2013).  

 

After transport by airplane or container ship, sugar snaps are washed for rehydration and 

removal of materials from the pod surface. The objective of this study was to evaluate the use 

of water sanitizers for the reduction of the sugar snaps microbial load and extension of shelf-

life as well as their functionality as disinfectant of the wash water to prevent cross-

contamination. To the knowledge of the authors, hitherto, no studies have been published 

regarding the use of water disinfectants to improve the microbial quality of sugar snaps, 

extend the shelf-life and maintain the wash water quality of sugar snaps wash water. As 

decontamination efficiency depends in part on the produce surface and the way 

microorganisms attach to it, i.e. presence of stomata, surface roughness and hydrophobicity of 

the produce (Gomez-Lopez et al., 2008), the lack of knowledge on decontamination of pod 

vegetables (especially of snow peas and sugar snaps which can be consumed raw) makes 

sugar snaps decontamination a topic of interest. In this study, an on-site screening of an 

industrial sugar snaps washing process in the absence of water sanitizers was performed in a 

packaging company to observe the evolution of microbial and physicochemical parameters in 

function of processing time. In a second step, lab-scale experiments were performed with 

commercial formulations based on organic acids as produce and wash water sanitizers, and 

with chlorine as reference method.  

2. MATERIALS AND METHODS 

2.1.The sugar snaps 
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The sugar snaps used in the experiments originated from Peru and Guatemala. They were 

transported to the packaging company by container ship during 19 to 22 days at 3 ± 1 °C in 

modified atmospheric packaging (O2 < 10%, CO2 > 0.5%, Xtend®, StePac, Israel). 

Experiments were performed on 5 different batches (1 from Peru for the evaluation of the 

washing process in the packaging company and 4 for the decontamination experiments, of 

which 3 from Peru and 1 from Guatemala) that were sampled at different dates in the period 

October – December 2012. The acquired sugar snaps for the decontamination trials were as 

they were delivered to the packaging company, i.e. unwashed in crates of 4.5 kg. 

 

The state of the pod at the calyx end, the amount of mechanical damage on the sugar snaps 

and the size of the seeds in the pod, were compared among batches at reception, in order to be 

able to observe the impact of these characteristics on microbial number, growth, and the onset 

of visual microbial spoilage. Seed size is an indicator of maturity status. In the immature state, 

seeds do not fill the hull, in the mature state they fill the hull without deforming it, and in the 

overmature state they deform the hull (Basterrechea and Hicks, 1991).  

2.2.Evaluation of the washing process in the packaging company 

The packaging company applied a bubble washer of 750 L volume with a replenishing rate of 

400 L/h. 1000 kg of sugar snaps were washed in 188 minutes, air dried, screened with 

machine vision to remove pods showing excessive browning, and packaged in 300 g 

consumer units. At several time points during the washing process, samples of both sugar 

snaps before and after washing (after 0, 18, 54, 96, and 188 minutes) and of the wash water 

(after 0, 10, 18, 30, 54, 96, 120, 188 minutes) were taken. Also, samples of the tap water were 

taken at the point of entrance in the washing bath. Temperature, pH, and conductivity (all 

with HQ40d meter, Hach Lange, Belgium) of the wash water were measured at the packaging 
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company. The residence time of the sugar snaps in the washing bath was measured (n=12) by 

labeling individual sugar snaps with fluorescent tape and timing the period from entrance till 

exit from the washing bath. The samples were transported under refrigerated conditions to the 

lab for further analysis. Alkalinity, turbidity, chemical oxygen demand (COD) of the wash 

water were determined. Water samples were also analyzed for aerobic psychrotrophic plate 

count (APC), yeasts and molds (Y&M), and lactic acid bacteria (LAB). Sugar snaps, collected 

before and after washing, were analyzed for moisture content and water activity (aw). Samples 

of the sugar snaps (250 g) were stored in plastic bags for 22 days at 5 ± 1 °C under normal 

atmospheric conditions and periodically sampled (after 0, 6, 10, 15, and 22 days) for APC, 

Y&M, and LAB and judged for onset of visual microbial spoilage (i.e. fungal rot, bacterial 

slime formation). 

2.3.Evaluation of water sanitizers to improve shelf-life of sugar snaps and maintain wash 

water quality 

Sodium hypochlorite (28.4 g/L NaOCl, La Croix, Belgium), acetic acid (Sigma-Aldrich, 

Belgium), Purac FFC 80® (80% L(+) lactic acid, Purac, The Netherlands), Natraphase-

ABAV® (fine powder containing natural acids, Natural Biotechnology, Belgium) or 

Natraphase-FVS® (blend of EU and FDA food approved organic acids and vitamins, Natural 

Biotechnology, Belgium) were used as water disinfectants. The experimental disinfectant 

concentration - contact time settings are shown in Table 1. For Purac FFC 80, the added 

concentration is expressed as active compound, i.e. L(+) lactic acid. For chlorine, the pH was 

adjusted to 6.5 using HCl (1 M). Each experiment (i.e. disinfectant; concentration; contact 

time) was executed on three different batches in order to incorporate possible influence of 

variation in microbiology and physical and physiological differences among sugar snaps in 

different batches. 
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Portions of 250 g of sugar snaps were washed by mechanical agitation in 4 L of tap water (5 ± 

1 °C) with added water disinfectant. After washing, water samples were immediately 

quenched with Na2S2O3 (0.1 M) for quenching sodium hypochlorite, or phosphate buffer (pH 

7.5) for Purac FCC 80, acetic acid, ABAV and FVS. Microbial analyses (APC, Y&M, LAB) 

were performed on the water samples. The sugar snaps were rinsed (0.1 L/kg.s for 10 s) with 

tap water. At the highest exposure conditions in the experiment (i.e. highest contact time and 

disinfectant concentration), samples of washed sugar snaps were either rinsed or not rinsed to 

observe the effect of residual disinfectant on discoloration, off-odors, damage and texture 

loss. ABAV samples were never rinsed and FVS samples were always rinsed because these 

patented formulations were recommended to be used respectively with or without a final 

rinsing step by the manufacturers. All samples were dried with sterile absorbent paper, and 

subsequently, samples were screened for discoloration, and sugar snaps showing browning 

were discarded. The samples were stored in plastic bags at 5 ± 1 °C for 22 days under normal 

atmospheric conditions and periodically sampled (after 0, 6, 10, 15, and 22 days) for 

microbial analyses (APC, Y&M, LAB), and at the same time monitored for the presence of 

visual microbial decay, discoloration, off-odors, damage and texture loss due to the 

decontamination treatments.  

2.4.Physicochemical parameters 

Alkalinity was determined with acid titration, turbidity with a turbidimeter (HI98703; 

HANNA Instruments; Belgium), chemical oxygen demand (COD) according to the small-

scale sealed-tube method (LCI 400; Hach Lange; Belgium), absorbance at UV 254 nm with a 

UV-Visible spectrophotometer (UV1601, Shimadzu, Belgium) and quartz cuvettes with a 1-

cm path length (Hellma, Belgium) after filtration through a 0.45 µm polytetrafluorethylene 
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filter (Macherey-Nagel, Belgium). aw of the sugar snaps was measured with a dew point water 

activity meter (AquaLab Series 4:4TE, Decagon Devices, The Netherlands). Moisture content 

of the sugar snaps was determined through homogenization of 5 g of sample (T18 Basic 

Ultra-Turrax, IKA, Germany) and drying in an air circulation oven of 105 °C for 3 hours. 

Free chlorine was measured with the N,N-diethyl-p-phenylenediamine (DPD) colorimetric 

method (Eaton et al., 2005). 

2.5.Microbial analyses 

The sugar snaps samples were prepared by weighing 25 g of sugar snaps in a sterile 

stomacher bag with full-surface filter (0.5 mm pore size) (VWR, Belgium) which was 

homogenized in 225 mL peptone water (Oxoid, Belgium) for 1 min. Sugar snaps were 

analyzed for APC, Y&M, and LAB. APC was enumerated with plate count agar (Oxoid, 

Belgium) using the pouring plate method (incubation at 22 °C, 5 days). Y&M were 

enumerated with Rose Bengal Chloramphenicol agar (Oxoid, Belgium) containing 150 mg/L 

chloramphenicol and using the spreading plate method (incubation at 22 °C, 5 days). 

Membrane filtration was used to lower the detection limit of Y&M to 1 log CFU/g. LAB were 

enumerated with MRS (De Man, Rogosa, Sharpe) agar (Oxoid, Belgium), containing 1.4 g/L 

sorbic acid and with a final pH of 5.7, adjusted with NaOH (1 mole/L), using the pouring 

plate method with an additional cover layer of agar (incubation at 22 °C, 5 days). The water 

samples were analyzed for the same microorganisms, using the same enumeration methods. In 

addition, membrane filtration of 10 or 100 mL water was used to lower the detection limit for 

microbial enumeration to respectively 1 or 0 log CFU/100 mL. 

2.6.Statistics 
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Data analysis was performed with SPSS statistics 21. Influence of disinfectant type, 

concentration and contact time was assessed with one-way ANOVA, or Brown-Forsythe 

when equal variance could not be assumed. Group comparison was done with post-hoc tests 

(Tukey or Games-Howell) when all relations among groups were of interest. However, when 

only certain relations were of interest, i.e. a significant reduction of the wash water 

contamination, or a significantly lower contamination on the sugar snaps compared to water 

washed or untreated sugar snaps, simple contrast analysis was performed. A level of 

significance p ≤ 0.05 was chosen for all statistical analyses. 

3. RESULTS 

3.1.Evaluation of the washing process in the packaging company 

The average residence time of the sugar snaps in the washing bath was 26 ± 15 s. The 

microbial contamination in the wash water increased till about 25 min of exploitation after 

which the wash water contamination remained relatively stable (Figure 1). For APC and 

Y&M, the microbial contamination of the municipal water used in the washing bath 

immediately at the tap was significantly lower than the water samples taken in the washing 

bath immediately before start of the washing process, indicating presence of some microbial 

contamination on the washing equipment prior to start of operation. The microbial load on the 

sugar snaps before washing (3.0 ± 0.8, 2.7 ± 0.4, 2.3 ± 0.5 log CFU/g for APC, Y&M, and 

LAB respectively) was not significantly different from that on the washed sugar snaps (3.5 ± 

0.4, 2.6 ± 0.4, 2.2 ± 0.8 log CFU/g for APC, Y&M, and LAB respectively). The microbial 

contamination on the washed sugar snaps did not change significantly in function of 

exploitation time. The COD and the turbidity of the wash water were significantly correlated 

(spearman’s rho = 0.668; p = 0.005). Both became relatively stable from about an hour of 

exploitation until the end of operation: COD of 30 ± 5 mg O2/L and turbidity of 5.2 ± 1.1 
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NTU (Figure 2). The temperature was 7.7 ± 0.7 °C, the pH 8.0 ± 0.1, the conductivity 425 ± 4 

µS/cm, and the alkalinity 3.05 ± 0.02 mmole/L bicarbonate. All these parameters did not 

significantly change in function of processing time. The washing process increased the water 

content of the sugar snaps (from 81.6 ± 3.5 % to 86.0 ± 1.8 %, p = 0.304), though not 

significantly. Also, the aw increased significantly (from 0.986 ± 0.001 to 0.990 ± 0.001, p = 

0.004). 

3.2.Microbial and visual quality of untreated sugar snaps at reception and during storage 

The variation of APC and LAB among different batches of sugar snaps at reception and 

during storage was more pronounced than for the Y&M contamination (Figure 3). The onset 

of visual microbial decay was not directly related to the overall microbial contamination 

degree of the sugar snaps. As the LAB were below or close to the detection limit (1 log 

CFU/g) in some batches, it was hard to make statistical claims concerning disinfection of 

LAB and therefore no such conclusions were made. The initial seed size, and to lesser degree 

the integrity of the calyx end, seemed to have impact on the onset of visual microbial decay 

(Table 2). Violation of calyx end integrity became most apparent through brown discoloration 

and loss of firmness. The visual microbial decay manifested itself in the pod tissue towards 

the calyx end, and on major mechanical wounds. Except for batch 1 where all samples and 

most individual sugar snaps within samples showed signs of microbial decay, the onset of 

microbial decay in the other batches was mostly only visual on 1 sugar snap within a decaying 

sample (comprising ca. 20 - 50 remaining sugar snaps dependent on the storage time), which 

at a later date could become visible on one or more other sugar snaps. 

3.3.Evaluation of water sanitizers to improve shelf-life of sugar snaps  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
  

 

12 

 

Certain of the tested disinfectant settings caused damage to the sugar snaps, i.e. brown 

discoloration and formation of irregularities on the pod surface, more specifically, pit 

formation. In addition, acetic acid caused off-odors (Table 1). The data of the settings that 

caused damage to the product were not further incorporated in the shelf-life analyses. A water 

wash did significantly lower the concentration of Y&M (0.6 ± 0.4 log reduction; p = 0.003) 

on the sugar snaps, yet not of APC (0.5 ± 0.7 log reduction; p = 0.059) (Table 3). However, it 

is important to not blindly accept the statistical analysis. Reductions of 0.5 log compared to 

the untreated samples are very low in microbiological terms, both from the point of food 

spoilage (no considerable impact on the regrowth) and of food safety (the human dose-

response and the associated increase in risk) (FDA, 2001). Duration of washing had no 

influence on reduction efficiency of any of the washing treatments, including a water wash, 

and these values were pooled to increase sample sizes for statistical analysis. Lactic acid in 

the range 0.8 to 1.6 % (1.4 ± 0.5 log reduction), ABAV 0.5 % (1.6 ± 0.2 log reduction), and 

free chlorine 200 mg/L (1.4 ± 0.5 log reduction) caused a significantly higher reduction of 

APC than a water wash (Table 3). In the studied concentration ranges, there was no relation 

between concentration and decontamination efficiency of APC for chlorine (p = 0.648) and 

FVS (p = 0.759) and some, yet no significant relation for ABAV (p = 0.069) and lactic acid (p 

= 0.057). None of the decontamination treatments removed Y&M significantly more effective 

from the sugar snaps than a water wash. Free chlorine (range 20 to 200 mg/L) had the highest 

reduction of Y&M (on average 1.0 ± 0.7 log reduction).  

 

None of the treatments maintained the APC contamination lower than the untreated and water 

washed samples for the whole storage duration (Table 3). Treatment with lactic acid 0.8% 

resulted in a lower APC contamination on the sugar snaps than on the untreated or water 

washed samples for 10 days. Chlorine 200 mg/L was the only treatment able to maintain the 
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Y&M load lower than the untreated samples throughout the entire storage duration. For the 

other treatments, any significance in microbial reduction on the sugar snaps was lost in less 

than 10 days of storage. 

 

Visual microbial decay occurred more or equally rapid on untreated than treated (including 

water washed) sugar snap samples (Table 4). Disinfection concentration had no effect on 

delaying the occurrence of visual microbial decay. In batch 1 and 2, the samples which 

showed microbial decay had a more rapid growth of APC than the other samples, and overall 

high counts were reached during storage (Figure 4). Batch 3 showed similar visual microbial 

decay as batches 1 and 2, but a relatively high proportion of batch 3 were Y&M, and no 

differences in counts between decayed and other samples were observed for Y&M or APC. 

Batch 4 also had a high relative abundance of Y&M, yet none of the samples of batch 4 

showed any visual microbial decay during storage. The visual decay manifested itself in the 

same way as with the untreated samples. There was no significant difference in disinfection 

efficiency of the disinfectants between the different treated batches, despite the differences in 

initial microbial load as well as microbial growth during storage (Figure 4).  

3.4.Evaluation of water sanitizers to maintain the wash water quality 

Washing sugar snaps for up to 3 min had only minimal influence on the physicochemical 

water quality: turbidity increased from 0.41 ± 0.05 to 1.16 ± 0.71 NTU and absorbance at UV 

254 nm (0.45 µm filtered) from 0.020 ± 0.003 to 0.047 ± 0.015. The pH value of the washing 

solutions did not change significantly after 3 min washing, the free chlorine concentration 

diminished 1.46 ± 0.08 mg/L when adding 20 mg/L free chlorine and no significant changes 

were observed when washing with 200 mg/L free chlorine for 3 min. The initial microbial 

load of the used tap water was 3.6 ± 1.0 log CFU/100 mL APC and 0.5 ± 0.6 log CFU/100 
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mL Y&M. The degree of microbial contamination transferred from the sugar snaps to the 

water during washing in water was independent of both washing time and experimental batch. 

 

The washing time had no significant influence on the water disinfectant efficiency to lower 

the wash water contamination in any of the washing setups, so these values were pooled to 

increase sample sizes for statistical analysis. On the other hand, the disinfectant concentration 

had a significant influence on the water disinfectant efficiency of APC and Y&M for ABAV 

and FVS, although for chlorine (20 to 200 mg/L) and lactic acid (0.32 – 1.6 %) this was not 

the case (Figure 5). The APC wash water contamination (5.2 ± 0.6 log CFU/100 mL) was 

significantly reduced by chlorine 20 to 200 mg/L (to 1.4 ± 0.6 log CFU/100 mL), ABAV 0.5 

to 1.5 % (to 2.7 ± 0.8 log CFU/100 mL), FVS 0.5 % (to 2.7 ± 0.7 log CFU/100 mL) and lactic 

acid 0.8 to 1.6% (to 3.4 ± 0.8 log CFU/100 mL), whereas the Y&M wash water contamination 

(3.4 ± 0.6 log CFU/100 mL) was only reduced significantly by chlorine 20 to 200 mg/L (to 

1.4 ± 0.5 log CFU/100 mL). Y&M were more resistant to water disinfection with organic 

acids than APC. For chlorine, both Y&M and APC were reduced to similar numbers and one 

could argue that the remaining microorganisms were mostly Y&M.  

 

Lactic acid in the range 0.32 to 1.6% reduced APC in the water and on the sugar snaps with 

on average 1.3 ± 0.6 and 1.3 ± 0.5 log respectively and Y&M with on average 0.1 ± 0.4 and 

0.6 ± 0.4 respectively. For the commercial sanitizers based on organic acids, ABAV and FVS, 

the same pattern was observed, i.e. no significant difference between disinfection efficiency 

of sugar snaps and water disinfection efficiency, which contrasts the much better performance 

of free chlorine to inactivate microorganisms in the suspended state (Wilcoxon signed rank 

test; p > 0.05 for lactic acid, FVS, and ABAV, p < 10E-5 for chlorine). 

4. DISCUSSION 
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Visual microbial spoilage was the limiting factor of shelf-life. Nonetheless, APC and Y&M 

numbers were ineffective to indicate this visual microbial spoilage, as a large variation in 

microbial counts of the sugar snaps was found. The heterogeneity among microbial 

contamination of individual sugar snaps, and the scarcity of sugar snaps that actually show 

signs of microbial spoilage makes it unlikely to pinpoint excessive microbial growth through 

sampling. Also, APC and Y&M generally do not provide information about individual species 

and the growth of specific spoilage microorganisms might be masked by these broad-

spectrum microbial analyses (Gram et al., 2002). Nonetheless, identifying and measuring the 

specific spoilage microorganisms would not solve the problem of variation in microbial 

counts within a batch as observed in this study. Although some studies observed that the level 

of total microbial counts or specific spoilage microorganisms in fresh produce were not 

related to the product quality and shelf-life (Allende et al., 2008; Bennik et al., 1998; Gimenez 

et al., 2003; Ragaert et al., 2007; Zagory, 1999), others have shown a good correlation 

between sensorial shelf-life and microbial numbers, such as Chen et al. (2010) (correlation 

with aerobic mesophilic and psychrotrophic bacteria and yeasts and molds on fresh-cut 

asparagus lettuce ) and Jacxsens et al. (2003) (correlation with yeasts and lactic acid bacteria 

on mixed bell peppers and grated celeriac). The type of microbial spoilage and sensorial 

quality deterioration depends on the type of fresh produce (Jacxsens et al., 2003). It is 

plausible that increased understanding of the specific spoilage microorganisms, spoilage 

mechanisms, and produced metabolites in a certain type of fresh produce, will enable a better 

prediction of shelf-life through microbial measurements, not considering the microbial 

variability issues observed in this study. 

 

Characteristics explaining physical damage and the physiological status of the sugar snaps, 

i.e. the maturity of the sugar snaps and the integrity of the pod at the calyx end, were more 
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predictive towards the visual shelf-life of the sugar snaps. This illustrates that harvesting at 

the right stage of maturity, avoiding damage during harvesting and more thorough visual 

selection before processing could lead to an end product with longer shelf-life. Fungal 

spoilage usually originates from latent infections established in the field or wound infections 

during harvesting and handling (Terry and Joyce, 2004). Pseudomonas spp. and Erwinia spp. 

that colonize plant surfaces adhere preferentially in the natural depression of stomata or in the 

intercellular junction, or cracks or crevices formed through damage, after which diverse 

biofilms can arise, composed of gram-negative and gram-positive bacteria, yeasts and 

filamentous fungi (Carmichael et al., 1999). The weakening natural defense mechanisms of 

overmature or mechanically damaged sugar snaps and the loss of structural integrity at the 

calyx ends, potentially leading to increased solute leakage, improves the growth conditions of 

phytopathogens (Elghaouth et al., 1992; Nunes et al., 2010). Regardless the observed 

microbial related issues of overmature sugar snaps, sugar snaps should always be harvested 

before physiological maturity is achieved. Otherwise, excessive sugar to starch conversion 

results in loss of sweetness and crispness with advancing maturity, becoming tougher and 

fibrous (Basterrechea and Hicks, 1991; Sams, 1999).  

 

Chlorine was confirmed to be an efficient, fast acting water disinfectant against vegetative 

bacteria as observed in previous studies (Lee et al., 2010; Luo et al., 2011; Van Haute et al., 

2013). Chlorine also effectively removed yeasts and molds from the wash water, but did not 

significantly enhance the Y&M reduction on the sugar snaps compared to a water wash. 

Pereira et al. (2013) reported fungi to be more resistant to chlorination in drinking water than 

bacteria and viruses, but less resistant than Cryptosporidium oocysts. Beuchat et al. (1998) 

suggested a large abundance of chlorine resistant cell types among fungi. Contrary to its 

efficiency to remove suspended, vegetative microorganisms, chlorine is much less efficient as 
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fresh produce decontaminant, a behavior shared among the chemical water disinfectants 

chlorine, chlorine dioxide, and ozone and observed in a myriad of studies. Decontamination 

processes are compromised by presence of microorganisms in biofilm, attachment to and 

internalization through surface wounds and stomata, internalization through the plant roots 

and subsequent migration throughout the plant, and increasing surface roughness of the 

produce at microscopic level (Gomez-Lopez et al., 2008; Huang et al., 2006; Jahid and Ha, 

2012; Luo et al., 2011; Takeuchi and Frank, 2001; Wang et al., 2009). Although gaseous 

chlorine, chlorine dioxide, hydrogen peroxide and ozone have a higher diffusion capacity than 

when dissolved in water and have a higher potential for decontaminating injured and other 

hard to reach produce surfaces, gaseous disinfectants do not solve the problems of microbial 

internalization in fresh produce (Gomez-Lopez et al., 2008). Han et al. (2001) observed an 

increased reduction of spot inoculated Listeria monocytogenes of 3 log reduction when 

applying chlorine dioxide as gas treatment (3 mg/L, 10 min, 20°C)  compared to an aqueous 

chlorine dioxide treatment (3 mg/L, 10 min, 20°C) of both uninjured and injured green 

peppers. However, Hadjok et al. (2008), who used vacuum infiltration in order to achieve 

internalization of inoculated Salmonella Montevideo in fresh-cut iceberg lettuce, observed 

that gas exposure of the produce to 1.5% H2O2 at 50°C resulted in 2 log reduction on the 

lettuce, whereas only 0.5 log of the internalized Salmonella Montevideo were inactivated.  

 

The behavior of weak organic acids is fundamentally different from chemical oxidants such as 

chlorine as weak organic acids are not compromised as severely when inactivation of 

microorganisms is needed in the presence of organics in the water or food matrix, or 

exopolymeric substances in biofilms. Where chlorine is decomposed through reaction with 

organic matter, the loss of the ‘active substance’ of weak organic acids is synonymous with 

deprotonation, and buffer capacity in the vicinity of the produce surface, as well as alkalinity 
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of the water (both inorganic and organic such as from anions of organic acids with pKa ≥ 4) 

could theoretically pose a disinfection barrier (Hemond, 1990). However, the alkalinity did 

not change significantly during the 3 hour washing trials in the packaging company. Also, 

during washing of fresh-cut radicchio, sugar loaf, and endive, a process which generates a 

higher converged COD (295 ± 8 mg O2/L), the alkalinity was stable throughout the 135 min 

washing process at on average 6.38 ± 0.12 mmole/L (own data not published). Unless 

considerable amounts of buffering substances are introduced during washing, efficiency of 

organic acids will not be severely influenced by the water matrix during produce washing 

operations. However, weak organic acids in general are inefficient water disinfectants, and the 

results in this study show that, given the contact times used, the efficacy to inactivate 

microorganisms in suspended state is not better than the reduction of microorganisms on 

sugar snaps surfaces. Virto et al. (2006) modeled the inactivation of Listeria monocytogenes 

and Escherichia coli in function of concentration of citric or lactic acid, temperature and 

contact time. To achieve a 3 log reduction in sterile distilled water at 5°C and with 1.6 % 

lactic acid (the most severe lactic acid settings applied in this study) would take 25 min and 

35 min of contact time for Escherichia coli and Listeria monocytogenes respectively. In this 

study, the short contact times applied (range 30 to 180 s), in combination with the 

experimental variability, masked the water disinfection kinetics of lactic acid. For comparison 

of lactic acid and free chlorine as water disinfectants, according to Chick-Watson kinetics, it 

would take 10 s for 1 mg/L free chlorine at pH 6.5 in oxidant demand free buffer to reduce 

Escherichia coli O157 by 3 log (Van Haute et al., 2013). Lactic acid, FVS, and ABAV failed 

at effectively reducing Y&M, both on the produce and in the wash water. The resistance of 

spoilage fungi to organic acids is related to the membrane ATPase activity and pH 

homeostase mechanisms such as acid anion efflux pumps (Brul and Coote, 1999; Smits and 

Brul, 2005).  
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Within the studied parameter ranges, contact time had little influence on the decontamination 

effectiveness of the sugar snaps decontamination treatments. The same was observed for 

concentration, except for ABAV and lactic acid which showed increased (yet not significant) 

reduction of APC with increased concentration. The decontamination behavior in function of 

time and concentration and observed in numerous studies can be described as following: the 

microbial load can initially be reduced quite effectively with limited exposure (concentration 

x contact time), after which increased exposure is less successful in achieving further 

microbial reduction (Akbas and Olmez, 2007b; Ayhan et al., 1998; Beuchat et al., 1998; Chen 

and Zhu, 2011; Mahmoud et al., 2008; Olmez and Akbas, 2009). This again can be explained 

by the state/location of the microorganisms on fresh produce, comprising of microorganisms 

that are easily, hard, or virtually impossible to inactivate with water disinfectants. Easily 

removable microorganisms that are vulnerable against the respective disinfectant require 

relatively little exposure, whereas those which reside in thick biofilms and stomata, require a 

much higher exposure. The severity of the exposure might be limited by produce damage or 

engineering issues such as long duration of produce washing steps, or might be virtually futile 

in the case of internalized microorganisms. The lack of influence of concentration on 

decontamination efficiency observed in this study can be explained by i) working in a 

concentration range in which all concentrations inactivated the easily reachable 

microorganisms, ii) the lack of disinfection efficiency of a certain disinfectant to remove hard 

to reach microorganisms, iii) the masking of the possible influence of concentration on 

decontamination efficiency of difficult to remove microorganisms due to the high variability 

in microbial counts, iv) the presence of recalcitrant internalized microorganisms. The lack of 

influence of contact time on decontamination efficiency could be explained by i) working in a 

too small range of contact times to observe differences, ii) decontamination kinetics of 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
  

 

20 

 

disinfectants (suppose that contact times > 30 s would result in no further significant 

inactivation), or iii) interference of high variability in microbial counts. Some studies (Akbas 

and Olmez, 2007b; Ayhan et al., 1998; Beuchat et al., 1998; Olmez and Akbas, 2009) show a 

more severe limitation of further fresh produce decontamination (and as such less influence of 

concentration and contact time beyond the initial effective decontamination stage) than others 

(Chen and Zhu, 2011; Mahmoud et al., 2008) in which further increase in exposure resulted in 

a more successful further microbial reduction. Different inactivation behavior can be due to 

several causes: i) fresh produce type and whole VS fresh-cut produce, ii) inoculation method 

or naturally present microflora, iii) the microorganism type, iv) (related to i, ii, and iii) the 

relative abundance of easily reachable, hard to reach, and infiltrated microorganisms, v) 

characteristics of the disinfectant (inherent disinfection potential and disinfection kinetics, 

liquid or gas form), and vi) the applied experimental conditions and execution such as the 

created turbulence during the washing process. 

 

Except for treatment with lactic acid 0.8 % or chlorine 200 mg/L, gained reductions of the 

other treatments compared to the untreated sugar snaps were lost in less than 10 days of 

storage. Microbial regrowth can potentially occur quickly after decontamination due to 

reduction of competition (Delaquis et al., 1999; Gomez-Lopez et al., 2008; Ragaert et al., 

2007). In this study, free chlorine, lactic acid, and ABAV were more effective than a water 

wash for reduction of APC but not of Y&M on the sugar snaps. Comparison of organic acids 

and chlorine as fresh produce decontaminants to reduce spoilage microorganisms has also 

been studied on rocket leaves (Martinez-Sanchez et al., 2006), fresh-cut iceberg lettuce 

(Akbas and Olmez, 2007a; Allende et al., 2008), fresh-cut escarole (Allende et al., 2008) and 

fresh-cut cilantro (Allende et al., 2009). Based on those studies, there is no clear, discernible 

pattern as to whether Y&M are less efficiently removed from fresh produce than mesophilic 
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or psychrotrophic counts, whether lactic acid or citric acid are more/less efficient than 

chlorine to remove fungal or bacterial microorganisms from fresh produce, and whether these 

disinfectants improve the shelf-life of the produce.  

 

The consequences of slow water disinfection kinetics by organic acids, as confirmed in this 

study, are that organic acids cannot be used to control cross-contamination, which Lopez-

Galvez et al. (2009) demonstrated for Escherichia coli transfer from inoculated to non-

inoculated fresh-cut iceberg lettuce during washing with 2 % Purac or 0.5 % Citrox®. 

Therefore, it seems organic acids are not suitable for washing applications of fresh produce, 

although there might be potential for their use in decontamination applications through 

spraying or electrostatic spraying on fresh produce (Ganesh et al., 2010, 2012), as such 

bypassing the low water disinfection efficiency by using a method without water immersion. 

This especially has potential when applied as a warm/hot spray, as research on Escherichia 

coli and Listeria monocytogenes suspended in water (4 °C VS 20 °C VS 40 °C) as well as 

Escherichia coli O157:H7 inoculated on baby spinach (22 °C VS 40 °C) has shown that the 

disinfection efficiency of lactic acid is significantly enhanced by increased temperature 

(Huang and Chen, 2011; Virto et al., 2006).  

 

Washing of whole produce such as sugar snaps, introduces exudates in the wash water (most 

probably from wounded surfaces) to a much lesser extent than washing of fresh-cut produce. 

As such, the transfer of organic materials depends in greater part on foreign organics and 

particles present on the sugar snaps. The converged COD values (30 ± 5 mg O2/L) in this 

study were low compared to the converged COD measured in two fresh-cut leafy vegetable 

companies by Van Haute et al. (2013), COD 465 ± 2 and 1405 ± 57 mg O2/L. Therefore, 

considering the high microbial build-up during washing, the inability of the tested water 
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sanitizers to prolong the shelf-life, the absence of detrimental effects of chlorine on the 

sensorial quality of the sugar snaps, the high performance of free chlorine as a water 

disinfectant, and the low physicochemical load of the sugar snaps wash water which would 

minimize the disinfection by-products generation, maintaining a free chlorine residual seems 

to be a suitable strategy to avoid cross-contamination of vegetative bacteria and fungi in the 

washing process of sugar snaps.  
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FIGURE CAPTIONS 

Figure 1. Microbial contamination in the washing bath during the washing of sugar snaps 

(APC (♦), Y&M (■), LAB (●)). The data points at t = -25 min show the microbial quality of 

the used tap water. Error bars denote standard deviation (n=3). 

Figure 2. COD (♦) and turbidity (■) in the washing bath during sugar snaps washing. The data  

points at t = -25 min show the COD/turbidity of the used tap water. Error bars denote standard 

deviation (n=3). 

Figure 3. Microbial load of the untreated sugar snaps in function of experimental batch and 

storage time. Numbers in the graphs indicate the batch on which visual microbial decay was 

observed at that storage time. Error bars denote standard deviation (n=3). 

Figure 4. Microbial load in function of storage time for both samples that showed visual 

microbial decay during storage (APC (♦), Y&M (■)) and those that did not (APC (◊), Y&M 

(□)). Batches consisted of 36 to 48 samples, error bars denote standard deviation. 

Figure 5. Microbial wash water contamination during sugar snaps decontamination 

experiments. Error bars denote standard deviation (n=9). 
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Fig. 2  
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Fig. 3  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
  

 

35 

 

 

Fig. 4  
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Fig. 5  
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Table 1. The experimental concentration-time settings used in the decontamination 

experiments (n=3). 

 

Disinfectant Used settings Settings that did not impact 

the sensorial quality 

Rinsing 

Chlorine 20,50,125,200 mg/L 

30,60,180 s 

pH 6.5 (HCl) 

all were usable not necessary, no impact 

on product 

Acetic acid 0.8,1.2,1.6 % 

30,60 s 

all settings caused defects, 

also generation of noxious 

vapors from the washing 

bath 

rinsing removed off-

odors but not the other 

issues 

Lactic acid 0.32,0.8,1.2,1.6 % 

30,60,180 s 

0.32 % (30-180 s) 

0.8 % (30-60 s) 

1.2-1.6 % (30 s) 

necessary 

ABAV 0.1,0.5,1.5 % 

30, 60, 180 s 

0.1 % (30-180 s) 

0.5 % (30 s) 

were never rinsed
a
 

FVS 0.04,0.1,0.5 % 

30, 60, 180 s 

0.04-0.1 % (30-180 s) 

0.5 % (30 s)  

were always rinsed
a
 

Water 30,60,180 s   

a
 The recommendations of the manufacturer were followed. 
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Table 2. Comparison of visual characteristics of different batches untreated sugar snaps (n=3). 

 

Batch 

Maturity 

(seed size)  

Damage to 

calyx end 

Other mechanical 

damage 

Visual microbial decay (days 

storage)  

0 I-M
a
 +

b
 ++ /

c
 

1 OM +++ + 6 (3/3)
d 

2 M + ++ 10 (1/3) 

3 M ++ ++ 15 (1/3), 22 (2/3) 

4 I + +++ / 

a
I : immature, M : mature, OM : overmature, 

b
Number of ‘+’ expresses relative severity of characteristic, 

c
No 

visual microbial decay observed in 22 days of storage, 
d
fraction of samples that showed decay. 
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Table 3. Microbial log reduction on sugar snaps during storage. 

 

  

Storage time (day) 

    0 6 10 15 22 

APC Untreated (n=12) 0.0±0.2  0.0±0.3  0.0±0.5  0.0±0.5  0.0±0.8  

 
Water (n=12) 0.5±0.7 

 
-0.4±0.7  0.3±0.5  0.0±0.8  0.5±0.9  

 

 

 

 

 

 

 

 

 

 

ABAV 0.1 % (n=9) 0.6±0.8  -0.2±1.0  0.6±0.7  -0.2±1.0  -0.3±1.2  

ABAV 0.5 % (n=3) 1.6±0.1 
ABa

 0.4±0.2  1.0±0.9  0.4±0.3  2.0±0.6 
AB

 

Chlorine 20 mg/L (n=9) 1.2±0.5 
A
 0.4±0.8  1.0±0.4 

A
 1.0±0.4 

A
 0.3±0.9  

Chlorine 50 mg/L (n=9) 1.1±0.6 
A
 0.0±0.5  0.4±0.8  0.1±1.0  0.1±1.0  

Chlorine 125 mg/L (n=9) 1.1±0.3 
A
 0.0±0.2  0.4±1.1  0.5±0.2  1.1±0.8  

Chlorine 200 mg/L (n=9) 1.4±0.5 
AB

 0.5±0.8 
B
  0.7±0.7 

A
 0.3±0.8  0.7±1.2  

FVS 0.04 % (n=9) 0.7±0.8  -0.2±0.7  0.4±0.5  0.2±0.5  0.1±0.6  

FVS 0.1 % (n=9) 1.0±0.5 
A
 0.4±0.1  -0.1±0.9  0.4±0.6  1.3±1.2  

FVS 0.5 % (n=3) 0.6±0.8 
A 

1.1±0.4 
AB

 0.7±1.3  0.3±1.2  1.7±1.5 
A
  

Lactic acid 0.32 % (n=9) 0.9±0.4 
A
 0.1±0.7  1.0±0.5 

A
 0.6±0.4  0.6±0.5  

 Lactic acid 0.8 % (n=6) 1.2±0.5 
AB

 0.6±1.1 
AB 

1.3±1.1 
AB

 0.1±1.6  0.4±1.1  

 Lactic acid 1.2 % (n=3) 1.5±0.4 
AB

 0.2±0.9  0.5±1.6  0.7±0.5  1.4±0.3 
A
 

 Lactic acid 1.6 % (n=3) 1.8±0.2 
AB

 0.2±0.3  0.1±0.2  1.2±1.2 
AB

 1.1±0.6  

Y&M Untreated 0.0±0.2  0.0±0.3  0.0±0.3  0.0±0.2  0.0±0.5  

 
Water 0.6±0.4 

A 
0.0±0.5  0.2±0.3  0.5±0.3  0.6±0.6 

A 

 ABAV 0.1 % 0.8±0.2 
A
 0.1±0.4  -0.2±0.3  0.4±0.7 

A 
0.2±0.5  

ABAV 0.5 % 0.6±0.4  0.1±0.1  0.1±0.1  0.3±0.1  0.4±0.2  

Chlorine 20 mg/L 1.2±0.7 
A
 0.3±0.5  0.6±0.7 

A
 1.1±0.6 

AB
 0.5±0.6 

A 

Chlorine 50 mg/L 0.8±0.7 
A
 0.2±0.4  0.3±0.5  0.7±0.5 

A
 0.7±0.6 

A 

Chlorine 125 mg/L 0.9±0.2 
A
 0.3±0.3  0.4±0.6  0.7±0.6 

A
 0.9±0.4 

A
 

 Chlorine 200 mg/L 1.0±0.9 
A
 0.7±0.4 

AB
 0.5±0.4 

A 
0.9±0.6 

A
 0.6±0.4 

A 

 FVS 0.04 %  0.8±0.6 
A 

0.0±0.3  -0.4±0.3  0.6±0.1 
A 

0.3±0.2  

 FVS 0.1 % 0.3±0.2  0.0±0.3  0.3±0.3  0.4±0.2  0.2±0.5  

 FVS 0.5 % 0.2±0.3  0.4±0.3  0.2±0.2  0.3±0.2  -0.2±0.3  

 Lactic acid 0.32 % 0.8±0.6 
A 

-0.1±0.4  -0.1±0.3  0.4±0.3  0.0±0.6  

 Lactic acid 0.8 % 0.5±0.5  0.1±0.6  0.0±0.5  0.2±0.5  0.3±0.5  

 Lactic acid 1.2 % 0.7±0.3 
A 

-0.2±0.4  -0.3±0.9  0.3±0.5  0.4±0.2  

 Lactic acid 1.6 % 0.6±0.2  -0.1±0.4  -0.5±0.4  0.1±0.3  0.6±0.4 
A 

a
for APC and Y&M separately, 

A
 denotes a significant microbial reduction compared to the untreated 

samples, 
B
 denotes a significant microbial reduction compared to a water wash. 
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Table 4. Overview of sugar snaps samples that showed visual microbial decay in the different 

batches in function of storage time. 

 

 

Batch 1 

   

Batch 2 

   

Batch 3 

   

Batch 4 

   

 

day 

   

day 

   

day 

   

day 

     6 10 15 22 6 10 15 22 6 10 15 22 6 10 15 22 

Untreated 3/3
a
 

    

1/3 

    

1/3 2/3 

   

0/3 

Water 3/3 

      

0/3 

   

0/3 

   

0/3 

Chlorine 12/12 

     

1/12 

    

0/4 

   

0/8 

Lactic acid 12/12 

      

0/12 

   

2/8 

   

0/4 

ABAV 

   

/
b
 

   

0/9 

  

3/9 7/9 

   

0/9 

FVS 

   

/ 

   

0/9 

  

2/9 6/9 

   

0/9 

a
fraction of samples that showed visual microbial decay, 

b
was not executed in that batch. 
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HIGHLIGHTS 

 Organic acid based sanitizers and chlorine were used to decontaminate sugar snaps 

 Sanitizers failed to extend shelf-life of sugar snaps (visual microbial spoilage) 

 Maturity and damage at calyx end of pods predicted visual microbial spoilage 

 Low physicochemical and high microbial build-up in water during sugar snaps 

washing 

 Chlorine maintained bacterial and fungal wash water quality, organic acids did not 


