Surface acoustic wave technology as a tool for functional characterization of new compounds

Nathalie Bracke, Laurens Deneve and Bart De Spiegeleer*

Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences.
* Corresponding author: bart.despiegeleer@ugent.be (Q. Ref.: 2012-179b)

Principle of SAW biosensors

APPLICATION I

SAW biosensors allow the users to detect label-free binding events in the liquid phase, giving information on affinity (K_D), kinetics (K_{on} and K_{off}), viscoelastic effects and conformational changes. Therefore, one of the interaction partners (ligand) is immobilized on a sensor chip. After analyte interaction, changes in the surface-bound material and configuration result in a modified oscillation of the surface acoustic wave. The phase of the wave is shifted on mass changes. Viscoelastic and conformational characteristics are indicated by a change in amplitude. Both effects can be differentiated and are detected independently for interaction analysis.

OBSERVATIONS

SAW responses are proportional to the molecular weight of the bound analyte, which allows the users to detect label-free binding events in the liquid phase, giving information on affinity (K_D), kinetics (K_{on} and K_{off}), viscoelastic effects and conformational changes. Therefore, one of the interaction partners (ligand) is immobilized on a sensor chip. After analyte interaction, changes in the surface-bound material and configuration result in a modified oscillation of the surface acoustic wave. The phase of the wave is shifted on mass changes. Viscoelastic and conformational characteristics are indicated by a change in amplitude. Both effects can be differentiated and are detected independently for interaction analysis.

APPLICATION II

SAW responses are proportional to the molecular weight of the bound analyte, which allows the users to detect label-free binding events in the liquid phase, giving information on affinity (K_D), kinetics (K_{on} and K_{off}), viscoelastic effects and conformational changes. Therefore, one of the interaction partners (ligand) is immobilized on a sensor chip. After analyte interaction, changes in the surface-bound material and configuration result in a modified oscillation of the surface acoustic wave. The phase of the wave is shifted on mass changes. Viscoelastic and conformational characteristics are indicated by a change in amplitude. Both effects can be differentiated and are detected independently for interaction analysis.

CONCLUSION

** Immobilization of hGHAB and initial binding experiments were successful.** Although the affinity of the hGHAB for somatropin was not reported, the measured K_D value is within the expected affinity for antibodies to their antigens. In future experiments, the affinity of different NOTA-somatropin batches for hGHBP will be evaluated.

Application I: Functional quality control of different chemically-modified somatropin batches. Different batches of chemically-modified somatropin will be evaluated for their binding to the human growth hormone antibody (hGHAB) and later-on the human growth hormone binding protein (hGHBP).

Application II: Functional quality control of small molecules and peptides. SAW responses are proportional to the molecular weight of the bound analyte, which allows the users to detect label-free binding events in the liquid phase, giving information on affinity (K_D), kinetics (K_{on} and K_{off}), viscoelastic effects and conformational changes. Therefore, one of the interaction partners (ligand) is immobilized on a sensor chip. After analyte interaction, changes in the surface-bound material and configuration result in a modified oscillation of the surface acoustic wave. The phase of the wave is shifted on mass changes. Viscoelastic and conformational characteristics are indicated by a change in amplitude. Both effects can be differentiated and are detected independently for interaction analysis.

REFERENCES

CONCLUSION

Immobilization of hGHAB and initial binding experiments were successful. Although the affinity of the hGHAB for somatropin was not reported, the measured K_D value is within the expected affinity for antibodies to their antigens. In future experiments, the affinity of different NOTA-somatropin batches for hGHBP will be evaluated.

Application I: Functional quality control of different chemically-modified somatropin batches. Different batches of chemically-modified somatropin will be evaluated for their binding to the human growth hormone antibody (hGHAB) and later-on the human growth hormone binding protein (hGHBP).

Application II: Functional quality control of small molecules and peptides. SAW responses are proportional to the molecular weight of the bound analyte, which allows the users to detect label-free binding events in the liquid phase, giving information on affinity (K_D), kinetics (K_{on} and K_{off}), viscoelastic effects and conformational changes. Therefore, one of the interaction partners (ligand) is immobilized on a sensor chip. After analyte interaction, changes in the surface-bound material and configuration result in a modified oscillation of the surface acoustic wave. The phase of the wave is shifted on mass changes. Viscoelastic and conformational characteristics are indicated by a change in amplitude. Both effects can be differentiated and are detected independently for interaction analysis.

CONCLUSION

Immobilization of hGHAB and initial binding experiments were successful. Although the affinity of the hGHAB for somatropin was not reported, the measured K_D value is within the expected affinity for antibodies to their antigens. In future experiments, the affinity of different NOTA-somatropin batches for hGHBP will be evaluated.

Application I: Functional quality control of different chemically-modified somatropin batches. Different batches of chemically-modified somatropin will be evaluated for their binding to the human growth hormone antibody (hGHAB) and later-on the human growth hormone binding protein (hGHBP).

Application II: Functional quality control of small molecules and peptides. SAW responses are proportional to the molecular weight of the bound analyte, which allows the users to detect label-free binding events in the liquid phase, giving information on affinity (K_D), kinetics (K_{on} and K_{off}), viscoelastic effects and conformational changes. Therefore, one of the interaction partners (ligand) is immobilized on a sensor chip. After analyte interaction, changes in the surface-bound material and configuration result in a modified oscillation of the surface acoustic wave. The phase of the wave is shifted on mass changes. Viscoelastic and conformational characteristics are indicated by a change in amplitude. Both effects can be differentiated and are detected independently for interaction analysis.

CONCLUSION

Immobilization of hGHAB and initial binding experiments were successful. Although the affinity of the hGHAB for somatropin was not reported, the measured K_D value is within the expected affinity for antibodies to their antigens. In future experiments, the affinity of different NOTA-somatropin batches for hGHBP will be evaluated.

Application I: Functional quality control of different chemically-modified somatropin batches. Different batches of chemically-modified somatropin will be evaluated for their binding to the human growth hormone antibody (hGHAB) and later-on the human growth hormone binding protein (hGHBP).

Application II: Functional quality control of small molecules and peptides. SAW responses are proportional to the molecular weight of the bound analyte, which allows the users to detect label-free binding events in the liquid phase, giving information on affinity (K_D), kinetics (K_{on} and K_{off}), viscoelastic effects and conformational changes. Therefore, one of the interaction partners (ligand) is immobilized on a sensor chip. After analyte interaction, changes in the surface-bound material and configuration result in a modified oscillation of the surface acoustic wave. The phase of the wave is shifted on mass changes. Viscoelastic and conformational characteristics are indicated by a change in amplitude. Both effects can be differentiated and are detected independently for interaction analysis.

CONCLUSION

Immobilization of hGHAB and initial binding experiments were successful. Although the affinity of the hGHAB for somatropin was not reported, the measured K_D value is within the expected affinity for antibodies to their antigens. In future experiments, the affinity of different NOTA-somatropin batches for hGHBP will be evaluated.