Micro X-Ray Fluorescence Computed Tomography and Radiography on Daphnia Magna


Department of Analytical Chemistry, Ghent University, Krijgslaan 281, B-9000 Ghent, Belgium

Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Jozef Plateaustraat 22, B-9000 Ghent, Belgium

Institute of Experimental Physics, University of Debrecen, 4026 Debrecen, Bem tér 18/a, Hungary

Hamburger Synchrotronstrahlungslabor at DESY, Notkestr. 85, D-22603 Hamburg, Germany

Daphnia magna (Fig. 1) belongs to the order Cladocera and are members of a collection of animals that are broadly termed as “water fleas”. These small crustaceans (~1-4 mm) are being used to study the mechanism of intoxication by metals such as Zn and Ni and to develop so-called biotic ligand models (BLM’s). It has been shown that Daphnias respond differently to Zn-exposure when this occurs via the water and/or via the food (e.g. in terms of reproductive behaviour) [1]. In order to gain further insight in this difference of response to various exposure routes, it is important to study the 2D and 3D-elemental distributions, and more specifically of metals, within the organism subjected to various forms of exposure.

Synchrotron radiation (SR) based scanning-XRF and computed X-ray fluorescence tomography (XFCT) offer the possibility of 2D/3D non-destructive elemental imaging with microscopic resolution, which have trace-level detection limits for the metal-ions of interest and require minimal sample preparation in comparison with other elemental analysis and speciation techniques [2]. For the analyses described below a via water exposed (120 µg/L Zn, 1week) and an unexposed Daphnia Magna sample were used, dehydrated through an acetone-water series and dried in hexamethyldisilazene (HMDS) [3]. The samples were fixed on a capillary using a minimum amount of paraffin, and the capillary was mounted on a goniometer-head (see Fig. 2 with the experimental set-up).

The 2-D elemental projection maps were recorded by conventional micro-XRF scanning, and elemental distributions within the cross-section through the egg region were obtained on both samples by XFCT. The tomographic data-sets were reconstructed using a backprojection algorithm from the generated sinograms. The measured elemental maps for a non-exposed sample are shown in Figs. 3(a) and 4(a,b), corresponding to experimental conditions of continuous scanning mode [4] using a step size of 20 µm and exposure time of 0.3s/pixel. The 20 keV monochromatic microbeam was obtained by W/Ni multilayer monochromator coupled with an ellipsoidal single bounce capillary for focussing.

Figure 1: Light microscope image of Daphnia magna. Figure 2: Experimental set-up at beamline L.
Preliminary data analysis shows complementary regions of interest (ROI’s) in various elements such as Zn, Fe, Ca and K as well as an elevated concentration of Zn in the water-exposed sample as compared to the non-exposed sample.

Absorption images of the non–exposed Daphnia sample were taken using a high resolution CCD-camera (0.8 µm/pixel) (see Fig.3b), which gives complementary information on the skeleton and inner structure and allows element-to-tissue correlation.

Figure 3: (a) 2D-element maps (Ca, Fe, Zn and K) and (b) composite radiographic image.

The tomographic reconstruction reveals the inner structure of the investigated Daphnia sample, demonstrating the possibility of localizing Zn-enriched microscopic regions, such as the eggs, shown in Fig.4(b). Further analysis will be performed to quantify these results and to study the organ/tissue-specific enrichment of Zn and other potentially toxic elements through metabolism.

Figure 4: (a) Elemental sinograms and (b) reconstructed distributions of Ca, Fe, Zn, K.

References:

Acknowledgement:
The authors wish to thank Dr. Gerta Fleissner (Universität Frankfurt, Zellbiologie und Neurowissenschaften) Dr. Ralph Pirow (Universität Muenster, Institute of Zoophysiology) and Dr. Christian Laforsch (LMU München, Department of Biology), for their valuable suggestions concerning the HMDS drying method.