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Abstract. A newmethod for segmenting intensity images into smooth
surface segments is presented. The main idea is to divide the image
into flat, planar, convex, concave, and saddle patches that coincide as
well as possible with meaningful object features in the image.
Therefore, we propose an adaptive region growing algorithm based
on low-degree polynomial fitting. The algorithm uses a new adaptive
thresholding technique with the L∞ fitting cost as a segmentation cri-
terion. The polynomial degree and the fitting error are automatically
adapted during the region growing process. The main contribution is
that the algorithm detects outliers and edges, distinguishes between
strong and smooth intensity transitions and finds surface segments
that are bent in a certain way. As a result, the surface segments cor-
responding to meaningful object features and the contours separat-
ing the surface segments coincide with real-image object edges.
Moreover, the curvature-based surface shape information facilitates
many tasks in image analysis, such as object recognition performed
on the polynomial representation. The polynomial representation pro-
vides good image approximation while preserving all the necessary
details of the objects in the reconstructed images. The method out-
performs existing techniques when segmenting images of objects
with diffuse reflecting surfaces. © 2013 SPIE and IS&T [DOI: 10
.1117/1.JEI.22.4.043004]

1 Introduction
Image segmentation is an important primary step in many
computer vision applications, for instance, object recogni-
tion. Ideally, an image segmentation algorithm divides an
image into separate regions, which correspond to different
object features or areas of interest.1 For instance, in a face
image, meaningful object features are the lips, the eyebrows,
etc. Then, an accurate classification of image segments is the
next step to perform object recognition. In this work, seg-
mentation divides gray-scale images into surface segments
(intensity patches) with adaptive region growing based on
low-degree polynomial fitting. The main novelty is that
the algorithm removes outliers, stops at real-image object
edges, distinguishes between strong and smooth intensity
transitions, and considers the segment curvature, such as flat-
ness, convexity, or concavity. The outliers are gray values
differing from their neighbors due to noise or small object

speckles in the image. As a result, the adaptive region grow-
ing finds smooth surface segments of maximal size, such that
image intensities can be approximated sufficiently well by
a low-degree polynomial function (e.g., 0, 1, or 2). The cur-
vatures of these polynomials roughly classify object features
into flat, planar, convex, concave, and saddle patches. This
approach is based on the property that, because of Lambert’s
cosine law,2 when the light comes mainly from one direction,
the intensity surface of an image has the same shape as the
object surface itself. For instance, human skin is such a
diffusely reflecting surface. Then, a face, which resembles
a convex sphere with small concavities, will be seen as a
collection of intensity patches of concave functions and
smaller patches of convex functions.3 This curvature-based
surface shape classification delivers relevant information
to perform image analysis, such as an object recognition
performed on the polynomial representation.

1.1 Related Works
Over the past few decades, the image segmentation has been
studied extensively with a huge number of algorithms being
published in the literature.4–8 The image segmentation
approaches are often divided broadly into three categories:
feature-based,9–16 region-based,17–22 and graph-based.23–25

The feature-based image segmentation collects the main
characteristics of an image by extracting image features,
which are usually based on the color or texture. The feature
samples are handled as vectors. The objective is to group the
extracted feature vectors into well-separated clusters by
using a specific distance metric. Drawbacks of these methods
are the nonpreservation of spatial structure and edge infor-
mation and the possible grouping of pixels from discon-
nected regions of the image with overlapping feature
spaces. In the spatial domain, region-based image segmen-
tation preserves the edge information and the spatial relation-
ship between pixels in an image. The objective is to detect
regions that satisfy predefined criteria in a region-growing,
region-merging or region-splitting process. The graph-based
image segmentation fuses the feature-based and region-
based information. Grouping is based on several important
elements, such as similarity, proximity, and continuation.
Aweighted graph can be constructed, where each vertex cor-
responds to a pixel or region, and the associated weight of
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each edge connecting two adjacent pixels or regions depends
on the likelihood that they belong to the same region. The
weights are often related to color and texture features.
Given the above-mentioned three segmentation categories,
in this study, we consider the spatial-based image segmen-
tation in a region-growing process based on a polynomial
fitting criterion.

The segmentation of intensity images with polynomial fit-
ting is originating from segmented image coding (SIC).26–33

The main idea of SIC is to divide the image into segments
that coincide as well as possible with meaningful parts in the
image. Each region is represented by two codes. The first
(often a chain code) describes the location of contour pixels.
The second represents the best approximation of the region
enclosed by this boundary. For these techniques, the main
purpose was image compression. With respect to SIC, this
paper deals with the segmentation of gray values into image
regions and not with coding techniques. The above-men-
tioned techniques subdivide large regions artificially because
low-degree polynomials cannot represent large regions accu-
rately. However, contours separating artificial regions do not
correspond to real-image object edges. This is detrimental
to our objective of using polynomial surface segments for
image analysis. In this work, due to smart treatment of out-
liers and edges, the surface segments correspond to object
features and the contours separating the surface segments
coincide with real-image object edges. Another difference
is that many of these methods are stated as least squares
or L2 norm34 optimizations. In contrast, we examine the
approach based on the L∞ norm,34 which allows us to easily
make decisions during region growing about adding a new
pixel, discarding an outlier or stopping at an edge. Also, we
propose algorithms with linear time complexity.

In literature, researchers have, mainly, been investigating
surface segmentation in range images.35–38 One popular
approach for surface segmentation is region growing, for
which several segmentation criteria have been proposed.
A distinction is made between segmentation based on normal
vectors,39,40 curvatures,41–45 and fitting polynomials.46–48

Existing techniques using low-degree polynomial fitting
for surface segmentation consider planar patches48 and quad-
ratic patches,49–51 such as circular cylinders52 and ellipsoidal
surfaces.53 These techniques are often not suited to segment
intensity images. This is caused by the different behavior of
range images and intensity images. Range images are often
smooth and represent the real object while gray values in
intensity images are more textured because they represent
reflected light. Therefore, segmenting intensity images with
region growing54–56 requires an adaptive approach, which
can handle the local and global variation of gray values.57,58

1.2 Contributions
In this work, we propose a novel intelligent technique to seg-
ment gray-scale images into smooth surface segments with
adaptive region growing. Therefore, we present a criterion
for region growing which is based on constructive polyno-
mial surface fitting.59,60 Constructive fitting aims to minimize
the L∞ fitting cost. In the past, the L∞ norm was already
used to remove outliers as a first step before L∞ optimiza-
tion.61 Here, we propose an adaptive thresholding of the
L∞ fitting cost as a stopping criterion and to distinguish
outliers and edges from gently rising variation. The adaptive

thresholding allows for a variable polynomial degree and a
variable fitting error, depending on the local image proper-
ties. This work on surface segmentation is a multivariate
extension of our work on the adaptive thresholding for con-
tour segmentation.62 The novelty is that the region growing
investigates the local variation of gray values in a segment to
identify edges and outliers, whereas the global variation of
gray values in a segment is investigated to adapt the degree of
the polynomial surface. The combination of both is possible
because we employ constructive fitting: the global fitting
cost is calculated from local fitting costs. The following list
gives an overview of the properties of our algorithm, which
are essential for robust segmentation of smooth surfaces:

• The algorithm identifies and discards outliers.
• The region growing stops at real-image edges.
• The low-degree surface fitting allows for smooth var-

iations of the image intensities.
• The algorithm classifies segments into flat, planar,

convex, concave, and saddle surfaces.
• The algorithm’s processing speed does not depend on

segment size.
• The region growing stops when the variation of gray

values becomes too large to capture it with a single
low-degree polynomial surface.

We evaluate the proposed segmentation method on
the Berkeley segmentation dataset and benchmark
(BSDS300).63 To measure the difference between two
segmentations, we examine the probabilistic rand index
(PRI).64 In literature, there is an abundance of segmentation
results on the BSDS300. A few recent results can be found in
Refs. 65–68. As we will show, when segmenting images of
objects with diffuse reflecting surfaces, our method outper-
forms existing segmentation techniques, such as normalized
cuts,23 mean shift,12 and power watersheds.25 Furthermore,
we gain additional information of the shape of the objects
in the images with curvature-based shape analysis.

The remainder of this paper is organized as follows.
Section 2 describes the new segmentation algorithm,
which is an adaptive region growing algorithm based on
low-degree polynomial surface fitting. We treat all possible
problems that arise in the segmentation of an image surface
with region growing. Section 3 describes how to classify
segments based on the curvatures of the approximating
polynomial surfaces. Section 4 presents the results of the
proposed segmentation technique.

2 Segmentation with Adaptive Region Growing
This section describes the algorithm to segment a gray-scale
image into smooth surface segments with adaptive region
growing based on low-degree polynomial fitting. We explain
how the region growing is made adaptive to the local image
properties, such that patches are represented as polynomial
surfaces with a variable polynomial degree and a variable
fitting error.

2.1 Constructive Polynomial Surface Fitting
In this work, we find regions of maximal size that satisfy an
L∞ fitting cost criterion, such that image intensities can be
approximated sufficiently well by a low-degree polynomial
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function. Let fðxi; yiÞ represent the image intensities. Let G
be a vector space of fitting functions, for instance, the vector
space of bivariate polynomial functions of degree d:

gðx; yÞ ¼
Xd
k¼0

Xk
l¼0

αl;k−lxlyk−l; (1)

where each polynomial is characterized by n ¼ ðdþ 1Þðdþ
2Þ∕2 coefficients αl;k−l.

The accuracy of fitting gðx; yÞ over the segment S is mea-
sured with the L∞ fitting cost. This fitting cost is defined as

rðS; gÞ ¼ max
ðx;yÞ∈S

jgðx; yÞ − fðx; yÞj: (2)

The best fit is the polynomial function gðx; yÞ in G for
which rðS; gÞ is minimal. We denote this minimal cost as
rðSÞ, i.e,

rðSÞ ¼ min
g∈G

rðS; gÞ: (3)

The L∞ fitting cost over any segment S can be estimated
very efficiently in terms of so-called elemental subsets.59,60

These are subsets of S that contain precisely m points.
Introducing elemental subsets will bring the advantage of
minimizing the time to compute the fittings costs when add-
ing new pixels to large segments during a region growing
process, as explained in the following section. The impor-
tance of an elemental subset lies in the fact that the fitting
cost over an elemental subset can be computed in a straight-
forward manner. Let D ¼ fðx1; y1Þ; : : : ; ðxm; ymÞg be an
elemental subset. Let Ej denote the cofactor (signed
minor) of the element at the intersection of the last column
and the j’th row of the following matrix:59,60

ðADjBDÞ

¼

0
B@

1 x1 y1 x21 x1y1 y21 · · · fðx1; y1Þ
..
. ..

. ..
. ..

. ..
. ..

. . .
. ..

.

1 xm ym x2m xmym y2m · · · fðxm; ymÞ

1
CA:

(4)

Then one can show that the fitting cost over an elemental
subset D can be computed by

rðDÞ ¼ detðADjBDÞ
jE1j þ : : : þ jEmj

¼ jE1fðx1; y1Þ þ : : : þ Emfðxm; ymÞj
jE1j þ : : : þ jEmj

;

(5)

provided the denominator is nonvanishing.59,60 If the denom-
inator is vanishing, rðDÞ is discarded. Furthermore, the
fitting cost over any segment S that contains more than m
points is

rðSÞ ¼ max
D∈U

rðDÞ; (6)

where U is the collection of all elemental subsets D of S for
which jE1j þ : : : þ jEmj > 0. Equation (6) holds when U is
nonempty, which is the case as soon as not all the points of
the segment lie exactly on a common curve, gðx; yÞ ¼ 0.

Figure 2(a) shows an example of the points of an elemen-
tal subset (gray squares) of a segment S (gray and white
squares). In this example, the fitting costs are computed
for polynomial functions of degree d ¼ 2. Consequently,
the number of points in the elemental subset is m ¼ 7.

In principle, to find rðSÞ, we must evaluate rðDÞ over all
possible elemental subsets of S, a collection that grows as
OðjSjmÞ when the segment grows larger. However, we can
obtain a reliable estimate of the fitting cost with far fewer
computations than those required for computing the fitting
cost exactly. The fitting cost of a dataset can be estimated
very reliably from a few of its elemental subsets.59,60

Instead of calculating rðSÞ, we compute the estimate

r̃ðSÞ ¼ max
D∈W̃

rðDÞ; (7)

where W̃ forms a rigid subcollection of M elemental subsets
of S.59,60 To be rigid, it is necessary that each pixel is covered
by at least one elemental subset and that each elemental sub-
set, which has m points, has at least m − 1 points in common
with all of the other sets. In a region-growing process, these
conditions are met automatically. In the experiments, we
achieve reliable estimation of the fitting cost by randomly
selecting a small fixed number (e.g., M ¼ 10) of elemental
subsets D. Decreasing the number of elemental subsets will
decrease the computation time. However, the fitting cost will
be estimated less accurately.

During region growing, the L∞ fitting cost shows direct
response to intensity discontinuities since the L∞ norm looks
at the maximum deviation between pixel values and the fit-
ting polynomial. This is advantageous in region growing
when making decisions about adding a new pixel, discarding
an outlier, or stopping at an edge. For each pixel to be added
in region growing, the fitting cost in Eq. (7) is computed
when fitting a polynomial surface to the pixel and the seg-
ment. The fitting cost is an indicator of whether the pixel
belongs to the segment according to the polynomial. It is
computed without computing the actual best fitting polyno-
mial. The best fit has only to be computed when the segment
is finished. The best L∞ fit is computed in jSj log jSj time and
gives the precise value of the error.69

2.2 Adaptive Region Growing with Elemental
Subsets

Computing the fitting cost with elemental subsets boils down
to a sampling of the image region. Sampling allows us to find
out how each pixel in an image region contributes to the
fitting cost when fitting a polynomial to that region. Fitting
costs can be computed for local regions as well as for
a global region, where the corresponding global fitting cost
is calculated from the corresponding local fitting costs.
Moreover, the local and global fitting costs can be combined
in several ways. For example, in Fig. 1(a), we compute the
local fitting cost when fitting a polynomial to the pixels of
the regions S1 and S2. At the same time, this local fitting cost
is a part of the global fitting cost when fitting a polynomial
to the pixels of the regions S3 and S4. In fact, for the esti-
mated fitting cost, we have r̃ðS4Þ ¼ maxfmaxD∈W̃4

rðDÞ;
maxD∈W̃3

rðDÞ;maxD∈W̃2
rðDÞ;maxD∈W̃1

rðDÞg, where S1 ⊂
S2 ⊂ S3 ⊂ S4.

In this paper, we demonstrate the key idea of combining
local and global fitting costs with a strategy for image

Journal of Electronic Imaging 043004-3 Oct–Dec 2013/Vol. 22(4)

Deboeverie, Veelaert, and Philips: Image segmentation with adaptive region growing. . .



segmentation in a region-growing process with adaptive
thresholding. The proposed region-growing method exam-
ines the thresholding of local fitting costs to decide if
a new pixel is to be added to a segment (to identify edges
and outliers), whereas the thresholding of global fitting
costs controls whether or not the polynomial degree is
adapted. We distinguish two key phases in our region-grow-
ing strategy, which is visualized in the flowchart in Fig. 1(b).
The first phase determines if a new pixel is to be added to
a segment. The second phase controls whether or not the
polynomial degree is adapted. These phases are driven by
the adaptive thresholding of the L∞ fitting cost r̃ðSÞ. This
will become clear when we explain the region-growing
based on the segmentation of the image surface in Fig. 1(c).
Segmenting this image surface covers all the possible

problems we have to deal with in region growing. Five
cases are considered.

2.2.1 Case 1: Start region growing

The region growing starts with a seed pixel and then repeat-
edly adds new pixels to the segment as long as the segmen-
tation criterion is still satisfied on the enlarged segment. Seed
pixels are automatically chosen as local gray value extrema
of the image and where the gradient remains small. This
avoids the selection of seed pixels at an edge since seed pix-
els at an edge offer fewer opportunities to grow. In the experi-
ments, we achieve optimal segmentation results for seed
pixels chosen as gray value extrema in a neighbor size of
3% of the image area (e.g., a 34 × 34 neighborhood for

Start iteration step
of region growing

Select new pixel
Compute fitting

cost
Add pixel? Adapt degree?

Add pixel to the
segment

Adapt polynomial
degree

End iteration step
of region growing

yy

n n

gnidlohserhtlabolGgnidlohserhtlacoL

(a)

(b)

(c)

Fig. 1 Adaptive region growing: (a) Computing the fitting cost with elemental subsets allows discovery of how each pixel in an image region
contributes to the fitting cost when fitting a polynomial. In this example, we compute the local fitting cost when fitting a polynomial to the pixels
of the regions S1 and S2. At the same time, this local fitting cost is a part of the global fitting cost when fitting a polynomial to the pixels of the regions
S3 and S4. (b) Flow chart of one iteration step in the adaptive region growing. Two key phases are distinguished: the first determines if a new pixel is
to be added to a segment, whereas the second phase controls if the polynomial degree is adapted. (c) An example of image intensities which we
segment into smooth surface segments with adaptive region growing and polynomial fitting. Case 1: Seed pixels are chosen as local extrema of the
image. Case 2: The region growing stops at edges. Case 3: The algorithm grows around outliers. Edge pixels and outliers are not added to the
segment because that would cause too fast and too direct increases in the L∞ fitting cost. Case 4: The polynomial degree is adapted when
the variation of gray values is smooth but too large to capture it with the current polynomial degree. Case 5: The segmentation starts with
a new segment when the variation of gray values becomes too large to capture it with a flat, planar, convex, concave, or saddle like surface.
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images of size 240 × 160). For each new seed pixel, we start
with the polynomial degree set equal to zero in Eq. (1). Case
1 in Fig. 1(c) shows an example of such a seed pixel. Pixels
are then added one by one. Pixels to be added are selected
from pixels next to the boundaries of the segment.

2.2.2 Cases 2 and 3: Stop at edge pixels and grow
around outliers

For each pixel pi already added to the segment Si, the region
growing keeps track of the fitting cost when fitting a
low-degree polynomial surface to Si and pi. To this end,
we define

r̃ðSi;piÞ
as the cost of adding pi to Si.

The decision to add a new pixel pk, for which we intro-
duce a local neighborhood Rk, is then based on

Xk ¼ r̃ðSk;pkÞ −
1

jRkj
X
pi∈Rk

r̃ðSi;piÞ ≤ TX; (8)

which measures the local behavior of the fitting costs. A seg-
ment will grow until the local variation of the gray values

changes, giving rise to discontinuities in the fitting costs.
However, to avoid over-reaction to discontinuities due to
noise and small speckles, the increase in fitting cost is com-
pared to the mean of previous fitting costs in the local neigh-
borhood Rk of pk. Figure 2(b) shows an example of pk (black
square) and Rk (gray squares) in Sk (white and gray squares).
The new pixel pk is added to Sk when Xk is lower than
the threshold TX. When Xk exceeds TX, i.e., when adding
pk would increase the fitting cost significantly more than
on average, pk is not added to Sk. Figure 3(a) shows
a one-dimensional (1-D) example of a strong transition in
the variation of data points, which causes a fast and direct
increase in the L∞ fitting costs. This occurs when pk is
an outlier or lies on an edge. If pk is an outlier, the segment
will grow around pk. Cases 2 and 3 in Fig. 1(c) show exam-
ples of such an edge and outlier, respectively.

Thus, the stopping criterion during region growing
depends on the local differences between the fitting costs,
not on their magnitude. The discontinuities (outliers and
edges) are distinguished from gently rising variation.

2.2.3 Case 4: Adapt the polynomial degree

The decision to increase the degree of the polynomial surfa-
ces is based on

(a) (b) (c)

Fig. 2 Elemental subsets, adding pixels and adapting the polynomial degree: (a) An example of the points of an elemental subset (gray squares) of
a segment S (gray and white squares). (b) An example of a new pixel pk (black square) and a local neighborhood Rk (gray squares) in the segment
Sk (white and gray squares), which determine whether to add the black pixel to the segment. (c) An example of the pixels pi on the boundary Bi
(gray squares) in the segment Si (white and gray squares), which determine whether to increase the polynomial degree.

(a) (b)

Fig. 3 One-dimensional (1-D) adaptive thresholding of the L∞ fitting cost: (a) 1-D example of a strong transition in the variation of data points, which
causes a fast and direct increase in the L∞ fitting costs. A data point is added to the segment if Xk , which measures the local behavior of the fitting
costs, is lower than the threshold TX . (b) 1-D example of a smooth transition of data points, which causes a smooth increase in the L∞ fitting costs.
The polynomial degree is increased by one if Yk , which measures the global behavior of the fitting costs, exceeds the threshold TY .
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Fig. 4 Segmentation results on the BSDS300: (a) Gray-scale images with image size 240 × 160. (b) The segmented images with the correspond-
ing probabilistic rand indices (PRIs). The blue, green, and red colors in the segmented image correspond to zero, first, and second degree poly-
nomial surfaces, respectively. Many surface segments correspond to meaningful parts of the image. (c) The surface approximated images. Objects
are nicely approximated by the low-degree polynomial surfaces. (d) The convex, concave, or saddle like behavior of the second-degree polynomial
surfaces, indicated in the colors magenta, cyan, and yellow, respectively. Convex object parts with diffuse reflecting surfaces are seen as intensity
patches of a concave functions.
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Yk ¼
1

jBij
X
pi∈Bi

r̃ðSi;piÞ ≤ TY; (9)

which measures the global behavior of the fitting costs. It is
determined by the mean of the fitting costs when fitting a
low-degree polynomial surface to the segment Si and the pix-
els pi on the boundary Bi. These fitting costs contain all
recent information about the maximum deviation between
the pixels of Si and the polynomial surface. Bi grows
when Si gets larger. Figure 2(c) shows an example of the
pixels pi on Bi (gray squares) in Si (white and gray squares).
The polynomial degree is increased by one when the global
variation of gray values becomes too large. This is when Yk
exceeds the threshold TY . Then, Yk is recomputed for this
new degree. In fact, the degree increases until either Yk is
again within the limit of the threshold TY or a maximum
degree is exceeded. In this paper, the maximal polynomial
degree is two, which is sufficient to expand the segment
along smooth flat, planar, convex, concave, and saddle inten-
sity functions. Figure 3(b) shows an 1-D example of a
smooth transition of data points, which causes a smooth
increase in the L∞ fitting costs. Case 4 in Fig. 1(c) shows
a pixel where the variation of gray values is smooth but
too large to capture it with the current polynomial degree.

Thus, the adaptation of the polynomial degree depends on
the global behavior of the fitting costs. The global behavior
at the boundary reveals whether a smooth segment is slowly
evolving toward either a flat, planar, convex, concave, or sad-
dle surface.

2.2.4 Case 5: Discontinue region growing

When no more pixels can be added along the boundary, the
segment is completed and the segmentation process starts
a new segment in a new seed pixel. Case 5 in Fig. 1(c)
shows a pixel where a new segment is created because
the variation of gray values becomes too large to capture it
with a single flat, planar, convex, concave, or saddle like
surface.

The growing process has been designed to find smooth
segments in an image. It will grow around outliers and it
will stop at edges. However, there is no guarantee that
two segments sharing a common boundary will stop exactly
at the same edge. The treatment of this issue requires some
additional processing.

To force segments to stop at the same common boundary,
we do not allow the segments to grow over strong edges of an
edge map. The Canny edge detector is suitable, because it
results in thin edges of one pixel thickness, similar to the
segment boundaries in the region growing. In addition to
the edges of the edge detector, the segmentation will find
additional edges at the segment boundaries, which are
much smoother than the edges found by an edge detector.
These additional edges are necessary in the segmentation.
They represent smooth meaningful transitions in a surface,
e.g., the gradual transition from a concave surface into a con-
vex surface.

Since large segments in an image often represent impor-
tant object features, at a smooth transition, a new segment A
is allowed to grab pixels from an existing segment B. For this
to happen, we require that A must already be larger than B
and the polynomial degree of A must not be lower than the
polynomial degree of B.

Finally, morphological closing is used to fill the gaps in
the segments. Thus, outliers, which violate the conditions of
not exceeding TX and TY , but which are enclosed by a seg-
ment, are added to the segment. Similarly, we prevent the
segmentation from resulting in many small segments (e.g.,
≤10 pixels). Therefore, if possible, we add small segments
to larger adjacent segments under less strong conditions.

3 Classification with Polynomial Curvatures
This section describes how to classify segments into flat,
planar, convex, concave, or saddle patches based on the
curvatures of the polynomial surfaces.

From the segmentation, it is known that each surface
segment can be approximated by a low-degree polynomial
surface as in Eq. (1). Then, the intensity function of a seg-
ment is represented by its polynomial coefficients. The coef-
ficients are computed after all segments have been found.
Remember that during region growing, only the fitting
cost was computed. A method for computing the best L∞
fit is described in Ref. 69.

Convex, concave, or saddle like behavior of a second-
degree polynomial surface gðx; yÞ as in Eq. (1) is defined
by the signs of the eigenvalues of the Hessian matrix:

HðgÞ ¼
"

∂2g
∂2x

∂2g
∂x∂y

∂2g
∂x∂y

∂2g
∂2y

#
: (10)

The entries of the matrix HðgÞ are second derivatives of
the surface with respect to x and y coordinates. For a quad-
ratic surface, the second derivatives are constant and hence,
HðgÞ is independent of location. From Eq. (1)

HðgÞ ¼
�
2α2;0 α1;1
α1;1 2α0;2

�
: (11)

The maximum and minimum curvatures are given by the
eigenvalues of this matrix, which are found by solving the
following characteristic equation:

Hk ¼ λk: (12)

Since H is a 2 × 2 matrix, its eigenvalues are found by
solving the following quadratic equation:

Table 1 Performance statistics on the BSDS300.

BSDS300 Performance statistics

Image size 240 × 160

Computation time (ms) 1156� 185

Mean fitting cost 2.51� 0.93

#Surfaces 35.52� 8.91

PRI 0.74� 0.16
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Fig. 5 Visual comparison between segmentation techniques: columns (b)–(e) on the second row show segmentations of the fish image with diffuse
reflecting surfaces in (a), produced by normalized cuts (Ref. 23), mean shift (Ref. 12), power watersheds (Ref. 25) and polynomial surfaces,
respectively. For these segmentation techniques, columns (f)–(i) on the third row show the segment approximations with polynomial surfaces
of second degree as in Eq. (1). In contrast to existing segmentation techniques, the segments produced by the proposed method correspond
more to object features, the contours separating the surface segments coincide with real-image object edges and the low-degree polynomial
approximations accurately reconstruct the image.
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���� 2α2;0 − λ α1;1
α1;1 2α0;2 − λ

���� ¼ 0: (13)

The matrix H is symmetric, hence the solution yields two
real values λ1 and λ2. Both λ1 and λ2 are positive for a convex
surface and negative for a concave surface. Eigenvalues have
opposite signs for a saddle surface.

In the following section, we show that the determination
of the curvatures of polynomial surfaces is an effective
method for segment classification. We classify segments
into flat, planar, convex, concave, or saddle patches. Since
the patches of diffuse reflecting surfaces have the same
shape as the object surface itself, such classification provides
relevant information to facilitate image analysis. For
instance, a face, which resembles a convex sphere with
small concavities, will be seen as a collection of intensity
patches of concave functions (λ1 < 0 and λ2 < 0) for the fore-
head, the cheeks, the chin, and the nose and smaller patches
of convex functions (λ1 > 0 and λ2 > 0) for the eyebrows,
the eyes, the nostrils, and the mouth.

4 Results
In this section, we evaluate the proposed segmentation tech-
nique on the Berkeley segmentation dataset and benchmark
(BSDS300).63 The BSDS300 consists of 300 natural images,
delivered with ground truth human annotations. To measure
the difference between two segmentations, we examine the

PRI.64 The PRI allows the comparison of a test segmentation
algorithm using multiple ground truth images. It measures
the fraction of pixel pairs, whose labels are consistent in
the test segmentation and the ground truth one. The PRI aver-
ages over multiple ground truth segmentations and takes
values in the interval, where 0 means that the acquired seg-
mentation has no similarities with the ground truth and
1 means that the test and ground truth segmentations are
identical.

To find the optimal parameter set of adaptive region grow-
ing, we measure the image approximation accuracy with
a surface area weighted mean of the L∞ fitting costs r̃ðSÞ
of the polynomial surfaces. A high approximation accuracy
(low mean fitting cost) gives a high number of smaller seg-
ments, providing a good approximation quality. On the other
hand, a low approximation accuracy (high mean fitting cost)
gives a low number of larger segments, providing approxi-
mation quality less well. Depending on the desired purpose
(approximation or segmentation), one has to find a good bal-
ance between the size of the segments and the quality of the
approximated images. Since the main purpose in this paper is
rather segmentation, we set the segmentation parameters
TX ¼ 1.3 and TY ¼ 2.8. As we will show further on in the
results, these parameters result in a maximum PRI.

Segmentation results on the BSDS300 are shown in
Fig. 4. The columns (a)–(d) show the original gray-scale
images, the segmented images, the reconstructed images,
and the images with curvature indication, respectively. The
PRIs are indicated below the images. The blue, green, and
red colors in the images in column (b) correspond to zero,
first, and second degree polynomial surfaces, respectively.
We ascertain that many surface segments correspond to
meaningful parts of the image. The polynomial surfaces
in the images in column (c) provide good approximation of
the image while preserving all the necessary details of the
objects in the reconstructed images. In the images in column
(d), the cyan, magenta, and yellow colors correspond to con-
cave, convex, and saddle surfaces, respectively. For instance,
in the face image, the head is a convex body part, seen as an
intensity patch of a concave function.

Table 1 gives an overview of the mean and standard
deviation of the computation time, the mean fitting cost,
the number of surfaces and the PRI, respectively. Most of

Table 2 Probabilistic rand index (PRI) results on the BSDS300.

PRI (higher is better) BSDS300 Subset 1 Subset 2

Human 0.87 0.83 0.90

Polynomial surfaces 0.74 0.67 0.84

Power watersheds 0.77 0.74 0.79

Mean shift 0.76 0.72 0.77

Normalized cuts 0.72 0.69 0.74

Fig. 6 The number of surface segments and the PRI versus the mean fitting cost: (a) This graph plots the numbers of surface segments when
segmenting images of the BSDS300 for different mean fitting costs. For mean fitting costs of 3 or higher, the mean number of surface segments is
relatively constant. For mean fitting costs of 3 or lower, the mean number of surface segments grows exponentially. (b) The graph in this figure plots
the mean fitting cost versus the PRI. The PRI is maximal for a mean fitting cost of 2.5.
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the computation time of the region-growing method is spent
on the calculation of the fitting cost r̃. We developed
a partially optimized program, which is implemented in
C++ and running on a 2.8 GHz processor, 4 GB RAM,
and 64-bit operating system. For images of size 240 × 160,
the computation time of our program is ∼1.0 s∕image. As a
comparison, the computation time of the power watershed

algorithm25 is ∼1.2 s∕image. When considering the number
of surfaces, we find that our technique divides an image into
only very few surface segments. The graph in Fig. 6(a) plots
the numbers of surface segments when segmenting images of
the BSDS300 for different mean fitting costs. We find that
for mean fitting costs of 3 or higher, which corresponds to
low approximation accuracies, the mean number of surface

Fig. 7 Comparison with the polynomial segmentation technique proposed by Kocher and Leonardi et al. (Ref. 46) (a) The original gray-scale
Peppers image with size 512 × 512. (b, d) The segment boundaries produced by the method in Ref. 46 and our method, respectively. In
both results, the number of segments is 129. Our method produces smoother segment boundaries. (c, e) The corresponding approximated images
using quadratic surfaces. The root mean squared errors are both 15 gray levels on a 256 scale, respectively.
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segments is relatively constant. This means that there is a
small stable set of large segments. In contrast, for mean fit-
ting costs of 3 or lower, which corresponds to high approxi-
mation accuracies, the mean number of surface segments
grows exponentially. This means that there are many small
segments.

We compare the proposed segmentation algorithm, which
uses polynomial surfaces, with segments produced by nor-
malized cuts,23 mean shift,12 and power watersheds.25 To
demonstrate the difference between the proposed method
and existing techniques, we perform three tests. The first
test is performed on all images of the BSDS300. The remain-
ing two tests are performed on two subsets of images of the
BSDS300. The first subset includes highly textured images,
whereas the second subset contains images of objects with
diffuse reflecting surfaces. Examples for both subsets are the
desert image and the face image in Fig. 4, respectively. These
subsets were carefully selected by computer vision experts.

Avisual comparison of segmentation on a fish image with
diffuse reflecting surfaces is shown in Fig. 5. Columns (b)–
(e) on the second row show segmentations of image (a), pro-
duced by normalized cuts, mean shift, power watersheds, and
polynomial surfaces, respectively. For these segmentation
techniques, columns (f)–(i) on the third row show the seg-
ment approximations with polynomial surfaces of second
degree as in Eq. (1). The power watershed algorithm uses
the same seed pixels as produced by the proposed method.
We can clearly ascertain that in contrast to the proposed
method, the segments produced by existing segmentation
techniques do not always coincide with object features
and the contours separating the surface segments often do
not correspond to real-image object edges. Furthermore,
for existing techniques, the polynomial segment approxima-
tions do not accurately reconstruct the image.

An overview of the PRIs is given in Table 2. When testing
the entire database, the segmentation results are comparable
in terms of the PRI. As expected, the PRIs decrease when
segmenting the more textured images of the first subset.
For this subset, the proposed method performs less well
when compared to the existing techniques. However, as
for the desert image in Fig. 4, the segmentation result is
visually still acceptable. Next, when segmenting images
of the second subset, segmentation with polynomial surfaces
significantly outperforms the existing techniques. This con-
firms that our method is primarily aimed at segmenting
images into flat, planar, convex, concave, and saddle patches
that correspond to meaningful parts of objects with diffuse
reflecting surfaces. More comparing results on the BSDS300
in terms of the PRI are found in Ref. 68.

The graph in Fig. 6(b) plots the mean fitting cost versus
the PRI for testing the entire database. We conclude that for a
mean fitting cost of 2.5, the PRI is maximum. As mentioned
in the beginning of this section, this maximum corresponds
to the threshold parameters of adaptive region growing that
are used in this paper.

As a last result, we compare our method with the poly-
nomial segmentation technique proposed by Kocher and
Leonardi.46 Figure 7(a) presents the original gray-scale
“Peppers” image with size 512 × 512. Figures 7(b) and 7(d)
illustrate the segment boundaries when applying the method
in Ref. 46 and our method to the Peppers image, respectively.
In both results, the number of segments is 129. We can

clearly observe that our method produces smoother segment
boundaries than the method in Ref. 46. Smooth segment
boundaries facilitate the task of object recognition.
Figures 7(c) and 7(e) exhibit the corresponding approxi-
mated images using quadratic surfaces. The root mean
squared errors are both 15 gray levels on a 256 scale,
respectively.

5 Conclusion
In this work, image segmentation is performed on gray-scale
images by adaptive region growing based on low-degree
polynomial fitting. This novel algorithm uses the adaptive
thresholding of the L∞ fitting cost to detect outliers and
edges, distinguishes between strong and smooth intensity
transitions, and interprets gray levels using a geometric
point of view approach. Images are represented by flat, pla-
nar, convex, concave, and saddle polynomial surfaces with
a variable fitting error. The proposed method performs well
in segmenting images into patches that correspond to mean-
ingful parts of objects with diffuse reflecting surfaces. In
contrast to existing segmentation techniques, the segments
produced by the proposed method correspond more to
object features, the contours separating the surface segments
coincide with real-image object edges, and the low-degree
polynomial approximations accurately reconstruct the
image. However, the method performs less well in segment-
ing images of objects with highly textured patterns. For
object recognition purposes, curvature-based classification
of surface segments provides important shape information
of the image objects.
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