

Elemental Imaging of Actinides in Human Tissues Using

LA-ICP-MS and SR Micro-XRF

<u>Eva VERGUCHT</u>^{1*}, Andrei IZMER¹, Björn DE SAMBER^{1,2}, Bart VEKEMANS¹, Karen APPEL², Sergei TOLMACHEV³, Laszlo VINCZE¹ and Frank VANHAECKE¹

1. Department of Analytical Chemistry, Ghent University, Krijgslaan 281 (S12), B-9000 Ghent, Belgium 2. HASYLAB at DESY, Notkestraβe 85, D-22607 Hamburg, Germany

3. United States Transuranium & Uranium Registries, College of Pharmacy, Washington State University, 1845 Terminal Dr, Ste 201, Richland, WA-99354, USA

Introduction

The aim of this study was to evaluate the capabilities and limitations of two state-of-the-art highly sensitive analytical techniques for elemental imaging of the distribution of actinides in human tissues, in both a qualitative and a semi-quantitative manner: Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) and Synchrotron Radiation (SR) micro X-Ray Fluorescence (micro-XRF) spectrometry.

The United States Transuranium & Uranium Registries (USTUR) studies the uptake, the translocation and the biokinetics of actinides in humans [1]. Human tissue sections from two USTUR cases (Registrants), which were occupationally exposed to certain actinides (U, Pu, Am), were investigated in this work. Both registrants passed away in 2008, i.e. a long time after the exposure. Prior to analysis, the samples were embedded in paraffin and cut in thin slices using a microtome.

LA-ICP-MS Instrumentation

Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) is based on the detection of positively charged ions generated via a high temperature plasma discharge. For these experiments, a New Wave Research UP193HE ArF*

laser ablation unit or a GeoLas 200M 193 nm ArF* ablation unit coupled to an ELEMENT XR SF-ICP-MS instrument was applied.

Experimental conditions

- ⇒ RF power: 852 W
- ⇒ Flow rates He: 0.5 l/min, Ar: 0.7 l/min

Advantages of LA-ICP-MS

- ⇒ Extreme sensitivity and detection limits (ppb-ppt)
- ⇒ Possibility to measure isotopes and isotope ratios
- ⇒ Rapid bulk/micro-analysis of a wide variety of samples

Results: Case 1060

Several times exposed to uranium: a parabronchial lymph tissue (chest)

RT, image dimensions: $100 (10 \mu m) \times 100 (10 \mu m)$.

 238 U ion intensity, ablated area: 2 mm x 2 mm, 15 μ m laser beam diameter, 10 Hz laser repetition rate, 0.70 J/cm² energy density, 15 μm lateral scanning speed.

Intensity (cps)

4000

Semi-quantitative results

LA-ICP-MS results		
Hotspot	²³⁸ U concentration (μg/g)	²³⁸ U concentration (μg/g)
1	9.6 ± 0.5	26.7 ± 1.5
2	0.85 ± 0.04	0.32 ± 0.02
3	1.35 ± 0.06	1.37 ± 0.08
4	0.89 ± 0.04	3.0 ± 0.2

Semi-quantitative results were obtained using a series of standards (HAP and dried gelatine droplets) spiked with U.

SR micro-XRF results		
concentration (µg/g)	Hotspot	
30.38 ± 0.33	1	
17.81 ± 0.31	2	
31.26 ± 0.34	3	
8.37 ± 0.29	4	
19.34 ± 0.31	5	

SR Micro-XRF Instrumentation

Synchrotron micro-XRF experiments were performed at Beamline L of the Synchrotronstrahlungslabor (HASYLAB), part of the Hamburger Elektronen-Synchrotron (DESY) located in Hamburg, Germany.

Advantages of SR micro-XRF ⇒ Non-destructive multi-element microscopic analysis VORTEX Si-drift detector ⇒ High sensitivity and low relative LODs (sub-ppm) & absolute LODs (ag-fg) Beam **Experimental conditions** Beam monitor monitor Polycapillary ⇒ Energy: 19.5 keV ⇒ Spot size: ≈ 17 μm XYZ Beam stop Monochromatic SR Sample stage environment

Results: Case 0407

Exposure to plutonium and americium: a paratracheal lymph tissue (throat)

performed on case 0407. FWHM of the beam ≈ 17.5 μm, 5 s RT, image dimensions: 101 (10 μ m) x 105 (10 μ m). Plutonium map at the position of hot spot 4. FWHM beam \approx 17.5 μ m, 10 s RT, 5 μ m step size.

Conclusions

Both advanced methodologies are able to visualise the heterogeneous distributions of U and Pu on the microscopic level. The microscopic hot spots of U and Pu can be easily revealed on the trace element level. Only the LA-ICP-MS measurements could show the presence of Am in case 0407. Besides the actinides of interest also Zr microparticles and aggregates can be reported (not shown here).

References

Corresponding Author