
Nonlinear parabolic equation with a dynamical boundary condition of diffusive type
- Author
- Vladimír Vrábeľ (UGent) and Marian Slodicka (UGent)
- Organization
- Keywords
- FINITE-ELEMENT DISCRETIZATION, EFFICIENT LINEARIZATION SCHEME, POROUS-MEDIA, APPROXIMATION, FLOW, CONVERGENCE, SYSTEMS, ROBUST, Nonlinear diffusion, Dynamical boundary condition, Full discretization, Error estimates
Downloads
-
(...).pdf
- full text
- |
- UGent only
- |
- |
- 421.54 KB
Citation
Please use this url to cite or link to this publication: http://hdl.handle.net/1854/LU-4127456
- MLA
- Vrábeľ, Vladimír, and Marian Slodicka. “Nonlinear Parabolic Equation with a Dynamical Boundary Condition of Diffusive Type.” APPLIED MATHEMATICS AND COMPUTATION, vol. 222, 2013, pp. 372–80, doi:10.1016/j.amc.2013.07.057.
- APA
- Vrábeľ, V., & Slodicka, M. (2013). Nonlinear parabolic equation with a dynamical boundary condition of diffusive type. APPLIED MATHEMATICS AND COMPUTATION, 222, 372–380. https://doi.org/10.1016/j.amc.2013.07.057
- Chicago author-date
- Vrábeľ, Vladimír, and Marian Slodicka. 2013. “Nonlinear Parabolic Equation with a Dynamical Boundary Condition of Diffusive Type.” APPLIED MATHEMATICS AND COMPUTATION 222: 372–80. https://doi.org/10.1016/j.amc.2013.07.057.
- Chicago author-date (all authors)
- Vrábeľ, Vladimír, and Marian Slodicka. 2013. “Nonlinear Parabolic Equation with a Dynamical Boundary Condition of Diffusive Type.” APPLIED MATHEMATICS AND COMPUTATION 222: 372–380. doi:10.1016/j.amc.2013.07.057.
- Vancouver
- 1.Vrábeľ V, Slodicka M. Nonlinear parabolic equation with a dynamical boundary condition of diffusive type. APPLIED MATHEMATICS AND COMPUTATION. 2013;222:372–80.
- IEEE
- [1]V. Vrábeľ and M. Slodicka, “Nonlinear parabolic equation with a dynamical boundary condition of diffusive type,” APPLIED MATHEMATICS AND COMPUTATION, vol. 222, pp. 372–380, 2013.
@article{4127456, author = {{Vrábeľ, Vladimír and Slodicka, Marian}}, issn = {{0096-3003}}, journal = {{APPLIED MATHEMATICS AND COMPUTATION}}, keywords = {{FINITE-ELEMENT DISCRETIZATION,EFFICIENT LINEARIZATION SCHEME,POROUS-MEDIA,APPROXIMATION,FLOW,CONVERGENCE,SYSTEMS,ROBUST,Nonlinear diffusion,Dynamical boundary condition,Full discretization,Error estimates}}, language = {{eng}}, pages = {{372--380}}, title = {{Nonlinear parabolic equation with a dynamical boundary condition of diffusive type}}, url = {{http://doi.org/10.1016/j.amc.2013.07.057}}, volume = {{222}}, year = {{2013}}, }
- Altmetric
- View in Altmetric
- Web of Science
- Times cited: