DIGESTATE MANAGEMENT IN FLANDERS: Nutrient removal versus nutrient recovery

BioGasWorld, Berlin
25/04/13

Sara Van Elsacker, VCM
Frederic Accoe, Viooltje Lebuf, VCM
Céline Vaneeckhaute, Evi Michels, Erik Meers, UGent
I. Introduction VCM
II. Biogasproduction in Flanders
III. Digestate management in Flanders
IV. Why recover nutrients?
V. Nutrient recovery techniques
VI. End-products
VII. Need for further research
VIII. Conclusions
IX. Related projects
X. ManuREsource
I. INTRODUCTION VCM

- Flemish Coordination Centre for Manure processing (VCM)

- Independent platform and intermediate between government and the manure processing sector

- Activities
 - **Platform:**
 - to coordinate consultation between government and private sector
 - **Policy support**
 - Yearly enquiry on processing capacity and techniques
 - Detecting bottlenecks and suggesting solutions
 - Thematic studies (e.g. preparation of new legislation)
 - **First line support**
 - Selection of technology, regulatory aspects, environmental permits, ...
 - **Knowledge centre**
 - All aspects of manure processing (technical, regulatory, economic)
 - Focus on recovery and valorization of nutrients
II. BIOGAS PRODUCTION IN FLANDERS

- 35 biogas plants (active in 2011) in Flanders
- 1,744,300 Ton input/year → 70.3 MWe/year installed
 → 300 GWh green energy
- 27 biogas plants have manure input
- 400,000 Ton manure/year digested
III. DIGESTATE MANAGEMENT IN FLANDERS
III. DIGESTATE MANAGEMENT IN FLANDERS: situation

- Organic and inorganic fertilisers → water pollution
- Limit nutrient dosage on fields
- Strong limit on animal manure (170 kg N/ha)
- Biogas-installations that take in manure → Digestate equals animal manure status
- Raw digestate disposal is difficult, esp. in nutrient rich regions (West-Flanders, Antwerp)

- Most co-digestion plants invest in digestate processing techniques
III. DIGESTATE MANAGEMENT IN FLANDERS: situation

Mestproductiedruk (kg N/ha) in Vlaanderen, 2010
(bron: Mestbank)

© VCMvzw

Omschrijving mestproductiedruk

- <85 kg N/ha
- 85-170 kg N/ha
- 170-340 kg N/ha
- >340 kg N/ha

Biomass for Energy
III. DIGESTATE MANAGEMENT IN FLANDERS: manure processing

- **Liquid manure**
 - Mechanical separation
 - **Liquid fraction**
 - Biological treatment
 - Ammonia stripping
 - Liming
 - Electrolysis
 - Membrane Filtration
 - Evaporation/condensation
 - Constructed wetlands

- **Solid manure**
 - Drying
 - Pelletizing
 - Composting
 - Liming

- **Solid fraction**
III. DIGESTATE MANAGEMENT IN FLANDERS: digestate processing

- Third party disposal
- Digestate 938,700 ton\(^1\) 36 AD plants\(^2\)
- Separation
- Export
- Pellets
- Composting
- Composting
- ...
III. DIGESTATE MANAGEMENT IN FLANDERS: digestate processing

- Third party disposal: 3
- Separation: 23
- Composting: 2
- Drying: 8

![Graph showing digestate management methods and their usage.](image)
III. DIGESTATE MANAGEMENT IN FLANDERS:
SF Digestate

- Solid fraction
 - Drying
 - Export
 - Pellets
 - Composting
 - Third party disposal
 - Export
 - Pellets
 - Composting
 - Composting
III. DIGESTATE MANAGEMENT IN FLANDERS:
sf digestate

- Third party disposal: 7
- Composting: 3
- Drying: 13

Legend: AD plants
III. DIGESTATE MANAGEMENT IN FLANDERS:
If digestate

Third party disposal

Liquid fraction

Evaporation

Biological nitrification/denitrification

Membrane filtration

NH₃ stripping

Evaporation

Filtration

Export

Membrane filtration

Agriculture

Agriculture

Agriculture

Agriculture

Agriculture
III. DIGESTATE MANAGEMENT IN FLANDERS: If digestate

- Evaporation: 11
- Biological nitr/denitr: 9
- Membrane filtration: 6
- Third party disposal: 4
- NH3 stripping: 1

AD plants
IV. WHY RECOVER NUTRIENTS?

- Awareness of phosphorus depletion
- Awareness of increasing artificial fertiliser use
 - Energy consuming
 - Economical burden for farmer

- Question: how can digestate be valorised as a valuable source of nutrients?
- OR: how can digestate be turned into a ‘green’ substitute for artificial fertilisers?

Extract nutrients!
V. NUTRIENT RECOVERY TECHNIQUES

- Hard to define

- Interpretation:
 - End-product with a higher concentration of NPK than raw digestate
 - Techniques that separate NPK of organic matter
 - Goal: end-product that can substitute artificial fertiliser or as a feedstock in industrial processes
IV. Nutrient recovery techniques

- **Digestate**
 - **Evaporation**
 - **Mechanical separation** (with or without addition of polymers)
 - **Solid fraction**
 - **Composting**
 - **Thermal drying**
 - **Combustion**
 - **Gasification**
 - **Pyrolysis**
 - **P-extraction from ashes/biochars**
 - **Liquid fraction**
 - **Evaporation**
 - **Acid air washer**
 - **Biological nitrification/denitrification**
 - **Membrane filtration**
 - **Electrodialysis**
 - **Transmembrane chemosorption**
 - **Forward osmosis**
 - **Precipitation of P-crystals**
 - **Ammonia stripping**
 - **Biomass production & harvesting**
V. NRT (1): Acid air washer

- **Drying, composting, evaporation, ...**

- **Important: treat drying gases!**
 - Dust, ammonia, odorous gases
 - Acid air washer that captivates NH$_3$
 - End-product: (NH$_4$)$_2$SO$_4$
 - Flanders: artificial fertiliser
 - Variable N-content
 - Low pH, high salt content
 - Sulphur content

- **Status: full scale**

\rightarrow Restrains use
V. NRT(6): Ammonia stripping

- **Aeration in packed column**
 - Elevated pH & T
 - Bottlenecks: precipitation of salts & fouling of the packing material, periodical cleaning necessary

- **Acid air washer**
 - Stripgas + sulphuric acid \rightarrow ammonia sulphate
 - Higher N-content than air washer drying gases/stables

- **Lime softening step with Ca(OH)$_2$**
 - Removes Ca$^{2+}$, Mg$^{2+}$, carbonates
 - Preferred pH-increase

- **Status**
 - Full-scale
V.NRT(2): Extraction of organically bound P

- Ashes: P-, K-, Al- & Si-components + heavy metals (Cu, Zn, Cd)

- Several processes
 - Thermochemical
 - Addition of MgCl$_2$ & heating up to 1000°C
 - Heavy metals in the gaseous phase
 - Production of e.g. CaHPO$_4$
 - Wet-chemical extraction techniques
 - Acid extraction
 - Fertilising value (Kuligowski et al., 2010)

- Status
 - Full scale for ashes of sludge WWT, poultry manure (NL)
 - Lab scale testing
V. NRT(3): Pressurised membrane filtration

- **Types**
 - Pressure: RO > UF > MF
 - Pore size: MF > UF > RO
 - Concentrate: suspended solids (MF), macromolecules (UF), ions (RO)
 - Other pre-treatment: DAF (+ flocculants)

- **Bottleneck: blocking of membranes**
 - Suspended solids, salts with reduced solubility, biofouling
 - Higher tangential flux, anti-scalants, cleaning agents (NaOH & H₂SO₄)

- **Pilots mineral concentrates (NL)**
 - Agronomic, economic & environmental effects of MC
 - Goal: recognition as an artificial fertiliser
 - EU 2003/2003 (EU-fertiliser)
 - Nitrate Directive

- **Status: full-scale (4 biogas plants in Flanders)**
V. NRT(4): Other membrane techniques

- **Forward osmosis**
 - Draw solution in stead of pressure
 - Status
 - Full-scale in other sectors, no testing (?) with digestate

- **Electrodialysis**
 - Ion exchange membrane + electrical voltage
 - Transfer of NH_4^+, K^+ en HCO_3^-
 - Status
 - *No full-scale on digestate, tests on lab-scale in literature*

- **Transmembrane chemosorption**
 - Innovative pig slurry treatment in NL
 - Gaseous NH_3 diffuses through membrane & is captured in sulphuric acid
 - Status: pilot in NL
V. NRT (5): P-precipitation

- Soluble P (ortho-phosphate) can be precipitated by:
 - $\text{Ca}^{2+} \rightarrow \text{Ca}_3(\text{PO}_4)_2$
 - $\text{Mg}^{2+} \rightarrow \text{MgNH}_4\text{PO}_4 \text{ or MgKPO}_4$ (MAP of struvite)
 - $\text{K}^+ \rightarrow \text{K}_2\text{NH}_4\text{PO}_4$ (potassium-struvite)

- Commercial processes in development:
 - Reactors
 - Large, pure crystals (seeding)
 - Full-scale in WWT

- Status: full-scale for calf manure and in other sectors + pilot testing on digestate

- Optional: dissolve organically bound P
 - Acid extraction
 - Creates a P-low solid fraction
V. NRT (7): Biomass production & harvest

- **Research on algae & duckweed**
 - Removal of P&N by plant uptake
 - Bottleneck: suspended solids, humic acids,... → reduction of penetration of light
 - Max. additions in growing medium
 - Large surface
 - Valorising harvested biomass
 - Biobased chemicals
 - Biofuels
 - Fertilisation
 - Feed (GMP)

- **Status**
 - Lab tests + pilot on duckweed
VI. END-PRODUCTS

<table>
<thead>
<tr>
<th>TECHNIQUE</th>
<th>STARTING FROM</th>
<th>END-PRODUCT</th>
<th>CHARACTERISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid air washer</td>
<td>Air charged with NH₃</td>
<td>(NH₄)₂SO₄ solution</td>
<td>(NH₄)₂SO₄ solution : 30-70 kg N/m³, pH 3-7</td>
</tr>
<tr>
<td>P-extraction</td>
<td>Ashes/biochar/SF digestate</td>
<td>Acid P-extract/CaHPO₄</td>
<td>Acid P-extract: P<sub>tot</sub>: 0.192 g/kg</td>
</tr>
<tr>
<td>Reversed osmosis</td>
<td>UF/MF/DAF-permeate</td>
<td>RO-concentrate (NK-fertiliser)</td>
<td>N<sub>tot</sub>: 7.3 g/kg, K<sub>tot</sub>: 2.9 g/kg, P<sub>tot</sub>: 0.42 g/kg</td>
</tr>
<tr>
<td>Forward osmosis</td>
<td>UF/MF/DAF-permeate</td>
<td>FO-concentrate (NK-fertiliser)</td>
<td>?</td>
</tr>
<tr>
<td>Electrodialysis</td>
<td>LF digestate</td>
<td>NK-fertiliser</td>
<td>?</td>
</tr>
<tr>
<td>TMCS</td>
<td>LF filtered on 10 µm</td>
<td>NK-fertiliser</td>
<td>(NH₄)₂SO₄ solution: 50 - 150 kg N/m³</td>
</tr>
<tr>
<td>P-precipitation</td>
<td>(LF) digestate</td>
<td>MgNH₄PO₄/MgKPO₄/CaNH₄PO₄</td>
<td>12.65/11.62/11.86% P</td>
</tr>
<tr>
<td>NH₃-stripping & acid air washer</td>
<td>LF digestate</td>
<td>(NH₄)₂SO₄ solution</td>
<td>30-70 kg N/m³, pH: 3-7</td>
</tr>
<tr>
<td>Biomass production</td>
<td>Diluted LF digestate</td>
<td>Biomass</td>
<td>Duckweed: 30% CP (dm)</td>
</tr>
</tbody>
</table>
VII. NEED FOR FURTHER RESEARCH

- **Technical bottlenecks**
 - WWT-techniques translated to digestate → bottlenecks

- **Marketing**
 - Added value of the end-product vs investment to be made
 - End-users: farmers or industrial users?

- **Legislative**
 - Redefine “artificial fertiliser”

- **Sustainability**
 - Comparative analysis of environmental impact (LCA)
 - Consumption of heat, electricity & chemicals, risk for emissions
 - Reduction of the artificial fertiliser use
VIII. CONCLUSIONS

- **High nutrient pressure + P depletion**
 - Digestate treatment is inevitable
 - As a valuable source of nutrients

- **Techniques**
 - Full-scale
 - Acid air washers, membrane filtration, ammonia stripping
 - Breakthrough full-scale
 - Struvite precipitation
 - Potentially long-term
 - Electrodialysis, forward osmosis, TMCS, biomass production
 - Questionmark
 - P-extraction from ashes/biochars

- **Further developments will only take place if recovery is profitable**
 - Price for recuperated nutrients = price for nutrients in artificial fertilisers
IX. RELATED PROJECTS

- **ARBOR**
 - Interreg IV.B
 - Accelerate development of renewable energy in NW-Europe
 - Inventory of nutrient recovery techniques + LCA + EA
 - Characterisation of end-products
 - Field trials
 - Market study

- **MIP Nutricycle**
 - Flemish project
 - Produce artificial fertiliser replacers
 - Pilots on ammonia stripping & preconditioned separation
 - Lab tests with struvite

- **BIOREFINE**
 - Interreg IV.B, kick-off meeting 3/2013
 - Nutrient recycling
 - European platforms: Transnational cooperation to identify and solve bottlenecks
QUESTIONS

sara.vanelsacker@vcm-mestverwerking.be

www.vcm-mestverwerking.be