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Abstract

Optical switching (Optical Packet Switching, Optical Burst Switching, and others) provides alternatives to
the current switching in backbone networks. To switch optically, also packet buffering is to be done optically,
by means of Fiber Delay Lines (FDLs). Characteristic of the resulting optical buffer is the quantization of
possible delays: only delays equal to the length of one of the FDLs can be realized.

An important design challenge is the optimization of the delay line lengths for minimal packet loss. To
this end, we propose a heuristic based on two existing queueing models: one with quantization and one with
impatience. Combined, these models yield an accurate performance modeling heuristic. A key advantage of
this heuristic is that it translates the optical buffer problem into two well-known queueing problems, with
accurate performance expressions available in the literature. This paper presents the heuristic in detail,
together with several figures, comparing the heuristic’s output to existing approaches, validating its high
accuracy.
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1. Introduction

Offering a network of ubiquitous broadband con-
nectivity, operators are preparing for the impact
of the ever-growing bandwidth hunger of their cus-
tomers. The widespread interest in cloud comput-
ing and big data applications is rapidly pushing the
network to its capacity limit.

For the current backbone network, the true ca-
pacity limit is not fiber throughput, but rather
switching speed. Current fiber connections provide
throughput of well beyond 10 Tbit/s per fiber (or
even 1 Pbit/s [1]), but this capacity is only available
for transmission from node to node. Within the
nodes, switching is done through Optical Circuit
Switching (OCS), with circuits configured before-
hand. As an alternative, packet switching would
provide much better utilization of the (enormous)
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fiber capacity, through the statistical sharing it
achieves (that is, multiplexing gain). This dif-
ference is spectacular especially when the packet
switching concerns small packets (like IP packets),
as is envisaged by “pure” Optical Packet Switching
(OPS) [2], but also occurs for Optical Burst Switch-
ing (OBS) [3].

Regardless of the exact nature of the switching
technology (OPS or OBS), a crucial point of debate
is the buffering. To date, Fiber Delay Line (FDL)
remains the medium of choice for optical buffer-
ing, and this, mainly because FDL buffers are the
only optical buffers that are cheap and reliable at
the same time. Currently, research for “pure” OPS
with FDLs steadily gains momentum, see [4, 5]. Al-
though both FDL buffers and classic RAM (Ran-
dom Access Memory) buffers serve as a means of
buffering, they differ fundamentally.

First difference with RAM buffers is the foot-
print: a microsecond of delay requires about 200
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m of fiber. Large size being a drawback for opti-
cal switching, the number of FDLs is always kept
low in practical implementations. This results in
buffers with capacity in the order of kB to MB, as
opposed to RAM buffers, with capacities in the or-
der of GB. (However, as argued in [6], RAM buffer
capacity is typically overprovisioned.)

Second, rather than being able to let a packet or
burst wait for an arbitrary time period, an optical
buffer can only provide delays that fall within the
quantized set of delay line values. Assignable delays
can thus be brought back to the physical lengths of
the fiber delay lines. This is opposed to the situ-
ation in a RAM buffer, where data can reside in
the buffer for any period of time, resulting in com-
pletely different queueing behavior.

Third, rather than being able to schedule a given
amount of bits (in space, like RAM), FDL buffers
are able to guarantee a certain period of delay (in
time). The upper bound to this delay is called the
impatience of the buffer (denoted τ , see further).

Given the specific nature of the optical buffer, an
important aspect in design is the choice of the delay
line lengths. These can be used in a feed-forward
setup (as opposed to a feed-back setup, see, e.g.,
[7]), where each line provides the delay that corre-
sponds to its length. The lengths in a feed-forward
setup are usually assumed multiples of a basic delay
unit called granularity [8]. In a network with fixed-
length packets, a natural choice is to let the granu-
larity match the packet length, although this is not
necessarily the optimal choice [9]. Of particular in-
terest to this work is the case of asynchronous vari-
able length packets, where such a “natural choice”
is not readily available, and the line length opti-
mization problem involves both the buffer size and
traffic load. The often-cited letter [8] accounts for
the prime contribution treating optical buffering,
relying on an iterative procedure defined on a classic
queueing model, allowing for intuitive reasoning on
the trade-off between quantization and impatience.
However, the solution of [8] (and its extended ver-
sions, [10] and [11]) provided an approximate solu-
tion that is inaccurate in some cases, as discussed
below. An enhanced approach with Markov chains
enabled accurate numerical results [12] as well as
a solution in closed form [13], but does not allow
for intuitive insight in the queueing behavior of the
system.

In this paper, we present an approximative
heuristic for the calculation of the loss probability
of an M/M/1 optical FDL buffer system with finite

size, both in continuous time and in discrete time.
In continuous time, this corresponds to a Poisson
arrival process and exponential packet length. In
discrete time, this corresponds to a Bernoulli arrival
process and geometric packet length. The heuris-
tic aims at providing a more accurate alternative
to the approach presented in [8, 10]. At the same
time, by combining classic queueing models in a
very straightforward manner, the heuristic is easy
to understand, providing a simple engineering tool
in the design of complicated optical packet/burst
switches.

The remainder of this paper is structured as fol-
lows. In Section 2, we consider the prerequisites
for the analysis: a model for quantization, com-
bined with a model for impatience. In Section 3,
the analysis is presented. In Section 4, the heuris-
tic’s output is compared to an existing approximate
approach as well as exact numerical results, allow-
ing to assess the validity and accuracy of our ap-
proximation. Conclusions are drawn in Section 5.
Finally, the Appendix provides the analysis in case
of a discrete-time setting.

In the context of this work, the words “packet”
and “burst” are interchangeable, since results are
generically applicable to both OPS and OBS. Be-
low, the term “packet” is used.

2. Method

In this section, we set out the queueing mod-
els needed as input to the heuristic. We subse-
quently look at the modeling of quantization and
impatience, and then to the heuristic itself.

2.1. Quantization Model

Regardless of time setting, a model with quanti-
zation of the delay is characterized by the fact that
not any delay is available. In most cases, the FDL
buffer is studied for a degenerate buffer setting. In
a degenerate setting, FDL lengths equal to multi-
ples of some basic value called granularity, denoted
D [8]. Buffers of this type contain (N + 1) FDLs
with lengths i · D, for i = 0, . . . , N . Since this set-
ting is known to be optimal in many (but not all)
cases (for discussion, see [9]), it is also assumed in
this work.

The previously mentioned [8] presents the first
approximate model for evaluation of FDL buffer
performance. In particular, it focuses on the ef-
fect of quantization (referred to as granularity), so
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allowing to evaluate the performance of an M/M/1
optical buffer, by means of an iterative procedure.
Here, M/M/1 is the well-known Kendall notation
for a queueing system with a Poisson arrival pro-
cess, exponential service times (here, packet sizes),
and a single output for service (here, a single wave-
length). The approach in [8], and in its extended
version [10], is to introduce an excess packet length
(there, denoted θe), that is in general larger than
the regular packet length, and so incorporates the
effect of quantization. On the other hand, the ap-
proach takes into account the limited size of the
buffer by means of a bound on the sum of accu-
mulated packet lengths. As such, the effects of
quantization (excess packet length) and impatience
(bound on the accumulated sum of packet lengths)
are treated separately, as in the current contribu-
tion. The main difference is that we do not use the
concept of an excess packet length, as this leads to
an inaccurate definition of the equivalent load, as
discussed below [see (6)].

In [14] (discrete time) and [15] (continuous time),
the effect of quantization was traced in an exact
manner, for a degenerate buffer setting with in-
finite buffer size. The effects of impatience were
also taken into account, but only by means of an
indirect approximate approach, which was hardly
open for intuition, and inaccurate if the number of
lines is few (say, smaller than 5). More precisely,
the approach was based on the asymptotic of the
tail probabilities of the waiting time distribution.
Such approximation indeed (partially) reflects im-
patience, but loses accuracy if the tail probabilities
are evaluated for small delays (and, related, small
buffer sizes).

Opposed to this, in [12], the combined effect of
quantization and impatience was modeled in an ex-
act manner, and a numerical procedure was pro-
vided for exact performance evaluation. Further, in
[13], this numerical framework provided the start-
ing point to extract exact closed-form performance
expressions, for optical buffers in an M/D/1 and
an M/M/1 setting, respectively. While these con-
tributions capture the system by a single Markov
chain model, they do not allow for any distinction
between the separate characteristics of impatience
and quantization. Rather, both effects are implied
by the system description in an entwined manner,
and the interplay among these effects remains hid-
den.

2.2. Impatience Model

Classic impatience models were developed in a
continuous-time setting, mostly in a setting with a
single server (in the context of optical buffers: a
single wavelength). An elegant approach to im-
patience is provided by a paper by Barrer [16].
There, the delay or waiting time (and the associ-
ated queue length) can in principle take on every
value between 0 and some upper bound τ , which
is the impatience associated with the system. This
can be a random variable, but it can also have a
simpler nature, a fixed parameter. Regardless of
the nature of τ , the number of available waiting
times in an impatient system falls within the inter-
val [0,τ ]. In case of a continuous-time setting, this
interval is a continuum, with a non-denumerable
(infinite) number of possible delays. When con-
sidered in a discrete-time setting [17], this interval
translates into a finite set of possible waiting times
{0, 1, . . . , τ}. The continuous-time case is treated
below; for the discrete-time case, we refer the reader
to the Appendix.

2.3. Heuristic

The proposed heuristic unifies two seemingly dis-
parate elements: recent results for systems with
quantization of delay [14] on the one hand, and a
well-known result for systems with impatience [16]
on the other hand. Main advantage is that this
approach is “simple”, in the sense that it is com-
plex only to the degree needed to model the most
characteristic features of the original system, and
nothing more.

In the remainder of this paper, the approach will
remain complementary: we first trace the effects
of quantization and impatience separately, without
any entwinement. For quantization, we will rely on
a measure from the infinite-size system, that proves
a useful and accurate approximation for the finite
system. For impatience, we will consider an exact
model. Both elements are combined in a third step,
to yield an encompassing model of impatience, with
the quantization embedded within, as a single pa-
rameter, called the equivalent load.

3. Analysis

In this section, we subsequently analyze quan-
tization and impatience, for the case of an opti-
cal buffer in an M/M/1 setting, in continuous time
(here), and in discrete time (see Appendix). For the
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former time setting, closed-form performance mea-
sures have been obtained recently [13], so providing
an “ideal” reference when we assess the heuristic’s
accuracy.

3.1. Assumptions

We study a single outgoing channel, where con-
tention is resolved by means of a degenerate FDL
buffer, situated at the output port of the optical
switch. Each incoming packet is routed to the
shortest of these FDLs such that the packet will not
overlap on departure with packets from the other
FDLs. If such an FDL cannot be found, the packet
is lost. The chance for this to occur is the loss prob-
ability (LP), a key performance measure, which we
study in detail in this paper. While each packet
travels through its assigned delay line only once,
several packets may be traveling through the same
delay line at the same time (without overlapping,
however). Further, note that there is no formal
limitation on the length of packets that can be ac-
cepted.

In the continuous-time setting we assume, all
events take place in an asynchronous fashion, and
time-related variables like inter-arrival times and
packet sizes can take on any positive real value.
Packets are assumed to arrive one by one; upon
arrival, a packet is either accepted or lost. Num-
bering the packets in the order at which they ar-
rive with index k, we associate with packet k an
inter-arrival time Tk ∈ R

+, that captures the time
between the kth arrival and the next. The inter-
arrival times form a sequence of independent and
identically distributed (iid) random variables with
common cumulative distribution function T (x),

T (x) = Pr[Tk ≤ x] = 1 − e−λx , x ∈ R
+ , (1)

where λ ∈ R
+ denotes the arrival intensity such

that E[Tk] = 1/λ.
With each packet, we associate a packet size Bk.

The packet sizes also form a sequence of iid random
variables with a common cumulative distribution
function B(x) = Pr[Bk ≤ x], x ∈ R

+. The nature
of this distribution is also exponential, but now with
parameter µ, such that E[Bk] = 1/µ.

3.2. Quantization

To capture the effect of quantization, we can limit
ourselves to coming up with a good definition of
an equivalent load, denoted ρeq, that incorporates
the effects of quantization into an increased traffic

0 D iD jD� �

Bk

Tk

Wk Wk+1

ceiling operation

Figure 1: Illustration of the waiting time evolution.
In this example, Wk = iD, Wk+1 = jD, and j >
i > 0.

load for the system in general. Still using the same
numbering as above, we assume for now that the
quantized buffer has an infinite number of delay
lines, and therefore no impatience. This assump-
tion allows to derive a simple characterization of
the equivalent load that is independent of the ac-
tual number of delay lines.

As discussed in [9], the most efficient way to
tackle the analysis is by focusing on the evolution of
assigned waiting times. In the infinite FDL buffer
system, we associate waiting time Wk with the kth
packet, and define it as the time between the ac-
ceptance of packet k, and the start of its trans-
mission. We focus on the evolution of the waiting
time, as illustrated in Fig. 1 for a specific example
with Wk = i, Wk = j, and j > i > 0. Packet k has
packet size Bk and assigned waiting time Wk (equal
to iD in the figure). A period Tk later, packet k+1
requests for waiting time Wk+1 (jD in the figure).
In order not to collide with packet k, buffer control
assigns a waiting time to packet k +1 that is larger
than or equal to Wk + Bk − Tk, chosen from the
FDL set l · D (l = 0, 1, . . .). Inferring the waiting
time of packet k + 1 from this, irrespective of time
setting, we obtain

Wk+1 =

[

Wk + D ·

⌈

Bk − Tk

D

⌉]+

. (2)

Here, dxe denotes the well-known ceiling operation,
and [x]+ denotes the operation max(0,x).

As a system equation, (2) allows to define the
maximum load, on the one hand, and a simple def-
inition for an equivalent load, on the other hand.

To define a maximum load, one can easily see
that the drift of the random variable Wk in (2) is
brought about by the term

D ·

⌈

Bk − Tk

D

⌉

.
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It can be understood intuitively that the stability of
this infinite-size queueing system depends critically
on the drift of this component. For degenerate set-
tings, stability is studied in detail in [14], and yields
following stability condition,

E

[⌈

Bk − Tk

D

⌉]

< 0 . (3)

Notice that the negative drift condition (3) is valid
only for degenerate buffer structures. Its counter-
part for non-degenerate buffer structures is more
complicated, as discussed in [18].

In its turn, condition (3) corresponds to some
bound ρmax on the traffic load ρ, by definition given
by

ρ =
E[Bk]

E[Tk]
.

Here, ρ is thus given by λ/µ. The bound ρmax is
more restrictive than the classic bound on stability
(ρ < 1), and, as such,

ρ < ρmax ≤ 1 .

For the equivalent load, we consider an altered
definition of the load, that incorporates the effects
of quantization for any value of the traffic load (not
only the maximum load). To this end, we extend
the notion of drift, by proposing the following defi-
nition for the equivalent load,

ρeq = 1 +
E

[

D ·
⌈

Bk−Tk

D

⌉]

E[Tk]
, (4)

which is very similar to the expression of the classic
load, especially when the latter is written as

ρ = 1 +
E[Bk − Tk]

E[Tk]
.

Note however, that the proposed equivalent load
does not simply replace the classic load in general,
and should not be applied in this manner. For ex-
ample, while it is well-known for an M/G/1 clas-
sic system in a continuous-time setting that the
probability of finding an empty system upon ar-
rival equals 1− ρ, this is not the case for an optical
system: neither (1 − ρ) nor (1 − ρeq) provides an
answer, and the probability in question can only be
determined after full queueing analysis, as available
in [14]. In this regard, the definition of ρeq proposed
here is prone to discussion: ρ̂eq = 1 − Pr[Wk = 0]
can indeed provide an alternative definition for an

alternative equivalent load ρ̂eq, but leads to im-
practical expressions, whose form is highly sensi-
tive to the assumptions on the inter-arrival time
and packet size distributions. As such, the main
advantage of this definition of the equivalent load
is that it allows for a simple, closed-form definition,
that does not require analysis of the complete sys-
tem. For the current case of M/M/1 in continuous
time, also treated in [15], this expression is

ρeq = 1 +
λD

µ + λ

(

λ

1 − e−µD
+

µ

1 − e+λD

)

. (5)

For the case of a general GI/G/1 optical buffer,
an efficient formulation can be done in terms of
Laplace-Stieltjes transforms. A general expression
can be readily obtained from the expression avail-
able in [14], valid for discrete time, by applying a
limit procedure, similar as is done in [15] for an
optical M/G/1 setting.

Importantly, note that (5) is not consistent with
the definition of the equivalent load proposed in
[8, 10], and, later on, [11],

ρ

1 − µD
2 ρ

. (6)

In the infinite-size system, the maximum tolerable
load (and system stability) is defined exactly by
requiring ρeq < 1 in (5), but not with (6). This
may be a cause for the inaccuracy of the related
model [10] in some cases, such as the one displayed
in Fig. 4 (see below).

3.3. Impatience

To model impatience, we rely on the result ob-
tained by Barrer [16]. In [16], a classic continuous-
time M/M/1 model with impatience is considered.
In such a classic model, no effect of quantization
comes about, and any delay can be realized. As
such, it can be seen as a limit situation of an op-
tical buffer, with the granularity D considered in-
finitely small. As such, we come to study an optical
buffer that still is degenerate (FDLs have lengths
iD), that still has a finite maximum waiting time
(τ = ND), but that has infinitely small granular-
ity, D → 0, and an infinitely large number of FDLs,
N → ∞. Clearly, this system cannot actually be
implemented, but serves as an instructive point of
reference, that can be analyzed with the simple for-
mula presented in [16].

Barrer obtains a closed-form expression for the
loss probability (LP) of an arbitrary customer (or

5



granularity value D 0 0.2 0.5 1 2

N for τ = 4 ∞ 20 8 4 2
N for τ = 20 ∞ 100 40 20 10

Table 1: Parameter setting used for the comparison
presented in Fig. 2 and 3.

packet) in an M/M/1 non-optical system with im-
patience, namely

LP =











(1 − ρ)ρ

eµτ(1−ρ) − ρ2
, ρ 6= 1 ,

1

µτ + 2
, ρ = 1 ,

(7)

where we used the notations µ, ρ and λ as intro-
duced above.

3.4. Heuristic

As mentioned, Barrer’s result can be seen as a
limit situation of an optical buffer, with D infinitely
small. As such, it can be brought in tight relation
to an optical buffer’s performance with the same
impatience (or maximum delay) τ = N · D. The
heuristic consists in using the equivalent load ρeq to
incorporate the effect of quantization and using this
expression as load measure in the formula of Barrer.
The heuristic thus corresponds to a translation: the
original system parameters N and D are translated
into one parameter for quantization (ρeq , replacing
ρ) and one for impatience (τ , equal to N · D).

Before applying this approach for approximation
purposes, we first examine the relation between ex-
act results for optical buffers with impatience (with
results from [13]), and exact results for classic (non-
optical) systems (with results from the formula of
Barrer). A comparison is provided in Fig. 2 and
3. For D = 0 (formula of Barrer), the curve cor-
responds to a classic (non-optical) M/M/1 system
with deterministic impatience fixed to τ . Fixing the
maximum achievable amount of delay τ = N ·D to
4 µs (Fig. 2) and to 20 µs (Fig. 3), the granularity
values considered lead either to a finite amount of
FDLs, or to the limit of an infinite number of FDLs,
as displayed in Table 1. As a reference, all curves
carry a diamond (�) to indicate the load level at
which the equivalent load, ρeq , equals one.

In Fig. 2, with τ = 4 µs, it comes as no sur-
prise that decreasing granularity (more FDLs) leads
to significant performance improvement. Further,
it shows that, even with τ fixed, the granularity

0 0.5 1 1.5

10
−3

10
−2

10
−1

10
0

traffic load

loss probability

D=0

D=0.2

D=0.5

D=1

D=2

Figure 2: Loss probability vs. traffic load ρ. Com-
parison for impatience τ = 4 µs and granularity
D ∈ {0, 0.2, 0.5, 1, 2} µs.

has a paramount impact on performance, that re-
mains visible even for granularity values as small as
0.2. Also, the point where ρeq turns one (�) comes
about as a reference point: for 0 < ρ < ρeq, the LP
grows fast with the traffic load (as reflected in quasi-
linear curves on the log-lin scale applied), while for
ρ > ρeq, loss grows slowly, with an asymptote at
(ρ − 1)/ρ for ρ → ∞, with the effect of granularity
gradually fading. This role of reference point comes
about even more distinctly when we consider the
curves for a larger achievable delay, τ = 20 µs, in
Fig. 3. The latter curves further confirm the major
role of the granularity in performance evaluation,
since even the case of D = 0.2 significantly dif-
fers from the limiting case with D = 0. However,
for D even smaller, (D � µ−1, here, D < 0.1), the
curves nearly overlap, as should. As such, it is clear
that the impatience model without quantization is
indeed identical to the optical buffer model with
D → 0.

4. Numerical Comparison

To assess the accuracy of the proposed heuristic,
we first compare its output to that of the existing
approximate model proposed by Callegati [10], in
Fig. 4, displaying the loss probability as function
of the granularity D. Additionally, exact results
obtained from [13] are displayed. The figure is ob-
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0 0.5 1 1.5

10
−8

10
−4

10
0

traffic load

D=1

D=2

D=0.5

D=0.2

D=0

loss probability

Figure 3: Same as Fig. 2, but now for impatience
τ = 20 µs.

tained for mean packet size E[B] = µ−1 = 1 µs,
ρ = 0.5 (and thus, λ = 0.5) and buffer sizes N = 5
and N = 10. For this setting, the equivalent load
ρeq (given by (5), and thus, independent of N) in-
creases from 0.5 (for D = 0) to 1 (for D = 2.0101)
to 1.1193 (for D = 2.5). Comparing the heuris-
tic’s output to exact results, obviously, accuracy is
high over the whole range of D and for both val-
ues of N . Assessing Callegati’s model, two obser-
vations can be made. Firstly, the accuracy typi-
cally is lower than that of our heuristic. Secondly,
accuracy quickly decreases for higher values of D
(D > 2), whereas our heuristic remains accurate
over the whole range of D. Comparing the results of
the heuristic to those of Callegati’s model, the dis-
crepancy in accuracy may be (partially) attributed
to the difference in the definition of the equivalent
load, see (5) and (6).

In Fig. 5–7, the heuristic is again put to test, by
comparing its output to results from the exact anal-
ysis of [13], all for mean packet size µ−1 = 1 µs. In
Fig. 5, the LP is plotted as function of the granu-
larity, for four cases of the traffic load, and buffer
size N = 20. Apparently, the approximation al-
lows for accurate results, especially for high traffic
load, and not too large values for the granularity
(D ≤ µ−1). For variable packet sizes, this is exactly
the zone of practical relevance. More precisely, as
argued in [13], several reasons make it imperative
to set the granularity to about half the expected

0.5 1 1.5 2 2.5

10
−2

10
−1

10
0

granularity

 

 

Exact
Heuristic
Callegati

loss probability

N=5

N=10

Figure 4: Loss probability vs. granurity D. Com-
parison of heuristic results to exact results, and the
output of the approximate model by Callegati [10],
for mean packet size E[B] = 1 µs, load ρ = 0.5 and
buffer size N ∈ {5, 10}.

value of the packet size, D ≤ (2 ·µ)−1, in actual im-
plementations. Indeed, inspection of Fig. 5 shows
that the accuracy of our approximation is always
good for granularity values near D ≤ (2 · µ)−1.
Further, considering the optimal (minimal) value
of each curve separately, the heuristic apparently
underestimates the loss probability for lower traf-
fic load (e.g., ρ = 0.5), while the opposite holds
true for high traffic load (e.g., ρ = 0.8), for which
the heuristic (very) slightly overestimates the loss
probability.

To further assess the impact of traffic load, we
consider the plots of Fig. 6, where the loss proba-
bility is displayed as function of the load, for three
different values of the granularity, and N = 20.
This further confirms that the approximation works
best for small granularity, since the curves for D =
0.5 µs nearly coincide with the exact ones. For large
granularity, the approximation is most accurate for
high traffic load.

Finally, Fig. 7 illustrates the impact of the buffer
size N , with traffic load fixed to ρ = 0.8. As can
be seen, the accuracy is not influenced much by the
buffer size N , as the curves for N ∈ {20, 40, 60, 80}
all confirm the accuracy of the heuristic.
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0.5 1 1.5

10
−3

10
−2

10
−1

10
0

granularity

 

 
Exact
Heuristic

load=0.8

load=0.7

load=0.6

load=0.5

loss probability

Figure 5: Loss probability vs. granularity D. Com-
parison of heuristic results to exact results, for
buffer size N = 20, mean packet size E[B] = 1 µs
and load ρ ∈ {0.5, 0.6, 0.7, 0.8}.

5. Conclusions and Outlook

In this contribution, we presented a heuristic ap-
proach, allowing for simple performance analysis of
optical buffers. The heuristic combines two exist-
ing queueing models: one with quantization, and
one with impatience. As shown, for the considered
M/M/1 FDL optical buffer, the heuristic yields ac-
curate performance results. A key advantage of the
heuristic is that it translates the optical buffer prob-
lem into two well-known queueing problems.

While the focus of the current contribution was
solely on the M/M/1 optical buffer system, both
for continuous-time and discrete-time setting, other
cases would certainly deserve further exploration.
This approach may be the only alternative when
an exact approach becomes infeasible, for example
when multiple wavelengths are available for service.
Since accurate models for multi-server queues with
impatience are available in literature, the main feat
is to come up with a good modeling of quantization
in a multi-wavelength setting, including a charac-
terization of the maximum and the equivalent load
in that case. This problem is part of ongoing and
future work.
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Figure 6: Same as Fig. 5, but here with varying
traffic load instead of granularity, and with D ∈
{0.5, 1.0, 1.5} µs.
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Appendix: the discrete-time case

While the results of the body of this contribution
apply only to a continuous-time setting, this Ap-
pendix shows that minor changes suffice to make it
applicable to a discrete-time setting. As in the anal-
ysis for continuous time, we assume a degenerate
buffer setting, with line lengths equal to multiples
of the granularity D. We specifically focus on the
case of an M/M/1 optical buffer, now in discrete
time.

In a discrete-time setting, events take place syn-
chronously, at the beginning of time slots. There-
fore, all time-related variables and performance
measures are expressed as multiples of the slot
length, and for example inter-arrival times and
packet sizes take on only strictly positive integer
values, contained in N0. The slot length may be
arbitrary, and is therefore not mentioned explicitly
in this Appendix.

A first point of attention is that, in discrete
time, the relation between queues with quantization
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and queues with impatience is tighter than in the
continuous-time case. While in continuous time a
queue with impatience was obtainable from the op-
tical buffer by letting D → 0, it suffices to set D = 1
in an optical buffer model to obtain a discrete-time
model for queues with impatience. This has large
impact on the way in which impatience is modeled.
In the present context, it suffices to set D = 1 in all
discrete-time results of [14], to obtain exact results
for a general GI/G/1 system with deterministic im-
patience in discrete time. Contrasting this with re-
sults for continuous time, it is remarkable that even
the less general M/G/1 system in continuous time
of [19] requires numerical approximations in order
to obtain results. Apparently, assuming a discrete-
time setting somewhat simplifies the queueing prob-
lem with impatience.

Further, discrete-time is also the time setting
studied in [17], where a general impatience distri-
bution with upper bound r is assumed. This allows
to handle a deterministic impatience distribution,
by setting r = τ + 1. (The term +1 is to be intro-
duced to be compatible with the definition of r in
[17]).

As for the traffic assumptions, we adopt the same
indexing convention as for continuous time. For
the arrival process, we assume a Bernoulli arrival
process, which is the discrete-time counterpart of
the Poisson arrival process. The inter-arrival times,
a sequence of iid random variables, have a common

geometric distribution with cumulative distribution
function

T (n) = Pr[Tk ≤ n] = 1 − (1 − p)n , n ∈ N , (8)

with p ∈ [0, 1]. The latter probability is also the
parameter of the geometric distribution, and gives
the probability of having an arrival in an arbitrary
slot, relating to the mean value, as E[Tk] = 1/p.
The packet sizes again form a sequence of iid ran-
dom variables with geometric distribution, now
with common probability mass function b(n) =
Pr[Bk = n] and cumulative distribution function
B(n) = Pr[Bk ≤ n] = 1 − (1 − f)n, n ∈ N, with
f ∈ [0, 1], with mean value E[Bk] = 1/f . As in
continuous time, knowledge of the granularity D,
T (n) and B(n) suffices as input for the analysis in
discrete time.

For the modeling of impatience in discrete time,
we rely on Section 3 of [17], reporting the probabil-
ity that the age of the customer in service is zero
(there denoted π̂0) equals

π̂0 =
p̄rf(p − f)

p2f̄ r − p̄rf2
,

with p̄ = 1 − p, and f̄ = 1 − f . With now LP =
1 − (1 − π̂0)/ρ and r = N + 1, one easily obtains

LP =















(1 − ρ) · ρ

(p̄/f̄)N+1 − ρ2
, ρ 6= 1 ,

1

(N + 1)q/f̄ + 2
, ρ = 1 ,

(9)

with ρ = p/f . Note that this expression for the
LP is tightly related to the one of continuous time
(7). To see this, we rewrite the continuous-time
expression for ρ 6= 1 as

LP =
(1 − ρ)ρ

eµτe−λτ − ρ2
, ρ 6= 1 .

Now, a substitution similar to the one in continuous
time is needed to yield correspondence,

p̄ = e−λ , p = 1 − p̄ ; f̄ = e−µ , f = 1 − f̄ ,

completed with τ = N + 1, to indeed obtain (9).
The expression for ρ = p/f = 1 follows by taking
the limit for p → f . The link between discrete time
and continuous time is less intuitive at one point,
since τ is “virtually expanded” to N +1 in discrete
time, rather than N . The latter however forms no
stumbling block: it can be understood as (an indi-
rect) result of the difference in the minimum of the
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inter-arrival times in discrete time and continuous
time, 1 and 0, respectively.

Together with the expression for ρeq in discrete
time, whose derivation is straightforward, (9) can
be used for an approximate modeling of optical
buffers. This is not treated further here, since the
accuracy and the obtained associated figures are
very similar to the continuous-time case.
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