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ABSTRACT

In plants, male reproductive development is extremely sen-
sitive to adverse climatic environments and (a)biotic stress.
Upon exposure to stress, male gametophytic organs often
show morphological, structural and metabolic alterations
that typically lead to meiotic defects or premature spore
abortion and male reproductive sterility. Depending on the
type of stress involved (e.g. heat, cold, drought) and the dura-
tion of stress exposure, the underlying cellular defect is highly
variable and either involves cytoskeletal alterations, tapetal
irregularities, altered sugar utilization, aberrations in auxin
metabolism, accumulation of reactive oxygen species (ROS;
oxidative stress) or the ectopic induction of programmed
cell death (PCD). In this review, we present the critically
stress-sensitive stages of male sporogenesis (meiosis) and
male gametogenesis (microspore development), and discuss
the corresponding biological processes involved and the
resulting alterations in male reproduction. In addition, this
review also provides insights into the molecular and/or hor-
monal regulation of the environmental stress sensitivity of
male reproduction and outlines putative interaction(s)
between the different processes involved.
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esis; male sterility; meiosis; sugar metabolism; tapetum.

Abbreviations: ABA, abscisic acid; ATP, adenosine triphos-
phate; CO, crossover; DSB, double-strand break; ERAD,
ER-associated degradation; GA, gibberellic acid; IAA,
indole acetic acid; INV, invertase; MHR, meiotic homologous
recombination; MI, meiosis I; MII, meiosis II; PCD, pro-
grammed cell death; PMC, pollen mother cell; PMI, pollen
mitosis I; PMII, pollen mitosis II; RER, rough endoplasmic
reticulum; RMA, radial microtubule array; ROS, reactive
oxygen species; SDR, second division restitution; TGMS,
thermosensitive genic male sterile; UPR, unfolded protein
response.

INTRODUCTION

In plants, the male reproductive programme, including both
microsporogenesis and microgametogenesis, is extremely sen-
sitive to adverse environmental conditions.Indeed,for several

plant species, abiotic stresses, such as low and high tempera-
tures, salt stress, osmotic shock and water deficit, specifically
affect male gamete development, typically resulting in high
levels of microspore abortion and associated induction of
male sterility (Downes & Marshall 1971; Thakur et al. 2010).
In a similar way, biotic stress conditions may also affect male
reproductive development, thereby conferring substantial
reductions in male fertility. Although occasionally used in
hybrid breeding (Luo, Qiu & Li 1992; Rerkasem & Jamjod
1997; Li, Yang & Zhu 2007), stress-induced male sterility
generally has a negative effect on crop yield and performance,
especially in cereals and other crops for which grains are an
important yield factor (e.g. breeding populations) (Dolferus,
Ji & Richards 2011). Hence, in a global context of instable
climate conditions and local weather extremes, the high sen-
sitivity of the male reproductive process to environmental
stresses may pose great problems in consolidating the world
food yield and feed supply (Parry et al. 1999). Due to its
socio-economic impact, this issue is one of the most critical
points in present-day agronomy, as alleged in recent review
papers (Hedhly, Hormaza & Herrero 2009; Singh, Prasad &
Reddy 2013).

Stress-induced losses in seed yield can be conferred by
different physiological and phenological alterations, includ-
ing change in flowering initiation, altered pollinator–flower
interaction, reduced pollen germination, altered embryo
development and reduced pistil acceptance (Cleland et al.
2007; Zinn, Tunc-Ozdemir & Harper 2010). However, in
plant reproduction and seed formation, the process of male
gametogenesis is generally considered the main centre of
stress vulnerability. Therefore, in this review, we will focus on
the physiological and biological determinants that underlie
the stress sensitivity and responsiveness of plant male game-
togenesis, covering both meiosis, tapetal behaviour, micro-
spore development and pollen maturation. We thereby
mainly focus on abiotic stress conditions, such as heat, cold
and drought, but also report on biotic stress responses, for
example, pathogen infection. In addition to the physiological
response, this review also provides insights into the molecu-
lar mechanisms underlying stress-induced male reproductive
alterations and outlines new routes for the design of potential
applications to alleviate associated male sterility. The impact
of stress on later processes in plant reproduction, such as
pollen germination, fertilization and embryo formation, and
the stress sensitivity of female gametogenesis has beenCorrespondence: D. Geelen. e-mail: danny.geelen@ugent.be
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addressed extensively in other reviews (Hedhly et al. 2009;
Zinn et al. 2010) and is therefore not in the scope of this
paper.

IMPACT OF ENVIRONMENTAL STRESS ON
MEIOTIC CELL DIVISION

Influence of environmental stress on
meiotic recombination

In higher plants, like in all sexual eukaryotic species, the
process of male spore formation starts with a specialized cell
division, namely meiosis. The meiotic cell division is typically
constituted by a single round of DNA replication followed by
two rounds of chromosome segregation (MI and MII)
(Villeneuve & Hillers 2001), and serves to halve the genomic
DNA content and to reshuffle (recombination) the genetic
variation obtained by both parental genomes. As an essential
part of meiotic cell division, the process of crossover (CO)
formation and recombination is tightly controlled and
molecularly regulated by a complex network of interacting
factors (Harrison, Alvey & Henderson 2010). However, in
several organisms, including plants, the frequency of meiotic
CO formation is not only determined genetically but is also
under the influence of environmental conditions (Baker et al.
1976). Indeed, in several plant species, exposure to environ-
mental stress, for example, both biotic and abiotic, has been
found to increase the overall rate of recombination (Wagner
& Yanowitz 2005). In maize, for example, both low tempera-
ture and water deficit significantly enhance the frequency of
meiotic CO formation (Verde 2003). Similarly, in tobacco,
pathogenic infection with the tobacco mosaic virus (TMV)
not only enhances somatic recombination but also signifi-
cantly increases the frequency of meiotic homologous recom-
bination (MHR) (Kovalchuk et al. 2003). In addition, studies
in Arabidopsis revealed a positive correlation between male
meiotic CO formation and temperature environment (in the
19–28 °C range) (Francis et al. 2007), similar as has been
observed in other plants (Hordeum vulgare) and animals
(Drosophila melanogaster and Caenorhabditis elegans)
(Stern 1926; Powell & Nilan 1963; Grell 1966; Rose & Baillie
1979; Lim, Stine & Yanowitz 2008).

The sensitivity of meiotic recombination to environmental
stress may represent a regulatory connection between stress
sensing and CO control, or could be attributed to a direct
mechanical effect in the process of CO formation. The
molecular mechanism underlying stress-enhanced MHR is
yet poorly understood; however, based on recent findings
in somatic homologous recombination (HR), speculations
can be made. Indeed, in plants, like in other organisms, an
increased frequency of somatic HR was observed upon expo-
sure to various environmental stresses, including UV, ionizing
radiation (Lebel et al. 1993), heat shock (50 °C) (Lebel et al.
1993), salt stress (Boyko et al. 2006), pathogen infection
(Lucht et al. 2002; Kovalchuk et al. 2003), heavy metals
(Rahavi et al. 2011) and water stress (Yao & Kovalchuk 2011).
Preliminary studies hereby provided evidence for the involve-
ment of abscisic acid (ABA) as a putative physiological

stress-responsive signal, modulating HR in response to envi-
ronmental stress. Indeed, studies in tobacco revealed that
pathogen-driven increases in HR (TMV and oilseed rape
mosaic virus) not only occur in infected but also in non-
infected tissues, including meiocytes, indicating the existence
of a systemic mobile signal that promotes somatic and
meiotic HR in response to biotic stress (Kovalchuk et al.
2003). The enhanced somatic HR frequency, together with
the increased ABA sensitivity in the Arabidopsis abo4-1
(ABA overly sensitive) mutant, which has a mutation in
POL2a/TILTED1 (TIL1), suggests a close link between
ABA and HR regulation (Yin et al. 2009). Moreover,
because exogenous application of ABA increases somatic
HR in wild-type Arabidopsis, ABA has been found to serve
as a mobile signal that promotes HR in response to plant
stress (Yin et al. 2009). In search for a putative control
mechanism, gene expression studies revealed that ABA posi-
tively regulates the expression of MEIOTIC RECOMBI-
NATION 11 (MRE11), a member of the MRN complex
(Mre11, Rad50 and Nbs1) that plays a central role in early
strand break repair (Borde 2007; Buis et al. 2008) and in
meiotic synapsis and cross-over formation (Cherry et al.
2007). More specifically, MRE11 is an exo-/endonuclease
that mediates 5′ end single-strand resection and hence
enables DNA break repair through homologous recombina-
tion (Bressan, Baxter & Petrini 1999).The enhanced MRE11
transcript level could therefore provide the basis for the pro-
motive role of ABA in HR. Whether this ABA-enhanced
expression of MRE11 also leads to an increased level of
meiotic crossing-over is questionable as it is generally
assumed that extensive DNA resection favours gene conver-
sion (e.g. synthesis-dependent strand annealing) at the
expense of crossing-over. Indeed, in reactions with short
regions of homology, resection beyond the homologous
sequence typically impairs proper Holliday junction forma-
tion and impedes subsequent events of crossing-over (Prado
& Aguilera 2003). Alternatively, ABA was also found to
down-regulate the expression of RAD51 – a homolog of
bacterial RecA recombinase that is involved in both somatic
and meiotic double-strand break (DSB) repair (Shinohara,
Ogawa & Ogawa 1992; Doutriaux et al. 1998). Upon DNA
strand break formation and processing, RAD51 binds to
the 3′ end resected end, forming a helical nucleoprotein fila-
ment that recognizes homologous DNA sequences (sister
chromatid or homologous chromosome) and hence gener-
ates homo- or heteroduplexes as the basis for mitotic
DNA repair or meiotic CO formation, respectively (Forget
& Kowalczykowski 2010; Osman et al. 2011). Studies using
AtRAD51 knockdown mutants revealed that a reduced
level of RAD51 causes alterations in meiotic prophase I with
partial synapsis, the occurrence of chromosome fragmenta-
tion and multivalent chromosome associations (Pradillo
et al. 2011). More importantly, depletion of RAD51 causes
the formation of univalents, indicating that ABA-induced
reductions in RAD51 transcript level would reduce MHR
and CO formation rather than enhance it. Based on this
reasoning, the promotive effect of ABA on meiotic recom-
bination is thought not to act through RAD51.
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Although the underlying molecular target is as yet
unknown, previous mentioned findings support the hypoth-
esis that ABA constitutes a mobile signal that regulates both
mitotic and meiotic HR in response to environmental stress.
Whether this regulatory mechanism operates through tran-
scriptional control of genes involved in (meiotic) DSB repair
and CO formation is still an issue of debate and needs to be
addressed in future studies.

Alternatively to stress-induced ABA signalling,
environment-dependent alterations in MHR may also
result from direct changes in the expression of meiosis-
related genes. In barley (H. vulgare), for example, high tem-
peratures (30 °C day and 25 °C night) induce a premature
up-regulation of the meiosis-specific ASY1 (ASYNAPSIS1)
gene in an early stage of pollen mother cell (PMC) develop-
ment, leading to a premature initiation of meiotic prophase I
(Oshino et al. 2007). ASY1 is a chromatin-associated protein
that is required for the morphogenesis of the chromosomal
axis and the stability of the synaptonemal complex in meiosis
I (MI) (Armstrong et al. 2002). In addition, ASY1 regulates
meiotic CO establishment by coordinating the activity of the
DMC1 RecA homolog in favour of interhomolog sequence
exchange (Sanchez-Moran et al. 2007; Kurzbauer et al. 2012).
Premature up-regulation of ASY1 upon exposure to stress
(e.g. heat) may therefore enhance MHR and hence constitute
the molecular basis for stress-enhanced meiotic recombina-
tion. In contrast, studies in Allium ursinum and Locusta
migratoria revealed that extreme temperatures (35 and
40 °C, respectively) interfere with meiotic chromosome
mechanics, such as synapsis, and hence decrease CO fre-
quency (Buss & Henderson 1988; Loidl 1989). These findings
suggest that stress-dependent changes in MHR are transcrip-
tionally controlled within certain environmental limits, but
largely suffer from structural aberrations when thresholds
are surpassed.

A more comprehensive regulatory mechanism underlying
stress-enhanced MHR comes from yeast. In yeast, the fre-
quency of MHR is constituted by a specific amount of basal
recombination events, essential to maintain proper meiotic
chromosome segregation, and a variable number of addi-
tional CO events occurring at meiotic hotspots [e.g. CRE-
like (M26) DNA sites]. Typically, upon exposure to stress
(osmotic, heat or oxidative stress), an increased level of
recombination is observed at the meiotic hotspots (Fox &
Smith 1998; Koren, Ben-Aroya & Kupiec 2002). In yeast, this
stress-induced up-regulation of MHR is controlled by the
conserved, stress-responsive p-38 family kinase Spc1 (Sty1,
Phh1), which activates Rec12(Spo11)-dependent recombina-
tion at meiotic hotspots through a phosphorylation-
independent interaction with the Atf1 (Mts1, Gad7) ATF/
CREB transcription factor (Kon et al. 1998; Gao, Davidson &
Wahls 2009).As the Atf1 recombination–activation domain is
well conserved among other eukaryotes, including plants
(Gao, Davidson & Wahls 2008), this mechanism could con-
stitute a universal pathway for stress-induced increases in
MHR. However, in plants, the putative role of SPO11 kinases
and ATF1 homologs in stress-dependent meiotic recombina-
tion has not been studied yet.

Environmental stress affects meiotic
cell division

Besides the effects on meiotic prophase I, recent studies have
demonstrated that environmental stress, and more specifi-
cally temperature stress, has also an impact on the subse-
quent processes in meiotic cell division.

In rose (Rosa), for example, short periods of heat stress
(e.g. 48 h at 36 °C) lead to specific alterations in male meiotic
chromosome behaviour, resulting in meiotically restituted
dyads and triads that contain diploid gametes instead of the
normal haploid ones (Pecrix et al. 2011). Cytological exami-
nation revealed that the restituted products originate from
the ectopic induction of parallel and tripolar spindles at met-
aphase II. In wild-type male meiosis, chromosome segrega-
tion in meiosis II (MII) is spatially organized by two
physically separated, perpendicularly orientated spindles,
forming the structural basis for the tetrahedral arrangement
of haploid nuclei at the end of MII (Fig. 1). Under heat stress,
alterations in MII spindle orientation lead to bipolar or tripo-
lar configurations that physically (re-)join segregated chro-
matids in restituted MII dyads or triads (Fig. 1). Based on
their altered orientation, these figures are termed parallel
(ps) and tripolar (tps) spindles, respectively. In the plant
kingdom, alterations in MII spindle orientation are consid-
ered the predominant mechanism underlying 2n gamete for-
mation and sexual polyploidization. This is exemplified by
the large number of plant species (e.g. alfalfa, red clover,
sweet potato) that generate 2n gametes through this mecha-
nism (Vorsa & Bingham 1979; Parrott & Smith 1984;
Tavoletti, Mariani & Veronesi 1991; Lopez-Lavalle & Orjeda
2002).Although in some studies a genetic factor was found to
underlie ps/tps formation (Mok & Peloquin 1975; Iwanaga &
Peloquin 1982; d’Erfurth et al. 2008; De Storme & Geelen
2011), the study by Pecrix et al. (2011) demonstrated that
environmental factors, particularly heat stress, also play an
important role in ps-induced 2n gamete formation.

Heat-induced alterations in MII spindle orientation may be
attributed to direct mechanical aberrations in the dividing
meiocyte. In plants, little is known about the structural ele-
ments that define male meiocyte polarity. In yeast and animal
oocytes, spindle polarity in MI and MII is not established
by centrosomes, like in somatic cells, but instead is constituted
by the dynamic localization and polar allocation of g-tubulin
as microtubule-organizing centre, often assisted by other
polarity proteins (Tavosanis et al. 1997; Lee, Miyano & Moor
2000; Combelles & Albertini 2001; Jang, Rahman & McKim
2005). In these systems, the negative impact of temperature
stress on g- and b-tubulin stability has been documented
repeatedly (Ju et al. 2005; Rienzi et al. 2005). In plants, a
similar g-tubulin sorting mechanism is thought to control male
meiocyte polarity (Shimamura et al. 2004; Brown & Lemmon
2008); however, structural determinants of MII spindle orien-
tation have not been identified yet, impeding the assessment
of the impact of temperature and other stresses.

Alternatively, heat-induced alterations in MII spindle
polarity may be caused by regulatory elements that link tem-
perature sensing and MII meiocyte polarity. Genetic studies
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Figure 1. Schematic overview of male meiosis in simultaneous type of PMCs and cytological alterations imposed by temperature stress, as
observed in cold-stressed Arabidopsis (De Storme et al., 2012) and heat-stressed rose meiocytes (Pecrix et al., 2011).
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in Arabidopsis have identified three proteins that regulate
the orientation of the MII spindle apparatus in male
meiosis, namely Arabidopsis FORMIN14 (AFH14), JASON
(JAS) and Arabidopsis thaliana PARALLEL SPINDLES1
(AtPS1). For all three proteins, respective loss-of-function
mutants show the formation of diploid male gametes through
the ectopic induction of parallel and/or tripolar spindles in
MII (d’Erfurth et al. 2008; Li et al. 2010; De Storme & Geelen
2011). Hence, based on the phenotypic similarity with atps1,
jason and afh14, heat stress-induced alterations in MII
spindle organization in rose male meiosis could be attributed
to an altered functionality of one of the corresponding pro-
teins. However, because little is known about the impact of
temperature or other stresses on the transcription profile and
post-transcriptional processing of these genes, more exten-
sive studies are needed to test this hypothesis.

Similar to heat stress, short periods of cold also have a
restitutional effect on the meiotic cell cycle, but the underly-
ing cellular mechanism strongly differs from the MII spindle
alterations observed under high-temperature stress. Indeed,
a recent study in Arabidopsis demonstrated that short
periods of cold (1–40 h at 4–5 °C) do not interfere with
meiotic chromosome segregation, but instead significantly
alter post-meiotic cell plate formation and cell wall establish-
ment (De Storme, Copenhaver & Geelen 2012). As a result,
cold-stressed PMCs generate syncytial microspores that
contain two or more haploid nuclei (Fig. 1). These nuclei
subsequently fuse before pollen mitosis I (PMI) to generate
normally configured diploid and polyploid pollen. Cytologi-
cal examination revealed that cold stress specifically affects
the internuclear radial microtubule arrays (RMAs), for
example, phragmoplast-like structures that are required for
de novo cell wall formation, at telophase II and interferes
with the subcellular localization of organelles and the depo-
sition of callose at developing MII cell plates, indicating that
the process of meiotic cytokinesis is extremely sensitive to
low temperatures (Fig. 1; indicated by blue box). Strikingly,
the study also revealed that cold stress-induced dyads and
triads predominantly contain highly homozygous second
division restitution (SDR)-type 2n pollen (genetically corre-
sponding to a loss of MII), indicating that cold-induced
defects in meiotic cell plate formation are not random, but
instead more frequently occur between chromosome sets
separated in MII and less between MI-separated chromo-
some groups (De Storme et al. 2012). At one side, this could
mean that the establishment of the internuclear organelle
band at the end of MI is less sensitive to adverse tempera-
tures and guarantees proper cell wall formation, even under
destabilizing conditions. On the other hand, it could be
assumed that lower temperature environments specifically
affect microtubular dynamics (e.g. processing of spindle into
RMA) between chromosome sets that have separated
in MII.

Similarly, in a thermosensitive genic male sterile (TGMS)
wheat variant, low temperatures specifically affect the forma-
tion of the MT phragmoplast at the end of MI, leading to
alterations in meiotic cell plate establishment and eventually
causing PMC abortion (Tang et al. 2011). Transcriptome

analysis hereby revealed that cold stress affects the expres-
sion of key actin regulators and several other genes required
for actin dynamics (e.g. actin-depolymerisation factor, profil-
ing, formin, villin, LIM domain protein and Arp2/3), suggest-
ing that cold-induced defects in MI cell plate formation
originate from alterations in actin cytoskeletal organization.
In support of this, Xu et al. (2013) found that cold-stressed
TGMS wheat PMCs exhibit structural aberrations in the MI
actin phragmoplast array. Hence, based on the intimate reac-
tion between microtubuli and microfilaments in cell plate
orientation and establishment, it is now thought that tran-
scriptional changes in actin dynamics form the primary cause
for cold-induced alterations in meiotic cell plate formation.
Moreover, because formins are transcriptionally repressed
by cold and loss of Arabidopsis FORMIN14 (AFH14) causes
defects in meiotic RMA formation, formins are speculated to
play a prominent role in the cold sensitivity of meiotic cell
plate formation in plants. This is in agreement with the pro-
posed role of formins as important players in the signal-
transduction cascade that regulates actin cytoskeletal
dynamics in response to developmental and environmental
stimuli (Deeks, Hussey & Davies 2002). However, because
no direct link between formins and cold-defected meiotic
cytokinesis has been demonstrated, more detailed analyses
are needed to determine their role in PMC stress sensitivity.

In Arabidopsis, the formation of RMAs at the end of
male meiosis is regulated by a distinct MAPK signalling
pathway. More specifically,TES/STUD/AtNACK2,AtANP3,
AtMKK6/ANQ1 and AtMPK4 act together in a cascade that
modulates the downstream activity of MT binding proteins
(e.g. MAP65s) (Soyano et al. 2003; Takahashi et al. 2010).
Functional loss of one of these proteins leads to a complete
or partial loss of male cytokinesis, generating restituted meio-
cytes that contain binuclear and polynuclear microspores
(Melissa Spielman et al. 1997; Kosetsu et al. 2010). Based on
the phenotypic similarity with cold-induced defects in Arabi-
dopsis male meiosis, a putative role for TES or one of the
downstream MAPK signalling components in the cold stress
sensitivity of meiotic RMA formation is hypothesized. Our
own work showed that cold-induced defects in post-meiotic
cytokinesis are not mediated by the cold-responsive, MPK4-
phosphorylating kinase MKK2 and that expression of main
MAPK components is not altered upon cold stress. However,
as no extensive molecular studies have been performed,
more spatial and temporal analyses are needed to elucidate
the molecular mechanism underlying cold-induced loss of
(post-)meiotic cell plate formation.

In conclusion, it could be stated that sensitivity of develop-
ing meiocytes to environmental stress, particularly tempera-
ture stress, is centred on MT–MF cytoskeletal dynamics, with
high and low temperatures specifically affecting MII spindle
orientation and cytokinetic RMA formation, respectively
(Fig. 1).Although these defects may occasionally lead to PMC
lethality, in most cases, they induce a restitution of male
meiosis, generating diploid and polyploid pollen grains that
enable events of sexual polyploidization. Stress-induced
alterations in meiotic cytoskeletal biogenesis and dynamics
may therefore form a developmental mechanism to modulate
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the genomic composition, load and stability (e.g. induction of
polyploidy) of plants in response to adverse climatic condi-
tions, forming a basis for an enhanced evolutionary adaptive-
ness and competitiveness.

EFFECT OF ABIOTIC STRESS ON
MICROSPORE DEVELOPMENT

The early microspore stage is critically sensitive
to abiotic stress

Abiotic stress during the reproductive process of microgame-
togenesis generally leads to an abortion of microspore devel-
opment and the associated induction of male sterility. In most
species, the critical male gametophytic stage that is most
sensitive to abiotic stress often coincides with the meiosis-to-
microspore transition stage (Bingham 1966; Saini & Aspinall
1981; Namuco & Otoole 1986). In Arabidopsis, for example,
short periods of heat stress (4 h, 42 °C at 85% humidity)
specifically affect pollen development at flower stage 9, for
example, when PMCs finalize meiosis and enter into game-
togenesis (Kim, Hong & Lee 2001). In rice, male gameto-
phyte development is most sensitive to chilling (2–4 d, 12 °C)
during the meiotic tetrad stage and in subsequent transition
to the microspore phase (Ito et al. 1970; Satake & Hayase
1970; Oliver et al. 2005). In addition, the detrimental impact
of heat stress (39/30 °C day/night, 2–4 d) on rice pollen per-
formance is attributed to physiological defects specifically
occurring in early microsporogenesis (Endo et al. 2009). Simi-
larly, in cowpea (Vigna unguiculata) and tomato (Lycopersi-
con esculentum), the critical temperature-sensitive phase of

male sporogenesis occurs 7–9 and 8–13 d, respectively, before
anthesis, closely corresponding to the meiotic–microspore
transition phase (Ahmed, Hall & Demason 1992; Sato, Peet
& Thomas 2002). Thus, although also other stages in male
reproduction (e.g. pollen release, adhesion, pollen tube for-
mation) occasionally show a negative response on abiotic
stress (Shivanna, Linskens & Cresti 1991), the early micro-
spore stage appears to be the most critical developmental
stage underlying abiotic stress sensitivity.

Defects in tapetal development form the basis
for abiotic stress-induced male sterility

In several plant species, stress-induced spore abortion and
male sterility is associated with alterations in tapetal develop-
ment and occasional defects in the surrounding cell layers,
such as the middle layer and the endothecium (Parish et al.
2012). As an essential part of the male sporangium (e.g.
anthers), the tapetum is constituted by a single layer of
endopolyploid cells that surrounds the locules of developing
microspores and pollen grains (Ma 2005). During normal
sporogenesis, the tapetum is strongly metabolically active and
serves as a nutritive source by providing essential elements
and energy to the neighbouring microspores (Pacini, Franchi
& Hesse 1985;Scott, Spielman & Dickinson 2004).In addition,
as a secretory cell layer, the tapetum provides enzymes for the
release of microspores out of the meiotic tetrad (Goldberg,
Beals & Sanders 1993) and supplies cell wall components for
the construction of the pollen exine layer, such as sporopol-
lenin (Fig. 2) (Shivanna & Johri 1985; Ariizumi & Toriyama
2011). In a later stage of male gametogenesis, at PMI, the

Figure 2. Multiple functions of the tapetum in male sporogenesis and gametogenesis, and the correlated impact of environmental stress on
tapetal cell disintegration.
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tapetal cells undergo a programmed cell death (PCD) and
subsequently disintegrate (Papini, Mosti & Brighigna 1999;
Wu & Cheung 2000; Varnier et al. 2005; Parish & Li 2010).
This programmed tapetum-specific PCD and disintegration
is essential for proper microspore development and pollen
maturation and fertility, as indicated by several reports that
show an induction of male sterility upon premature or delayed
degradation of the tapetum (e.g. in rice ms1, tdr and ptc1
mutants) (Ku et al. 2003;Li et al. 2006,2011;Vizcay-Barrena &
Wilson 2006).

Upon exposure to heat stress, anthers typically show a
premature disappearance of the tapetal cell layer together
with severe alterations in microspore development (Fig. 2).
In wheat, for example, short periods of high temperature (3 d
at 30 °C) lead to a premature degeneration of the tapetum
and the associated invasion of the periplasmodial cell layers
at meiosis (Saini, Sedgley & Aspinall 1984). Due to loss of
nutritive supply, these tapetal defects strongly affect the pro-
gression of male gametogenesis and preclude microspores to
complete PMI (Fig. 2). Similarly, in barley, high temperature-
induced male sterility (at 30/25 °C day/night, 1–5 d) is asso-
ciated with a premature degeneration of the tapetal cell layer
(Abiko et al. 2005). Cytological analysis hereby demon-
strated that the tapetum and the outer three anther wall
layers (epidermis, endothecium and middle layer) display
severe subcellular alterations, such as increased vacuolization
(hypertrophy), chloroplast overdevelopment and excessive
mitochondrial swelling (Oshino et al. 2007). In addition, high
temperatures cause a severe transcriptional inhibition and
hence drastically reduce the dividing capacity of the tapetum
and the surrounding anther layers. Similarly, in TGMS rice,
high temperatures (32/26 °C day/night) induce a premature
degradation of the tapetum at the early uninuclear micro-
spore stage, with typical apoptotic symptoms such as mem-
brane blebbing, ruptured vacuoles, irregularly shaped
mitochondria and cytoplasmic degradation (Ku et al. 2003).

Under cold stress conditions, the tapetum does not show a
premature abortion but instead abnormally expands and per-
sists up until the mature pollen stage (Fig. 2) (Oda et al.
2010). In rice, ectopic persistence of the tapetal cell layer is
thought to be the major factor underlying cold-induced
pollen abortion and male sterility (at 19 °C), similarly as
observed in the tapetal PCD-defective tdr mutant (Li et al.
2006). Tapetal rice cells that have been exposed to chilling
(22/12 °C day/night for 4 d) show morphological aberrations,
such as abnormal vacuolization, reduced dividing capacity
and hypertrophy (Mamun et al. 2006). Moreover, the ectopi-
cally persisting tapetal cells exhibit an increased peroxidase
activity and a substantial accumulation of reducing sub-
stances, suggesting a putative involvement of oxidative stress
responses.

Developmental abnormalities in anthers exposed to water
stress have been extensively studied in wheat. Similar to tem-
perature stress, short periods of water deficit (4 d without
watering) during meiosis do not affect the meiotic cell divi-
sion, but instead alter subsequent microspore development,
typically showing premature spore degeneration and loss of
reproductive cell orientation (Lalonde, Beebe & Saini 1997).

At the same moment, drought-stressed tapetal cells (leaf
water potential -2.54 MPa) display an abnormal vacuoliza-
tion, and microspores ectopically separate from the inner
anther wall (Saini et al. 1984). Moreover, in contrast to the
normal tapetum degradation at the mid-vacuolar microspore
stage (2–3 d post-meiosis), drought-stressed tapetal cells
ectopically persist up to 8 d after meiosis (Fig. 2). Because
tapetal degeneration provides nutrients and other signalling
components essential for microspore development, its ectopic
persistence is suggested to be the primary cause for cellular
defects in pollen maturation. Together with tapetum-derived
nutrition, maintenance of microspore polarity is also essential
for proper microspore development (Christensen & Horner
1974). Hence, defects in microspore polarity may also con-
stitute the basis for water stress-associated male sterility.
However, as spore orientation is typically maintained by the
physical contact with the surrounding tapetal cell layer,
altered microspore polarity in water-stressed anthers could be
attributed to alterations in tapetum development.

Besides water deficit, nutrient deficiency has also been
found to lead to male sterility through defects in tapetal
development. In copper-deficient barley (H. vulgare L.), for
example, microscopic analysis revealed that the tapetum
becomes highly expanded at the uninuclear microspore stage
and invades into the anther locule, severely hindering proper
microspore development (Jewell, Murray & Alloway 1988).
In addition, major irregularities in microspore exine deposi-
tion, tapetal endoploidy and organelle composition were
observed, indicating that copper-deprived male sterility in
barley is caused by defects in tapetal development.

Tapetal RER as a centre of male gametophytic
stress sensitivity

In search for the cellular process underlying stress-induced
tapetal alterations, Ku et al. (2003) found that heat-stressed
tapetal cells in TGMS rice (32/26 °C day/night) display a
precocious fragmentation of DNA, suggesting that male ste-
rility is caused by a premature induction of tapetal PCD. In
agreement with this, heat-induced PCD has also been fre-
quently documented in somatic cells. Indeed, in Arabidopsis
vegetative cells, cultured tobacco cells and many other plant
cell types, short periods of high temperature typically induce
PCD and consequently cause an arrest or abortion of the
mitotic cell cycle (Fan & Xing 2004; Vacca et al. 2004, 2007;
Egorova, Lo & Dai 2011). Similarly, pollen sterility in heat-
stressed snap bean (Phaseolus vulgaris L.; 28.6 °C versus
26.2 °C) is also caused by the precocious induction of tapetal
cell death (Ahmed et al. 1992; Suzuki et al. 2001). Cytohisto-
logical studies hereby demonstrated that the tapetum dis-
plays apoptotic alterations (e.g. vacuolization) starting from
the meiotic tetrad stage and prematurely disintegrates in the
early vacuolated microspore stage (before PMI). In addition,
Suzuki et al. (2001) found that heat-stressed tapetal cells
exhibit clear changes in the ultrastructural morphology of the
rough endoplasmic reticulum (RER), displaying linear, wavy,
looped or circular structures instead of the normally stacked
ones (Fig. 2). A similar defect in tapetal ER was also
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observed under low-temperature stress. Indeed, in cold-
stressed rice (continuous 16–20 °C), the tapetum does not
show any structural change in any organelle, except for the
ER, which typically displays altered configurations together
with the abundant presence of oval-shaped ER-derived com-
partments (Gothandam, Kim & Chung 2007).

In plants, like in all other eukaryotic cell systems, the sub-
cellular ER mediates post-translationally processing of newly
formed secreted and membrane-specific polypeptides (e.g.
glycosylation and protein folding). In addition, the ER
also operates as a quality control system that eliminates
misfolded proteins through the ER-associated degradation
(ERAD) machinery (Hurtley & Helenius 1989; Helenius
et al. 1993). Under environmental stress, the ER typically
accumulates a high abundance of improperly folded proteins,
which are then either directed through the protein folding
process or degraded through ERAD (Liu & Howell 2010).
When the ER processing machinery reaches its maximum
capacity limit, an auto recovery system is automatically
induced, for example, the unfolded protein response (UPR)
(Malhotra & Kaufman 2007; Liu & Howell 2010). In the UPR
reaction, both the protein folding and the ERAD machinery
are transcriptionally up-regulated to enhance processing
capacity (Martinez & Chrispeels 2003; Kamauchi et al. 2005).
However, under conditions of severe stress or prolonged ER
dysfunctioning, the UPR may also induce an apoptotic PCD
response (Xu, Bailly-Maitre & Reed 2005; Liu & Howell
2010). Hence, excessive overload of ERAD and the UPR-
associated induction of PCD in early tapetal cells may con-
stitute an important mechanism underlying stress-induced
male sterility in plants (Fig. 2).

Besides protein processing, tapetal RER also plays an
important role in the degradation of the callosic cell wall that
surrounds developing microspores (Fei & Sawhney 1999),
most presumably through the synthesis and secretion of
callose-degrading enzymes (b-1,3-glucanases) (Stieglitz 1977;
Bucciaglia & Smith 1994; Wu & Yang 2005). Indeed, a recent
study in maize demonstrated that the transport of b-1,3-
glucanase from the tapetal cytoplasm to the wall facing the
anther locule is mediated by ER-derived vesicles (Li et al.
2012). Studies in Petunia, Arabidopsis and other plants have
demonstrated that callose processing is highly essential for
spore development as it constitutes a basic framework for the
establishment of the future pollen wall (Izhar & Frankel
1971; Worrall et al. 1992; Tsuchiya et al. 1995; Jin, Horner &
Palmer 1997). Hence, premature dissolution or non-
degradation of the callosic cell wall in respectively PMCs and
developing microspores typically leads to spore abortion. In
line with this, Suzuki et al. (2001) suggested that heat-induced
male sterility in snap bean is caused by a reduced degrada-
tion of PMC callose, more specifically by the altered tapetal
RER-mediated secretion of callase. In addition, several
authors have observed clamped, tetrad-shaped spores in
heat-stressed male gametogenesis (in Arabidopsis; 4 h at
42 °C), indicating that high temperatures indeed cause a loss
of PMC callose degradation (Kim et al. 2001). In contrast,
under cold stress (in rice; 22/12 °C day/night for 4 d), devel-
oping meiocytes typically exhibit a premature degradation of

the surrounding callosic cell layer, leading to defects in
microspore wall formation and pollen sterility (Mamun et al.
2006).

Although these data suggest that alterations in PMC
callose biogenesis/degradation are the primary cause for
temperature stress-induced male sterility, also other gameto-
phytic processes that depend on tapetal ER functionality
may constitute the basis for environmental-induced pollen
abortion. Indeed, the tapetum ER not only secretes enzymes
involved in callose metabolism but also produces enzymes
required for PMC wall degradation and proteins involved in
pollen development and exine formation (Bih et al. 1999;
Ariizumi & Toriyama 2011; Zhou et al. 2012). As such, stress-
induced defects in one of these processes through tapetal ER
modulation may also lead to pollen abortion. In rice, for
example, Ku et al. (2003) demonstrated that heat-induced
pollen lethality is caused by structural alterations in the
pollen exine layer, most presumably originating from a
reduced supply of tapetal-derived pollen wall components.
Hence, it is now generally believed that stress-induced male
sterility is conferred by the combinatorial effect of multiple
cellular defects that all originate from alterations in tapetal
RER. We therefore postulate that the tapetal RER consti-
tutes an important centre of stress sensitivity and mediates
stress-induced male sterility through a variety of biological
processes.

Abiotic stress induces alterations in anther
sugar content and carbohydrate profile

Developing microspores constitute a strong photosynthetic
sink and accumulate photoassimilates, such as starch and
other carbohydrates. Initially, at the uninuclear microspore
stage, the carbohydrate reserve is quite low, but upon PMI,
developing spores typically display a rapid phase of starch
biosynthesis and quickly accumulate high amounts of starch
(Fig. 2) (Datta, Chamusco & Chourey 2002). At this stage,
for example, the engorged pollen stage, the vacuole disap-
pears and the cytoplasm of the vegetative cell becomes filled
with starch (Christensen, Lersten & Horner 1972). Next,
during final pollen maturation, the level of starch progres-
sively decreases through degradation into soluble sugars
(Fig. 2). As such, in most plant species, the maximum peak of
starch is reached at the young bicellular pollen stage,
whereas the total soluble sugar content (glucose, fructose
and sucrose) gradually increases in developing anther walls
and spores to reach a maximum at anthesis (Aloni et al.
2001; Pressman, Peet & Pharr 2002). Accumulated anther
sugars not only serve as an energy source to fuel microspo-
rogenesis and pollen maturation but also later on provide
energy for pollen tube formation and serve as an osmolyte in
conferring pollen tolerance to desiccation and other abiotic
stresses (e.g. sucrose protects membrane integrity). As such,
carbohydrates are not only essential for pollen development
but also constitute a major determinant for pollen viability
and germination capacity (Hoekstra & Vanroekel 1988;
Hoekstra, Crowe & Crowe 1989; Speranza, Calzoni & Pacini
1997).
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Plants undergoing abiotic stress during male sporogenesis
typically show a reduced level of soluble sugar and starch in
their anthers. As this reduction in carbohydrate reserves is
often associated with defects in pollen development, stress-
induced reductions in the anther’s sugar reserve are sug-
gested to be a predominant factor causing plant male sterility.
In wheat, for example, water stress-induced male sterility (4 d
of water depletion at meiosis) is associated with a strong
reduction of the spore’s soluble sugar content and alterations
in starch distribution in the different anther layers (Dorion,
Lalonde & Saini 1996). Similarly, in tomato, the decreased
pollen viability under continuous high-temperature stress
(32/26 °C day/night) strongly correlates with a reduced accu-
mulation of sugars in the anther walls and developing
pollen, but with an increased sugar level in the locular
fluid (Pressman et al. 2002). In sorghum (Sorghum bicolor
L. Moench), heat-stressed microspores (36/26 °C day/night)
exhibit an altered carbohydrate profile, with a complete defi-
ciency of sucrose, accumulation of hexoses and a reduced
level of starch (Jain et al. 2007). In line with this, Fu et al.
(2011) found that drought-tolerant rice shows an increased
sugar content in its anthers, compared with the relatively low
levels in a susceptible line. In rice and wheat, water stress-
induced male sterility strongly correlates with a significant
reduction in starch accumulation. However, as in these cases
an enhanced accumulation of soluble sugars is observed
(Sheoran & Saini 1996; Nguyen et al. 2010), stress-induced
male sterility is not caused by a reduced amount or availabil-
ity of carbohydrates.Thus, although deprivation of the anther
sugar content is often considered one of the predominant
factors underlying stress-induced male sterility, it is most
likely not the primary reason for associated microspore
abortion.

Abiotic stress-associated alterations in sugar
metabolism: a central role for anther invertase

The general reduced accumulation of starch and other car-
bohydrate components in abiotically stressed microspores is
either caused by alterations in sugar metabolism or in the
supply of assimilates. Saini (1997) suggested that the failure
of male spore development under abiotic stress is attributed
to a reduced sugar delivery to the reproductive tissues.
Indeed, several studies have demonstrated that abiotic stress
alters photosynthetic activity (e.g. reduced intercellular CO2

through stomatal closure) and reduces the associated export
of photoassimilates to the major sink organs, including
anthers (Dinar & Rudich 1985; Harding, Guikema & Paulsen
1990; Tezara et al. 1999; Chaves et al. 2002; Sudhir & Murthy
2004; Dai et al. 2007). However, contrary to this hypothesis,
anthers of wheat and rice were found to contain an increased
level of sucrose and other soluble sugars upon stress (Dorion
et al. 1996; Sheoran & Saini 1996). As such, it was suggested
that the altered carbohydrate profile in stressed anthers is
caused by alterations in sugar utilization and metabolism,
rather than by changes in sucrose supply. In agreement with
this, many studies have demonstrated that the main enzymes
involved in sucrose and starch metabolism show a reduced

activity in abiotically stressed anthers. In sorghum, for
example, various genes involved in sugar cleavage and utili-
zation, sugar transport and starch synthesis are differentially
expressed in heat-stressed microspores (Jain et al. 2007).
More specifically, season-long heat stress (36/26 °C day/
night) significantly reduces the transcript level of cell wall
invertase (CWI) in the male gametophyte, as has also been
observed in heat-stressed (32/26 °C day/night) tomato
anthers (Sato et al. 2006). Similarly, in rice anthers, the activ-
ity of both acid invertase and soluble starch synthase is sig-
nificantly lower upon exposure to water stress (Sheoran &
Saini 1996), whereas other enzymes involved in carbohydrate
synthesis (e.g. ADP-glucose pyrophosphorylase and sucrose
synthase) do not show any significant alteration. In contrast,
in wheat anthers, water stress not only reduces
the activity of soluble acid invertase but also affects the
enzymatic activity of ADP-glucose pyrophosphorylase and
sucrose synthase (Dorion et al. 1996). Koonjul et al. (2005)
hereby additionally reported that water stress (4 d without
watering; -2.3 MPa) specifically impairs the activity of two
invertases, namely Ivr5 and Ivr1. Both Ivr enzymes are
expressed within the tapetum and developing microspores
and show a selective down-regulation at the meiotic PMC
stage under water deficiency. Drought-induced male sterility
in wheat hence results from the down-regulation of inver-
tases and the associated loss of hexose accumulation in devel-
oping microspores (Dorion et al. 1996; Koonjul et al. 2005).

In line with these observations, Oliver et al. (2005) found
that the perturbed carbohydrate metabolism in cold-stressed
rice anthers (3 d at 12 °C) is triggered by transcriptional
repression of OsINV4 invertase. Moreover, as cold-tolerant
rice does not show any reduction in OsINV4 expression upon
cold, OsINV4 was found to play a central role in stress-
induced male sterility. Rice OsINV4 encodes an anther-
specific cell wall acid invertase, which is expressed in the
tapetal cell layer at the young microspore stage and in matur-
ing microspores at later stages of pollen development (Oliver
et al. 2005). Similarly, in several other species, stress-induced
male sterility is either directly attributed or indirectly linked
to changes in anther invertase activity. For example, in bell
pepper (Capsicum annuum), heat-induced (8 d at 32/26 °C
day/night) alterations in pollen sugar utilization and the asso-
ciated reduction in pollen germination strongly correlate
with reduced activities of acid invertase (Aloni et al. 2001).

The absence of starch in abiotically stressed microspores is
generally caused by the transcriptional down-regulation of
the invertase b-d-fructofuranosidase (EC 3.2.1.26). In plants,
invertases are subdivided into three types based on their
cellular localization pattern: cell wall specific (CW-INV),
vacuolar (V-INV) and cytoplasmic (C-INV) (Ruan et al.
2010). Together with sucrose synthase, invertase enzymes are
required to cleave the transported sugar module, for example,
sucrose, into single hexose units (fructose and glucose) to
enable further sugar processing and starch build-up (Fig. 3).In
spores and anthers of wheat and several other species, inver-
tase (INV) is by far the most dominant enzyme-regulating
cleavage of sucrose (Saini & Westgate 2000; Jain et al. 2007).
Moreover, because developing microspores are physically
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isolated from the surrounding tapetal cell layer (no symplastic
PD channels), extracellular CW invertases play a key role in
the unloading of sucrose from the tapetum into the apoplastic
space and in the establishment of a soluble sugar gradient
along the different anther fractions (anther wall > locular
fluid > microspore) (Fig. 3) (Clement & Audran 1995; Goetz
et al. 2001; Castro & Clement 2007). Specific down-regulation
of CW invertase in abiotically stressed anthers hence blocks
the import of hexose sugar units into developing microspores
and impedes the accumulation of starch in maturing pollen,
leading to severe aberrations in pollen development and
viability (Dorion et al. 1996; Koonjul et al. 2005; Oliver et al.
2005). In support of this, RNAi-mediated silencing of the
Lycopersicon CW-INV5 (LIN5) was found to significantly
reduce pollen viability (Zanor et al. 2009), indicating that
INV-mediated hydrolysis of sucrose is essential for pollen
development and pollen viability.

Together with a reduced starch accumulation in spores,
stress-induced down-regulation of INV also alters sucrose uti-
lization in other anther tissues, and therefore often leads to the
ectopic accumulation of sugars in non-microspore organ types,
such as the connective tissue and the endothecium (Lalonde
et al. 1997; Oliver et al. 2005). These changes in anther sugar
partitioning may lie at the basis of the morphological defects in
abiotically stressed anthers. For example, in cold-stressed rice
(4 d at 22/12 °C day/night), the ectopic accumulation of starch
in the endothecium and in other anther layers typically
induces structural aberrations, such as abnormal vacuolization
and poor cell wall formation, leading to aberrations in spore
development (Mamun et al. 2006). Moreover, because the role
of INV in sugar partitioning is co-regulated with the expres-
sion of sugar transporter proteins (Ehness & Roitsch 1997),
stress-induced changes in INV expression are often associated
with a reduced expression of transporter genes and thus with
a reduced apoplastic sucrose loading (Jain et al. 2007). In
line with this, Zhao et al. (2000) demonstrated that the co-
suppression of plasma membrane H+-ATPase results in a
reduced pollen sugar uptake and consequently leads to an
impaired male fertility. Similarly, in rice anthers, chilling stress
not only reduces expression of OsINV4 but also significantly
affects transcription of the anther-specific monosaccharide
transporter OsMST8 (Mamun et al. 2006). The vacuolization
and hypertrophy of water-stressed tapetum cells therefore
most presumably originates from osmotic imbalances in the
tapetum, triggered by the reabsorption of callose breakdown
products in the absence of OsMST8 activity.

Based on these findings, we conclude that anther-specific
alterations in sugar content and the associated induction of
male sterility under abiotic stress are caused by the combi-
natorial effect of two processes involved in sugar metabo-
lism, for example, reduced sucrose transport and altered
sucrose metabolism (Fig. 3).

Hormonal control of stress-induced alterations
in sucrose invertase activity

Due to the central role of INV in stress-induced male sterility,
research is now focused on the elucidation of putative

underlying regulatory mechanism(s). Both the plant hormones
ABA and gibberellic acid (GA) are relevant candidates
because they are both involved in regulating carbohydrate
supply to the tapetum and developing microspores.

ABA has been found to accumulate in plants on several
types of abiotic stress, including heat, cold, salt stress and
water deficit (Thomashow 1999; Jia et al. 2002; Zhang et al.
2006). ABA regulates the osmotic stress signal transduction
response and confers plant stress tolerance through the
up-regulation of a large set of stress-responsive genes
(Xiong, Schumaker & Zhu 2002; Fujita et al. 2011). More
importantly, there is accumulating evidence that ABA inter-
acts with the sugar signalling pathway to activate the plant’s
stress response (Arenas-Huertero et al. 2000; Rook et al.
2001, 2006; Eckardt 2002; Gibson 2004; Dekkers, Schuurmans
& Smeekens 2008). This interaction is not only retrieved in
somatic tissues, but occurs in male reproduction as well. In
rice, for example, accumulation of ABA in cold-stressed
anthers (3 d at 12 °C) specifically interferes with the tapetal
apoplastic sugar transport and consequently induces a high
level of pollen abortion (Oliver, Dennis & Dolferus 2007).
ABA thereby specifically reduces the expression of OsINV4
and the monosaccharide transporter genes OsMST7 and
OsMST8. In line with this, anthers of the cold-tolerant rice
variety R31 show a reduced level of ABA compared with the
cold-sensitive Doongara line. Because these differences in
ABA accumulation strongly correlate with a differential
expression of ABA metabolic genes, ABA is believed to act
as a stress-responsive signal that induces pollen abortion
by specifically repressing apoplastic sugar transport in the
anther. Similarly, in a drought-sensitive wheat variety,
drought-induced pollen sterility is associated with a severe
accumulation of ABA, achieved by an altered expression of
metabolic genes, whereas drought-tolerant anthers contain
significant lower levels of ABA (Ji et al. 2011). Moreover,
endogenous increases of ABA in wheat spikes through exog-
enous application or reduced catabolic activity (ABA 8′-OH
deletion lines) substantially increase male gametophytic sen-
sitivity to drought. Similar as in rice, ABA hereby specifically
represses the expression of the anther CW-INV, for example,
TaIVR1, leading to alterations in sugar utilization and a
reduced level of hexoses in developing spores. In line with
this, transgene-based reduction of ABA in rice anthers (by a
tapetum-driven wheat TaABA 8′hydroxylase 1) results in the
stabilization of OsINV4 activity under cold stress conditions,
significantly improving the tolerance to cold. Collectively,
these findings support a pivotal role for ABA in controlling
sugar metabolism, for example, by altering INV activity, in
the male reproductive organs under stress.

Although ABA seems to be the major signalling compo-
nent suppressing INV activity under adverse environmental
conditions, GA has also been found to play a role in the
transcriptional control of anther INV. In tomato, Proels et al.
(2003) found that the anther-specific extracellular invertase
Lin7 gene contains gibberellin-responsive cis-acting ele-
ments in its promotor and additionally demonstrated that
GA is required for the expression of Lin7 in developing
anthers (Proels et al. 2003; Proels, Gonzalez & Roitsch 2006).
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Similarly, transcriptional control of INV through GA has also
been observed in other tissues, including seeds (Mitsuhashi
et al. 2004), shoots (Wu et al. 1993), petioles (Gonzalez &
Cejudo 2007) and internodes (Jones & Kaufman 1971).
Through the control of INV and its regulatory role in phloem
unloading, carbohydrate partitioning and growth of sink
tissues (Tymowska-Lalanne & Kreis 1998), GA is considered
a major player in the process of source and sink formation
and photosynthetic assimilate distribution (Iqbal et al. 2011).

GAs typically regulate plant growth and development, and
are therefore not classified as ‘stress hormone’. However,
similar to ABA, accumulation of GA in plants has been
found to occur in response to environmental cues, such as
light, temperature and other abiotic stresses (Hedden &
Thomas 2012). GA may therefore constitute an (additional)
stress-signalling factor conferring stress-induced male steril-
ity through alterations in anther INV activity and sugar uti-
lization. However, despite its presumed role in reproductive
stress, no studies have yet been performed to assess the
involvement of GA in abiotic stress-induced male sterility.

Abiotic stress induces oxidative damage and
PCD in developing microspores

One of the major mechanisms underlying stress-induced
damage in plant cells is through the accumulation of reactive
oxygen species (ROS). In plants, ROS, such as hydroxyl radi-
cals, superoxide anion and hydrogen peroxide, have been
found to accumulate upon exposure to environmental stress,
including high and low temperatures, high light intensities
(photo-oxidative stress), drought, air pollution, UV, pathogen
invasion (hypersensitive reaction) and herbicides (Foyer,
Lelandais & Kunert 1994; Larkindale & Knight 2002; Mittler
et al. 2004). As ROS typically constitute highly unstable mol-
ecules that induce lipid peroxidation and oxidation of DNA,
sugars and proteins, stress-induced accumulation of ROS gen-
erates a wide range of intercellular biochemical damages, such
as membrane degradation, reduced translation and transcrip-
tion, and eventually apoptotic cell death (Tiwari, Belenghi &
Levine 2002; Blokhina, Virolainen & Fagerstedt 2003; Li et al.
2004; Van Breusegem & Dat 2006; Ryter et al. 2007). In plants,
the accumulation of ROS is prevented by the activation of an
antioxidant system that implies the production of antioxidants
(e.g.ascorbic acid,glutathione, tocopherols) and enzymes that
regenerate reduced antioxidant forms and the activation
of ROS-interacting enzymes such as superoxide dismutase
(SOD), peroxidases (PODs) [e.g. ascorbate peroxidase
(APX)] and catalases (CATs). In many plant organs, including
anthers, the protective ROS-scavenging response is
up-regulated upon exposure to environmental stress. In
tomato, for example, heat-stressed microspores (2 h at
43–45 °C) typically display an enhanced expression of genes
that encode ROS-scavenging enzymes (e.g. SlAPX3), allow-
ing spores to reduce the detrimental accumulation of ROS
under abiotic stress (Frank et al. 2009). In contrast, reduced
scavenging capacities typically result in an accumulation of
ROS in the male reproductive organs that eventually lead to
pollen abortion. In rice, for example, reduced expression of

MT-1-4B, a type 1 small Cys-rich metal binding protein that
has ROS-scavenging activity (in mads3 anthers or through
amiRNA) leads to the accumulation of ROS in tapetal cells
and developing microspores and hence causes premature
pollen abortion (Hu et al. 2011). Similarly, in many cytoplas-
mic male sterile crop varieties (e.g.cotton,rice,pepper),pollen
PCD is caused by an excessive mitochondrial accumulation of
ROS together with a decreased scavenging capacity in devel-
oping spores (Li et al. 2004; Jiang et al. 2007; Wan et al. 2007;
Wang et al. 2009; Huang et al. 2011; Deng et al. 2012). Hence,
ROS scavenging in the anther is extremely important to main-
tain pollen viability under abiotic stress.

Based on the lethal effect of ROS on pollen development,
stress-induced male sterility may be attributed to the accu-
mulation of ROS and the associated PCD response in devel-
oping microspores. In rice, for example, water stress-induced
(no watering from spike initiation to anthesis) pollen sterility
is ascribed to an oxidative stress response that is caused by a
reduced level of antioxidant transcripts (CAT, APX and
DHAR) in the developing anther (Selote & Khanna-Chopra
2004). In a similar way, Nguyen et al. (2009) found that the
exposure of rice anthers to short periods of drought stress
(3 d without watering) resulted in an increased accumulation
of hydrogen peroxide, a reduced level of antioxidant tran-
scripts and the associated depletion of ATP, leading to an
enhanced accumulation of ROS. Moreover, the additional
observation of DNA fragmentation in the tapetum and other
anther tissues suggests that drought-induced oxidative stress
eventually causes PCD in developing anthers. Similarly, in a
comparative study in rice, drought-stressed anthers of the
sensitive Zhenshan 97B line exhibited lower antioxidant
enzyme activity (SOD, POD and CAT) and higher malonal-
dehyde content compared with the drought-tolerant Jin 23B
line (Fu et al. 2011). In the same report, the enhanced level of
oxidative stress in drought-stressed rice anthers was found to
appear strongly linked to alterations in sugar metabolism.
Stress-induced accumulation of sucrose was hereby postu-
lated to reduce the mitochondrial activity during the tricar-
boxylic acid cycle and could therefore lead to an excessive
production of ROS and an associated depletion of ATP in
developing anthers (Fig. 3) (Bolouri-Moghaddam et al. 2010;
Fu et al. 2011). Further evidence for a regulatory function
of soluble sugars in the oxidative stress response is provided
by several other metabolic processes (oxidative pentose-
phosphate pathway, carotenoid biosynthesis and photosyn-
thesis) and is additionally confirmed by transcriptome
analyses, indicating that sugar signalling or sugar-mediated
gene expression plays an important role in the control of
ROS homeostasis (Couee et al. 2006). Stress-induced altera-
tions in the anther sugar content (e.g. INV) could therefore
lead to an enhanced accumulation of ROS and the associated
induction of PCD in developing spores.

Thus, although stress-induced accumulation of ROS has
prevalently been documented in vegetative tissues and
somatic cell cultures (Vacca et al. 2004), evidence is accumu-
lating that oxidative stress also occurs in male reproduction
where it constitutes a major factor affecting spore develop-
ment and pollen viability under adverse abiotic conditions.
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The role of auxin in stress-induced male sterility

The plant hormone auxin or indole acetic acid (IAA) plays a
central role in cell expansion, division and differentiation,
and hence controls different developmental processes,
including phototropism, geotropism, embryogenesis and vas-
cular differentiation. Recent studies have demonstrated that
auxin also plays a prominent role in the development and
functionality of the gametophytic organs. More specifically, in
male gametogenesis, auxin regulates two distinct develop-
mental processes: (1) the progression of microspore develop-
ment through control of the pollen mitotic cell division (Feng
et al. 2006) and (2) late anther development through regula-
tion of filament elongation, pollen maturation and anther
dehiscence (Cecchetti et al. 2008).

Although not generally known as a stress hormone, there is
accumulating evidence that auxin plays a role in the devel-
opmental regulation of plants under (a)biotic stress, particu-
larly under adverse temperatures (Ghanashyam & Jain
2009). Recent findings suggest that cold-induced changes in
plant growth and development (roots assessed after 8–12 h at
4 °C) are governed by alterations in the intracellular auxin
gradient, which is generally constituted by polar movement
and intracellular trafficking through auxin carrier molecules,
such as PINs (Shibasaki et al. 2009; Rahman 2013). Moreo-
ver, in several plant tissues, activation and up-regulation of
auxin biosynthesis and the associated accumulation of IAA
have been reported upon exposure to high temperatures
(Gray et al. 1998). In contrast, in developing anthers, heat
stress (5 d at 30/25 °C day/night in barley and 31–33 °C in
Arabidopsis) leads to a decreased level of endogenous auxin.
Moreover, Sakata et al. (2010) found that the stress-induced
reduction in anther auxin is the primary cause for associated
male sterility (Sakata et al. 2010). In barley and Arabidopsis
anthers, heat stress significantly reduces the transcript level
of several auxin biosynthesis proteins, including YUC2,
YUC6 and TAA1/TIR2, and by consequence represses
endogenous auxin production in developing PMCs and
tapetal cells (e.g. particularly at the uninuclear microspore
stage), leading to a premature abortion of microspore devel-
opment (Sakata et al. 2010). Because a similar induction of
male sterility has been observed in double or triple mutants
that include yuc2 and yuc6 (Cheng, Dai & Zhao 2006) and
exogenous auxin application was found to reverse the
heat-induced pollen sterility (Sakata et al. 2010), high
temperature-induced microspore abortion is directly caused
by alterations in endogenous auxin metabolism. Moreover,
because male sterility is not observed in auxin transport or
perception mutants (Cecchetti et al. 2008), heat-induced
pollen abortion appears directly caused by a reduced synthe-
sis of endogenous auxin in developing anthers. Based on the
finding that free auxin is required to perform mitotic cell
division in developing microspores (PMI and PMII) (Feng
et al. 2006), it could be hypothesized that the reduced accu-
mulation of auxin in heat-stressed anthers specifically blocks
the progression of the microspore’s mitotic cell cycle, leading
to a premature abortion of pollen development. In line with
this, Oshino et al. (2011) demonstrated that reduced IAA

levels in heat-stressed barley panicles induce an arrest of
nuclear and organellar DNA proliferation in developing
microspores, most presumably through loss of gamete-
specific DNA replication.

A similar block of microspore cell cycle progression and
the associated induction of male sterility have also been
observed in Arabidopsis pin5 and pin8 mutants (Ding et al.
2012). Both PIN8 and PIN5 encode ER-localized PIN auxin
efflux proteins that mediate intracellular auxin homeostasis
and nuclear-directed auxin transport in developing spores
(Mravec et al. 2009; Dal Bosco et al. 2012). As such, it could
be hypothesized that heat stress-induced male sterility is
caused by alterations in microspore-specific intracellular
auxin distribution and nuclear signalling or, more structur-
ally, through physical alterations in the ER membrane
(similar as in the tapetum, see previous paragraph). An alter-
native hypothesis is based on the suggestion that the tapetal
cell layer is a major supplier of IAA to the developing pollen
grains (Aloni et al. 2006). In this perspective, temperature-
induced defects in tapetal development would hinder proper
auxin transport to the anther locule, significantly reducing
the endogenous auxin level in developing microspores.

A second link between stress-induced male sterility and
auxin metabolism has only been provided recently (Tang
et al. 2012). In spike tissues of a wheat TMGS line, in which
the early phase of microspore development is susceptible to
cold, deep sequencing of small RNA (smRNA) libraries
and associated qPCR analysis identified two cold stress-
responsive smRNAs that play an important role in the regu-
lation of auxin signalling, namely miR167 and tasiRNA-ARF
(auxin-responsive factor). Accumulation of these smRNA
species under low-temperature conditions may invoke an
RNAi-based repression of auxin signalling in developing
anthers, leading to a premature abortion of microspore
development. However, because expression of both cold
stress-responsive smRNAs and their target genes showed a
low level of correlation (Tang et al. 2012), more research is
needed to clarify whether smRNA-directed alterations in
auxin signalling constitute a direct basis for cold-induced
male sterility.

CONCLUSIONS AND FUTURE PERSPECTIVES

The impact of environmental stress on male gametogenesis
in plants covers many biological processes and affects several
cytological mechanisms that are strongly interrelated. Recent
research has revealed an important and often intertwined
role for cytoskeletal dynamics, tapetal ER stability, sugar
metabolism and oxidative stress, and has additionally dem-
onstrated the putative involvement of several stress-
signalling components, including major plant hormones
(ABA, GA and auxin) and epigenetic regulators (e.g.
smRNAs). Depending on the type of stress involved, the
process of male sporogenesis and gametogenesis is affected
differently. However, from a more general perspective, stress
sensitivity of the male reproductive system appears to be
spatially centred to the tapetal cell layer and more specifi-
cally to its ER. Notwithstanding the current advances in the
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physiological and biochemical processes underlying environ-
mental stress-induced male gametophytic alterations (e.g.
male sterility and 2n gamete formation), the molecular
factors and regulatory networks involved are still largely
unknown. We therefore believe that the molecular unravel-
ling of stress-induced male aberrations should be the focus
of future research, not only because it provides additional
insights in the underlying biological processes but also
because it forms an important incentive for the putative
design and implementation of strategies to counter environ-
mental stress-induced spore abortion and seed loss.
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