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I have no particular talent.
I am only inquisitive.

(A. Einstein)
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3.1.2 The Poincaré Model . . . . . . . . . . . . . . . . . . . 113
3.1.3 Equivalence of Both Models . . . . . . . . . . . . . . . 118

3.2 Generalization to Natural Powers . . . . . . . . . . . . . . . . 121
3.3 The Ultra-Modulation Theorem . . . . . . . . . . . . . . . . . 127

3.3.1 The (p, q)-space-like situation . . . . . . . . . . . . . . 130
3.3.2 The (p, q)-time-like situation . . . . . . . . . . . . . . . 134
3.3.3 The unifying picture . . . . . . . . . . . . . . . . . . . 139

3.4 On a Bi-Axial Hyperbolic Problem . . . . . . . . . . . . . . . 141
3.4.1 Bi-axial hyperbolic monogenic functions . . . . . . . . 141
3.4.2 Generalized Hyperbolic Power Functions . . . . . . . . 142

4 Arbitrary Powers of the Hyperbolic Dirac Operator 150
4.1 Natural Powers of the Hyperbolic Dirac Operator . . . . . . . 150
4.2 Complex Powers of the Hyperbolic Dirac Operator . . . . . . 156

5 Function Theory on the Hyperbolic Unit Ball 164
5.1 The Boosted Fundamental Solution . . . . . . . . . . . . . . . 164
5.2 Integral Formulae for ξ(Γ + α) . . . . . . . . . . . . . . . . . . 172
5.3 Taylor Series on the Hyperbolic Unit Ball . . . . . . . . . . . . 183
5.4 Function Theory on the Klein Model . . . . . . . . . . . . . . 198
5.5 Eigenfunctions for the Operator ξ(Γ + α) . . . . . . . . . . . . 206

6 Boundary Value Theory 210
6.1 The Photogenic Cauchy Kernel . . . . . . . . . . . . . . . . . 210
6.2 The Photogenic Cauchy Transform (PCT) . . . . . . . . . . . 213

6.2.1 The PCT of Inner Spherical Monogenics . . . . . . . . 216
6.2.2 The PCT of Outer Spherical Monogenics . . . . . . . . 218

6.3 Photogenic Boundary Values . . . . . . . . . . . . . . . . . . . 219
6.4 Hyperbolic Hilbert Modules . . . . . . . . . . . . . . . . . . . 225

7 The Conformal Case 237
7.1 Dirac Operators on Manifolds . . . . . . . . . . . . . . . . . . 237
7.2 The Conformal Fundamental Solution . . . . . . . . . . . . . . 245
7.3 Conformal Invariance and the Nullcone . . . . . . . . . . . . . 249

Nederlandstalige Samenvatting 255

5



Introduction

In this thesis we consider a projective model for the hyperbolic unit ball,
realized as the manifold of rays inside the future cone in the real orthogonal
space R1,m, i.e. the flat Minkowksi space-time. Using Clifford algebras it
is possible to define a Clifford algebra structure on this manifold, and this
structure enables us to define the Dirac operator on the hyperbolic unit ball
as the Dirac operator on flat Minkowski space-time acting on the sections
of a homogeneous Clifford line bundle, which is an associated principal fibre
bundle. This thesis then deals with a function theory for Clifford algebra
valued nullsolutions for the Dirac operator on the hyperbolic unit ball, the
so-called hyperbolic monogenics.

William Kingdon Clifford (1845-1879) introduced the algebras which were
named after him in 1878 as a generalization of both Grassman’s exterior
algebra and Hamilton’s algebra of quaternions. His objective was to incor-
porate inside one single structure as well the geometrical as the algebraic
properties of the Euclidean space, so he called these structures geometrical
algebras. These Clifford algebras were often rediscovered later, in particular
by physicists. For instance when P.A.M Dirac in 1928 - in his famous article
[24] on the electron - introduced the γ-matrices to linearize the Klein-Gordon
equation, he actually constructed the generators for the Clifford algebra R1,3.

When constructing the universal Clifford algebra over R, the algebra of com-
plex numbers is obtained. The Cauchy-Riemann operator, which lies at the
very heart of the theory of complex holomorphic functions, factorizes the
Laplace operator in two dimensions. Therefore, holomorphic functions in
the complex plane may be considered as functions in the kernel of a first
order rotationally invariant differential operator factorizing the Laplacian.

It is in this sense that Clifford analysis must be understood as a natural
generalization to higher dimension of the theory of holomorphic functions in
the complex plane, the Dirac operator being the higher dimensional analogue
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of the Cauchy-Riemann operator. The generalized holomorphic functions,
known as monogenic functions, are thus to be interpreted as nullsolutions
for the first order rotationally invariant differential operator factorizing the
Laplacian in m dimensions. In the 1930’s, the first attempts to develop a
function theory for this operator were made by R. Fueter, G. Moisil and N.
Théodorescu. A profound study of the monogenic function theory can be
found in the book of F. Brackx, R. Delanghe and F. Sommen, see [8].

Whereas most of the classical literature on Clifford analysis deals with the
Dirac operator on the flat Euclidean space Rm, a very natural generalization
consists in studying the Dirac operator on general manifolds. Much research
has been done in this direction by theoretical physicists and people study-
ing differential geometry, consider for example the so-called Atiyah-Singer
Dirac operator on manifolds. However, the language used in this approach
differs substantially from the approach followed in e.g. [10], [18] and [40]. In
these latter references the Dirac operator on manifolds is studied within the
framework of Clifford analysis, by embedding the manifold into an orthogonal
space and using the properties of the Dirac operator on the embedding space.

For the specific case of the Dirac operator on a Riemannian space of constant
positive curvature we refer to the work of J. Ryan and P. Van Lancker, see
for instance [58], [59], [75] and [76]. These references are concerned with the
Dirac operator on the sphere Sm−1 in Rm. The aim of this thesis is to study
the Dirac operator on a Riemannian space of constant negative curvature,
i.e. the Dirac operator on the hyperbolic unit ball. As both the sphere and
the hyperbolic unit ball are real submanifolds of the complex sphere in Cm,
one might argue that the function theory on the sphere extends to a function
theory on the hyperbolic unit ball by analytic continuation. However, this is
far from trivial because in order to obtain a fundamental solution one needs
the analytic continuation of distributional solutions for the Dirac equation
on the sphere and this requires the use of residues for holomorphic functions
in several complex variables. This can all be avoided by using the theory of
distributions, and the easiest way to do so is to use the projective picture.
Moreover, by fully exploiting the projective nature of our model for these
Riemannian spaces of constant curvature, originated by Gel’fand (see [37]),
one is easily lead to results that cannot be obtained by analytic continuation.
Indeed, in the thesis we consider the limit of the hyperbolic Dirac equation
as the singularities approach infinity, i.e. the nullcone, which is of course not
possible in the Euclidean space.

Research on a monogenic function theory in Poincaré space, a conformal
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model for the hyperbolic unit ball, has been started by H. Leutwiler and his
students (see e.g. [34] and [49]) and is based on the study of harmonic func-
tions on conformally flat domains. In this context we also mention the work
of P. Cerejeiras and J. Cnops, see for instance [11], concerning the Hodge-
Dirac operator for hyperbolic spaces. However, as was noted in reference
[12] these attempts generalize the Dirac operator for Spin(1)-fields whereas
in this thesis we work with the true hyperbolic generalization of the Dirac
operator on Spin(1

2
)-fields.

In Chapter 0 we have collected all prerequisites : basic facts concerning
Clifford algebras and Clifford analysis on the flat Euclidean space, a short
introduction to the theory of special functions, definitions for and elementary
properties of Riesz distributions and the Radon transform, etc.

Chapter 1 deals with hyperbolic geometry. First we give a historical overview
of the developments in geometry that have ultimately lead to the discovery
of non-Euclidean geometry, in particular the hyperbolic plane, and then we
give several models for the hyperbolic unit ball (i.e. the higher dimensional
analogue of the hyperbolic plane). These include the classical Klein and
Poincaré model, the hemisphere model relating these two, the hyperbola H+

in the future cone containing all space-time vectors of unit hyperbolic norm
and most essential for what follows : the projective model, realizing the hy-
perbolic unit ball as a manifold of rays in the flat m-dimensional Minkowksi
space-time R1,m.

Chapter 2 deals with the so-called hyperbolic Dirac equation and its fun-
damental solution. We first introduce the homogeneous Clifford line bundle
R1,m;α (with α ∈ C arbitrary) as an associated principal fibre bundle and
we then define the Dirac operator on the hyperbolic unit ball as the Dirac
operator on flat Minkowski space-time acting on sections of this bundle, the
projective nature of our model for the hyperbolic unit ball being essential
to this construction. Using the fact that the delta distribution in a point
of a general manifold can be defined as the delta distribution in the tangent
plane to the manifold at that point, we derive the equation for the hyperbolic
fundamental solution, labelled as the hyperbolic Dirac equation, and we give
several explicit constructions for this fundamental solution.
A first construction uses Frobenius’ method to obtain the projection of the
hyperbolic fundamental solution on the Klein and Poincaré model for the
hyperbolic unit ball as a modulated version of the classical Cauchy kernel.
A second construction reduces the hyperbolic Dirac equation to a problem
in two dimensions, and the solution to this problem leads to a fundamental
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solution consisting of a singular part and a regular part. Although this latter
part is not unique, it arises very naturally as is shown at the end of the
Chapter. It also allows to rewrite the fundamental solution in terms of the
so-called hyperbolic polar co-ordinates, leading to Gegenbauer functions of
the second kind.
These Gegenbauer functions of the second kind are then reobtained by means
of a third construction, using Riesz distributions.
In the last construction we strongly rely upon properties of the fundamental
solution for the wave-operator on the flat Minkowski space-time to obtain a
recursive definition, in which the hyperbolic fundamental solution on R1,m+2

can be expressed in terms of the solution on R1,m.

In the third Chapter we generalize the idea behind the first construction
for the hyperbolic fundamental solution, leading to the so-called Modulation
Theorems, stating that homogeneous monogenic functions with respect to
the Dirac operator on the flat Euclidean space can be modulated to obtain
solutions for the hyperbolic Dirac equation. This is proved for both the Klein
and Poincaré model for the hyperbolic unit ball. In proving the equivalence
of both Theorems we then obtain a geometrical interpretation for certain
properties of the hypergeometric function.
Next, we consider two generalizations of the Modulation Theorems : we con-
struct solutions for natural powers of the hyperbolic Dirac operator and we
also construct solutions for the Dirac operator on ultrahyperbolic spaces of
arbitrary signature (p, q).
At the end of the third Chapter we consider a specific bi-axial problem for the
projection of the hyperbolic Dirac operator on the Klein model. Although
at first sight this problem does not seem to be related to the Modulation
Theorems, it leads to a new interpretation for the modulated solutions as
generalized hyperbolic power functions.

In Chapter 4 we define arbitrary complex powers of the hyperbolic Dirac
operator and using Riesz distributions we construct a fundamental solution
for these operators. This Chapter is inspired by reference [7].

Chapter 5 contains a function theory for the hyperbolic Dirac operator, both
on the hyperbola H+ in the future cone in R1,m and on the Klein model for
the hyperbolic unit ball. For that purpose, the Cauchy-Pompeju Theorem,
Stokes’ Theorem and Cauchy’s Theorem are essential.
In order to establish the Taylor and Laurent series for hyperbolic monogenic
functions defined in an open (annular) domain of the hyperbolic unit ball,
an axial decomposition for the fundamental solution is given. To do so, we
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use the Modulation Theorems of Chapter 3 and this leads to an alternative
interpretation for the Addition Theorem for Gegenbauer functions (see [25]).
At the end of the fifth Chapter we briefly discuss the notion of eigenfunctions
for the hyperbolic Dirac operator.

In Chapter 6 we introduce the photogenic Cauchy transform (PCT), de-
fined as an integral transform whose kernel is to be seen as the fundamental
solution for the hyperbolic Dirac equation with singularity at infinity. In
contrast to the flat Euclidean case, it makes sense to consider singularities at
infinity in the hyperbolic setting by considering a delta distribution on the
nullcone. As functions f ∈ L2(S

m−1) can be decomposed in a series of inner
and outer spherical monogenics on the sphere Sm−1, we then determine the
PCT of these spherical monogenics, leading to a new interpretation for the
modulated solutions for the hyperbolic Dirac operator from Chapter 3.
Next we determine the photogenic boundary values of these transforms by
letting the argument of the PCT of spherical monogenics approach the sphere
Sm−1. Under certain restrictions on the complex parameter α, this leads to
a mapping from the Sobolev space W2(S

m−1) on the sphere to the set of
boundary values of hyperbolic monogenic functions on the Klein model.
By considering the extension of these boundary values to the Lie sphere, it is
then also proved that this latter set yields a Hilbert module with reproducing
kernel, again under certain restrictions on the complex parameter α.

Chapter 7 deals with the conformal Dirac operator and illustrates how the
hyperbolic Dirac operator considered in the thesis must be understood in
terms of the Dirac operator on a general manifold. By defining a spin bundle
on the hyperbola H+ it is shown that the Clifford algebra valued functions
considered throughout this manuscript are actually Clifford sections, and by
refining this spin bundle to a spinor bundle it is shown that for one specific
value for α our hyperbolic Dirac operator reduces to the Atiyah-Singer Dirac
operator.
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Introductory Notes : the
Mathematical Toolbox

Each problem that I solved became a rule which served
afterwards to solve other problems. (René Descartes)

In this Chapter all prerequisites are collected : the introduction of a Clifford
algebra, the main results from Clifford analysis on the flat Euclidean space,
some results from the theory of the hypergeometric function, the Legendre
function and the Gegenbauer function, the definition and basic properties
of the Riesz distributions, some results on the fundamental solution of the
wave-operator, an introduction to the theory of bundles and to the theory
of Clifford analysis on the Lie ball and Lie sphere. This Chapter also settles
the notations that will be used throughout the thesis.

0.1 The Clifford Setting

In this section an introduction to Clifford algebras and Clifford analysis is
given. As we will encounter orthogonal spaces of different signatures through-
out this manuscript, we consider three subsections. First we consider the
most general Clifford algebra Rp,q and then we consider the algebras R0,m

and R1,m, associated to the flat Euclidean space R0,m and the flat Minkowski
space-time R1,m respectively.

0.1.1 The General Clifford Algebra Rp,q

Consider the real orthogonal space Rp,q, where p+ q = m, with orthonormal
basis Bp,q(εi, ej), given by

Bp,q(εi, ej) = {ε1, · · · , εp, e1, · · · , eq} ,
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endowed with the quadratic form

Qp,q(T ,X) =

p∑
i=1

T 2
i −

q∑
j=1

X2
j (1)

where the elements of Rp,q are labeled as (p, q)-space-time vectors

(T ,X) = (T1, · · · , Tp, X1, · · · , Xq) .

In terms of the inner product < ·, · >p,q on Rp,q, given by

< (T ,X), (S, Y ) >p,q =

p∑
i=1

TiSi −
q∑

j=1

XjYj ,

the quadratic form Qp,q(T ,X) can also be defined by

Qp,q(T ,X) = 〈(T ,X), (T ,X)〉p,q .

The signature of the orthogonal space under consideration will be indicated
where necessary to avoid confusion.

An arbitrary space-time vector (T ,X) ∈ Rp,q thus consists of two parts :
the vector T belongs to Rp,0 endowed with the inner product

< T, S >p,0 =

p∑
i=1

TiSi ,

where < T, T >p,0= Qp,0(T ). This vector T forms the so-called temporal
part of the (p, q)-space-time vector (T ,X) and is a linear combination of the
temporal unit vectors εi, 1 ≤ i ≤ p.

The vector X belongs to R0,q endowed with the inner product

< X, Y >0,q = −
q∑

j=1

XjYj ,

where < X,X >0,q= Q0,q(X), and forms the spatial part. Spatial vectors
are a linear combination of the spatial unit vectors ej, 1 ≤ j ≤ q.

Throughout this thesis, temporal unit vectors will always be denoted by
ε, and spatial unit vectors by e. A summation over temporal components
will always be denoted by

∑
i whereas a summation over spatial components
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will be denoted by
∑

j.

Also note that the standard Euclidean inner product on Rm, i.e. the inner
product on the real orthogonal space Rm,0, will be denoted without explicitely
mentioning the signature (m, 0). By definition we thus put for two vectors x
and y in the Euclidean vector space Rm :

< x, y > =
m∑

j=i

xiyi .

The Clifford algebra Rp,q associated to the orthogonal space Rp,q is the real
2m-dimensional associative, but non-commutative algebra generated by the
following multiplication rules : εiεj + εjεi = 2δij for all 1 ≤ i, j ≤ p,
eres + eser = −2δrs for all 1 ≤ r, s ≤ q and εiej + ejεi = 0 for all 1 ≤ i ≤ p
and 1 ≤ j ≤ q.

The Clifford algebra Rp,q can also be defined by means of the associative
tensor algebra T (Rp,q), generated by the unity element 1 ∈ R together with
the vector space Rp,q. The ideal J of T (Rp,q) consisting of sums of terms of
the form a⊗

(
(T ,X)⊗ (T ,X)−Qp,q((T ,X), (T ,X))

)
⊗ b, with a, b ∈ T (Rp,q)

and (T ,X) ∈ Rp,q, is essential to this construction and allows to interpret
the Clifford algebra as the vector space of exterior forms, i.e. the totally
anti-symmetric tensors, with a Clifford product containing both the exterior
product and the inner product on Rp,q. For an explicit construction we refer
e.g. to reference [5]. The idea to incorporate inside a single structure as
well the inner product as the exterior product was the main motivation for
William Kingdon Clifford to introduce the geometric algebras, as he called
these structures which were later named after him in 1878.

An element of Rp,q is called a Clifford number ; it has the form a =
∑

A⊂M aAeA

where aA ∈ R and M = {1, · · · , p + q}. If A ⊂ M is given as the set
{i1, · · · , ik}, with 1 ≤ i1 < · · · < ik ≤ p + q then the element eA is given
as the product of the (temporal or spatial) basis vectors corresponding with
these indices whereas eφ = 1. If A has k elements, eA is called a k-vector.

The space of k-vectors is denoted by R(k)
p,q . If [a]k is the projection of the

Clifford number a on R(k)
p,q , then

a =
m∑

k=0

[a]k , ∀a ∈ Rp,q .

The algebra Rp,q inherits a natural Z2-grading by introducing the notion of
even and odd Clifford numbers, which are defined as linear combinations of
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basis vectors eA with respectively an even or odd number of indices. The
subsets of Rp,q containing respectively the even or odd Clifford numbers are
eigenspaces for the so-called main involution, defined a bit further, with
eigenvalues ±1. The subspace R(+)

p,q =
∑

k even⊕R(k)
p,q is a subalgebra of Rp,q,

called the even subalgebra.

In order to make a clear distinction between a (p, q)-space-time vector (T ,X)
in Rp,q and the 1-vector associated to this (p+ q)-tuple, we denote the latter
by T +X. There is a canonical embedding of the orthogonal space Rp,q into
its Clifford algebra Rp,q, given by :

Rp,q 7→ R(1)
p,q ⊂ Rp,q : (T ,X) 7→ T +X .

For two 1-vectors T + X,S + Y ∈ R(1)
p,q, the inner and outer product are

defined as follows :

(T +X) · (S + Y ) =
1

2

(
(T +X)(S + Y ) + (S + Y )(T +X)

)

(T +X) ∧ (S + Y ) =
1

2

(
(T +X)(S + Y )− (S + Y )(T +X)

)
whence (T + X)(S + Y ) = (T + X) · (S + Y ) + (T + X) ∧ (S + Y ). This
expresses the Clifford product on Rp,q in terms of the inner and outer product.

On Rp,q we have three important involutory (anti-)automorphisms. For all
a, b ∈ Rp,q and λ ∈ R we define :

• the main involution a 7→ ã

ε̃i = −εi , ẽj = −ej , (ab)˜= ãb̃

• the reversion a 7→ a∗

ε∗i = εi , e∗j = ej , (ab)∗ = b∗a∗

• the conjugation (also known as bar-map) a 7→ ā

ε̄i = −εi , ēj = −ej , ab = b̄ā

These definitions extend to the comlexified Clifford algebra Cp,q = C⊗Rp,q,
where we also have
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• the Hermitian conjugation a 7→ a+, which is the tensorproduct of the
bar-map on Rp,q and the classical complex conjugation on C

(a+ ib)+ = ā− ib̄ .

The Clifford group Γ(p, q) is the set of all invertible elements g ∈ Rp,q such

that for all T +X ∈ R(1)
p,q : g(T +X)g̃−1 ∈ R(1)

p,q, the Pin group Pin(p, q) is the

quotient group Γ(p, q)/R+ and the Spin group Spin(p, q) = Pin(p, q) ∩ R(+)
p,q .

For each s ∈ Pin(p, q) the map χ(s) : Rp,q 7→ Rp,q : T + X 7→ s(T + X)s
induces a map from Rp,q onto itself. In this way Pin(p, q) defines a double
covering of the orthogonal group O(p, q), defined as the set of linear trans-
formations on Rp,q leaving the quadratic form Qp,q(T ,X) invariant, whereas
Spin(p, q) defines a double covering of the group SO(p, q), which is the sub-
group of O(p, q) containing all elements of unit determinant. For more details,
the reader is referred to [23] and [56].

Definition 0.1 The Dirac operator on the real orthogonal space Rp,q is the
vector derivative

D(T ,X)p,q =

p∑
i=1

εi∂Ti
−

q∑
j=1

ej∂Xj
.

We prefer to use a notation for the Dirac operator which indicates both the
signature of the space on which this operator acts and the variables used
to describe elements of this space. When working with a specific Clifford
algebra, in casu R0,m or R1,m, we will introduce more appropriate notations.
We refer to the next subsections for this.

Let Ω be an open subset of Rp,q and let f ∈ C1(Ω) be an Rp,q-valued function
on Rp,q. This function is then called left (respectively right) monogenic with
respect to the Dirac operator on Rp,q if and only if D(T ,X)p,qf(T ,X) = 0
in Ω (resp. f(T ,X)D(T ,X)p,q = 0, where this latter notation denotes the
action of the Dirac operator from the right). It is the concept of monogenic
functions which lies at the very heart of Clifford analysis.

In Chapter 3 the operator D(T ,X)p,q will be studied in greater detail and
we will prove a Theorem to construct nullsolutions for this operator.
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0.1.2 Clifford Analysis on Flat Euclidean Space

Most of the literature concerning Clifford analysis deals with the so-called
flat Euclidean space Rm. In this section we gather the most important results
for the Dirac operator on Rm. As a general reference for this subsection we
mention [8], [23] and [40]. A nice overview of the most basic results can be
found in [22].

In order to fit the classical situation into the framework of the previous
subsection, our starting point is the real orthogonal space R0,m generated by
the orthonormal basis B0,m(ej) = {e1, · · · , em}, endowed with the quadratic
form

Q0,m(x) = −
m∑

j=1

x2
j = −r2 = < x, x >0,m = − < x, x > ,

where we have put r = |x| = (
∑

j x
2
j)

1
2 .

The Clifford algebra R0,m associated to R0,m endowed with the quadratic
form Q0,m(x) is generated by the multiplication rules eiej + ejei = −2δij, for
all 1 ≤ i, j ≤ m. In literature this Clifford algebra is often denoted as Rm,
without any specification concerning the quadratic form which lies behind
the algebra. However, since we will consider orthogonal spaces of different
signature throughout this thesis we prefer to indicate this signature (0,m).

Vectors in R0,m are identified with 1-vectors in R0,m under the canonical
map

(x) = (x1, · · · , xm) 7→ x =
m∑

j=1

ejxj .

For two 1-vectors x and y ∈ R(1)
0,m, we have

xy = x · y + x ∧ y ,

where the Clifford inner product is given by

x · y = −
m∑

j=1

xjyj = − < x, y > ,

with < x, y > the standard Euclidean inner product, and the outer product
by

x ∧ y =
∑
j<k

ejk(xjyk − xkyj) .

16



Apart from the general definitions given in the previous subsection, we may
define the Clifford group Γ(0,m) and its subgroups as follows :

1. the Clifford group Γ(0,m) is generated by the non-zero vectors of Rm

2. the Pin group Pin(0,m) is the subgroup of Γ(0,m) consisting of pro-
ducts of unit vectors in Rm

3. the Spin group Spin(0,m) is the subgroup of Pin(0,m) consisting of
products of an even number of unit vectors in Rm .

According to Definition 0.1 the Dirac operator on R0,m is given by the vector
derivative

D(x)0,m = −
m∑

j=1

ej∂xj
.

However, the overall minus sign may of course be omitted and that is why
we adopt the standard notation for the Dirac operator on the vector space
Rm endowed with the quadratic form Q0,m(x) :

Definition 0.2 The Dirac operator on the real orthogonal space R0,m is the
vector derivative

∂ =
m∑

j=1

ej∂xj

Remark : In what follows we will sometimes use two vector variables x and
y on Rm, so it becomes important to indicate on which variable the Dirac
operator acts. In that case we will respectively use ∂x and ∂y.

Let Ω ⊂ Rm be an open subset and let f : Ω 7→ Rm be a C1-function
on Ω which is R0,m-valued. If f satisfies ∂f = 0 (respectively f∂ = 0) in Ω,
f is called left (respectively right) monogenic in Ω. As the Dirac operator
satisfies ∂2 = −∆m, with ∆m = ∂2

x1
+ · · ·+ ∂2

xm
the Laplacian on Rm, mono-

genic functions in Ω are a refinement of harmonic functions in Ω.

In polar co-ordinates we have x = rξ with ξ ∈ Sm−1, the unit sphere in
Rm. The Dirac operator ∂ admits the following polar decomposition :

∂ = ξ

(
∂r +

1

r
Γ0,m

)
,
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where Γ0,m = −x ∧ ∂ is the spherical Dirac operator (or Gamma operator)
on Sm−1. In terms of the so-called angular momentum operators Lij, we also
have :

Γ0,m = −
∑
j<k

ejkLjk

= −
∑
j<k

ejk

(
xj∂k − xk∂j

)
.

When it is clear that we are dealing with the Gamma operator on Sm−1, the
subscript (0,m) will be suppressed to avoid overloaded notations. This will
be the case in the rest of this subsection.

Remark : In case we are considering functions f(ξ, η) depending on two
co-ordinates ξ and η ∈ Sm−1, we will label the Gamma operator respectively
as Γξ and Γη to indicate on which of the variables the operator acts.

Note that

x̄ ∂ = −x ∂ = xD(x)0,m = Er + Γ ,

with Er = r∂r =
∑

j xj∂j the Euler operator on Rm measuring the degree of
homogeneity with respect to the co-ordinates x on Rm.

Definition 0.3 An R0,m-valued C∞ function Pk(ω) on Sm−1 is called an
inner spherical monogenic of order k if it is the restriction to the unit sphere
of a polynomial monogenic function on Rm of order k.

Definition 0.4 An R0,m-valued C∞ function Qk(ω) on Sm−1 is called an
outer spherical monogenic of order k if it is the restriction to the unit sphere
of a monogenic function on Rm \ {0}, homogeneous of degree (1− k −m).

These classical spherical monogenics are the only global eigenfunctions of the
Gamma operator on Sm−1, satisfying :

ΓPk = −kPk

ΓQk = (k +m− 1)Qk .

Local eigenfunctions for the Gamma operator have been studied extensively
in [68, 75, 76], but we return to this point later.
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The set of inner (respectively outer) spherical monogenics provided with the
obvious laws of addition and (right) multiplication with Clifford numbers is
a right Clifford-module, denoted as M+(k) (respectively M−(k)). Inner and
outer spherical monogenics are related in the following sense :

Pk(ω) ∈M+(k) ⇒ ωPk(ω) ∈M−(k)

Qk(ω) ∈M−(k) ⇒ ωQk(ω) ∈M+(k) .

The fundamental solution for the Dirac operator ∂ on Rm is the so-called
Cauchy kernel E(x), defined by

E(x) =
Γ
(

m
2

)
2π

m
2

x

|x|m
=

1

Am

x

|x|m

with Am the area of the unit sphere in Rm. The Cauchy kernel is both
left and right monogenic in Rm \ {0} with respect to ∂ and it satisfies the
equation ∂E(x) = −δ(x) in distributional sense. Since the Dirac operator
∂ is invariant under translations, we have ∂E(x − y) = −δ(x − y). A series
representation for the Cauchy kernel can easily be found as follows :

E(x− y) =
1

Am

x− y
|x− y|m

=
1

Am

1

m− 2
∂y

1

|x− y|m−2
.

With x = |x| ξ, y = |y| η and putting s =
|x|
|y|

and

t = < ξ, η > = −ξ · η =
m∑

j=1

ξjηj

one can easily verify that for |x| < |y|

1

|x− y|m−2
= |y|2−m (1− 2ts+ s2)−(m

2
−1) .

As

(1− 2ts+ s2)−(m
2
−1) =

∞∑
k=0

C
m
2
−1

k (t)sk ,

with Cµ
k (t) the classical Gegenbauer polynomial, we get immediately that

∂y

1

|x− y|m−2

= η
∑

k

{
(2−m− k)C

m
2
−1

k (t) + Γη(t)
d

dt

(
C

m
2
−1

k (t)
)} |x|k

|y|m+k−1
.
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Using the fact that

Γη(t) = Γ(< ξ, η >) = ξ ∧ η

and the recurrence relations for the Gegenbauer polynomials (see also section
0.2.3) the following series expansion for the Cauchy kernel is obtained :

E(x− y) = − 1

Am

∞∑
k=0

|x|k

|y|k+m−1

{
C

m
2

k (t)η − C
m
2

k−1(t)ξ
}
. (2)

Note that the function between brackets is an inner spherical monogenic
with respect to the Dirac operator ∂x and an outer spherical monogenic with
respect to the Dirac operator ∂y :

Γξ

{
C

m
2

k (t)η − C
m
2

k−1(t)ξ
}

= −k
{
C

m
2

k (t)η − C
m
2

k−1(t)ξ
}

Γη

{
C

m
2

k (t)η − C
m
2

k−1(t)ξ
}

= (k +m− 1)
{
C

m
2

k (t)η − C
m
2

k−1(t)ξ
} .

Arbitrary functions f ∈ L2(S
m−1) can then be decomposed as

f(ξ) =
∞∑

k=0

P (k)[f ](ξ) +Q(k)[f ](ξ)

where the series converges in L2-sense on Sm−1. The projections P (k)[f ] and
Q(k)[f ] of the function f on the spaces M+(k) and M−(k) of inner and outer
spherical monogenics of order k are given by :

P (k)[f ](η) = − 1

Am

η

∫
Sm−1

{
C

m
2

k (t)η − C
m
2

k−1(t)ξ
}
f(ξ)dS(ξ)

Q(k)[f ](η) = − 1

Am

∫
Sm−1

{
C

m
2

k (t)η − C
m
2

k−1(t)ξ
}
ξf(ξ)dS(ξ) .

On the module L2(S
m−1), provided with the inner product

(f, g) =

∫
Sm−1

f̄(ξ)g(ξ)dS(ξ) ,

the spherical Dirac operator Γ on Sm−1 is a self-adjoint operator. This is a
consequence of Stokes’ Theorem on the sphere, and in explicit form it says
that ∫

Sm−1

[
(Γf)g − f̄(Γg)

]
dS(ξ) = 0 =⇒ (Γf, g) = (f,Γg) . (3)
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Using the conjugation map, this can also be written as∫
Sm−1

[
(fΓ)g + f(Γg)

]
dS(ξ) = 0 , (4)

where (fΓ) denotes the action of the spherical Dirac operator from the right.

Next, let us consider the Moebius transformations over the compactification
Rm ∪ {∞} = Sm of Rm. As shown in [1], [73] and elsewhere any Moebius
transformation y = ψ(x) can be expressed as

y =
ax+ b

cx+ d

where a, b, c, d ∈ R0,m are Clifford numbers satisfying

1. a, b, c, d are products of vectors from Rm

2. ac̃, cd̃, db̃ and bã ∈ Rm

3. ad̃− bc̃ ∈ R0

The matrix M , defined as

M =

(
a b
c d

)
,

with entries satisfying these conditions is then called a Vahlen matrix and
gives a Moebius transformation, i.e. a finite composition of orthogonal trans-
formations, inversions, translations and dilatations. The set of all Vahlen
matrices is a group under multiplication, the so-called Vahlen group.

Suppose now that y = ψ(x) = (ax + b)(cx + d)−1 is a Moebius transfor-
mation, and suppose that f(y) is a left monogenic function in the variable
y. Then, see reference [15], the function

J(ψ, x)f
(
ψ(x)

)
=

(cx+ d)˜
|cx+ d|m

f
(
ψ(x)

)
is left monogenic in the variable x, with |cx+ d|2 = (cx+ d)(cx+ d)˜. This
means that the space of monogenic functions is not closed under the action
of the Moebius group, one needs an additional conformal weight factor to
maintain monogenic functions. It should be mentioned that H. Leutwiler
and his students dealt with this problem by modifying the Clifford system
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in such a way that the space of modified monogenic functions, the so-called
(H)-solutions, is closed under the action of the Moebius group. We refer e.g.
to [34], [49] and [50] for more information.

Another way to obtain solutions for the Dirac operator ∂ on Rm is given
by the so-called Cauchy-Kowalevska Theorem, which answers the following
question :

”Given an R0,m-valued function f(x) on Rm which is analytic in an open
subset Ω of Rm, does there exist a monogenic function f ∗(x0, x) in some
open neighbourhood Ω∗ of Ω in Rm+1 such that f ∗|x0=0 = f in Ω?”

First of all, note that an open neighbourhood Ω∗ of Ω ⊂ Rm is said to be
x0-normal if for each (x0, x) ∈ Ω∗ the line segment {(x0, x)+ te0 : t ∈ R}∩Ω∗

is connected and contains just one point in Ω. We then have the following
Theorem :

Theorem 0.1 (Cauchy-Kowalevska) Let Ω ⊂ Rm be open and let f(x) be
an R0,m-valued analytic function on Ω. Then the function f ∗(x0, x) given by

f ∗(x0, x) =
∞∑

k=0

(−1)k

k!
xk

0(e0∂)kf(x)

satisfies (e0∂x0 +∂)f ∗(x0, x) = 0 in an open connected, normal neighbourhood
Ω∗ of Ω in Rm+1. Moreover f ∗|x0=0 = f in Ω.

Note that the extension f ∗(x0, x) of f(x) is formally given by

f ∗(x0, x) = e−x0e0∂f(x) .

We end this section with some considerations on the algebra P of Clifford
polynomials, generated by the set {x1, · · · , xm; e1, · · · , em}, where the set
{x1, · · · , xm} is to be considered as a set of commuting symbols. This algebra
inherits a natural Z-gradation by putting

P =
∞∑

k=0

Pk ,

with Pk the set of k-homogeneous polynomials. Note that each space Pk

is an eigenspace for the Euler operator Er on Rm with eigenvalue k. The
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elements of Pk which are monogenic with respect to the operator ∂ give rise
to the inner spherical monogenics defined earlier, after restriction to the unit
sphere Sm−1.

Making use of the basic operator identities

∂ x = −Er + Γ−m
x ∂ = −Er − Γ ,

when acting from the left, we have immediately that the simultaneous eigen-
spaces of Er and Γ are the spaces Mk,s of polynomials of the form xsPk(x),
where Pk(x) stands for a spherical monogenic of degree k. We also have the
following identity for these polynomials :

∂
(
xsPk(x)

)
= Bk,sx

s−1Pk(x) with

{
B2k,s = −2s

B2k+1,s = −(2s+ 2k +m)

These polynomials are important, as they are the building blocks for the
so-called Fischer decomposition, which provides the space P of Clifford poly-
nomials with an inner product for which the spaces Pk are orthogonal :(

R(x), S(x)
)

= [R(∂)S(x)]0|x=0 .

Any homogeneous polynomial Rk(x) ∈ Pk then has a unique orthogonal
decomposition of the form

Rk(x) = Pk(x) + xRk−1(x) =
k∑

j=0

xjPk−j(x) ,

with

∂Pk−j(x) = 0 =⇒ xjPk−j(x) ∈Mk−j,j .

This orthogonal decomposition refines the classical Fischer decomposition for
polynomials Rk(x) of degree k in terms of solid harmonic polynomials :

Sk(x) =

[ k
2 ]∑

j=0

r2jSk−2j(x) ,

with Sk−2j(x) a polynomial of degree (k − 2j) such that ∆mSk−2j(x) = 0.
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0.1.3 The Space-Time Clifford Algebra R1,m

In this thesis we will mainly be interested in R1,m-valued functions, so it is
important to fix our notations and nomenclature here. The signature (1,m)
will be referred to as the space-time situation, without further specification.
This in contrast to the signature (p, q) 6= (1,m), with p and q 6= 0, in this
thesis always referred to as the (p, q)-space-time situation. The signature
(0,m), treated in the previous subsection, will always be referred to as the
flat Euclidean case.

Our starting point is the real orthogonal space R1,m of signature (1,m) with
orthonormal basis B1,m(ε, ej) = {ε, e1, · · · , em}, endowed with the quadratic
form

Q1,m(T,X) = T 2 −
m∑

j=1

X2
j = T 2 −R2 ,

where we have put R = |X| = (
∑

j X
2
j )

1
2 . The orthogonal space R1,m will

be called the m-dimensional space-time, m referring to the number of spatial
dimensions.

The space-time Clifford algebra R1,m is generated by the following multi-
plication rules : ejej + ejei = −2δij for all 1 ≤ i, j ≤ m, eiε+ εei = 0 for all i
and ε2 = 1. Vectors in R1,m, i.e. (m+1)-tuples (T,X) or space-time vectors,
are identified with 1-vectors in R1,m under the canonical map

(T,X) = (T,X1, · · · , Xm) 7→ εT +X ∈ R(1)
1,m .

For 1-vectors in R1,m we also introduce the notation X = εT + X. Both
notations will be used throughout this thesis. The capital X will mainly
be used for the hyperbolic polar representation (cfr. infra), whereas εT +X
will mainly be used to express formulae explicitely in space-time co-ordinates.

Consider then a space-time vector X = εT + X ∈ R(1)
1,m. We will tem-

porarily restrict ourselves to space-time vectors X for which Q1,m(T,X) > 0,
for reasons that will be made clear in what follows. Such a vector may be
written as

X = εT +X = Q1,m(T,X)
1
2

εT +X

Q1,m(T,X)
1
2

= ρξ

with

ρ = Q1,m(T,X)
1
2 = (T 2 − |X|2)

1
2
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the hyperbolic norm of the space-time vector X and with

ξ =
εT +X

(T 2 − |X|2) 1
2

the space-time unit vector associated to the given vector X. The notation
X = ρξ will be referred to as the hyperbolic polar decomposition of the space-
time vector X.

For two 1-vectors X = εT +X and Y = εS + Y in R(1)
1,m, we have :

XY = X · Y +X ∧ Y ,

where the inner product is in explicit space-time co-ordinates given by

(εT +X) · (εS + Y ) = ST −
m∑

j=1

XjYj

and the outer product by

(εT +X) ∧ (εS + Y ) = SXε− TY ε+
∑
j<k

ejk(XjYk −XkYj)

= SXε− TY ε+X ∧ Y .

In agreement with Definition 0.1, we introduce the following :

Definition 0.5 The Dirac operator on the m-dimensional space-time R1,m

is given by the vector derivative

D(T,X)1,m = ε∂T −
m∑

j=1

ej∂Xj
= ∂X

This canonical first order Spin(1,m)-invariant operator factorizes the wave-
operator �m on R1,m :

∂2
X = �m = ∂2

T −∆m

and has a hyperbolic polar decomposition given by :

∂X = ξ

(
∂ρ +

1

ρ
Γ1,m

)
=

ξ

ρ
(Eρ + Γ1,m) .

Remark : It is important to note that the polar decomposition given here
is only valid in the region where Q1,m(T,X) > 0, due to the presence of both

25



the hyperbolic norm ρ and the hyperbolic unit vector ξ. However, as will be
made clear in the following Chapters, for our purposes it is not necessary to
extend the definition outside the future cone.

The operator

Eρ = T∂T +
m∑

j=1

Xj∂Xj
= ρ∂ρ

is the Euler operator on R1,m, measuring the degree of homogeneity with
respect to the space-time co-ordinates (T,X), and the operator

Γ1,m = X ∧ ∂X = Xε∂T − Tε
m∑

j=1

ej∂Xj
−
∑
j<k

ejk(Xj∂Xk
−Xk∂Xj

)

= Xε∂T − Tε∂ + Γ0,m

is the so-called hyperbolic Gamma operator, with ∂ (resp. Γ0,m) the Dirac
operator (resp. the spherical Dirac operator) in terms of the co-ordinates X
on the Euclidean space Rm endowed with the quadratic form Q0,m(X).

Recalling the fact that ∂2
X = �m and making use of the polar decompo-

sition for the wave-operator �m on R1,m given by

�m = ∂2
ρ +

m

ρ
∂ρ +

1

ρ2
∆H ,

with ∆H the Laplace-Beltrami operator on the hyperbolic unit ball, see e.g.
reference [15], we easily get :

Γ1,m + ξΓ1,mξ = m =⇒ Γ1,mξ = mξ ,

a relation that will be of major importance in what follows.

0.2 Special Functions

In this section we give a short introduction to the hypergeometric function,
to the Legendre function and the Gegenbauer function and we list some
important properties that will often be used. As a general reference for this
section, we refer to [25], [35] and [46].
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0.2.1 The Hypergeometric Function

The hypergeometric differential equation, given by

z(1− z)d
2f

dz2
+ [c− (a+ b+ 1)z]

df

dz
− abf = 0 , (5)

is one of the most important differential equations arising in mathematical
physics. In fact, a wide class of problems in mathematical physics leads to
equations of this form. The solutions to this equation are the well-known
hypergeometric functions.

We define the Pochammer symbol (a)n, for arbitrary complex a, by

(a)n =
Γ(a+ n)

Γ(a)
,

i.e. (a)0 = 1 and (a)n = a(a+ 1) · · · (a+ n− 1) for all n ∈ N0.

• If c /∈ −N, then

f1(z) =
∞∑

n=0

(a)n(b)n

n!(c)n

zn

= F (a, b; c; z) (6)

is a solution for equation (5) which is regular at z = 0. This function
F (a, b; c; z) is the hypergeometric series with parameters a, b and c.
It is also known as Gauss’ hypergeometric function, because he was
the first to study it (1812). The series converges for |z| < 1, and if
Re(c− a− b) > 0 it also converges for |z| = 1.

A second, independent solution to equation (5) is then given by

f2(z) = z1−cF (a+ 1− c, b+ 1− c; 2− c; z) . (7)

• If c = −k with k ∈ N, f1(z) is ill-defined and f2(z) is regular at z = 0.
Dividing the first solution by the Gamma function Γ(c) leads to a new
solution, usually denoted as ϕ(a, b; c; z), which is then well-defined and
equal to f2(z) up to a constant. This is expressed in the following :

lim
c→−k

F (a, b; c; z)

Γ(c)
=

(a)1+k(b)1+k

(1 + k)!
z1+kF (a+ 1 + k, b+ 1 + k; 2 + k; z)
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Putting

γk =
(a)1+k(b)1+k

(1 + k)!
,

a second, independent solution which is singular at z = 0 can then be
found as

lim
c→−k

ϕ(a, b; c; z)− γkz
1−cF (a+ 1− c, b+ 1− c; 2− c; z)

c+ k
. (8)

This method to construct a second independent solution for the hyper-
geometric differential equation by means of a limit will play an impor-
tant role in this thesis. It gives rise to logarithmic functions, and will
be referred to as the limit procedure.

The hypergeometric series has several integral representations. The most
important for what follows is Euler’s formula : for Re(c) > Re(b) > 0 we
have :

F (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt . (9)

Since the right-hand side is a one-valued analytic function of z within the
domain | arg(1− z)| < π, expression (9) also gives the analytic continuation
of F (a, b; c; z). Still denoting this analytic continuation by F (a, b; c; z), we
have thus defined the hypergeometric function as a holomorphic function in
the complex plane cut along the real axis from 1 to +∞.

The hypergeometric function has many properties, a few of which will be
listed here for future purposes. A complete list can be found e.g. in [35].

• Derivation of a hypergeometric function yields a new hypergeometric
function :

dn

dzn
F (a, b; c; z) =

(a)n(b)n

(c)n

F (a+ n, b+ n; c+ n; z)

• Kummer’s relations (a list of 24 solutions for the hypergeometric equa-
tion and 20 linear relations with constant coefficients connecting any
three of them) :

F (a, b; c; z) = (1− z)c−a−bF (c− a, c− b; c; z)
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• Goursat’s table of quadratic transformations :

F

(
a, a+

1

2
; c; z

)
=

(
1 + z

1
2

)−2a

F

(
2a, c− 1

2
; 2c− 1;

2z
1
2

1 + z
1
2

)

• Some elementary functions expressed by means of a hypergeometric
series :

F

(
a, a+

1

2
;
1

2
; z2

)
=

(1 + z)−2a + (1− z)−2a

2

F

(
a, a+

1

2
;
3

2
; z2

)
=

(1 + z)1−2a − (1− z)1−2a

2(1− 2a)z

• In case Re(c− a− b) > 0 and c /∈ −N, we have

F (a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

• The contigious relations :(
z
d

dz
+ a

)
F (a, b; c; z) = aF (1 + a, b; c; z)(

z
d

dz
+ b

)
F (a, b; c; z) = bF (a, 1 + b; c; z)(

z
d

dz
+ c− 1

)
F (a, b; c; z) = (c− 1)F (1 + a, b; c− 1; z)

0.2.2 Legendre Functions in the Complex Plane

The Legendre functions are solutions to Legendre’s differential equation

(1− z2)
d2f

dz2
− 2z

df

dz
+ [ν(ν + 1)− µ2(1− z2)−1]f = 0 , (10)

with ν and µ unrestricted complex parameters.

Under the substitution f = (z2 − 1)
µ
2 g, Legendre’s equation becomes :

(1− z2)
d2g

dz2
− 2(µ+ 1)z

dg

dz
+ (ν − µ)(ν + µ+ 1)g = 0 , (11)

and with ζ = 1−z
2

as the independent variable this equation reduces to a
differential equation of the hypergeometric type :

ζ(1− ζ)d
2g

dζ2
+ (1 + µ)(1− 2ζ)

dg

dζ
+ (ν − µ)(ν + µ+ 1)g = 0 .
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It follows that the function f(z) = P µ
ν (z), for |1− z| < 2 defined by

P µ
ν (z) =

1

Γ(1− µ)

(
z + 1

z − 1

)µ
2

F

(
−ν, 1 + ν; 1− µ;

1− z
2

)
, (12)

is a solution to Legendre’s differential equation.

On the other hand, setting ζ = z2 in equation (11), we get the following
differential equation of hypergeometric type :

4ζ(1− ζ)d
2g

dζ2
+ [2− (4µ+ 6)ζ]

dg

dζ
+ (ν − µ)(ν + µ+ 1)g = 0 .

Hence, the function f(z) = Qµ
ν (z) for |z| > 1 defined by

Qµ
ν (z) =

eiµππ
1
2

21+ν

Γ(ν + µ+ 1)

Γ
(
ν + 3

2

) (z2 − 1)
µ
2 z−1−ν−µ

F

(
1 + ν + µ

2
,
2 + ν + µ

2
; ν +

3

2
;

1

z2

)
, (13)

yields a second solution to equation (10). The functions P µ
ν (z) and Qµ

ν (z)
are known as the associated Legendre functions of the first and second kind
respectively. They can be analytically extended to the whole complex plane
supposed cut along the real axis from −∞ to 1, and they are regular and
one-valued in this region. By means of the transformation formulae for the
hypergeometric function, P µ

ν (z) and Qµ
ν (z) can be expressed, in several ways,

as

P µ
ν (z) = A1F (a1, b1; c1; ζ) + A2F (a2, b2; c2; ζ)

Qµ
ν (z) = eiµπ

(
A3F (a3, b3; c3; ζ) + A4F (a4, b4; c4; ζ)

)
where ζ is a function of z, such that |ζ| < 1. The various expansions for
P µ

ν (z) and Qµ
ν (z) can be found e.g. in [35]. The following expansions for the
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Legendre function Qµ
ν (z) will often be used throughout the thesis :

Qµ
ν (z) =

Γ(µ)

21−µ

eiµπzν+µ

(z2 − 1)
µ
2

F

(
−ν + µ

2
,
1− ν − µ

2
; 1− µ; 1− 1

z2

)
+

Γ(−µ)Γ(1 + µ+ ν)

2µ+1Γ(1 + ν − µ)

eiµπzν−µ

(z2 − 1)−
µ
2

F

(
µ− ν

2
,
1 + µ− ν

2
; 1 + µ; 1− 1

z2

)
(14)

Qµ
ν (z) = eiµππ

1
2 2µΓ(1 + µ+ ν)

Γ
(
ν + 3

2

) (z2 − 1)
µ
2(

z + (z2 − 1)
1
2

)1+µ+ν

F

(
1

2
+ µ, 1 + µ+ ν; ν +

1

2
;
z − (z2 − 1)

1
2

z + (z2 − 1)
1
2

)
. (15)

The Legendre function of the second kind satisfies :

e−iµπΓ(1 + ν − µ)Qµ
ν (z) = eiµπΓ(1 + ν + µ)Q−µ

ν (z) , (16)

and can be written in terms of the Legendre function of the first kind as

Qµ
ν (z) =

πeiµπ

2 sin(µπ)

(
P µ

ν (z)− Γ(ν + µ+ 1)

Γ(ν − µ+ 1)
P−µ

ν (z)

)
. (17)

In case µ = 0 and ν = n ∈ N the Legendre function of the first kind reduces
to the classical Legendre polynomial Pn(t). Classically, these are defined by
means of Rodrigues’ formula :

Pn(t) =
1

2nn!

dn

dtn
(t2 − 1)n , n ∈ N ,

for arbitrary real or complex values of the variable t. They can also be defined
in terms of their generating function :

(1− 2xt+ t2)−
1
2 =

∞∑
n=0

Pn(x)tn .

In Chapter 6 we will need the Legendre polynomials in higher dimensions.
In order to define these special functions, we need some definitions from the
theory on harmonic polynomials of degree k on the m-dimensional Euclidean
space, i.e. k-homogeneous solutions for the Laplace operator ∆m on Rm :

∆mPk(x) = 0 .

The restriction of a harmonic polynomial to the unit sphere is then called a
spherical harmonic of degree k. Note that the spherical monogenics defined
earlier refine these spherical harmonics. The Legendre polynomial of degree
k in m dimensions is then defined as the unique harmonic polynomial P (x)
of degree k on Rm satisfying the following properties :
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1. In a certain point η of the unit sphere, the Legendre polynomial has
value 1. Choosing the co-ordinate system in an appropriate way, we
may always choose η = e1 = (1, 0, · · · , 0) such that P (e1) = 1.

2. The polynomial P (x) is invariant under SO(m)η, i.e. the subgroup of

SO(m) fixing η ∈ Sm−1. This means that for each R ∈ SO(m) such
that Rη = η we have : P (Rx) = P (x).

As a consequence, the Legendre polynomial of degree k in m dimensions is a
zonal function, depending on the Euclidean inner product t =< x, η > only.
It will be denoted by Pk,m(t) and can be defined in terms of a Rodrigues
formula :

Pk,m(t) =

(
−1

2

)k Γ
(

m−1
2

)
Γ
(
k + m−1

2

)(1− t2) 3−m
2

(
d

dt

)k

(1− t2)k+m−3
2 .

From this formula it is clear that the Legendre polynomials defined above
are actually Legendre polynomials in 3 dimensions.

We also mention the recurrence relation for the Legendre polynomial in m
dimensions :

(k +m− 2)Pk+1,m(t)− (2k +m− 2)tPk,m(t) +mPk−1,m(t) = 0 (18)

and the classical Hecke-Funk Theorem :

Theorem 0.2 (Hecke-Funk) Let ξ and η ∈ Sm−1 and let Sk(η) be a spherical
harmonic of degree k on Sm−1. The integral of a zonal function F can be
calculated by means of the following formula :∫

Sm−1

F (< η, ξ >)Sk(η)dS(η) = AmSk(ξ)

∫ 1

−1

F (t)Pk,m(t)(1− t2)
m−3

2 dt ,

Am denoting the area of the unit sphere Sm−1 in Rm.

0.2.3 Gegenbauer Functions in the Complex Plane

Classically, Gegenbauer’s polynomial Cµ
n(z) for integral value of n is defined

as the coefficient of tn in the expansion of (1− 2tz + t2)−µ in powers of t :

(1− 2tz + t2)−µ =
∞∑

n=0

Cµ
n(z)tn , (19)
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for |t| < |z ± (z2 − 1)
1
2 |. If we compare this with the generating function for

the Legendre polynomials in 3 dimensions, we immediately see that

Pk,3(t) = C
1
2
k (t).

The Legendre polynomials in higher dimension can also be expressed in terms
of the Gegenbauer polynomials, by means of the following formula :

Pk,m(t) =

(
k +m− 3

k

)
C

m−2
2

k (t).

The coefficient of tn in expression (19) is found to be

Cµ
n(z) =

n∑
k=0

(−1)kΓ(µ+ k)Γ(2µ+ n+ k)

k!Γ(µ)Γ(2µ+ 2k)(n− k)!

(
1− z

2

)k

,

which by means of the definition for the hypergeometric series reduces to

Cµ
n(z) =

Γ(n+ 2µ)

Γ(n+ 1)Γ(2µ)
F

(
n+ 2µ,−n;µ+

1

2
;
1− z

2

)
.

Hence, by means of (12) we get

Cµ
n(z) = π

1
2 2−µ+ 1

2
Γ(n+ 2µ)

Γ(µ)Γ(1 + n)
(z2 − 1)

1
4
−µ

2P
−µ+ 1

2

n+µ− 1
2

(z) ,

and this function satisfies the differential equation

(1− z2)
d2f

dz2
− (2µ+ 1)z

df

dz
+ n(n+ 2µ)f = 0 .

We therefore define the Gegenbauer functions for arbitrary complex values
µ and ν as the solutions to Gegenbauer’s differential equation

(1− z2)
d2f

dz2
− (2µ+ 1)z

df

dz
+ ν(ν + 2µ)f = 0 . (20)

These Gegenbauer functions are defined in terms of the associated Legendre
functions as follows :

Cµ
ν (z) = π

1
2 2−µ+ 1

2
Γ(ν + 2µ)

Γ(µ)Γ(1 + ν)
(z2 − 1)

1
4
−µ

2P
−µ+ 1

2

ν+µ− 1
2

(z) (21)

Dµ
ν (z) = π−

1
2 e2iπ(µ− 1

4
)2−µ+ 1

2
Γ(ν + 2µ)

Γ(µ)Γ(1 + ν)
(z2 − 1)

1
4
−µ

2Q
−µ+ 1

2

ν+µ− 1
2

(z) . (22)
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In view of the different expansions for the Legendre functions in terms of
the hypergeometric function, we have several expansions for the Gegenbauer
functions in terms of the hypergeometric function too. In Chapter 5, the
following formulae will be essential :

Cµ
ν (z) =

Γ(ν + 2µ)

Γ(1 + ν)Γ(2µ)
zνF

(
−ν

2
,
1− ν

2
;µ+

1

2
; 1− 1

z2

)
(23)

Dµ
ν (z) =

eiµπΓ(ν + 2µ)

22µ+νΓ(µ)Γ(ν + µ+ 1)

(z2 − 1)
1
2
−µ

zν+1

F

(
1 +

ν

2
,
ν + 3

2
; 1 + ν + µ;

1

z2

)
(24)

The Gegenbauer functions Cµ
ν (z) and Dµ

ν (z) are holomorphic functions in the
z-plane cut along the real axis from −∞ to 1. Note that the Gegenbauer
function of the first kind can be considered as a Gegenbauer polynomial of
complexified degree.

Both Gegenbauer functions satisfy the following recurrence relations, which
will often be used later :

d

dz
Cµ

ν (z) = 2µCµ+1
ν−1 (z)

νCµ
ν (z) = 2µ[zCµ+1

ν−1 (z)− Cµ+1
ν−2 (z)]

(ν + 2µ)Cµ
ν (z) = 2µ[Cµ+1

ν (z)− zCµ+1
ν−1 (z)] . (25)

These relations generalize the recurrence relations of the classical Gegenbauer
polynomials Cµ

n(z) to complex values of n.

The Gegenbauer function of the first kind satisfies

Cµ
−ν−2µ(z) = −sin(ν + 2µ)π

sin(νπ)
Cµ

ν (z) , (26)

whereas the Gegenbauer function of the second kind satisfies

Dµ
ν (z) = Dµ

−ν−2µ(z) + eiπµ sin(ν + µ)π

sin(νπ)
Cµ

ν (z) . (27)
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In Chapter 5, the addition formula for the Gegenbauer function of the second
kind will be essential, see reference [25] :

Dµ
ν

(
x1x2 − z(x2

1 − 1)
1
2 (x2

2 − 1)
1
2

)
=

Γ(2µ− 1)

[Γ(µ)]2

∞∑
k=0

(−1)k(2k + 2µ− 1)
4kΓ(1 + ν − k)[Γ(µ+ k)]2

Γ(ν + 2µ+ k)

(x2
1 − 1)

k
2 (x2

2 − 1)
k
2Dµ+k

ν−k (x1)C
µ+k
ν−k (x2)C

µ− 1
2

k (z) , (28)

valid for x1, x2 and z ∈ R, with x1 > x2 > 1.

0.3 Riesz Distributions

The aim of this section is to introduce Riesz distributions Zµ ∈ D′(R1,m),
defined for all µ ∈ C. For that purpose we first introduce the distributions
xλ

+ ∈ D′(R) on the real line, λ being an arbitrary complex number.

Consider the function xλ
+, defined by

xλ
+ =

{
xλ x > 0
0 x ≤ 0

.

For Re(λ) > −1 this function is locally integrable and hence defines a regular
distribution xλ

+ ∈ D′(R) :

< xλ
+, ϕ > =

∫ ∞

0

xλϕ(x)dx , ϕ ∈ D(R) .

In the strip −n − 1 < Re(λ) < −n, the distribution xλ
+ may be defined by

analytical continuation :

< xλ
+, ϕ > =

<
dn

dxn
xλ+n

+ , ϕ >

(λ+ 1)(λ+ 2) · · · (λ+ n)
,

where the derivatives with respect to x must be interpreted in distributional
sense. Hence, if −n− 1 < Re(λ) < −n one defines

< xλ
+, ϕ > = (−1)n < xλ+n

+ , ϕ(n) >

(λ+ 1)(λ+ 2) · · · (λ+ n)
, ϕ ∈ D(R) .

This means that for all test functions ϕ ∈ D(R), the function < xλ
+, ϕ >

defines a meromorphic function of λ with simple poles at λ = −1−n, n ∈ N.
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The residue at λ = −1− n is given by

ϕ(n)(0)

n!
=

(−1)n

n!
< δ(n), ϕ > ,

and we thus conclude that

Res(xλ
+, λ = −1− n) =

(−1)n

n!
δ(n)(x) .

In order to remove the simple poles of xλ
+ we divide by Γ(1 + λ), and so the

distribution
xλ

+

Γ(λ+ 1)
is well-defined on D(R) for all λ ∈ C with

< xλ
+, ϕ >

Γ(λ+ 1)
a holomorphic function of λ for all ϕ ∈ D(R).

These distributions xλ
+ on the real line can be used to define the Beta integral

IB(λ, µ) for arbitrary complex values :

IB(λ, µ) =

∫ 1

0

tλ−1(1− t)µ−1dt .

In case Re(λ) > 0 and Re(µ) > 0 this integral converges in the classical sense
to the Beta function B(λ, µ), defined in terms of the Gamma function as

B(λ, µ) =
Γ(λ)Γ(µ)

Γ(λ+ µ)
.

For more general λ and µ this relation remains valid, and this can easily
be seen as follows : the Beta integral IB(λ, µ) may be interpreted as the
distribution tλ−1

+ (1− t)µ−1
+ acting on the constant function 1 :

IB(λ, µ) = < tλ−1
+ (1− t)µ−1

+ , 1 > =

∫ 1

0

tλ−1(1− t)µ−1dt .

The product of the distributions tλ−1
+ and (1− t)µ−1

+ is well-defined for those
values for which they respectively exist (i.e. for Re(λ) > 0 and Re(µ) > 0),
as they have a ”problematic behaviour” for different values (in casu 0 and
1), and it has compact support [0, 1] =] − ∞, 1] ∩ [0,+∞[. This means
that as a function of (λ, µ), the distribution tλ−1

+ (1 − t)µ−1
+ is defined in

C2\{(λ, µ) ∈ C2 : λ ∈ −N, µ ∈ −N} which is the complex plane minus a grid.
In the complex strip {(λ, µ) ∈ C2 : Re(λ) > 0,Re(µ) > 0} this distribution
yields the Beta function B(λ, µ) when acting on the test function 1, and for
all other possible values this equality follows by analytic continuation. We
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may thus conclude that for all (λ, µ) ∈ C2 \ {(λ, µ) ∈ C2 : λ ∈ −N, µ ∈ −N}
we have :

IB(λ, µ) =
Γ(λ)Γ(µ)

Γ(λ+ µ)
. (29)

Next we introduce the distributions ρλ ∈ D′(R1,m), λ being an arbitrary
complex number. As a general reference, we mention [21], [42] and [57].

The function ρ is defined for space-time vectors (T,X) ∈ R1,m as :

ρ =

{
Q1,m(T,X)

1
2 T > |X|

0 otherwise
.

In the half-plane Re(λ) > −2, the function ρλ defines a regular distribution
since ρλ is locally integrable for these values of λ. Hence, for all test functions
ϕ ∈ D(R1,m), the integral

< ρλ, ϕ > =

∫
R

∫
Rm

Q
λ
2
1,m(T,X)ϕ(T,X)dTdX

defines an analytic function of the complex parameter λ when Re(λ) > −2.
Using analytic continuation < ρλ, ϕ > may be extended to a meromorphic
function in the whole complex plane.

For that purpose we use the wave-operator �m on R1,m. Letting this operator
act on ρλ we get for Re(λ) > −2 :

�mρ
λ = λ(λ+m− 1)ρλ−2 .

This suggests the following definition for the distribution ρλ in the strip
−4 < Re(λ) < −2 :

< ρλ, ϕ > =
< �mρ

λ+2, ϕ >

(λ+ 2)(λ+m+ 1)
, ϕ ∈ D(R1,m) .

By iteration we obtain more generally for the distribution ρλ in the strip
−2n− 2 < Re(λ) < −2n :

< ρλ, ϕ > =
< �n

mρ
λ+2n, ϕ >

(λ+ 2) · · · (λ+ 2n)(λ+m+ 1) · · · (λ+m+ 2n− 1)
,

for all ϕ ∈ D(R1,m). From this relation it follows that the distribution ρλ has
poles at λ = −2 − 2n and at λ = −1 −m − 2n, n ∈ N. For m even all the
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poles are simple, while for m odd the points −2,−4, · · · , 1 − m are simple
poles and the points −m− 1,−m− 3, · · · are double poles.

The distributions ρλ are normalized by introducing suitable factors. Putting

Zµ =
ρµ−m−1

π
m−1

2 2µ−1Γ

(
µ

2

)
Γ

(
µ+ 1−m

2

) , (30)

the functional < Zµ, ϕ > becomes an entire function of µ ∈ C, for all test
functions ϕ ∈ D(R1,m).

These so-called Riesz distributions Zµ enjoy remarkable properties, a few
of which will be listed here :

1. The support of Zµ is contained in FC = {X ∈ R1,m : T ≥ |X|}. In
particular : for (µ−m−1) not singular (i.e. not belonging to the set of
poles) the support of Zµ is the set FC, for µ = −2k, k ∈ N, its support
is the origin and for µ = m+ 1− 2k, k ∈ N0 and µ 6= 0,−2,−4, · · · , its
support is the surface {X ∈ R1,m : T = |X|}.

2. The distributions Zµ satisfy the convolution property Zµ ∗ Zν = Zµ+ν .

3. For all k ∈ N, we have : Z−2k = �k
mδ(X), with δ(X) = δ(T )δ(X) the

delta distribution in space-time co-ordinates (T,X). This shows that
for µ = −2k, k ∈ N, the support of Zµ is indeed the origin.

4. For all µ ∈ C and k ∈ N, �k
mZµ = Zµ−2k. In particular, we get

�k
mZ2k = δ(X).

Let us then introduce D′
+(R1,m) as the set of distributions f ∈ D′

(R1,m) with
support contained in FC. The convolution of two elements of D′

+(R1,m)
belongs to D′

+(R1,m), whence D′
+(R1,m) is a so-called convolution algebra.

The distributions Zµ belong to D′
+(R1,m), and their uniquely determined

inverses in D′
+(R1,m) are the distributions Z−µ :

Zµ ∗ Z−µ = δ(X) , µ ∈ C .

It follows that the differential equation

�k
mf = g ,

with f and g belonging to D′
+(R1,m) has unique solution

f = Z2k ∗ g ,

a property that will be essential in what follows.
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0.4 The Radon Transform

The Radon transform of a rapidly decreasing function f(x) ∈ S(Rm) is a
function f †(p, ω) on Pm, the space of all hyperplanes in Rm. A hyperplane
Π in Rm may be represented as the set

Π = {x ∈ Rm : < x, ω > = p , p ∈ R , ω ∈ Sm−1} .

As the pairs (p, ω) and (−p,−ω) give rise to the same Π ∈ Pm, the mapping
(p, ω)→ Π is a double covering of R× Sm−1 onto Pm.

The Radon transform f †(p, ω) of a function f(x) ∈ S(Rm) is obtained by
integrating f(x) over a hyperplane Π ∈ Pm :

f †(p, ω) =

∫
Rm

f(x)δ(< x, ω > −p)dx . (31)

It may thus be identified with a function f † on R× Sm−1, satisfying

f †(p, ω) = f †(−p,−ω) .

Introducing the space S(Pm) as the set of all f ∈ S(R × Sm−1) satisfying
f(p, ω) = f(−p,−ω), and SH(Pm) as the space of all f ∈ S(Pm) such that∫

R f(p, ω)pkdp is a k-homogeneous polynomial in ω (for all k ∈ N), we have
that the Radon transform is a linear one-to-one mapping of the space S(Rm)
onto SH(Pm) (see e.g. [43]).

Functions f(x) ∈ S(Rm) can be recovered from their Radon transform by
means of the following inversion formula :

f(x) =
(−1)

m−1
2

2(2π)m−1
∆

m−1
2

m B[f †(p, ω)] . (32)

The operator B, defined as

[Bg(p, ω)](x) =

∫
Sm−1

g(< x, ω >, ω)dω ,

is the so-called back-projection operator, defined on functions g(p, ω) ∈ S(Pm).
This operator forms a dual pair with the Radon transform in the sense of
integral geometry : while the Radon transform integrates over all points in
a hyperplane, the back-projection operator integrates over all hyperplanes
through a point.
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The Radon transform satisfies the following elementary properties w.r.t.
derivatives :(

m∑
j=1

aj
∂f

∂xj

)†
(p, ω) = < a, ω >

∂f †

∂p
(p, ω)

m∑
j=1

aj
∂f †

∂ωj

(p, ω) = − ∂

∂p

(
< a, x > f(x)

)† (33)

The Radon transform can also be defined for compactly supported distribu-
tions S ∈ E ′(Rm)

< S†, ϕ > = < S,Bϕ > ∀ϕ ∈ E(Pm) .

For all S ∈ E ′(Rm), the Radon transform S† is a distribution of compact
support on Pm, i.e. S† ∈ E ′(Pm). For more details concerning the Radon
transform, we refer to e.g. [20] and [43].

0.5 The Fundamental Solution for the Wave-

operator

In this section, a few considerations concerning the fundamental solution
E1,m(T,X) for the wave-operator �m on the real orthogonal space R1,m are
gathered. As a general reference to this section, we mention [72].

We first give an explicit formula for E1,m(T,X) and its support property
(classically known as the Huyghens principle). We thereby have the make a
distinction between even and odd space-times :

• The case m ∈ 2N

In case of an even-dimensional space-time R1,m we have :

E1,m(T,X) =
(−1)

m−2
2

2π
m+1

2

Γ

(
m− 1

2

)
H(T − |X|)

(T 2 − |X|2)m−1
2

,

where H(x) ∈ D′(R) stands for the classical Heaviside distribution, or
step-function, on the real line.

From this it is immediately clear that the set {(T,X) ∈ R1,m : T ≥ |X|}
is the support of E1,m(T,X).

40



• The case m ∈ 2N + 1

In case of an odd-dimensional space-time R1,m, E1,m(T,X) is given by

E1,m(T,X) =
1

2π

(
1

2πT

∂

∂T

)m−3
2

δ(T 2 − |X|2)

and has the set {(T,X) ∈ R1,m : T = ±|X|} as support. As

δ(T 2 − |X|2) =
δ(T − |X|)

2|X|
+
δ(T + |X|)

2|X|
,

this gives

E1,m(T,X) =
1

2π

(
1

2πT

∂

∂T

)m−3
2
(
δ(T − |X|)

2|X|
+
δ(T + |X|)

2|X|

)
.

In what follows we will restrict ourselves to the region in space-time
defined as FC = {(T,X) ∈ R1,m : T ≥ |X|}, for reasons that will be
made clear in Chapter 2, and that is why we will refer to

E1,m(T,X) =
1

2π

(
1

2πT

∂

∂T

)m−3
2 δ(T − |X|)

2|X|
as the fundamental solution for the wave-operator in an odd-dimensional
space-time.

In chapter 2 the following Lemma will be needed :

Lemma 0.1 The fundamental solution Em(T,X) for the wave-operator
�m is for all odd integers m ≥ 3 given by

Em(T,X) =
a∑

k=0

c
(a)
k

(2π)
m−1

2

δ(a−k)(T − |X|)
2|X|a+k+1

, c
(a)
k ∈ N0 ,

where a =
m− 3

2
.

Proof : For m = 3, the statement becomes trivial, and the rest can be
proved by means of induction on the dimension m. �

Notice that we are not interested in the exact values for c
(a)
k .

Next we note that the singular support of the fundamental solution for the
wave-operator, which is by definition the smallest closed set outside which it
is a C∞ function, is given by the set {(T,X) ∈ R1,m : T = ±|X|} (this is the
so-called nullcone, cfr. infra).
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0.6 Bundles and Sections

In this section we give a short introduction to the theory of bundles. The
reason for this lies in the fact that the Dirac operator on the hyperbolic unit
ball, which is the object of study in this manuscript, will be defined as an
operator on a Clifford bundle. The theory of bundles plays a central role
in the underlying mathematics of differential geometry and hence of general
relativity. It is an important part of pure mathematics too, especially within
the field of algebraic topology. Some good references on the theory of bundles
are [45], [47] and [69].

Definition 0.6 A bundle is a triple (E, π,M) with E and M topological
spaces and with π : E 7→ M a continuous map. The space E is called the
bundle space, or total space, of the bundle and M is the base space of the
bundle; the map π is called the projection, and for all x ∈ M the inverse
image π−1({x}) is the fibre over x. A C∞-bundle is such that both E andM
are C∞-manifolds and with π a C∞-map.

This definition is very general. However, in all existing applications in physics
and most uses in pure mathematics, the bundles have the special property
that the fibres π−1({x}) are all homeomorphic (diffeomorphic in the case
where E andM are manifolds) to a common space F , which is then known
as the fibre of the bundle. The bundle is then said to be a fibre bundle.

Examples :

1. One of the simplest examples of a fibre bundle is the so-called product
bundle over M with fibre F , defined as the triplet (M× F, pr1,M)
with

pr1 :M× F 7→ M : (x, f) 7→ x .

2. The Moebius band is a famous example of a so-called twisted fibre
bundle, which is a twisted strip whose base space is the circle S1 and
whose fibre can be taken to be the closed interval [−1, 1]. Note that
the total space E is not the product space S1 × [−1, 1], whence the
name twisted.

3. Let G be a Lie group, which is by definition a group in the usual sense
with the additional property that it is also a differentiable manifold, in
such a way that the group operations are smooth with respect to this
structure and let H be a closed subgroup of G. One can then form
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the space of right cosets G/H. This is a manifold with a transitive
G-action, whereby an element g ∈ G acts by left multiplication :

g0H 7→ gg0H .

Any two points onG/H are related by such a mapping. At each point in
G/H there is a subgroup of G such that left multiplication by elements
of this subgroup leaves the point invariant, this is the so-called isotropy
group of the point. At the identity eH ∈ G/H the isometry group is
the subgroup H itself, at other points it will be a translation of H.
Defining the map π by

π : G 7→ G/H : g 7→ gH ,

we then have a bundle (G, π,G/H) with fibre H. The inverse image
π−1(gH) of a point in G/H, i.e. the fibre above that point, is a copy
of H and one can think of the total space G of the bundle as a family
of copies of H, parametrized by elements of G/H.

This example will be essential in Chapter 2, when the hyperbolic unit
ball is defined as a so-called homogeneous space.

Definition 0.7 A cross-section of a bundle (E, π,M) is a map s :M 7→ E
such that the image of each point x ∈ M lies in the fibre π−1({x}) over x.
This means that for a cross-section s we have

π ◦ s = 1M ,

where 1M denotes the identity map on M.

For example, for a product fibre bundle (M × F, π,M) a cross-section s
defines a unique function s′ :M 7→ F given by

s(x) =
(
x, s′(x)

)
for all x ∈M. Conversely, each such function s′ gives a unique cross-section
s. Thus, in a product bundle, a cross-section is equivalent to a function from
the base space to the fibre in the ususal sense.

A special type of bundles is given by the so-called principal fibre bundles,
the importance of which lies in the fact that all non-principal bundles are
associated with an underlying principal bundle. Let G be an arbitrary Lie
group, we then define the concept of a principal G-bundle :
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Definition 0.8 A bundle (E, π,M) is a principal G-bundle if E is a right
G-space, where G acts freely on E, and if (E, π,M) is isomorphic to the
bundle (E, ρ, E/G), where E/G is the orbit space of the G-action on E and
where ρ is the usual projection map. Note that the fibres of the bundle are
the orbits of the G-action, and that the freedom of this action implies that
these orbits are all homeomorphic to G. A principal G-bundle is thus a fibre
bundle with fibre G.

Let us first clarify some of the concepts introduced in this definition :

• A set E is called a left G-space if there exists a homomorphism g 7→ γg

of G into the group Perm(E) of bijections of E :

γe(p) = p for all p ∈ E
γg ◦ γh = γgh for all g, h ∈ G .

For a right G-space this becomes an anti-homomorphism : γg◦γh = γhg.

• The G-action is free if, for all p ∈ E, {g ∈ G : gp = p} = {e}. This
means that given any pair of points p, q in E, either there is no g ∈ G
such that q = gp or there is a unique g such that q = gp. If there
indeed exists a unique g for each pair, the action is called transitive.

• Two bundles (E, π,M) and (E ′, π′,M′) are isomorphic if there exist
two bundle maps (u, f) and (u′, f ′) such that

u′ ◦ u = 1E u ◦ u′ = 1E′

f ′ ◦ f = 1M f ◦ f ′ = 1M′
.

A bundle map (u, f) between (E, π,M) and (E ′, π′,M′) is defined as
a pair of maps u : E 7→ E ′ and f :M 7→M′ such that π′ ◦ u = f ◦ π.

Next we show how one can construct a fibre bundle with fibre F , starting
from a principal bundle (E, π,M) with structure group G, where G acts on
the space F . For that purpose we need to introduce the ’G-product’ of two
spaces on which G acts.

Definition 0.9 Let X and Y be any pair of right G-spaces. The G-product
X×GY is then defined as the space of orbits of the G-action on the Carthesian
product X×Y . This means that there is an equivalence relation on X×Y in
which (x, y) ∼ (x′, y′) if there exists a g ∈ G such that x′ = xg and y′ = yg.

We then come to the following crucial definition of an associated fibre bundle :
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Definition 0.10 Let ξ = (P, π,M) be a principal G-bundle and let F be a
left G-space. Define PF = P ×G F where the action of G on the Carthesian
product P × F is given by (p, f)g = (pg, g−1f) and define a projection map
πF : PF 7→ M by πF ([p, f ]) = π(p). Then ξ[F ] = (PF , πF ,M) is a fibre
bundle over M with fibre F , and is said to be associated with the principal
bundle ξ via the action of the group G on F .

The following property will be crucial for what follows, see Chapter 2 :

Theorem 0.3 If the bundle (PF , πF ,M) is an associated fibre bundle then
its cross-sections are in one-to-one correspondance with maps φ : P 7→ F
that satisy

φ(pg) = g−1φ(p) ,

for all p ∈ P and g ∈ G. The cross-section sφ corresponding to such a map
is defined by

sφ(x) = [p, φ(p)] ,

where p is any point in the fibre π−1
(
{x}
)
.

0.7 Clifford analysis on the Lie sphere

In this section we first define the Lie ball and the Lie sphere and then we
give a short introduction to the theory of Clifford analysis on the Lie sphere.

0.7.1 The Lie sphere

Consider z = (z1, · · · , zm) ∈ Cm, with zj = xj + iyj ∈ C. Identifying Cm

with R2m, we will sometimes write z = x + iy. The complex conjugate of
z is given by z = (z1, · · · , zm) and the inner product between two vectors
z and w ∈ Cm is given by < z,w >=

∑
j zjwj. In what follows we will

write z2 for < z, z >=
∑

j z
2
j . The Euclidean norm on Cm is given by

|z|2 =< z, z >=
∑

j |zj|2. Note that

|z2| =

∣∣∣∣∣∑
j

z2
j

∣∣∣∣∣ ≤ |z|2 ,

whence |z|4 − |z2|2 ≥ 0. We then define the Lie norm :
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Definition 0.11 For arbitrary z ∈ Cm, the Lie norm L(z) is given by

L(z)2 = |z|2 +

(
|z|4 − |z2|2

) 1
2

.

Remarks :

1. For x ∈ Rm we have L(x) = |x|, such that the restriction of the Lie
norm on Cm to Rm reduces to the Euclidean norm on Rm.

2. The Euclidean norm on Cm is equivalent with the Lie norm :

|z| ≤ L(z) ≤
√

2|z| ,

which means that both norms determine the same topology.

3. In terms of z = x+ iy, we have

L(z)2 = |x|2 + |y|2 + 2|x ∧ y| ,

where |x ∧ y|2 = |x|2|y|2− < x, y >2 (Lagrange’s identity).

In terms of this Lie norm, we then define :

Definition 0.12 The Lie ball LBm(1) in Cm is given by

LBm(1) = {z ∈ Cm : L(z) < 1}

We also define the Lie sphere :

Definition 0.13 The Lie sphere LSm−1 in Cm is given by

LSm−1 = {eitω : t ∈ R , ω ∈ Sm−1}

Remarks :

1. The Lie sphere LSm−1 is only a subset of the boundary ∂LBm(1) of the
Lie ball : it is that part of ∂LBm(1) which intersects the unit sphere
in Cm, given by those z = (x, y) for which x and y are proportional to
each other.
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2. The Lie sphere can be topologically identified with S1×Sm−1/ ∼ where
the equivalence relation is given by

(eit, ω) ∼ (−eit,−ω) .

This means that functions f on the Lie sphere LSm−1 can be written
as f(eit, ω) = f(−eit,−ω) = f(eitω).

3. Both the Lie ball LBm(1) and the Lie sphere LSm−1 can be given a
geometrical definition. For that purpose we define, for all z = x + iy
in Cm, the following sphere of dimension m − 2 (or, equivalently, of
codimension 2) in Rm :

S(z) = Sx(y) =
{
t ∈ Rm : |t− x| = |y| , < t− x, y >= 0

}
.

This sphere is the intersection of the sphere |t− x| = |y|, with t ∈ Rm,
centre x and radius |y|, and the hyperplane orthogonal to y through x.

Note that S(z) = S(z) and that for x ∈ Rm the sphere S(x) reduces to
{x}. Defining an orientation for spheres of codimension 2 in Rm, it is
then possible to define a bijection between Cm \ Rm and the manifold
of non-trivial oriented spheres of codimension 2.

In terms of these spheres we then have the following definition for the
Lie norm :

L(z) = max
w∈Sx(y)

|w| ,

for all z = x + iy ∈ Cm. This means that the Lie ball LBm(1) can be
identified with the manifold of oriented spheres of codimension 2 inside
the Euclidean unit ball Bm(1) ⊂ Rm :

LBm(1) = {z ∈ Cm : S(z) ⊂ Bm(1)} .

Recalling the fact that the Lie sphere is defined as the subset of ∂LBm(1)
containing those z ∈ Cm for which x and y are parallel, we also have
that

LSm−1 = {z ∈ Cm : S(z) ⊂ Sm−1} .

The importance of the Lie ball lies in the following Theorem, for which we
refer to [60] :
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Theorem 0.4 (Siciak)

1. If a series
∑

k Rk(x) of homogeneous polynomials converges normally in
the unit ball Bm(1) ⊂ Rm, its complexification

∑
k Rk(z) will converge

normally in LBm(1) ⊂ Cm and hence yield a holomorphic function
there.

2. The Lie ball is the maximal region in which this results holds in its
full generality : there exists a harmonic function h(x) such that the
complexification

∑
k Sk(z) of its expansion in spherical harmonics can

not be holomorphically extended beyond the Lie ball.

The proof of this Theorem is beyond the scope of this section, but we mention
the fact that the first part follows viz. from the fact that the Shilov boundary
of the Lie ball is given by Lie sphere LSm−1. In order to define the Shilov
boundary, we recall the maximum modulus priciple in complex analysis : for
an open bounded region Ω ⊂ C and a function f(z) which is holomorphic in
Ω and continous up to the boundary, we have

max
z∈Ω
|f(z)| = max

z∈∂Ω
|f(z)| .

This Theorem holds for functions depending on several complex variables
too : a non-constant function f(z) which is holomorphic in a bounded open
region Ωm ⊂ Cm and continuous up to the boundary, reaches its maximal
modulus only on the boundary. In particular, we thus have :

max
z∈LBm(1)

|f(z)| = max
z∈∂LBm(1)

|f(z)| .

However, one can prove the following Theorem (which offers an alternative
definition for the Lie sphere) :

Theorem 0.5 The Lie sphere is the Shilov boundary of the Lie ball in Cm :

max
z∈LBm(1)

|f(z)| = max
z∈LSm−1

|f(z)| .

0.7.2 Clifford analysis on the Lie sphere

From now on we consider functions f(z) on Cm which are C0,m-valued. The
relevant operators on the Lie sphere are the Gamma operator Γ0,m and the
Euler operator −i∂t. On the Lie sphere, the simultaneous eigenfunctions of
these operators are given by

(eitω)lPk(e
itω) , l ∈ Z , Pk ∈M+(k) .
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By analogy with the term ’spherical monogenics’ to describe the simultaneous
eigenfunctions of Γ0,m and E on the sphere Sm−1, we call these functions on
the Lie sphere spherical monogenics of order (k, l) on LSm−1. Note that these
functions are the restrictions to LSm−1 of complex extensions of the Clifford
monomials xlPk(x) in Mk,l. This latter notation will thus also be used to
denote the set of spherical monogenics of order (k, l) on the Lie sphere :

Mk,l =
{
(eitω)lPk(e

itω) , l ∈ Z , Pk ∈M+(k)
}
.

Defining the Hilbert module L2(LS
m−1) of square integrable functions on the

Lie sphere as

L2(LS
m−1) =

{
f(eitω) : ‖f‖L2(LSm−1) <∞

}
,

where the Lie norm is given by ‖f‖2L2(LSm−1) = [(f, f)]0 with

(f, g) =
1

2πAm

∫ 2π

0

∫
Sm−1

f(eitω)+g(eitω)dS(ω)dt

=
1

πAm

∫ π

0

∫
Sm−1

f(eitω)+g(eitω)dS(ω)dt ,

and f(eitω)+ the Hermitian conjugate on the complexified Clifford algebra
Cm, we have the following orthogonal decomposition of L2(LS

m−1) :

L2(LS
m−1) =

∞∑
k=0

∑
l∈Z

Mk,l .

Putting θ =< ω, ξ > for ω and ξ ∈ Sm−1, we have for f ∈ L2(LS
m−1) :

f(eitω) =
∞∑

k=0

∑
l∈Z

(eitω)leiktPk,lf(ω)

with Pk,lf(ω) given by the integral

1

πAm

∫ π

0

∫
Sm−1

e−ikt
{
C

m
2

k (θ) + ωξC
m
2

k−1(θ)
}
(eitξ)−lf(eitξ)dS(ξ)dt ,

where

∞∑
k=0

∑
l∈Z

‖Pk,lf‖2L2(LSm−1) < ∞ .

This decomposition refines the decomposition of functions f ∈ L2(LS
m−1)

into spherical harmonics on the Lie sphere, see e.g. references [52, 64].
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The inner product of two functions f and g in L2(LS
m−1) then reduces

to

(f, g) =
1

Am

∞∑
k=0

∑
l∈Z

∫
Sm−1

P+
k,lf(ω)Pk,lg(ω)dS(ω) .

Denoting the set of holomorphic functions on the Lie ball by O
(
LBm(1)

)
,

we then define the space L+
2 (LSm−1) as the following Hardy-type space :

L+
2 (LSm−1) =

{
f ∈ O

(
LBm(1)

)
: lim

r→1−

∫ π

0

∫
Sm−1

|f(reitω)|2dS(ω)dt <∞
}
.

As was pointed out in reference [64], this module is a Hilbert module with
reproducing kernel; the so-called Cauchy-Hua kernel H(z, w). This means
that a function f ∈ L+

2 (LSm−1) can be represented as

f(z) =
1

πAm

∫ π

0

∫
Sm−1

H+(z, eitω)f(eitω)dS(ω)dt ,

where the Cauchy-Hua kernel is defined by

H(z, eitω) =
1(

− (ω − e−itz)2
)m

2

.

The module L+
2 (LSm−1) can then also be defined as

L+
2 (LSm−1) =

{
f ∈ L2(LS

m−1) : f =
∞∑

k=0

∞∑
l=0

(eitω)lPk,lf(eitω)

}
,

which defines L+
2 (LSm−1) as a submodule of L2(LS

m−1) containing boundary
values of holomorphic functions in the Lie ball.

We end this Chapter with a brief overview of a technique used to construct
a reproducing kernel for a Hilbert module containing Clifford algebra valued
nullsolutions for certain Clifford differential operators P (x, ∂) on the unit
ball Bm(1) with polynomial coefficients, the so-called operators of Frobenius
type satisfying the conditions of the following Theorem (see [9] and [74]) :

Definition 0.14 A differential operator P (x, ∂) is of the Frobenius type if
its nullsolutions f(x) in Bm(1) can be represented as

f(x) =
∞∑

k=0

rk
{
αk(r

2)Pk(ω) + rωβk(r
2)P̃k(ω)

}
,

50



where for all k ∈ N the functions αk(r
2) and βk(r

2) can be written as positive
power series

αk(r
2) =

∞∑
l=0

alr
2l , βk(r

2) =
∞∑
l=0

blr
2l

converging on the open interval ]− 1, 1[ and with Pk(ω) and P̃k(ω) belonging
to M+(k).

Theorem 0.6 Consider the differential operator P (x, ∂) of Frobenius type
with nullsolutions in Bm(1) given by

f(x) =
∞∑

k=0

{
αk(r

2)Pk(x) + xβk(r
2)P̃k(x)

}
,

where the series converges normally on Bm(1). If the conditions

1.

sup
|z|≤1

|αk(z)| = c1 and sup
|z|≤1

|βk(z)| = c2

2.
∞∑

k=0

||Pk||2L2(Sm−1) < ∞ and
∞∑

k=0

||P̃k||2L2(Sm−1) < ∞ ,

are satisfied, the complexified series f(eitω) will belong to L+
2 (LSm−1).

If the nullsolutions of the Frobenius operator P (x, ∂) satisfy the requirements
of the Theorem, one may consider the submodule H ⊂ L+

2 (LSm−1) contain-
ing the complexified nullsolutions, i.e. H = kerP (z, ∂z) ∩ L+

2 (LSm−1). Due
to the closedness of the operator P (z, ∂z) the submodule is also closed and its
reproducing kernel, for the inner product on L+

2 (LSm−1), can be obtained as
the projection of the Cauchy-Hua kernel H(z, eitω) on H. The reproducing
property can then be restricted to the Euclidean unit ball Bm(1) leading to
a reproducing kernel for the Hilbert module of nullsolutions for the operator
P (x, ∂) satisfying the requirements of the Theorem. In particular we also
have that this module is a closed submodule of L2(S

m−1). Note that the last
step is not always possible, it depends on whether the inner product on the
Lie sphere can be reduced to an inner product on the sphere Sm−1.

This construction will be applied in Chapter 6, when a reproducing kernel for
a function space containing nullsolutions for the hyperbolic Dirac operator
is constructed.
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Chapter 1

Hyperbolic Geometry

Let no man ignorant of geometry enter
(Sign over Plato’s Academy in Athens)

In this chapter a brief introduction to hyperbolic geometry is given, and
several models for the hyperbolic unit ball are introduced.

1.1 Non-Euclidean Geometry

The aim of this section is to describe the concept of hyperbolic geometry
from the historical point of view. Although this section is not essential for
what follows, we have included it for the sake of completeness. It is partially
based upon Chapter 6 in Tristan Needham’s book [54].

In order to tell something on hyperbolic geometry we have to start from
Euclidean geometry. One way to approach Euclidean geometry is to begin
with definitions of such abstract concepts as ”points” and ”lines”, together
with a few assumptions (or axioms) concerning their properties. From this
one deduces, using nothing but logic, further properties of these objects that
are necessary consequences of the initial axioms. This was the path followed
in Euclid’s famous book, The Elements, which was published around 300 BC.
Euclidean geometry did of course not come into life as a fully formed logical
system of axioms and theorems, but instead it was developed gradually as
an idealized description of physical measurements performed on physically
constructed lines, triangles, circles, etc. In this sense Euclidean geometry is
thus not simply mathematics, but a theory of space.

However, Euclidean geometry is not perfect from this point of view : expe-
riments have revealed extremely small discrepancies between the predictions
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of Euclidean geometry and the measured geometrical properties of figures
constructed in the actual physical space. These deviations from Euclidean
geometry are now known to be governed by the distribution of matter and
energy in space, which is the essence of the theory of gravity discovered by
Einstein in 1915. It is important to realize just how small these deviations
typically are for figures of reasonable size : if we would measure the cir-
cumference of a circle having a radius of one meter, no deviation from the
Euclidean case would be found, not even with a measuring device capable
of detecting a discrepancy the size of a single atom! No wonder that for
approximately two thousand years mathematicians were seduced to believe
that Euclidean geometry was simply the only logically possible geometry.

However, non-Euclidean geometry was already discovered a century before
Einstein found that it could be used to describe gravity. To locate the origin
of this mathematical discovery, we return to Euclid. He began with only five
axioms, the first four of which never aroused any controversy :

1. It is possible to draw one and only one straight line from any point to
any point.

2. From each end of a finite straight line it is possible to produce it con-
tinuously in a straight line by an amount greater than any assigned
length.

3. It is possible to describe one and only one circle with any centre and
radius.

4. All right angles are equal to one another.

The fifth axiom however, the so-called parallel axiom, became the subject
of investigations that have ultimately led to the discovery of non-Euclidean
geometry :

Parallel Axiom : Through any point p not on the line L
there exists precisely one line L′ that does not meet L.

Historically, mathematicians fervently believed in the parallel axiom, so much
that they even thought it had to be a logically necessary property of straight
lines. But in that case they ought to be able to prove it. Many attempts
were made to actually deduce the parallel axiom from the first four axioms,
one of the most penetrating being that of Girolamo Saccheri in 1733. His
idea was to show that if the parallel axiom was not true, then a contradiction
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would necessarily arise. He thus divided the denial of the parallel axiom into
two alternatives :

Spherical Axiom : There is no line through p that does not meet L.

or

Hyperbolic Axiom : There are at least
two lines through p that do not meet L.

In the case of the spherical axiom, Saccheri was able to obtain a contradic-
tion, provided ”lines” are assumed to have infinite length. If we drop this
requirement, we obtain a non-Euclidean geometry called spherical geometry,
for which a model will be given in the next section.

However, in case of the hyperbolic axiom, Saccheri and later mathemati-
cians were able to derive strange conclusions, but they were not able to find
contradictions. The hyperbolic axiom yields a second viable non-Euclidean
geometry, called hyperbolic geometry. It was devised independently by Gauss,
Lobachevsky and Bolyai in the first half of the nineteenth century. Gauss
never published his ideas on non-Euclidean geometry, because he was afraid
that the mathematical society would not accept this revolutionary theory,
and so the two men who are usually credited for their independent discovery
of the hyperbolic geometry are Bolyai (1832) and Lobachevsky (1829). In
the next section two well-known models for the hyperbolic plane will be given.

In order to illustrate how non-Euclidean geometries differ from Euclid’s, we
list some basic facts that can easily be derived from the familiar theorem in
Euclidean geometry that in any triangle T the angles add up to π radians.
This theorem is equivalent to the parallel axiom, from which it follows that
in non-Euclidean geometry the angle sum of a triangle differs from π. This
difference is the so-called angular excess E :

E(T ) = (Angle sum of T )− π .

Euclidean geometry is thus characterized by the vanishing of E(T ), for any
triangle T . Both Gauss and Lambert independently discovered that the two
non-Euclidean geometries depart from Euclid’s in opposite directions :

• In spherical geometry the angular sum is greater than π : E > 0.

• In hyperbolic geometry the angular sum is less than π : E < 0. Or,
like Gauss formulated this himself :
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The assumption that the sum of three angles is less than 180
degrees leads to some curious geometry, quite different from ours,
but thoroughly consistent. (C. F. Gauss, November 8, 1824)

They also discovered the striking fact that E(T ) is completely determined
by the size of the triangle T :

E(T ) = κA(T ) ,

with A(T ) the area of the triangle T and κ a constant that is positive in
spherical geometry and negative in hyperbolic geometry. Several interesting
conclusions can be drawn in connection with this result :

• Although there are no qualitative differences between them, there are
infinitely many spherical and hyperbolic geometries, depending on the
value of the constant κ.

• In non-Euclidean geometry, similar triangles do not exist : the formula
above tells us that two triangles of different size cannot have the same
angles. In other words : similar figures are automatically congruent.

• Closely related to the previous point : in non-Euclidean geometry there
exists an absolute unit of length. A natural way to define this is in terms
of the constant κ. Since the radian measure of angle is defined as a
ratio of lengths, E is a pure number. On the other hand A has units
of (length)2. It follows that κ has units of (length)−2 and so it can be
written in terms of a certain length R as :

κ = ± 1

R2
,

where the plus (resp. minus) sign is choosen in case of a spherical (resp.
hyperbolic) geometry. Later, we will give meaning to this length R.

• The smaller the triangle, the harder to distinguish it from a Euclidean
triangle : only when the linear dimensions are a significant fraction
of R the difference will be obvious. Eintein’s theory explains why the
angular excess cannot be measured by means of figures of reasonable
size : the weak gravitational field in the space surrounding the earth
corresponds to a microscopic value of κ, or an enormous value of R.
It would of course be a different story if the experiments were to be
performed in the vicinity of a black hole!
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1.2 Models for the Hyperbolic Unit Ball

In this section we define the m-dimensional hyperbolic unit ball. First of
all we define the hyperbolic unit ball as a homogeneous space, making use
of group theoretical concepts, and we induce a geometry on this space and
provide several explicit realizations.

Before defining the hyperbolic unit ball in m dimensions as a homogeneous
space, let us consider its Euclidean counterpart first : the m-dimensional unit
sphere in Rm+1, which may be defined as the homogeneous space

SO(m+ 1)/SO(m) .

It may sound strange to call the Euclidean counterpart of the hyperbolic
unit ball in R1,m a sphere, but this nomenclature has grown historically. We
return to this point later.

This unit sphere in Rm+1 is a typical example of an m-dimensional space
of constant positive curvature 1, and it can be represented by the surface
Sm ⊂ Rm+1. More generally, a model for them-dimensional positively curved
space with curvature K ∈ R+ is obtained by embedding the sphere Σ, given
by

Σ↔ X2
0 +X2

1 + · · ·+X2
m = R2 , R =

1

K
,

in the flat Euclidean space Rm+1 of one dimension higher. In view of the
obvious symmetry, it is convenient to identify opposite points, but instead
of pairs of points one can also consider the lines through these points. The
m-dimensional elliptic space, or positively curved Riemannian space (which
is a manifold with a symmetric and positive definite metric defined on the
tangent space at each point), can then be defined as the space of all lines
passing through the origin in the flat Euclidean space R1+m. The co-ordinates
(X0, · · · , Xm) of the points on these lines may be considered as homogeneous
co-ordinates in the Riemannian space, thus generating a projective model.

In case m = 2 we obtain a sphere in R3 as a model for the spherical plane
geometry described in the first section by considering the spherical axiom as
an alternative for the parallel axiom. The ”lines” in this model are great
circles, which makes it very easy to verify the fact that there are no ”lines”
through a given point parallel with a given ”line”, since all great circles on
a sphere intersect. It was already mentioned that there is an absolute unit
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of length in non-Euclidean geometry which can be expressed in terms of a
certain length R. We can now explain the true meaning of this length R in
case of the spherical plane : it is the radius of the sphere embedded in R3

by which the spherical geometry can be represented. In other words, if we
consider a triangle T on the sphere with radius R in R3 we have the following
formula for the angular excess :

E(T ) = κA(T ) =
A(T )

R2
= K2A(T ) ,

with K the curvature of the sphere.

On the analogy of these Riemannian spaces of constant positive curvature
we now turn to the spaces of constant negative curvature, which can also be
defined as homogeneous spaces. Indeed, the m-dimensional hyperbolic unit
ball is given by the homogeneous space

SO(1,m)/SO(m) ,

with SO(1,m) the set of linear transformations of unit determinant on R1,m

leaving the quadratic form Q1,m(T,X) invariant.

This m-dimensional space can also be represented as a surface embedded
in an orthogonal space of one dimension higher :

• First of all it can be embedded in the flat Minkowski space-time R1,m.
It is important to note that this does not mean that the hyperbolic unit
ball is a Lorentzian manifold, by definition a pseudo-Riemannian space
with symmetric nonsingular metric tensor of signature (1,−1, · · · ,−1).
Instead, it is a classical Riemannian manifold. This will be explained
below when we define a metric on the hyperbolic unit ball.

• On the other hand it is also possible to model a negatively curved space
by embedding a surface into the flat Euclidean space. In case m = 2,
this can be done by considering the pseudosphere (sometimes called the
antisphere or tractrisoid) which is a surface of revolution obtained by
rotating the tractrix around its asymptote. The tractrix is the curve
characterized by the condition that the length of the segment of the
tangent line to the curve from the tangent point to the asymptote is
constant. However, the pseudosphere has a serious disadvantage : it
does not model the entire hyperbolic plane. This follows from a result
obtained by David Hilbert in 1901, who proved that it is impossible
to isometrically embed the hyperbolic plane (i.e. the two-dimensional
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hyperbolic unit ball) in its entirety in R3. The pseudosphere also de-
parts from the Euclidean plane in the following unacceptable way : it
resembles a cylinder instead of a plane. Indeed, a closed loop in the
Euclidean plane can always be shrunk to a point, but a loop on the
pseudosphere that wraps around the axis of revolution cannot be.

Note that Riemannian manifolds can be embedded isometrically into
Euclidean spaces, but one has to consider spaces of higher dimension.
Gromov for example proved that an m-dimensional Riemannian mani-
fold can isometrically be embedded into a Euclidean space of dimension
1
2
(m+ 2)(m+ 3), see [41]. We will return to this point in Chapter 7.

In our approach we prefer the embedding in the flat Minkowksi space-time.
Let us therefore consider the m-dimensional space-time R1,m, where m refers
to the spatial dimension, with orthonormal basis

B1,m(ε, ej) = {ε, e1, · · · , em}

and endowed with the quadratic form Q1,m(T,X) = T 2−|X|2. The following
SO(1,m)-invariant subsets of R1,m are essential :

• the time-like region TLR = {(T,X) ∈ R1,m : Q1,m(T,X) > 0}

• the space-like region SLR = {(T,X) ∈ R1,m : Q1,m(T,X) < 0}

• the nullcone NC = {(T,X) ∈ R1,m : Q1,m(T,X) = 0}

The time-like region itself is the union of the future cone FC and the past
cone PC, given by

FC = {(T,X) ∈ R1,m : Q1,m(T,X) > 0 and T > 0}
PC = {(T,X) ∈ R1,m : Q1,m(T,X) > 0 and T < 0} .

Both TLR and SLR contain a canonical SO(1,m)-invariant surface which
can be seen as a hyperbolic analogue of the sphere Sm ⊂ Rm+1 in the sense
that these surfaces contain, whether or not up to a minus sign, all vectors of
unit hyperbolic norm. In this section however, we will focus on TLR. We
therefore define the double-branched SO(1,m)-invariant surface BT (1,m) by

BT (1,m) = {(T,X) ∈ R1,m : Q1,m(T,X) = 1} .

The two branches of BT (1,m) will be denoted as H+ and H− respectively,
and they are given by

H+ = {(T,X) ∈ R1,m : Q1,m(T,X) = 1 and T > 0}
H− = {(T,X) ∈ R1,m : Q1,m(T,X) = 1 and T < 0} .
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We thus have :

H+ = BT (1,m) ∩ FC
H− = BT (1,m) ∩ PC .

We can now obtain a space of constant negative curvature −K, withK ∈ R+,
by embedding the m-dimensional surface ΣH , given by

ΣH ←→ T 2 −X2
1 − · · · −X2

m = R2 , R =
1

K
,

in the flat Minkowski space-time R1,m. In case m = 2 there is again a link be-
tween this ”radius” R and the angular excess E(T ), similar to the one derived
in case of a positively curved space. Choosing R = 1 we see that BT (1,m)
is an m-dimensional space of constant curvature −1, and hence the true hy-
perbolic analogue of the sphere Sm in the flat Euclidean space. Due to the
obvious symmetry it is convenient to identify diametrically opposite points.
This justifies the fact that the upper sheet H+ of BT (1,m) will be referred to
as the hyperbolic unit ball throughout this thesis. Just like the geodesics on
the sphere Sm, i.e. the great circles, can be obtained as the intersection of
two-dimensional planes through the origin in Rm and the sphere, geodesics
on H+ can be obtained as the intersection of two-dimensional planes through
the origin in R1,m and H+.

Remark : We would like to draw attention to the following remarkable
fact : although both Sm and H+ are nothing but an explicit realization of
a symmetric homogeneous space, we cannot visualize H+ in a symmetric way.

Consider for example the case m = 2 : the sphere S2 in R3 looks completely
symmetric, whereas the surface H+ in R1,2 (i.e. the classical hyperboloid)
does not ! Indeed, it looks as if the intersection of the hyperboloid with the
T -axis has a special meaning. One should be aware of the fact that this is
not really the case, all points on the hyperboloid H+ are equivalent. Hyper-
bolic rotations, under which H+ remains invariant, cannot be percepted as
symmetries in a visualization because the metric of the visualization (i.e. the
metric of a sheet of paper, or a computer screen) is essentially different from
the Minkowski metric. It is however possible to ”visualize” the hyperboloid
H+ by means of a physical experiment of thought using light rays, since the
true meaning of the Lorentz invariance has to be understood in the sense of
relativistic phenomena.

Instead of just identifying diametrically opposite points on BT (1,m), we can
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again consider the lines through these points and this leads to a projective
model for the m-dimensional hyperbolic unit ball, concentrated inside the
future cone FC. This prompts the following definition :

Definition 1.1 A projective model for the m-dimensional hyperbolic unit
ball H+ is given by the manifold of rays Ray(FC), defined as

Ray(FC) =
{
{λ(T,X) : λ ∈ R+} : (T,X) ∈ FC

}
.

Remark : In the next Chapter it will be shown how this manifold of rays
can be interpreted as a principal fibre bundle. This will be crucial when
defining a Dirac operator on this manifold.

Other models for the hyperbolic unit ball are readily obtained by intersecting
the manifold Ray(FC) with an arbitrary surface inside the future cone FC,
such that each ray intersects the surface in a unique point. This gives rise to
different models for the m-dimensional hyperbolic unit ball H+. Before giv-
ing two such well-known models we first define a metric on H+ by restricting
to the hyperboloid H+ the natural metric on the space R1,m, which is the
Minkwoski space-time metric given by

ds2
M = dT 2 −

m∑
j=1

dX2
j .

Let us illustrate this in case m = 2, where we choose co-ordinates (T,X, Y )
on R1,2. Using (X,Y ) ∈ R2 as parameters to describe the hyperbolic unit
ball in 2 dimensions, we immediately get that

(dT 2 − dX2 − dY 2)|H+ =
(XdX + Y dY )2

1 +X2 + Y 2
− dX2 − dY 2

= −
∑
i,j

gij(X, Y )dXdY ,

where the coefficients of the metric tensor on H+ are given by the matrix

(gij) =
1

1 +X2 + Y 2

(
1 + Y 2 −XY
−XY 1 +X2

)
.

Since the eigenvalues of the matrix (gij) are strictly positive for all (X, Y ) in
R2, the restriction of the Minkowksi metric to H+ gives a metric which is, up
to an overall minus sign, symmetric and positive definite. This means that
H+ is a Riemannian manifold.
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Note that the unit ball BS(1,m) in the space-like region, defined by

BS(1,m) = {(T,X) ∈ R1,m : Qm(T,X) = −1} ,

yields an example of a Lorentzian manifold. In case m = 2 the restriction
of the Minkowksi metric to BS(1, 2) ↔ X2 + Y 2 − T 2 = 1 gives rise to the
metric

(dT 2 − dX2 − dY 2)|BS
=

(XdX + Y dY )2

X2 + Y 2 − 1
− dX2 − dY 2

=
∑
i,j

gij(X, Y )dXdY ,

where the coefficients of the metric tensor on BS are now given by the matrix

(gij) =
1

X2 + Y 2 − 1

(
1− Y 2 XY
XY 1−X2

)
.

This time the matrix (gij) has a positive and a negative eigenvalue, which
proves that the manifold BS(1, 2) is indeed a Lorentzian manifold.

The induced metric on H+, denoted by ds2
H , gives rise to a notion of distance

on H+. In order to compute the shortest hyperbolic distance dH between
two arbitrary points on H+ it suffices to calculate the length of the geodesic
on H+ between ε and an arbitrary point. Indeed, if we are to compute this
distance between two arbitrary points ξ and η on H+ we can always perform
a hyperbolic rotation (i.e. let an element of SO(1,m) act on the space-time
co-ordinates of these points) in order to make one of these points, say ξ ∈ H+,
coincide with ε. Because the geodesic on H+ joining ε with η is given by a
hyperbola, viz. the intersection of H+ with the hyperplane through these
two points and the origin, it suffices to determine the arc length of the curve
γ(x), parametrized by

γ(x) =
(
(x2 + 1)

1
2 , x, 0, ..., 0

)
, x ∈ [0, x0]

with η =
(
(x2

0 + 1)
1
2 , x0, 0, ..., 0

)
∈ H+.

To do so, we have to integrate the arc length differential ds determined
by the differential equation(

ds

dx

)2

=

(
dγ(x)

dx

)2

.
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This equation arises from the requirement that the derivative of the curve

γ(x) with respect to the arc length, i.e. the vector
dγ

ds
, must be a unit vector

at each point of the curve, with respect to the Minkowksi metric ds2
M in the

tangent space to the curve at that point. For the curve γ(x) from above, this
becomes

dH(ε, η) =

∫
γ

ds

= −
∫ x0

0

dx

(x2 + 1)
1
2

.

The minus sign appears because the geodesic γ joining ε and η has a space-
like character. If we adopt the convention to define the distance dH(ε, η) as
the absolute value, we immediately get :

dH(ε, η) = argsinh(x0) .

Two other models are defined as follows :

• The Klein model

This model is obtained by intersecting the manifold Ray(FC) with
the hyperplane Π, given by

Π = {(T,X) ∈ R1,m : T = 1} ,

and projecting the point of intersection vertically down onto the unit
ball Bm(1) ⊂ Rm. We thus have the following mapping :

(T,X) ∈ FC ⊂ R1,m 7→ x =
X

T
∈ Bm(1) ⊂ Rm .

Providing Bm(1) with the so-called Cayley-Klein-Hilbert metric ds2
K ,

we obtain a metric equivalence between the metric spaces (H+, ds
2
H)

and (Bm(1), ds2
K). This means that the mapping from H+ to Bm(1)

described above, preserves distance for the respective metrics. Note
that the metric ds2

K is not the metric on the hyperplane Π induced by
the Minkowksi metric, the latter being simply the standard Euclidean
metric up to a minus sign. In case m = 2 this metric is given in
co-ordinates (x, y) on R2 by

ds2
K =

(1− y2)dx2

(1− x2 − y2)2
+

xydxdy

(1− x2 − y2)2
+

(1− x2)dy2

(1− x2 − y2)2
.
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Let us then explicitely verify the metric equivalence between the spaces
(H+, ds

2
H) and (Bm(1), ds2

K) by calculating the Klein distance along the

geodesic between the images of the points η =
(
(x2

0 + 1)
1
2 , x0, 0, ..., 0

)
and ε under the mapping from H+ to Bm(1) described above. These
points are respectively mapped to

ε 7→ ε′K = 0

η 7→ η′K = x′0e1 =
x0

(x2
0 + 1)

1
2

e1 .

The Klein geodesic joining these points is the straight line between
them, where ”straight” is to be understood in terms of the standard
Euclidean metric; we thus find

dK (ε′K , η
′
K) =

∫ x′0

0

dx

1− x2

= argtanh

(
x0

(x2
0 + 1)

1
2

)
,

from which it immediately follows that

dK (ε′K , η
′
K) = dH (ε, η) .

In case m = 2 the classical Klein model for the hyperbolic plane is
obtained, realized inside the unit disc. From the explicit form of the
metric ds2

K it immediately follows that the Klein model for the hyper-
bolic plane is not conformal, which means that the angles measured
on the model differ from the true hyperbolic angles. This is a serious
disadvantage, but it is compensated for by the fact that the ”lines” in
the Klein model are restrictions to the unit disc of sraight lines in R2

with respect to the standard Euclidean metric on R2. Given a line in
the Klein model and an arbitrary point inside the unit disc, there are
infinitely many lines through the point not intersecting the given line
in a point belonging to B2(1). This is in fact a manifestation of the
hyperbolic alternative for the parallel axiom. In the higher-dimensional
case m > 2 these lines are to be replaced by the intersection of Bm(1)
with planes of any dimension d < m.

The Klein model for the hyperbolic unit ball is sometimes referred
to as the velocity ball. This nomenclature comes from the fact that the
4-velocity V in relativistic kinematics, which is an element of R1,3 whose
components are the derivatives of the space-time co-ordinates (T,X)
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with respect to the proper time, can be expressed in terms of the ob-
served speed u

V =

(
1

(1− u2)
1
2

,
u

(1− u2)
1
2

)
, with u =

dX

dT
,

where we have put the speed of light c = 1. In the same way a vector
x ∈ Bm(1) gives rise to the space-time vector (1, x) ∈ Π, i.e. an
element of the Klein model for the hyperbolic unit ball which uniquely
determines the 4-vector X = (T,X) ∈ H+ as

X =

(
1

(1− |x|2)
1
2

,
x

(1− |x|2)
1
2

)
,

Another way to see this is the following : the hyperbolic norm of the
4-velocity is always equal to one. So if we study the hyperbolic unit
ball H+, we actually study the set of relativistic speeds.

• The Poincaré model

This model is obtained by intersecting the manifold Ray(FC) with
the parabolic surface P , given as the set

P =

{
(T,X) ∈ R1,m : T =

1 + |X|2

2

}
,

and projecting the point of intersection vertically down onto the unit
ball Bm(1) in Rm. Note that each ray in Ray(FC) intersects P in two
points, so we have to specify the point of intersection as the one having
a temporal co-ordinate T ≤ 1. We then have the following mapping :

(T,X) ∈ FC ⊂ R1,m 7→ x =
X

T + (T 2 − |X|2) 1
2

∈ Bm(1) .

Providing Bm(1) with the Poincaré metric

ds2
P =

4
∑

j dx
2
j

(1− r2)2

we obtain a metric equivalence between the metric spaces (H+, ds
2
H)

and (Bm(1), ds2
P ). We will explicitely verify this, to illustrate that the
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earlier calculated hyperbolic distance dH(ε, η) remains unaffected under
the mapping fromH+ to Bm(1) defined above. By definition, the points

ε and η =
(
(x2

0 + 1)
1
2 , x0, 0, ..., 0

)
are mapped to

ε 7→ ε′P = 0

η 7→ η′P = x′0e1 =
(x2

0 + 1)
1
2 − 1

x0

e1 .

The Poincaré geodesic joining these points is the Euclidean line between
them, which is a circle with infinite radius intersecting the boundary
under a right angle (cfr. infra); so we find

dP (ε′P , η
′
P ) = 2

∫ x′0

0

dx

1− x2

= 2argtanh

(
(x2

0 + 1)
1
2 − 1

x0

)
.

As

sinh(dP (ε′P , η
′
P )) = sinh(dH(ε, η)) ⇒ dP (ε′P , η

′
P ) = dH(ε, η)

and this proves the metric equivalence between the spaces (H+, ds
2
H)

and (Bm(1), ds2
P ).

It should again be noted that the Poincaré metric on Bm(1) differs
from the metric on P induced by the Minkowski metric.

In case m = 2 the Poincaré model (Bm(1), ds2
P ) for the hyperbolic unit

ball reduces to the classical Poincaré model for the hyperbolic plane in
which the ”lines” are circles intersecting the boundary under a right
angle. It is easy to verify that the axioms for the hyperbolic plane,
in particular the hyperbolic alternative for Euclid’s parallel axiom, are
satisfied : given any ”straight line” and an arbitrary point, one can
draw infinitely many ”straight lines” not intersecting the given line,
that is : circles through the given point orthogonal to the boundary
S1 and not intersecting the given line. In the higher-dimensional case
m > 2 these lines are to be replaced by spheres of any dimension d < m
intersecting the boundary Sm−1 under a right angle.

In contrast to the Klein model for the hyperbolic unit ball, the Poincaré
model offers a conformal model. This follows immediately from the fact
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that

ds2
P = f(x)ds2

E , f(x) =
4

(1− r2)2
,

with ds2
E the standard metric on the flat Euclidean space.

Remark : These two classical models are realized inside the Euclidean unit
ball and that is the reason why the hyperbolic counterpart of the sphere
in flat Euclidean space is called the hyperbolic unit ball in flat Minkowksi
space-time.

Both the Klein and the Poincaré model for the hyperbolic unit ball are
linked to each other through the hemisphere model. For convenience, let
us consider the case where m = 2. In order to explain how we can go from
the Poincaré model to the Klein model and vice versa, we start from the unit
ball B2(1) ⊂ R2 and we embed the plane R2 in the 3-dimensional space R3.
Consider then the sphere S2 ⊂ R3 centred around the origin, which inter-
sects the plane R2 in the boundary S1 of the unit ball B2(1). If we consider
the point (0, 0,−1) as the south pole of a stereographic projection from the
plane R2 onto the sphere S2, the unit ball B2(1) will be mapped onto the
northern hemisphere S2

+ whereas its boundary S1 will be mapped onto itself,
considered as the great circle on S2 dividing the northern from the southern
hemisphere. If we now consider a line in the Poincaré model, i.e. a circle
intersecting S1 under a right angle, its image under the stereographic projec-
tion will be a curve on the sphere S2 which is to be seen as the intersection
of S2 with a hyperplane in R3 orthogonal to the plane R2. Indeed, as the
stereographic projection preserves orthogonality, the image of the Poincaré
line must be orthogonal to S1, i.e. a vertical section. Projecting this curve
on S2 vertically down, back on the unit ball B2(1) ⊂ R2, we obtain a line
in the Klein model. Conversely, a line in the Klein model can be projected
vertically upwards, its image being a curve on S2, and this will be mapped
onto a line in the Poincaré model under the inverse stereographic projection.
This remains true in higher dimension.

The stereographic projection also appears in the following argument, leading
to a model for the m-dimensional hyperbolic unit ball on the flat Euclidean
space Rm, provided with the standard metric ds2

E. Let x = (x1, · · · , xm) be
an element of Rm and consider the map

x 7→ X =

(
x1, · · · , xm,

1− r2

2
,
1 + r2

2

)
= (X1, · · · , Xm, Xm+1, Xm+2)
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which is a conformal embedding of Rm into a paraboloid P on the nullcone
NC in the orthogonal space R1,m+1 of two dimensions higher :

NC ↔ X2
m+2 =

m+1∑
j=1

X2
j .

When introducing on R1,m+1 the standard Minkowksi metric

ds2
H = dX2

m+2 −
m+1∑
j=1

dX2
j ,

it becomes clear that this mapping x 7→ X is an isometry, up to a sign.
Indeed, as X belongs to the plane V with equation

V ↔ Xm+1 +Xm+2 = 1 ,

we have dXm+1 = −dXm+2 and so

ds2
H = dX2

m+2 −
m+1∑
j=1

dX2
j = −

m∑
j=1

dx2
j = −ds2

E .

Conversely, any point from the intersection of the plane V and the cone NC,
i.e. any point from the paraboloid P = NC ∩ V , satisfies

Xm+2 −Xm+1 = X2
m+2 −X2

m+1 =
m∑

j=1

X2
j = r2

so that, putting xj = Xj, we obtain

Xm+1 =
1− r2

2
and Xm+1 =

1 + r2

2
.

Let x 7→ X, and consider then the positive half ray

Ray(X) = {Y = λX : λ ∈ R+}

inside NC+ = NC ∩ {X : Xm+2 ∈ R+}. The mapping x 7→ Ray(X) is
an embedding of Rm into the manifold of rays Ray(NC+) which is injective
and covers the whole positive cone NC+ with the exception of Ray(0,−1, 1).
This single ray may be considered as a unique point at infinity and leads
to the one-point-compactification Rm ∪ {∞} = Sm, whereby Sm may be
topologically identified with a sphere on NC+ :

Sm = NC+ ∩ {X : Xm+2 = 1} .
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This sphere is precisely the one used to illustrate the relation between the
Klein model and the Poincaré model for the hyperbolic unit ball by means
of the hemisphere model. In fact, the map from Rm 7→ Sm \ {∞} given by

x 7→ X 7→ Ray(X) 7→ Y ∈ Sm \ {∞}

is precisely the stereographic projection
Yj =

2xj

1 + r2
, j = 1, · · · ,m

Ym+1 =
1− r2

1 + r2

from the south pole (0,−1) of the sphere Sm intersecting the hyperplane
Xm+1 = 0, i.e. the space Rm, in the sphere Sm−1. Note that the south pole
is the point at infinity, i.e. the intersection Ray(0,−1, 1) ∩ {X : Xm+2 = 1}.

In some sense the stereographic projection ”factorizes” the mapping from
Rm to the nullcone NC in R1,m+1 : instead of mapping x ∈ Rm immediately
to X ∈ R1,m+1 one passes by the image of x under the conformal stereo-
graphic projection on the sphere Sm, identified with a sphere on the cone
NC, i.e. NC ∩ {X : Xm+2 = 1}. The image of x on the sphere Sm is then
finally moved along the rays in NC to a point on the paraboloid P ⊂ NC.

From this point of view the conformal character of the Poincaré model for
the hyperbolic unit ball can also be seen as follows : the orthogonal group
SO(1,m + 1) preserving the cone NC, maps rays onto rays and leads to an
angle preserving map on the manifold of rays Ray(NC) = Sm. Since the
inverse stereographic projection from Sm

+ back onto the unit ball Bm(1) is
conformal too, we easily obtain the desired result.
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Chapter 2

The Dirac Operator on the
Hyperbolic Unit Ball

Mathematics is the tool specially suited for dealing
with abstract concepts of any kind and there is no

limit to its power in this field. (P.A.M. Dirac)

In this chapter the Dirac operator on the hyperbolic unit ball is defined, and
several explicit constructions for the fundamental solution for this operator
are given. The projective nature of our model for the hyperbolic unit ball is
essential to these constructions.

2.1 The Hyperbolic Dirac Operator

In Chapter 1 several models for the m-dimensional hyperbolic unit ball H+

were defined. One of these was the manifold of rays, see Definition 1.1 :

Ray(FC) =
{
{λ(T,X) : λ ∈ R+} : (T,X) ∈ FC

}
.

Note that this model is concentrated within the FC, and that is why we
restricted ourselves to space-time vectors (T,X) such that Q1,m(T,X) > 0
when we introduced a polar decomposition for the operator ∂X (see section
0.1.3).

Due to the projective nature of this model, all concepts on the hyperbolic
unit ball must be defined in such a way that they correspond to an invariant
object on Ray(FC). This can be done by considering, for arbitrary complex
α, the homogeneous Clifford line bundle

R1,m;α =
{(

(T,X), a
)
∈ R1,m

0 × R1,m

}
/ ∼ (2.1)
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where the equivalence relation ∼ is given by(
(T,X), a

)
∼
(
λ(T,X), λαa

)
, λ ∈ R+ .

In other words : the bundle space of the bundle R1,m;α is the set R1,m
0 ×R1,m

and the base space consists of the equivalence classes under the projection π,
with

π
(
(T1, X1), a1

)
= π

(
(T2, X2), a2

)
⇐⇒

(
(T1, X1), a1

)
∼
(
(T2, X2), a2

)
⇐⇒

(
(T1, X1), a1

)
=
(
λ(T2, X2), λ

αa2

)
for a certain λ ∈ R+. Sections of this bundle have the following form :(

(T,X), F (T,X)

)
∼

(
λ(T,X), λαF (T,X)

)
,

which means that sections of the Clifford bundle R1,m;α are homogeneous
R1,m-valued functions on the flat Minkowksi space-time R1,m.

Remark : Since the term homogeneous Clifford line bundle is no standard
term in the literature, although it was already used in e.g. [12] and [13], we
here present a rigorous definition for this bundle. In what follows we will
then always refer to this construction when using the name ’homogeneous
Clifford line bundle’.

• Let G be the multiplicative group R+ and consider its (abelian) action
on punctured Minkowski space-time R1,m

0 given by

λ(T,X) = (λT, λX) for all λ ∈ R+.

This is a free action and the orbit space is the space of halfrays in
flat Minkowski space-time R1,m. In other words, the subset of the
orbit space obtained by considering the action on FC is precisely the
manifold Ray(FC) defined earlier. In this way, Ray(FC) becomes a
principal G-bundle (FC, π, FC/G). We already mentioned this fact
in the previous Chapter, when we first defined the manifold Ray(FC).
This means that functions defined on the hyperbolic unit ball are in fact
functions defined on a bundle, i.e. sections. However, since monogenic
functions are normally defined as Clifford algebra-valued functions, we
would like to construct a bundle associated to Ray(FC) whose fibre
is precisely the Clifford algebra R1,m such that its sections become
Clifford-algebra valued functions on FC. This can be done by means
of the general theory of associated principal fibre bundles!
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• We thus define the following representation Λ of G on the Clifford
algebra R1,m :

Λ : G 7→ End(R1,m)

λ 7→ λ−α ,

where the mapping λ−α ∈ End(R1,m) acts by multiplication

λ−α : a 7→ λ−αa .

• Because we now have the principle G-bundle Ray(FC) and the Clifford
algebra R1,m playing the role of a (left) G-space, we can define an
associated fibre bundle with fibre R1,m. To do so we first introduce the
G-product

FC ×G R1,m

of orbits under the action of G on the Carthesian product FC ×R1,m.
Here, we have that

(
(T,X), a

)
∼
(
(S, Y ), b

)
if and only if there exists

a λ ∈ G such that

(S, Y ) = λ(T,X) and b = (λ−α)−1a = λαa .

By definition, the associated bundle (FCR1,m , πR1,m , FC/G) is then
given by : FCR1,m = FC ×G R1,m and πR1,m

(
(T,X), a

)
= π(T,X)

with π the projection associated to the principal G-bundle Ray(FC),
i.e. the bundle (FC, π, FC/G).

• Since (FCR1,m , πR1,m , FC/G) is an associated fibre bundle, its sections
are in bijective correspondance with functions φ : FC 7→ R1,m satisfying

φ
(
λ(T,X)

)
= (λ−α)−1φ(T,X) = λαφ(T,X) .

This expresses precisely the fact that sections on the Clifford line bundle
are homogeneous functions on FC!

The Dirac operator on the hyperbolic unit ball can thus be defined as the
Dirac operator ∂X = ε∂T−∂X on R1,m acting on sections of the bundle R1,m;α.
This immediately leads to the following definition :

Definition 2.1 The Dirac operator on the hyperbolic unit ball H+ is defined
as the Dirac operator on R1,m acting on α-homogeneous functions on FC, α
being an arbitrary complex number.
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As the Dirac operator ∂X on R1,m is homogeneous of degree (−1), it maps
α-sections onto (α−1)-sections, whence the Dirac operator on the hyperbolic
unit ball is well-defined. From now on, this operator will be referred to as
the hyperbolic Dirac operator.

By analogy with the notion of monogenic functions f defined in an open
subset Ω of Rm with respect to the Dirac operator ∂ on R0,m, we introduce
the following :

Definition 2.2 Let Ω be an open subset of the hyperbolic unit ball H+. An
open conical region R+Ω of the future cone FC is then defined as the set

R+Ω = {(T,X) ∈ FC : (T,X) = λ(τ, ξ) , λ ∈ R+ and (τ, ξ) ∈ Ω} .

Definition 2.3 Let α be an arbitrary complex number. An α-homogeneous
function F (T,X) defined in an open conical region R+Ω of the future cone
FC in R1,m which is monogenic with respect to the Dirac operator ∂X , is
called a monogenic function on the hyperbolic unit ball H+ defined in R+Ω.

Recalling the polar decomposition

∂X = ξ

(
∂ρ +

1

ρ
Γ1,m

)
=

ξ

ρ
(Eρ + Γ1,m)

of the Dirac operator on the time-like region of the m-dimensional space-time
R1,m, we introduce two function spaces :

Definition 2.4 Let R+Ω be an open conical region in FC and let α be an
arbitrary complex number. We then put :

Hα(Ω) = {F ∈ C1(Ω) : ξ(Γ1,m + α)F = 0 in Ω}
Hα(R+Ω) = {F ∈ C1(R+Ω) : EρF = αF and ∂XF = 0 in R+Ω}

Provided with the obvious laws for addition and multiplication with Clifford
numbers both sets are right R1,m-modules. The space Hα(R+Ω) is the set
of all monogenic functions on the hyperbolic unit ball defined in R+Ω. The
space Hα(Ω) contains the restrictions to Ω ⊂ H+ of monogenic functions on
the hyperbolic unit ball defined in R+Ω, and we will label these restrictions
as hyperbolic monogenics :
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Definition 2.5 Elements of Hα(Ω) are called hyperbolic monogenics in Ω.

This means that there is a link between monogenic functions on the hyper-
bolic unit ball and eigenfunctions for the hyperbolic Gamma operator Γ1,m.
Indeed, if F (X) is a monogenic function on the hyperbolic unit ball, defined
on R+H+, we have {

∂XF (X) = 0
EρF (X) = αF (X)

whence the restriction of F (X) to H+ yields an eigenfunction for Γ1,m :

ξ(Γ1,m + α)F (ξ) = 0 .

Conversely, an eigenfunction F (ξ) for the operator Γ1,m with eigenvalue α
gives a monogenic function F (X) = |X|αF (ξ) on the hyperbolic unit ball,
homogeneous of degree α.

2.2 Fundamental Solutions

In this section the hyperbolic Dirac equation will be derived, i.e. the equation
determining the hyperbolic fundamental solution. In order to do so, we use
the Klein model for the hyperbolic unit ball realized as the intersection of
Ray(FC) with the hyperplane Π ↔ T = 1. Four different constructions for
the solution to this equation are then given.

Consider thus an arbitrary space-time vector X = εT + X ∈ FC. We
then have :

εT +X = λ(ε+ x)

where we have put x =
X

T
∈ Bm(1) and λ = T ∈ R+. Interpreting (λ, x) as

a new set of co-ordinates on the FC, and rewriting the Dirac operator ∂X in
terms of these co-ordinates we find :

∂X = ε∂T − ∂X −→ −1

λ

(
∂ + ε(Er − Eλ)

)
with ∂ (resp. Er) the Dirac operator (resp. the Euler operator) on R0,m in
terms of the co-ordinates x on the Euclidean unit ball Bm(1). In view of our
definition of monogenic functions on the hyperbolic unit ball, we then define
the hyperbolic fundamental solution Eα(T,X) as follows :

Eα(T,X) = TαEα(1, x) = λαEα(x).
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This function Eα(x) must be a solution for the operator −
(
∂ + ε(Er − α)

)
on the punctured Euclidean unit ball Bm(1) \ {0} with singularity for x = 0.
Therefore, it satisfies the following equation :(

∂ + ε(Er − α)
)
Eα(x) = −δ(x) .

In space-time co-ordinates (T,X) this becomes

(ε∂T − ∂X)Eα(T,X) = Tα+m−1
+ δ(X) , (2.2)

with Tα+m−1
+ the distribution defined in section 0.3. Equation (2.2) is the

hyperbolic Dirac equation; solving it is the subject of this section.

Remark 1 : As the distribution Tα+m−1
+ is not defined for α + m ∈ −N,

these values for α will be excludes throughout this section!

Remark 2 : The motivation for choosing Tα+m−1
+ δ(X) to be the right-hand

side of the hyperbolic Dirac equation can also be illustrated in the following
way : if we multiply it with the delta distribution δ(T 2 − |X|2 − 1), hence
restricting the integration over the flat Minkowski space-time to BT (1,m),
we obtain the point-evaluation in the intersection of the ray through (T ,X)
and BT (1,m); i.e. a delta distribution on the hyperboloid. Indeed, for an
arbitrary test function ϕ we have :〈

Tα+m−1
+ δ(X)δ(T 2 − |X|2 − 1), ϕ

〉
=

∫
R
Tα+m−1

+ δ(T 2 − 1)ϕ(T, 0)dT ,

which by means of the fact that

δ(f(T )) =
∑

j

δ(T − Tj)

|f ′(Tj)|

∣∣∣∣∣
f(Tj)=0

,

reduces to〈
Tα+m−1

+ δ(X)δ(T 2 − |X|2 − 1), ϕ

〉
=

∫ ∞

0

Tα+m−1δ(T − 1)ϕ(T, 0)dT

= ϕ(1, 0) .

Remark 3 : In Chapter 5 we will briefly return to this point and show how
the distribution Tα+m−1

+ δ(X) arises from the point of view of the general
theory of delta distributions on manifolds. We postpone this explanation
until then because it would be inappropriate to discuss it here.
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2.2.1 Method 1 : Projection

The idea behind this first method is to project the hyperbolic Dirac equation
onto an arbitrary surface Σ, and to rewrite the hyperbolic Dirac operator
in terms of co-ordinates on this surface. We will do this for two particular
choices for Σ : first we consider the hyperplane Π↔ T = 1, thus projecting
the hyperbolic Dirac equation onto the Klein model for the hyperbolic unit

ball, and next we consider the parabola P ↔ T = 1+|X|2
2

, hence obtaining
the projection onto the Poincaré model.

• The Klein Model

The projection of the hyperbolic Dirac equation onto the hyperplane
Π gives rise to the following equation on the unit ball Bm(1) ⊂ Rm :(

∂ + ε(Er − α)
)
Eα(x) = δ(x) , (2.3)

with x =
X

T
and with Eα(T,X) = TαEα(x) the resulting hyperbolic

fundamental solution in space-time co-ordinates (T,X).

The idea is to construct a hyperbolic fundamental solution Eα(x) which
is a modulated version of the classical Cauchy kernel E(x) on R0,m :

Eα(x) =
∞∑

j=0

bj(xε)
jE(x)

=
1

Am

∞∑
j=0

(
b2j + b2j+1xε

)
|x|2j x

|x|m
,

where the unknown coefficients are to be determined in such a way that
we obtain a solution for the hyperbolic Dirac equation (2.3).

Letting the operator ∂ act on Eα(x) we get for the scalar part of the
summation

∂

∞∑
j=0

b2j|x|2j x

|x|m
= x

∞∑
j=0

(2j + 2)b2j+2|x|2j x

|x|m

and for the bivector part

∂

∞∑
j=0

b2j+1xε|x|2j x

|x|m
= −ε

∞∑
j=0

(2 + 2j −m)b2j+1|x|2j x

|x|m
.
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Letting the operator Er act on the scalar part we get

Er

∞∑
j=0

b2j|x|2j x

|x|m
=

∞∑
j=0

(1 + 2j −m)b2j|x|2j x

|x|m

and for the bivector part

Er

∞∑
j=0

b2j+1xε|x|2j x

|x|m
= xε

∞∑
j=0

(2 + 2j −m)b2j+1|x|2j x

|x|m
.

Expressing the fact that
(
∂ + ε(Er − α)

)
Eα(x) = 0 on the punctured

unit ball we get the following system of equations to hold, for each
j ∈ N : {

(2 + 2j −m− α)b2j+1 = (2j + 2)b2j+2

(1 + 2j −m− α)b2j = (2 + 2j −m)b2j+1

Choosing b0 = 1, this will eventually give the following coefficients bj :

b2j =

(
1− α+m

2

)
j

(
1−α−m

2

)
j

j!
(
1− m

2

)
j

b2j+1 =
1− α−m

2−m

(
1− α+m

2

)
j

(
1 + 1−α−m

2

)
j

j!
(
2− m

2

)
j

,

which means that we have found the following fundamental solution :

Eα(T,X) = λαMod(α, 1−m,x)E(x) (2.4)

where we have put

Mod(α, 1−m,x) = F1(|x|2) +
1−m− α

2−m
xεF2(|x|2)

with

F1(t) = F

(
1− α+m

2
,
1− α−m

2
; 1− m

2
; t

)
F2(t) = F

(
1− α+m

2
, 1 +

1− α−m
2

; 2− m

2
; t

)
.

Remark 1 : Note that in case of an even-dimensional space-time,
these hypergeometric functions are ill-defined. This follows from the
fact that the hypergeometric function F (a, b; c; t) becomes ill-defined
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for c ∈ −N. We will return to this point in section 2.2.2. For the
moment we thus restrict ourselves to the case of an odd-dimensional
space-time. There is however an exception to this, because for α = −m

2

this fundamental solution is defined for both odd and even dimensions
m. Indeed, for this value we get

F1(t) = F

(
1

2

(
1− m

2

)
,
1

2

(
2− m

2

)
; 1− m

2
; t

)

= (1− t)−
1
2

(
1 + (1− t) 1

2

2

)m
2

and

F2(t) = F

(
1

2

(
2− m

2

)
,
1

2

(
3− m

2

)
; 2− m

2
; t

)

= (1− t)−
1
2

(
1 + (1− t) 1

2

2

)m
2
−1

,

such that

Mod
(
−m

2
, 1−m,x

)
=

(
1 + (1− |x|2) 1

2

)m
2

2
m
2 (1− |x|2) 1

2

(
1 +

xε

1 + (1− |x|2) 1
2

)
.

We will postpone the explanation of this phenomenon until a later
Chapter. Right now it suffices to remember that the value α = −m

2

leads to an interesting special case of the hyperbolic Dirac equation.

Remark 2 : In Chapter 3 the idea of modulating solutions for the
Dirac operator ∂ on R0,m to obtain solutions for the hyperbolic Dirac
equation will be generalized. This will enable us to obtain a whole class
of nullsolutions for the hyperbolic Dirac operator.
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• The Poincaré Model

With an arbitrary point εT + X ∈ FC we associate the intersection
of the ray through this point and the parabola P . Since there are
two points of intersection, we choose the one which has a temporal
co-ordinate less than 1. This gives

εT +X = λP

(
ε
1 + |x|2

2
+ x

)

with x =
X

λP

∈ Bm(1) and λP = T +
√
T 2 − |X|2. We then interpret

(λP , x) as new co-ordinates on the future cone, and the Dirac operator
∂X on R1,m becomes :

ε∂T − ∂X −→ − 1

λP

(
∂ + 2

x+ ε

1− |x|2
(Er − EλP

)

)
with ∂ (resp. Er) the Dirac operator (resp. the Euler operator) on Rm

in terms of the co-ordinates x ∈ Bm(1). In view of Definition 2.3 we
then put

Eα(T,X) = λα
PEα(x) ,

and this eventually yields the following projected hyperbolic Dirac
equation : (

∂ + 2
x+ ε

1− |x|2
(Er − α)

)
Eα(x) = −δ(x) . (2.5)

The idea is again to look for a fundamental solution Eα(x) which is a
modulated version of the classical Cauchy kernel :

Eα(x) =
∞∑

j=0

aj(xε)
jE(x)

=
1

Am

∞∑
j=0

(
a2j + a2j+1xε

)
|x|2j x

|x|m
,

where the unknown coefficients aj are to be determined in such a way
that we get a solution for the hyperbolic Dirac equation. Putting

(ε+ x)2 = 1− |x|2
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and recalling the fact that ∂ x+ x ∂ = −m− 2Er on R0,m, we see that
equation (2.5) is equivalent with the following equation :(

∂(x+ ε) +m+ 2α
)
Eα(x) = δ(x)ε .

Letting the operator ∂ x act on Eα(x), we get for the scalar part of the
summation :

∂ x
∞∑

j=0

a2j|x|2j x

|x|m
= −

∞∑
j=0

(2 + 2j −m)a2j|x|2j x

|x|m

and for the bivector part :

∂ x

∞∑
j=0

a2j+1xε|x|2j x

|x|m
= −xε

∞∑
j=0

(2j + 2)a2j+1|x|2j x

|x|m
.

Letting the operator ∂ε act on Eα(x), we get for the scalar part :

∂ε
∞∑

j=0

a2j|x|2j x

|x|m
= xε

∞∑
j=0

(2j + 2)a2j+2|x|2j x

|x|m

and for the bivector part :

∂ε
∞∑

j=0

a2j+1xε|x|2j x

|x|m
=

∞∑
j=0

(2 + 2j −m)a2j+1|x|2j x

|x|m
.

Expressing the fact that
(
∂(x + ε) + m + 2α

)
Eα(x) = 0 we get the

following set of equations, for each j ∈ N :{
(2 + 2j −m− 2α)a2j+1 = (2j + 2)a2j+2

(2 + 2j − 2m− 2α)a2j = (2 + 2j −m)a2j+1

Choosing a0 = 1, this will eventually give the following coefficients aj :

a2j =

(
1− α− m

2

)
j
(1− α−m)j

j!
(
1− m

2

)
j

a2j+1 =
1− α−m

1− m
2

(
1− α− m

2

)
j
(2− α−m)j

j!
(
2− m

2

)
j

.

This means that we have found the following fundamental solution :

Eα(T,X) = λα
P ModP (α, 1−m,x)E(x) (2.6)
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where we have put

ModP (α, 1−m,x) = FP,1(|x|2) +
1−m− α

1− m
2

xεFP,2(|x|2)

with

FP,1(t) = F
(
1− α− m

2
, 1−m− α; 1− m

2
; t
)

FP,2(t) = F
(
1− α− m

2
, 2−m− α; 2− m

2
; t
)
.

The same remarks as for the projection on the Klein model hold here
as well :

Remark 1 : In case we are dealing with an even-dimensional space-
time R1,m, the hypergeometric functions in the formulae above are again
ill-defined. We return to this point in the next subsection. There is
however again one exception, when α = −m

2
. Indeed, in that case we

easily get that

FP,1(t) = FP,2(t) = F
(
1, 1− m

2
; 1− m

2
; t
)

=
∞∑

k=0

tk =
1

1− t
,

such that the Modulation factor reduces to

ModP

(
−m

2
, 1−m,x

)
=

1 + xε

1− |x|2
= (1 + xε)−1 .

If we then recall the projection of the hyperbolic Dirac operator on the
Poincaré ball in case α = −m

2
, given by ∂(x+ε), it is immediately clear

that this is no coincidence since((
∂(x+ ε) + (m+ 2α)

)
Eα(x)

)∣∣∣∣
α=−m

2

= ∂εE(x) = δ(x)ε ,

as it should be! We return to this point in later Chapters.

Remark 2 : In Chapter 3 the idea of modulating the Cauchy kernel
to obtain a fundamental solution for the hyperbolic Dirac equation will
be generalized to arbitrary monogenic functions. In this way a second
class of nullsolutions for the hyperbolic Dirac operator will be obtained.
Both classes of nullsolutions, obtained by projection on the Klein and
Poincaré model of the hyperbolic unit ball, will then be proved to be
equivalent. This will give rise to geometrical interpretations for certain
identities for the hypergeometric function.
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2.2.2 Method 2 : Radon Inversion

The idea behind this method is to use the Radon transform to reduce the
hyperbolic Dirac equation, which is an m-dimensional problem for a vector-
valued differential operator, to a scalar problem in two dimensions. One
might argue that we are dealing with an (m+ 1)-dimensional problem, since
we need the Dirac operator on R1,m, but it should be stressed that the need
for homogeneity allows us to have one degree of freedom and this reduces the
dimension of the problem. At the end of this subsection we will also explain
why the even-dimensional case differs substantially from the odd-dimensional
case.

The starting point is of course the hyperbolic Dirac equation (2.2). The
Radon transform can be used to transform this equation into an equation
for E†

α(T, p, ω), the Radon transform of the fundamental solution Eα(T,X)
with respect to the variable X ∈ Rm :

(ε∂T − ω∂p)E
†
α(T, p, ω) = Tα+m−1

+ δ(p) .

Here we have used expression (33). PuttingE†
α(T, p, ω) = (ε∂T−ω∂p)Φα(T, p),

it suffices to solve the scalar equation

(∂2
T − ∂2

p)Φα(T, p) = Tα+m−1
+ δ(p)

for Φα(T, p). A Radon inversion allows us then to conclude that

Eα(T,X) =
(−1)

m−1
2

2(2π)m−1
∆

m−1
2

m B[(ε∂T − ω∂p)Φα](T,X)

=
(−1)

m−1
2

2(2π)m−1
(ε∂T − ∂)∆

m−1
2

m [BΦα](T,X) .

It should be stressed that the Laplace operator ∆m and the Dirac operator
∂ on R0,m are both given here in terms of the co-ordinates X on Rm.

With E1(T, p) the fundamental solution for the wave-operator on R1,1, we
find for Φα(T, p) :

Φα(T, p) = (E1 ∗ Tα+m−1
+ δ(p))(T, p)

=

∫ ∞

0

E1(T − S, p)Sα+m−1dS .

As we are looking for a fundamental solution Eα(T,X) with support in the
future cone, we put

E1(T, p) =
H(T )H(T − |p|)

2
,
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whence

Φα(T, p) =
1

2

∫ ∞

0

H(T − S)H(T − S − |p|)Sα+m−1dS

=
1

2
H(T )H(T − |p|)(T − |p|)

α+m

α+m
,

eventually leading to

Eα(T,X) =
(−1)

m−1
2

4(2π)m−1
∂X∆

m−1
2

m B
[
H(T )H(T − |p|)(T − |p|)

α+m

α+m

]
.

This expression will now be calculated in case of an odd dimension m ≥ 3,
because in case of an even dimension m it contains a fractional power of the
Laplace operator. These fractional derivatives can be defined in terms of
Riesz potentials, see e.g. [44], but this makes the calculations less straight-
forward. The even-dimensional situation is thus again excluded until the end
of this subsection.

By definition we get :

B
[
H(T )H(T − |p|)(T − |p|)

α+m

α+m

]
=

∫
Sm−1

(T − | < X,ω > |)α+m

α+m
dS(ω) .

Note that inside the future cone the factor H(T )H(T −| < X,ω > |) reduces
to the constant 1.

Choosing the vector X in such a way that θ1 = (̂X,ω), with θ1 one of
the spherical co-ordinates appearing in the Lebesgue measure on Sm−1,

dS(ω) = (sin θ1)
m−2(sin θ2)

m−3...(sin θm−2)dθ1...dθm−1

we have < X,ω >= |X| cos θ1 and the above integral becomes∫
Sm−1

(T − |X|| cos θ1|)α+m

α+m
dS(ω) =

4π
m−1

2

Γ
(

m−1
2

)I(T,X) ,

with I(T,X) given by

I(T,X) =

∫ 1

0

(T − y|X|)α+m

α+m
(1− y2)

m−3
2 dy .

As |X| < T for all X ∈ FC and y ∈ [0, 1], we may consider the following
series expansion :

(T − y|X|)α+m = Tα+m

∞∑
k=0

(
α+m

k

)(
−y |X|

T

)k

,

82



which leads to :

I(T,X) =
Tα+m

α+m

∞∑
k=0

(
α+m

k

)(
−|X|
T

)k ∫ 1

0

yk(1− y2)
m−3

2 dy

=
Tα+m

α+m

∞∑
k=0

(−1)k

(
α+m

k

)(
|X|
T

)k
[

Γ(m−1
2

)Γ(k+1
2

)

2Γ(m+k
2

)

]
.

We thus find the following expression for I(T,X) :

Tα+m

α+m

∞∑
k=0

(
α+m

k

)
(−1)k2

m−3
2

(
m−3

2

)
!

(k + 1)(k + 3) · · · (k +m− 2)

(
|X|
T

)k

,

such that for all space-time vectors X = εT +X ∈ FC we get

Eα(T,X) =
(−1)

m−1
2

2(2π)
m−1

2

∂X
Tα+m

α+m
×

∆
m−1

2
m

∞∑
k=0

(
α+m

k

)
(−1)k(k − 1)!!

(k +m− 2)!!

(
|X|
T

)k

,

with ∆m the Laplacian in the co-ordinates X and adopting the classical
notation

a!! = a(a− 2) · · · 4 · 2 if a ∈ 2N

a!! = a(a− 2) · · · 5 · 3 if a ∈ 2N + 1 .

This expression for Eα(T,X) can now be rewritten in such a way that for odd
spatial dimensions m we recover the formulae that were found in subsection
2.2.1. To that end, we need the following technical Lemma which can be
proved by means of induction on the parameter a ∈ N0 :

Lemma 2.1 If ∆m =
∑m

j=1 ∂
2
xj

denotes the Laplacian on Rm, we have for
all positive integers a ∈ N0 :

∆a
m|x|n = ∆m · · ·∆m︸ ︷︷ ︸

a times

|x|n =
n!!

(n− 2a)!!

(n+m− 2)!!

(n− 2a+m− 2)!!
|x|n−2a

Using this Lemma, we find for arbitrary (T,X) ∈ FC :

Eα(T,X) =
Cm(ε∂T − ∂X)

α+m

Tα+m

|X|m−1

∞∑
k=0

(
α+m

k

)
k!!

(k + 1−m)!!

(
−|X|
T

)k

(2.7)
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where we have put

Cm =
(−1)

m−1
2

2(2π)
m−1

2

.

Due to the presence of the factor k(k−2) · · · (k−(m−3)) in expression (2.7),
the even series Σeven starts from k = m − 1 if m is odd, which means that
this series loses its singular behaviour at |X| = 0. Indeed,

1

|X|m−1
Σeven =

1

|X|m−1

∞∑
k=0

(
α+m
2k

)
(2k)!!

(2k + 1−m)!!

(
|X|
T

)2k

= 2
m−1

2 T 1−m

∞∑
l=0

(
α+m

2l+m−1

)
(l + 1)!

(l + m−3
2

)!

(
|X|
T

)2l

. (2.8)

The following Theorem, stating that the even series (2.8) belongs to the
kernel of the wave-operator �m on R1,m, is proved by direct calculation :

Theorem 2.1 For all (T,X) ∈ FC we have :

�m

{
Tα+m

|X|m−1

∞∑
k=0

(
α+m
2k

)
(2k)!!

(2k + 1−m)!!

(
|X|
T

)2k
}

= 0

Hence, in case of an odd spatial dimension m, the fundamental solution
Eα(T,X) as obtained by means of the Radon inversion consists of a singular

part E
(s)
α (T,X), given by the odd series, and a regular part E

(r)
α (T,X) given

by the even series.

In what follows we will prove that the singular part can be written as a
modulated version of the Euclidean Cauchy kernel E(x), with x = X

T
, and

that the regular part can be written as a modulated version of the constant
function 1, a trivial solution for the Euclidean Dirac operator ∂ on R0,m.

Remark : It is important to note that the regular part of the hyperbolic
fundamental solution Eα(T,X) cannot be unique, since one can always add
an arbitrary α-homogeneous nullsolution for the Dirac operator ∂X on R1,m.
However, as will be illustrated a bit further : the regular part E

(r)
α (T,X)

which shows up here is in fact very natural and will allow us to rewrite the
hyperbolic fundamental solution Eα(T,X) in terms of Gegenbauer functions
of the second kind.
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Using expression (2.7) for the fundamental solution and result (2.8) for the
even series, we find :

E(r)
α (T,X) =

2
m−1

2 Cm(ε∂T − ∂X)

α+m
Tα+1

∞∑
l=0

(
α+m

2l+m−1

)
(l + 1)!

(l + m−3
2

)!

(
|X|
T

)2l

Using the following identity, known as Legendre’s duplication formula for the
Gamma function

Γ(2z) =
22z−1

π
1
2

Γ(z)Γ

(
z +

1

2

)
,

it follows immediately that(
α+m

2l +m− 1

)
(l + 1)!

(l + m−3
2

)!
=

π
1
2 Γ(α+m+ 1)

(
−α

2

)
l

(
−1+α

2

)
l

2m−1Γ
(

m
2

)
Γ(α+ 2)l!

(
m
2

)
l

.

Hence, E
(r)
α (T,X) takes the form

E(r)
α (T,X) =

(−1)
m−1

2 (ε∂T − ∂X)

2mπ
m−2

2 Γ
(

m
2

) Γ(α+m)

Γ(α+ 2)
Tα+1F

(
−α

2
,−1 + α

2
;
m

2
; |x|2

)

with x =
X

T
. Using the contigious relations for the hypergeometric function,

straightforward calculations now yield :

(ε∂T − ∂X)Tα+1F

(
−α

2
,−1 + α

2
;
m

2
; |x|2

)
= (1 + α)TαMod(α, 0, x)ε ,

where Mod(α, 0, x) is defined by

Mod(α, 0, x) = F1(|x|2)−
α

m
xεF2(|x|2)

with

F1(t) = F

(
1− α

2
,−α

2
;
m

2
; t

)
F2(t) = F

(
1− α

2
, 1− α

2
; 1 +

m

2
; t

)
.

This eventually yields the regular part E
(r)
α (T,X) of the fundamental solution

for the hyperbolic Dirac equation, in case of an odd spatial dimension :

E(r)
α (T,X) =

(−1)
m−1

2

2mπ
m−2

2 Γ
(

m
2

) Γ(α+m)

Γ(α+ 1)
TαMod(α, 0, x)ε .
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Next, the singular part E
(s)
α (T,X) of the fundamental solution for the Dirac

equation on the hyperbolic unit ball is determined. Recalling expression (2.7)
we get :

E(s)
α (T,X) = −

Cm(ε∂T − ∂X)

α+m

Tα+m−1

|X|m−2

∞∑
k=0

(
α+m
2k+1

)
(2k + 1)!!

(2k + 1− (m− 3))!!

(
|X|
T

)2k

.

In case of an odd spatial dimension m, the coefficients reduce to(
α+m

2k + 1

)
(2k + 1)!!

(2k + 1− (m− 3))!!
=

2
m−3

2 π
1
2

Γ
(
2− m

2

) (1−α−m
2

)
k

(
2−α−m

2

)
k

k!
(
2− m

2

)
k

.

In view of the fact that

Γ(z)Γ(1− z) =
π

sin(πz)
,

the following expression is eventually obtained :

E(s)
α (T,X) =

(ε∂T − ∂X)

(m− 2)Am

Tα+m−1

|X|m−2
F

(
1− α−m

2
,
2− α−m

2
; 2− m

2
; |x|2

)
= TαMod(α, 1−m,x)E(x)

This formula thus states that the singular part E
(s)
α (T,X) of the hyperbolic

fundamental solution is a modulated version of the Euclidean Cauchy kernel,
identical to expression (2.4).

Remark : Note that these calculations are only valid in case of an odd-
dimensional space-time R1,m. We already encountered this phenomenon in
previous subsections and the time has now come to explain this substantial
difference between the even- and odd-dimensional situation. To do so we
refer to the introductory theory on the hypergeometric function, where we
have seen how to obtain two independent solutions for the hypergeometric
differential equation.

For if we look at the solution for the hyperbolic Dirac equation obtained
by means of the Radon transform, we note that both the regular and the
singular part can be expressed in terms of the Dirac operator on R1,m acting
on a hypergeometric function. In case of an odd dimension we get for the
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hyperbolic fundamental solution Eα(T,X) :

Eα(T,X) =
Γ
(
2− m

2

)
(m− 2)Am

(ε∂T − ∂X)
Tα+1

|x|m−2
× (2.9)

(−1)m

2m−2Γ
(

m
2

) Γ(α+m)

Γ(α+ 2)
|x|m−2F

(
−α

2
,−1 + α

2
;
m

2
; |x|2

)
+

1

Γ
(
2− m

2

)F (1− α−m
2

,
2− α−m

2
; 2− m

2
; |x|2

)


Both hypergeometric functions between the square brackets are a solution
for the hypergeometric differential equation

t(1− t)d
2f

dt2
+

[
m

2
+

(
α− 1

2

)
t

]
df

dt
− α(1 + α)

4
f = 0 , (2.10)

arising very naturally if we recall the fact that (ε∂T − ∂X)2 = �m. Indeed, if
we are to find α-homogeneous solutions Fα(T,X) for the Dirac operator on
R1,m it is sufficient to find (α+1)-homogeneous solutions Φα+1(T,X) for the
wave-operator first, and to put

Fα(T,X) = (ε∂T − ∂X)Φα+1(T,X) .

So if we put

Φα+1(T,X) = Tα+1Φα+1

(
1,
X

T

)
= λα+1Φα+1(x) ,

with λ = T and x =
X

T
, and if the function Φα+1(x) is to depend on the

argument t = |x|2 only, we arrive at equation (2.10) for f(t) = Φα+1(|x|2).

If we then put f(t) = t1−
m
2 g(t) and β = −α − m, we get the following

hypergeometric differential equation :

t(1− t)d
2g

dt2
+

[(
2− m

2

)
−
(
β +

5

2

)
t

]
dg

dt
− (1 + β)(2 + β)

4
g = 0 .

According to the general theory, two independent solutions for this equation
can be found as follows :
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• If 2− m
2
/∈ −N or if m > 2 is not even, then

g1(t) = F

(
1− α+m

2
,
1− α−m

2
; 2− m

2
; t

)
is a first solution, regular at t = 0, whereas a second independent
solution is given by

g2(t) = t
m
2
−1F

(
−α

2
,−1 + α

2
;
m

2
; t

)
.

This gives two independent solutions for equation (2.10) :

f1(t) = t1−
m
2 F

(
1− α+m

2
,
1− α−m

2
; 2− m

2
; t

)
f2(t) = F

(
−α

2
,−1 + α

2
;
m

2
; t

)
,

and these are precisely the functions occurring in the expressions for
respectively the singular and regular part of the hyperbolic fundamental
solution (cfr. supra).

• If 2 − m
2
∈ −N, or if m > 2 is even, the first solution g1(t) becomes

ill-defined and the second solution g2(t) is no longer independent in the
sense that it coincides with g1(t), up to a constant :

lim
c→2−m

2

F
(
1− α+m

2
, 1−α−m

2
; c; t

)
Γ(c)

=

(
1− α+m

2

)
m
2
−1

(
1−α−m

2

)
m
2
−1(

m
2
− 1
)
!

×

t
m
2
−1F

(
−α

2
,−1 + α

2
;
m

2
; t

)
,

which can be reduced to

lim
c→2−m

2


(−1)m

2m−2Γ
(

m
2

) Γ(α+m)

Γ(α+ 2)
t

m
2
−1F

(
−α

2
,−1 + α

2
;
m

2
; t

)
−
F
(
1− α+m

2
, 1−α−m

2
; c; t

)
Γ(c)

 = 0

Note that this factor between square brackets is, up to a relative minus sign,
equal to the factor between square brackets in the expression (2.9) for the
hyperbolic fundamental solution Eα(T,X) in case of an odd dimension. In
other words, this limit expression clearly exhibits the fact that the formulae
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for Eα(T,X) derived above are only valid for odd spatial dimensions m.

However, from the general theory on the hypergeometric function we then
immediately get a fundamental solution for the hyperbolic Dirac equation in
case of an even dimension m > 2 by means of the limit procedure :

Eα(T,X) =
(ε∂T − ∂X)

(m− 2)Am

Tα+1

|x|m−2
lim

c→2−m
2

1

c−
(
2− m

2

) ×
(−1)m

2m−2Γ
(

m
2

) Γ(α+m)

Γ(α+ 2)
|x|m−2F

(
−α

2
,−1 + α

2
;
m

2
; |x|2

)
−

1

Γ(c)
F

(
1− α−m

2
,
2− α−m

2
; c; |x|2

)


Let us now calculate this limit expression in an appropriate way. To do so,
we will use the hyperbolic polar representation for space-time vectors :

εT +X = X = ρξ = ρ
(
ετ + (τ 2 − 1)

1
2 ξ
)

with ξ ∈ Sm−1 and τ = ρ−1T .

If we look at the expressions for the hyperbolic fundamental solution, for
both even and odd dimensions, we see that up to a relative minus sign the
factor between square brackets is identical. It consists of two hypergeometric
functions multiplied with the factors Tα+1 and Tα+1|x|2−m respectively, which
can be rewritten in terms of the Legendre function of the first kind :

Tα+1

|x|m−2

F
(

1−α−m
2

, 2−α−m
2

; 2− m
2
; |x|2

)
Γ
(
2− m

2

) = ρα+1 (τ 2 − 1)
1
2
−m

4

2
m
2
−1

P
m
2
−1

α+m
2
(τ)

and

(−1)m

2m−2Γ
(

m
2

) Γ(α+m)

Γ(α+ 2)
Tα+1F

(
−α

2
,−1 + α

2
;
m

2
; |x|2

)
= (−1)mρα+1 Γ(α+m)

Γ(α+ 2)

(τ 2 − 1)
1
2
−m

4

2
m
2
−1

P
1−m

2

α+m
2
(τ) . (2.11)

We will then use expression (17) to simplify the sum of these two Legendre
functions of the first kind :

Q
1−m

2

α+m
2
(τ) =

πeiπ(1−m
2 )

2 sin
(
1− m

2

)
π

(
P

1−m
2

α+m
2
(τ)− Γ(α+ 2)

Γ(α+m)
P

m
2
−1

α+m
2
(τ)

)
.
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From this formula we can immediately observe two things : first of all there is
a factor sin

(
mπ
2

)
which vanishes for even dimensions m and this explains the

need to take a limit in case m ∈ 2N. On the other hand we note that there
is a minus sign, whereas formula (2.11) only has a factor (−1)m, explaining
the need to introduce an additional relative minus sign in case m ∈ 2N.

• In case of an odd dimension m we get :

Eα(T,X) = ∂X

 sin
(

mπ
2

)
e−iπ(m

2
−1)

Γ
(

m
2

)
Γ
(
1− m

2

)
2

m
2 π

m
2

+1

Γ(α+m)

Γ(α+ 2)

ρα+1(τ 2 − 1)
1
2
−m

4 Q
1−m

2

α+m
2
(τ)

 ,

which by means of definition (22) for the Gegenbauer function of the
second kind in terms of the Legendre function reduces to

Eα(T,X) = ∂X

[
e−iπ(m

2
−1)

2π
m−1

2

Γ

(
m− 1

2

)
D

m−1
2

α+1 (τ)

]
.

• In case of an even dimension m > 2 we get :

Eα(T,X) =

∂X

 eiπ m
2

Γ
(

m
2
− 1
)

2
m
2 π

m
2

+1

Γ(α+m)

Γ(α+ 2)

ρα+1(τ 2 − 1)
1
2
−m

4 Q
1−m

2

α+m
2
(τ)

×
lim

c→2−m
2

sin(cπ)

c−
(
2− m

2

)
Note that we do not have to replace all factors

(
2− m

2

)
by the variable

c, which should be done according to formula (8), because only one term
will survive after taking limits due to the presence of the factor sin(cπ).
Eventually the expression for the hyperbolic fundamental solution in
case of an even spatial dimension m > 2 will coincide up to a constant
with the one we have already found in case of an odd dimension. In
the next subsection it will be shown that this constant is actually equal
to 1. This was of course to be expected because the expression for the
hyperbolic fundamental solution for odd m in terms of the Gegenbauer
function is also defined for even m, and this expression for odd m gives
the correct right-hand side (which is also defined for both odd and even
dimensions m).

We end this subsection by noting that the difference between determining the
hyperbolic fundamental solution for odd and even dimensions is no typical
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hyperbolic feature. Indeed, the fundamental solution for the Laplacian ∆m is
given by the function cmr

2−m where cm = [(2−m)Am]−1. However, if m = 2
the function r2−m reduces to the regular nullsolution for the Laplacian ∆2,
i.e. the constant function 1. In that case, a fundamental solution must also
be obtained by means of a limit expression :

lim
µ→2

r2−µ − 1

µ− 2
= − ln r .

2.2.3 Method 3 : Using Riesz Distributions

The idea behind this third method is to consider the scalar problem

�mΦα(T,X) = Tα+m−1
+ δ(X) (2.12)

related to the hyperbolic Dirac equation, and to solve this equation using
Riesz distributions.

As the distribution at the right-hand side of equation (2.12) belongs to the
set D′+(R1,m), we get immediately that

Φα(T,X) = Z2 ∗ Tα+m−1
+ δ(X) ,

which in view of the definition for the Riesz distribution Z2 reduces to

Φα(T,X) =
ρ1−m ∗ Tα+m−1

+ δ(X)

2π
m−1

2 Γ
(

3−m
2

)
=

H(T −R)
∫ T−R

0

(
(T − S)2 − |X|2

) 1−m
2 Sα+m−1dS

2π
m−1

2 Γ
(

3−m
2

) ,

where we have put R = |X|. The integral in the denominator can further be
reduced to

ρ1−m(T −R)α+m

∫ 1

0

[(
1− t

)(
1− zt

)] 1−m
2 tα+m−1dt , (2.13)

with ρ = (T 2 − |X|2) 1
2 the hyperbolic norm and with

z =
T −R
T +R

=
τ − (τ 2 − 1)

1
2

τ + (τ 2 − 1)
1
2

for τ =
T

(T 2 − |X|2) 1
2

.

Recalling Euler’s integral formula for the hypergeometric function, expression
(2.13) can be written as

Γ(α+m)Γ
(

3−m
2

)
Γ
(
α+ m+3

2

) ρ1−m(T −R)α+mF

(
m− 1

2
, α+m;α+

m+ 3

2
; z

)
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if we assume that m < 3.

Recalling formula (15), this hypergeometric function can be written as a
Legendre function of the second kind

F

(
m− 1

2
, α+m;α+

m+ 3

2
; z

)
= e−iπ m−2

2
Γ
(
α+ m+3

2

)
π

1
2 2

m−2
2 Γ(α+m)(

τ + (τ 2 − 1)
1
2

)α+m

(τ 2 − 1)
m
4
− 1

2

Q
m
2
−1

α+m
2
(τ) ,

and eventually, using the definition for the Gegenbauer function of the second
kind in terms of the Legendre function, we get the following expression in
case m < 3 :

Z2 ∗ Tα+m−1
+ δ(X) = H(T −R)

e−iπ m−1
2

2π
m−1

2

Γ

(
m− 1

2

)
ρα+1D

m−1
2

α+1 (τ) .

In view of the fact that the Gegenbauer function of the second kind needs
a cut in the complex plane along the real line from −∞ to +1, the factor
H(T −R) may be omitted. Indeed, as τ ∈ R+ the condition | arg(τ −1)| < π
is equivalent with τ > 1 ⇔ T > |X|. The Gegenbauer function has poles
at α + m ∈ −N. These were to be expected, because the distribution
Tα+m−1

+ δ(X) has poles at the very same values. This means that both the
left-hand side and the right-hand side of the previous expression determine a
distribution with poles at α+m ∈ −N. As they are equal in the strip m < 3,
they are equal in the whole complex plane by analytic continuation.

In other words, the fundamental solution Eα(T,X) for the Dirac equation
on the hyperbolic unit ball is found to be the distribution

Eα(T,X) = ∂XΦα(T,X)

= ∂X

[
e−iπ m−1

2

2π
m−1

2

Γ

(
m− 1

2

)
ρα+1D

m−1
2

α+1 (τ)

]
.

This is precisely the expression for the hyperbolic fundamental solution in
case of an odd dimension, found in the previous subsection, which indeed
proves that this formula holds for both even and odd dimensions.

Recalling the polar decomposition

∂X = ξ

(
∂ρ +

1

ρ
Γ1,m

)
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for the Dirac operator on R1,m and using the fact that

Γ1,m(τ) = Γ1,m(ξ · ε) = ξ ∧ ε ,

we get

∂Xρ
α+1D

m−1
2

α+1 (τ) = ξρα

(
(m− 1)D

m+1
2

α (τ)ξ ∧ ε+ (1 + α)D
m−1

2
α+1 (τ)

)
,

which by means of the relation ξ(ξ ∧ ε) = ε− τξ and the recurrence relations
for the Gegenbauer function reduces to

∂Xρ
α+1D

m−1
2

α+1 (τ) = (m− 1)ρα

(
D

m+1
2

α−1 (τ)ξ −D
m+1

2
α (τ)ε

)
.

This yields the following expression for the hyperbolic fundamental solution,
in case α+m /∈ −N, for all X = εT +X ∈ FC :

Eα(T,X) = ρα e
−iπ m−1

2

π
m−1

2

Γ

(
m+ 1

2

)(
D

m+1
2

α−1 (τ)ξ −D
m+1

2
α (τ)ε

)
(2.14)

Remark : In Chapter 4 we will use Riesz potentials to define arbitrary
complex powers of the hyperbolic Dirac operator.

2.2.4 Method 4 : Using an Inductive Argument

This last method makes use of the fundamental solution for the wave-operator,
and allows us to deduce a recursive definition for the hyperbolic fundamental
solution. In this subsection, we again restrict ourselves to the case of an
odd-dimensional space-time R1,m. However, the results for the case of an
even dimension easily follow by taking appropriate limits.

First we focus on the scalar problem

�mΦα,m(T,X) = Tα+m−1
+ δ(X) ,

such that the hyperbolic fundamental solution is given by

Eα,m(T,X) = (ε∂T − ∂X)Φα,m(T,X) .

Note that, in contrast to previous subsections, we now label the fundamen-
tal solution Eα,m(T,X) for the hyperbolic Dirac equation on R1,m with an
additional subscript m. This is necessary because we will derive a recursive
formula, expressing the hyperbolic fundamental solution on R1,m in terms of
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the hyperbolic fundamental solution in a lower-dimensional space-time. We
prefer to not adopt this notation throughout the whole text because it is only
in this section that there is a need of space-times of different dimensions. We
thus agree that, if there is no subscript indicating the spatial dimension, we
are dealing with m-dimensional space-time R1,m.

As we are looking for a recursive formula for the hyperbolic fundamental
solution, we first consider the trivial case m = 3 and next we consider the
general case m ∈ 2N + 3.

1. The 3-dimensional case

By definition the fundamental solution for the wave-operator �3 with
support on the upper part of the nullcone is given by

E3(T,X) =
δ(T − |X|)

4π|X|
.

Hence, we immediately get

Φα,3(T,X) = Tα+2
+ δ(X) ∗ E3(T,X)

= H(T )H(T − |X|)T
α+2(1− |x|)α+2

4π|X|

where x =
X

T
. Note that x ∈ B3(1), for all (T,X) ∈ FC. As we are

constructing the hyperbolic fundamental solution, which has support
in the future cone, the factor H(T )H(T − |X|) will again be omitted
throughout the calculations.

The function Φα,3(T,X) may then be decomposed into a singular part
Fα,3(T,X) and a regular part Rα,3(T,X) as follows :

Φα,3(T,X) = Fα,3(T,X) +Rα,3(T,X) ,

where

Fα,3(T,X) =
Tα+2

4π|X|
(1− |x|)α+2 + (1 + |x|)α+2

2

=
Tα+2

4π|X|
F

(
−α+ 2

2
,−α+ 1

2
;
1

2
; |x|2

)
,
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and

Rα,3(T,X) =
Tα+1

4π

(1− |x|)α+2 − (1 + |x|)α+2

2|x|

= −(α+ 2)
Tα+1

4π
F

(
−α

2
,−α+ 1

2
;
3

2
; |x|2

)
.

2. The general case

We now derive an addition formula for Φα,m(T,X) by means of an
induction argument.

We start with the following observation : for all m ∈ 2N0 + 3 we
have

Em+2(T,X) =
1

2π

1

T

∂

∂T
Em(T,X) ,

which is a trivial consequence of the definition for Em(T,X).

Hence,

Φα,m+2(T,X) = (Em+2 ∗ Tα+m+1
+ )(T,X)

=
1

2π

∫
R

(∂TEm)(T − S,X)

T − S
Sα+m+1dS .

By means of Lemma 0.1 it is easily verified that

(∂TEm)(T − S,X) = −(∂SEm)(T − S,X)

and that the support of

∂TEm(T − S,X) ,

when considered as a distribution in the S-variable, is {T − |X|}.

As our fundamental solution Eα,m(T,X) is supported by the future
cone FC, we know that T > |X|. Hence there exists η ∈ R+ such that
T−|X| ∈ Iη, where Iη is defined as the interval [T−|X|−η, T−|X|+η].

Consequently,

Φα,m+2(T,X) =
1

2π

∫
Iη

Em(T − S,X)
α+m+ 1

T − S
Sα+mdS

+
1

2π

∫
Iη

Em(T − S,X)
1

(T − S)2
Sα+m+1dS .
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Because S < T in Iη, both (T − S)−1 and (T − S)−2 can be expanded

as a series in
S

T
, whence

Φα,m+2(T,X) =
1

2π

∫
Iη

∞∑
k=0

α+m+ 1

T 1+k
Em(T − S,X)Sα+m+k+1dS

+
1

2π

∫
Iη

∞∑
k=0

1 + k

T 2+k
Em(T − S,X)Sα+m+k+2dS .

By termwise integration, we obtain :

Φα,m+2(T,X) =
1

2π

∞∑
k=0

α+m+ 1

T k+1
(Em ∗ Tα+k+m

+ )(T,X)

+
1

2π

∞∑
k=0

1 + k

T k+2
(Em ∗ Tα+k+m+1

+ )(T,X) . (2.15)

We then prove the following Theorem :

Theorem 2.2 For all m ∈ 2N + 3 the solution to the equation

�mΦα,m(T,X) = Tα+m−1
+ δ(X)

is given by

Φα,m(T,X) = Fα,m(T,X) +Rα,m(T,X)

with

Fα,m(T,X) =
Tα+m−1

(m− 2)Am|X|m−2
F

(
1− α−m

2
,
2− α−m

2
; 2− m

2
; |x|2

)
and

Rα,m(T,X) =
T 1+α(−1)

m−1
2

2mπ
m
2
−1Γ

(
m
2

) Γ(α+m)

Γ(α+ 2)
F

(
−α
2
,
−1− α

2
;
m

2
; |x|2

)
.

Proof : The case m = 3 was already proved. By an induction argument
we will prove the Theorem for an arbitrary dimension (m+2) ∈ 2N0+3,
under the assumption that the Theorem holds for m ∈ 2N + 3.
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If the Theorem holds for m ∈ 2N + 3, we have from (2.15) :

Φα,m+2(T,X) =
1

2π

∞∑
k=0

α+m+ 1

T k+1
{Fα+k+1,m +Rα+k+1,m} (T,X)

+
1

2π

∞∑
k=0

1 + k

T k+2
{Fα+k+2,m +Rα+k+2,m} (T,X) .

Let us first calculate Σ1, defined as

Σ1 =
1

2π

∞∑
k=0

{
α+m+ 1

T k+1
Fα+k+1,m +

1 + k

T k+2
Fα+k+2,m

}
.

Using the induction hypothesis, we find for Fα+k+1,m :

Fα+k+1,m

2πT k+1
=

Tα+m+1|x|2

(m− 2)mAm+2|X|m
×

F

(
−α− k −m

2
,
1− α− k −m

2
; 2− m

2
; |x|2

)
,

and for Fα+k+2,m :

Fα+k+2,m

2πT k+2
=

Tα+m+1|x|2

(m− 2)mAm+2|X|m
×

F

(
−1− α− k −m

2
,
−α− k −m

2
; 2− m

2
; |x|2

)
.

In order to carry out the summation, we would like to rewrite the hyper-
geometric functions appearing on the previous lines. For this purpose,
we introduce a differential operator in the real variable u (representing
the argument of the hypergeometric function on which this operator is
supposed to act, i.e. u = |x|2) :

Oa = 1− 2u

a

d

du
, ∀a ∈ N .

Using the contigious relations for the hypergeometric function, we get

F

(
a, a+

1

2
; 2− m

2
;u

)
= Om−2Om−4 · · ·O3O1F

(
a, a+

1

2
;
1

2
;u

)
.

As x ∈ Bm(1) for all (T,X) in the future cone FC, the following
expansions are valid :

1

|x|
= − 1

1− (1 + |x|)
= −

∞∑
k=0

(1 + |x|)k
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and

1

|x|2
= − 1

(1− (1 + |x|))2
=

∞∑
k=0

(1 + k)(1 + |x|)k .

Recalling the fact that

F

(
a, a+

1

2
;
1

2
; z2

)
=

(1 + z)−2a + (1− z)−2a

2
,

we can now carry out the summation over k in the summation Σ1.
Indeed, we respectively get

∞∑
k=0

α+m+ 1

2πT k+1
Fα+k+1,m = (α+m+ 1)

Tα+m+1|x|2

(m− 2)mAm+2|X|m
×

Om−2 · · ·O1
(1− |x|)α+m − (1 + |x|)α+m

2|x|
,

and
∞∑

k=0

k + 1

2πT k+2
Fα+k+2,m =

Tα+m+1|x|2

(m− 2)mAm+2|X|m
×

Om−2 · · ·O1
(1− |x|)1+α+m + (1 + |x|)1+α+m

2|x|2
.

Adding both terms and using the contigious relations for the hypergeo-
metric function, we get :

Σ1 =
Tα+m+1|x|2

(m− 2)mAm+2|X|m
Om−2 · · ·O1

F
(−1−α−m

2
, −α−m

2
;−1

2
; |x|2

)
|x|2

.

Now that we got rid of the summation over k, using the differential
operators Oa, we are still left with the following expression :

Om−2Om−4 · · ·O3O1

F
(−1−α−m

2
, −α−m

2
;−1

2
; |x|2

)
|x|2

.

Using the fact that

On

nF
(
a, b;−n

2
;u
)

u
= (n+ 2)

F
(
a, b;−n

2
− 1;u

)
u

,

a relation that can easily be verified by means of the definition of the
hypergeometric series, we get

Om−2Om−4 · · ·O3O1

F
(
a, b;−1

2
; |x|2

)
|~x|2

= (m− 2)
F
(
a, b; 1− m

2
; |x|2

)
|x|2

.
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Eventually we thus find :

Σ1 =
Tα+m+1

mAm+2|X|m
F

(
−1− α−m

2
,
−α−m

2
; 1− m

2
; |x|2

)
= Fα,m+2(T,X) ,

giving rise to the following inductive formula :

Fα,m+2 =
1

2π

∞∑
k=0

{
α+m+ 1

T k+1
Fα+k+1,m +

k + 1

T k+2
Fα+k+2,m

}
.

Next we consider the summation Σ2, defined by

Σ2 =
1

2π

∞∑
k=0

{
α+m+ 1

T k+1
Rα+k+1,m +

k + 1

T k+2
Rα+k+2,m

}
.

Before using the induction hypothesis, the regular part Rα,m(T,X)
is transformed into a more useful form. For this purpose we use the
derivation property of the hypergeometric function, leading to

F

(
−α
2
,
−1− α

2
;
m

2
;u

)
=

(
3

2

)
m−3

2(
3− α−m

2

)
m−3

2

(
2− α−m

2

)
m−3

2

×

(
d

du

)m−3
2

F

(
3− α−m

2
,
2− α−m

2
;
3

2
;u

)
where u = |x|2. Using Legendre’s duplication formula and the identity

Γ(z)Γ(1− z) =
π

sin(πz)
, we will eventually obtain :

Γ(α+m)

Γ(α+ 2)

{(
3− α−m

2

)
m−3

2

(
2− α−m

2

)
m−3

2

}−1

= 2m−3(α+m− 1) ,

hereby using the fact that m is odd. This means that Rα,m(T,X) can
also be written as :

Rα,m(T,X) =
(−1)

m−1
2 T 1+α

4π
m−1

2

(α+m− 1)×(
d

du

)m−3
2

F

(
3−m− α

2
,
2−m− α

2
;
3

2
;u

)
,
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with u = |x|2.

Using the induction hypothesis together with previous expressions, we
thus find for Rα+k+1,m :

Rα+k+1,m

2πT k+1
=

(−1)
m−1

2 Tα+1

8π
m+1

2

(α+m+ k)×(
d

du

)m−3
2

F

(
2−m− α− k

2
,
1−m− α− k

2
;
3

2
;u

)
,

and for Rα+k+2,m :

Rα+k+1,m

2πT k+1
=

(−1)
m−1

2 Tα+1

8π
m+1

2

(α+m+ k + 1)×(
d

du

)m−3
2

F

(
1−m− α− k

2
,
−m− α− k

2
;
3

2
;u

)
.

Recalling the fact that

F

(
a, a+

1

2
;
3

2
; z2

)
=

(1 + z)1−2a − (1− z)1−2a

2(1− 2a)z

and the expansions for |x|−1 = u−
1
2 and |x|−2 = u−1, we then carry

out the summation over k to find the following expressions (in terms
of u = |x|2) :

∞∑
k=0

α+m+ 1

2πT k+1
Rα+k+1,m = (α+m+ 1)

(−1)
m+1

2 Tα+1

8π
m+1

2

×

(
d

du

)m−3
2 (1− u 1

2 )α+m + (1 + u
1
2 )α+m

2u

and

∞∑
k=0

k + 1

2πT k+2
Rα+k+2,m =

(−1)
m+1

2 Tα+1

8π
m+1

2

×

(
d

du

)m−3
2 (1− u 1

2 )α+m+1 − (1 + u
1
2 )α+m+1

2u
3
2

.

Eventually we thus find for Σ2 :

Σ2 =
(−1)

m+1
2 Tα+1

4π
m+1

2

(
d

du

)m−3
2

f(u) ,
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where we have put

f(u) =

{
(1− u 1

2 )α+m+1 − (1 + u
1
2 )α+m+1

4u
3
2

}

+ (α+m+ 1)

{
(1− u 1

2 )α+m + (1 + u
1
2 )α+m

4u

}
.

Comparing this expression for Σ2 with the alternative expression for
Rα,m+2(T,X), it becomes clear that

Σ2 = Rα,m+2(T,X)

provided the following identity holds :

(1− u 1
2 )α+m + (1 + u

1
2 )α+m

4u
+

(1− u 1
2 )α+m+1 − (1 + u

1
2 )α+m+1

4(α+m+ 1)u
3
2

=
d

du
F

(
−m− α

2
,
1−m− α

2
;
3

2
;u

)
.

This formula can easily be verified by means of the definition for the
hypergeometric series.

Hence, the following inductive formula has been proved :

Rα,m+2 =
1

2π

∞∑
k=0

{
α+m+ 1

T k+1
Rα+k+1,m +

k + 1

T k+2
Rα+k+2,m

}
.

We conclude by :

Φα,m+2(T,X) =
1

2π

∞∑
k=0

α+m+ 1

T k+1
{Fα+k+1,m +Rα+k+1,m} (T,X)

+
1

2π

∞∑
k=0

1 + k

T k+2
{Fα+k+2,m +Rα+k+2,m} (T,X)

= Fα,m+2(T,X) +Rα,m+2(T,X) ,

which completes the proof. �

Recalling the fact that Eα,m(T,X) = (ε∂T − ∂X)Φα,m(T,X), we are
lead to the following formulae :

Eα,m(T,X) = (ε∂T − ∂X){Fα,m +Rα,m}(T,X) ,
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with

(ε∂T − ∂X)Fα,m = TαMod(α, 1−m,x)E(x)

and

(ε∂T − ∂X)Rα,m =
(−1)

m−1
2

2mπ
m
2
−1Γ

(
m
2

) Γ(α+m)

Γ(α+ 1)
TαMod(α, 0, x)ε .

These formulae are identical to the ones derived in previous subsections.

2.3 Extending the Delta Distribution

In this section an alternative interpretation for the regular part Rα,m(T,X)
of the hyperbolic fundamental solution Eα(T,X) is given. As was already
mentioned in a previous section, we can not talk about the regular part of
the hyperbolic fundamental solution because a homogeneous nullsolution for
the Dirac operator on R1,m can always be added to the fundamental solu-
tion, leading to a new hyperbolic fundamental solution. However, the Radon
method and the method using the inductive argument have lead - in a very
natural way - to a regular part Rα,m(T,X). The aim of this section is to
show how this function arises even more naturally from the distributional
point of view.

Because the singular behaviour of the fundamental solution does not change
if a regular function is added, the difference between two hyperbolic funda-
mental solutions must be a regular homogeneous function on the future cone.
If we then restrict this function to the hyperplane T = 0 (i.e. the spatial
part of R1,m), we obtain a function supported at the origin. This can only be
a linear combination of derivatives of the delta distribution δ(X). In view of
the degree of homogeneity of the regular part of the hyperbolic fundamental
solution, this can only be the delta distribution itself.

Let us therefore consider the distribution δ(X), with X ∈ Rm, in its Fourier
representation :

δ(X) =
1

(2π)m

∫
Rm

ei<X,Y >dY .

According to the classical Cauchy-Kowalevska Theorem there exists a unique
distribution Ψ(T,X) satifying the following requirements :

(ε∂T − ∂X)Ψ(T,X) = 0 and Ψ(0, X) = δ(X) .
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This distribution is the so-called CK-extension of δ(X), given by :

Ψ(T,X) = exp(εT∂X)δ(X)

=
1

(2π)m

∫
Rm

[
cos(|Y |T ) +

iεY

|Y |
sin(|Y |T )

]
ei<X,Y >dY ,

from which it is clear that Ψ(T,X) contains a scalar part Ψ(T,X)0 and a
bivector part Ψ(T,X)2. Let us explicitely determine these distributions, in
case of an odd dimension m.

• Let us first determine the scalar part Ψ(T,X)0. Putting Y = |Y |η, we
get :

Ψ(T,X)0 =
1

(2π)m

∫
Rm

cos(|Y |T )ei<X,Y >dY

=
1

(2π)m

∫
Sm−1

dS(η)

∫ ∞

0

cos(|Y |T )ei|Y |<X,η>|Y |m−1d|Y | .

In order to rewrite the left-hand side in such a way that we obtain a
Fourier transform, we need an integration in |Y | from −∞ to +∞. For
that purpose, it suffices to perform the change of variables |Y | → −|Y |
and to note that for odd m∫

Sm−1

dS(η)

∫ 0

−∞
cos(|Y |T )ei|Y |<X,η>|Y |m−1d|Y |

=

∫
Sm−1

dS(η)

∫ ∞

0

cos(−|Y |T )e−i|Y |<X,η>(−|Y |)m−1d(−|Y |)

=

∫
Sm−1

dS(η)

∫ ∞

0

cos(|Y |T )ei|Y |<X,η>|Y |m−1d|Y | ,

where we have used the fact that∫
Sm−1

f(η)dS(η) =

∫
Sm−1

f(−η)dS(η) .

Using the fact that ∫ ∞

−∞
eixadx = 2πδ(a) ,

we easily get, for odd m :∫ ∞

0

cos(|Y |T )ei|Y |<X,η>|Y |m−1d|Y |

=
π

2
(−1)

m−1
2 ∂m−1

T

(
δ(< X, η > −T ) + δ(< X, η > +T )

)
.
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Recalling Hecke-Funk’s Theorem 0.2, this reduces to

Ψ(T,X)0 =
(−1)

m−1
2 ∂m−1

T

2mπ
m−1

2 Γ
(

m−1
2

) ∫ 1

−1

(1− s2)
m−3

2 δ(|X|s− T )ds

+
(−1)

m−1
2 ∂m−1

T

2mπ
m−1

2 Γ
(

m−1
2

) ∫ 1

−1

(1− s2)
m−3

2 δ(|X|s+ T )ds .

As ∫ 1

−1

(1− s2)
m−3

2

(
δ(|X|s− T ) + δ(|X|s+ T )

)
ds

=
2

|X|

(
1− T 2

|X|2

)m−3
2
(
H(T )H(|X| − T ) +H(−T )H(|X|+ T )

)
,

we eventually find for the scalar part Ψ(T,X)0 :

Ψ(T,X)0 = − ∂m−1
T (T 2 − |X|2)m−3

2

2m−1π
m−1

2 Γ
(

m−1
2

)
|X|m−2

D(T,X) ,

where we have put

D(T,X) = H(T )H(|X| − T ) +H(−T )H(|X|+ T ) .

• Next we determine the bivector part Ψ(T,X)2, given by

Ψ(T,X)2 =
iε

(2π)m

∫
Rm

Y

|Y |
sin(|Y |T )ei<X,Y >dY

=
iε

(2π)m

∫
Sm−1

ηdS(η)

∫ ∞

0

sin(|Y |T )ei|Y |<X,η>|Y |m−1d|Y | .

For odd m, we have

|Y |m−1 = ∂m−1
X (i < X, Y >) ,

whence

Ψ(T,X)2 =
ε∂m−1

X

2(2π)m

∫
Sm−1

η

(
δ(< X, η > +T )− δ(< X, η > −T )

)
dS(η) .

Using Hecke-Funk’s theorem, we eventually find :

Ψ(T,X)2 =
(−1)

m−1
2 ε∂m−1

X T (T 2 − |X|2)m−3
2

2m−1π
m−1

2 Γ
(

m−1
2

) X

|X|m
D(T,X) .
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If we then convolute the distributions Ψ(T,X) and Tα+m−1
+ , we obtain an

α-homogeneous solution for the hyperbolic Dirac equation. This will in fact
be the function Rα(T,X).

We will again perform these calculations in two steps :

• First, let us determine the scalar part Ψ(T,X)0 ∗ Tα+m−1
+ :

Rα(T,X)0 = − ∂m−1
T (T 2 − |X|2)m−3

2

2m−1π
m−1

2 Γ
(

m−1
2

)
|X|m−2

D(T,X) ∗ Tα+m−1
+

Using the fact that ∂T (f ∗ g) = ∂Tf ∗ g = f ∗ ∂Tg, we get :

Rα(T,X)0 = −∂T
(T 2 − |X|2)m−3

2 D(T,X) ∗ ∂m−2
T Tα+m−1

+

2m−1π
m−1

2 Γ
(

m−1
2

)
|X|m−2

.

As long as the exponent of Tα+m−1
+ is not a negative integer, we have

in distributional sense

∂m−2
T Tα+m−1

+ =
Γ(α+m)

Γ(α+ 2)
T 1+α

+ ,

whence for α+m /∈ −N we get

Rα(T,X)0 = −∂T
Γ(α+m)

Γ(α+ 2)

(T 2 − |X|2)m−3
2 D(T, |X|) ∗ Tα+1

+

2m−1π
m−1

2 Γ
(

m−1
2

)
|X|m−2

.

Using the explicit definition for the distribution D(T, |X|) and putting
|X| = R, we thus find :

(T 2 − |X|2)
m−3

2 D(T, |X|) ∗ Tα+1
+ =

∫ T+R

T−R

(
(T − S)2 −R2

)m−3
2 Sα+1dS .

Rewriting this integral in terms of the new variable

V =
S − T +R

2R

and recalling Euler’s integral representation for the hypergeometric
function, we arrive at

(−1)
m−3

2 π
1
2 Γ
(

m−1
2

)
4Γ
(

m
2

) Rm−2(T −R)1+αF

(
−1− α, m− 1

2
;m− 1;

2R

T −R

)
,
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which by means of the transformation formulae for the hypergeometric
function due to Kummer and Goursat, can be reduced to

(−1)
m−3

2 π
1
2 Γ
(

m−1
2

)
4Γ
(

m
2

) Rm−2T 1+αF

(
−1− α

2
,
−α
2

;
m

2
;
R2

T 2

)
.

Eventually, we have thus found that

Rα(T,X)0 = ∂T
(−1)

m−1
2 T 1+α

2m+1π
m
2
−1Γ

(
m
2

) Γ(α+m)

Γ(α+ 2)
F

(
−1− α

2
,
−α
2

;
m

2
;
|X|2

T 2

)
.

• Next, let us determine Ψ(T,X)2 ∗ Tα+m−1
+ :

Rα(T,X)2 =
(−1)

m−1
2 ε∂m−1

X T (T 2 − |X|2)m−3
2 D(T, |X|) ∗ Tα+m−1

+

2m−1π
m−1

2 Γ
(

m−1
2

) X

|X|m
.

Putting |X| = R, and introducing the shorthand notation

I(T,X)2 = T (T 2 −R2)
m−3

2 D(T,R) ∗ Tα+m−1
+ ,

we get

I(T,X)2 = T

∫ ∞

0

(
(T − S)2 −R2

)m−3
2 D(T − S,R)Sα+m−1dS

−
∫ ∞

0

(
(T − S)2 −R2

)m−3
2 D(T − S,R)Sα+mdS .

A similar integral was already calculated above; we immediately find :

I(T,X)2 =
(−1)

m−3
2
√
πΓ
(

m−1
2

)
4Γ
(

m
2

) Rm−2Tα+m

(
F1(T,X)− F2(T,X)

)
,

with

F1(T,X) = F

(
1− α−m

2
,
2− α−m

2
;
m

2
;
|X|2

T 2

)
and

F2(T,X) = F

(
−α−m

2
,
1− α−m

2
;
m

2
;
|X|2

T 2

)
.

As for odd m

(−1)
m−3

2 (∂X)m−3 = ∆
m−3

2
m ,
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we get

Rα(T,X)b =
(−1)

m−1
2 Tα+mε∂X∆

m−3
2

m

2m+1π
m
2
−1Γ

(
m
2

) (∂XX)
F1(T,X)− F2(T,X)

|X|2
.

As both F1(T,X) and F2(T,X) only depend on the norm R = |X|, and
as ∂XX = −m− R∂R and ∆m = ∂2

R + m−1
R
∂R for functions depending

on R only, this reduces to

Rα(T,X)b =
(−1)

m−1
2 Tα+m−2∂Xε

2m+1π
m
2
−1Γ

(
m
2

)
(
∂2

R +
m− 1

R
∂R

)m−3
2

(m+ ER)
F1(T,R)− F2(T,R)(

R
T

)2 .

First of all, note that the function at the right-hand side is given by

F1(T,R)− F2(T,R)(
R
T

)2 = − 2

α+m
F ′
(
−α−m

2
,
1− α−m

2
;
m

2
; t

)
,

where the prime denotes a derivation with respect to t =
(

R
T

)2
. As

R∂Rf

(
R2

T 2

)
= 2t

d

dt
f(t) = 2

(
d

dt
t− 1

)
f(t) ,

we get by means of the contigious relations for the hypergeometric
function :

(m+ ER)
F1 − F2(

R
T

)2 = −4
m
2
− 1

α+m
F ′
(
−α−m

2
,
1− α−m

2
;
m

2
− 1; t

)
.

On the other hand, we also have that(
∂2

R +
m− 1

R
∂R

)
f

(
R2

T 2

)
=

4

T 2

d

dt

(
m

2
+ t

d

dt

)
f(t) ,

whence(
∂2

R +
m− 1

R
∂R

)m−3
2

(m+ ER)
F1 − F2(

R
T

)2 = −
2m−1

(
m
2
− 1
)

(α+m)Tm−3
×

(
d

dt

(
m

2
+ t

d

dt

))m−3
2

F ′
(
−α−m

2
,
1− α−m

2
;
m

2
− 1; t

)
.
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Introducing the notation F (a, t) for the hypergeometric function on the
right-hand side,

F (a; t) = F

(
−α−m

2
,
1− α−m

2
; a; t

)
,

we get :

d

dt

(
m

2
+ t

d

dt

)
F ′
(m

2
− 1; t

)
=

d2

dt2

(
m

2
− 1 + t

d

dt

)
F
(m

2
− 1; t

)
=

(m
2
− 2
)
F ′′
(m

2
− 2; t

)
.

This scheme repeates itself, so that eventually we will find :(
d

dt

(
m

2
+ t

d

dt

))m−3
2

F ′
(m

2
− 1; t

)
=

Γ
(

m
2
− 1
)

Γ
(

1
2

) (
d

dt

)m−1
2

F

(
1

2
; t

)
.

Recalling the derivation property of the hypergeometric function, we
arrive at (

∂2
R +

m− 1

R
∂R

)m−3
2

(m+ ER)
F1(T,R)− F2(T,R)(

R
T

)2
= − 1

Tm−3

Γ(α+m)

Γ(α+ 2)
F

(
−1 + α

2
,−α

2
;
m

2
;
R2

T 2

)
,

whence the final expression for Rα(T,X)2 :

Rα(T,X)2 = −
(−1)

m−1
2 Γ(α+m)T 1+α∂Xε

2m+1π
m
2
−1Γ

(
m
2

)
Γ(α+ 2)

F

(
−1 + α

2
,−α

2
;
m

2
;
|X|2

T 2

)
.

Adding upRα(T,X)0 andRα(T,X)2, we find an α-homogeneous nullsolution
for the Dirac operator on R1,m defined by

Rα(T,X) =
1

2
∂X

(−1)
m−1

2

2mπ
m
2
−1Γ

(
m
2

) Γ(α+m)

Γ(α+ 2)
T 1+αF

(
−1 + α

2
,−α

2
;
m

2
;
|X|2

T 2

)
ε ,

with ∂X = ε∂T −∂X the Dirac operator on R1,m. This is the same expression
as the one that was found in the previous section.
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Chapter 3

Modulation Theorems

The art of doing mathematics consists in
finding that special case which contains
all the germs of generality. (D. Hilbert)

In the first section we prove the hyperbolic Modulation Theorem which allows
to generate monogenic functions on the hyperbolic unit ball by means of
classical monogenic functions. This idea is then generalized in several ways;
in section 2 we consider arbitrary powers of the hyperbolic Dirac operator
and in section 3 we turn our attention to the most general ultra-hyperbolic
case Rp,q. In section 4 we consider a specific bi-axial problem, allowing us
to reinterpret the modulation hyperbolic monogenics in terms of so-called
generalized hyperbolic powerfunctions.

3.1 The Hyperbolic Modulation Theorems

In this section we construct solutions for the Dirac operator on the hyperbolic
unit ball H+ by means of the projection method, already introduced in the
previous chapter where it was used to construct the hyperbolic fundamental
solution. Because the hyperbolic Dirac equation will be projected both on
the hyperplane Π and the parabola P , there are three subsections : first the
Klein model and the Poincaré model are considered, and in a third subsection
the two models are linked.

3.1.1 The Klein Model

In Chapter 2 it was already explained how to obtain the projection of the
hyperbolic Dirac equation on the Klein model, by choosing apropriate co-
ordinates on the future cone FC. Indeed, writing an arbitrary space-time
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vector εT +X as λ(ε+ x) with{
λ = T

x =
X

T
,

and using the set (λ, x) as co-ordinates on FC, the hyperbolic Dirac operator
was found to be the differential operator

−1

λ

(
∂ + ε(Er − Eλ)

)
,

with ∂ (respectively Er) the Dirac (respectively Euler) operator on R0,m. In
view of the projective model for the hyperbolic unit ball, we now construct
α-homogeneous solutions F (T,X) = λαF (x) for this operator. The idea
behind the Modulation Theorem is to propose the following form for F (x) :

F (x) =
∞∑

j=0

bj(xε)
jf(x) ,

where f(x) is an arbitrary homogeneous solution for the Dirac operator ∂ on
the unit ball Bm(1). If F (T,X) is to be globally defined on FC, the function
f(x) is to be defined on the whole unit ball. In view of its homogeneity,
this means that the restriction f(ω) to Sm−1 must be globally defined. In
other words, f(ω) must then be an inner or outer spherical monogenic. One
may also choose f(x) to be a locally defined homogeneous solution for the
Dirac operator ∂ on Rm, which is equivalent with saying that f(ω) must
be a locally defined eigenfunction for the Gamma operator Γ0,m on an open
subset Ω′ of the unit sphere Sm−1, and this yields locally defined solutions
F (T,X) ∈ Hα(R+Ω). These local eigenfunctions for the Gamma operator
on the unit sphere Sm−1 in Rm have intensively been studied by Peter Van
Lancker in his PhD-thesis, see reference [75]. Note that the open subsets Ω′

and Ω are linked in the following way : Ω′ ⊂ Sm−1 gives rise to an open
sector-like subset of the unit ball Bm(1) ⊂ Rm which is then to be projected
from the origin on the hyperbola H+. The result is the open subset Ω.

Theorem 3.1 Consider an arbitrary µ-homogeneous solution f(x) for the
Dirac operator ∂ on R0,m, defined in an open subset Ω′ of Bm(1), such that
µ + m

2
/∈ −N. An α-homogeneous solution F (T,X) for the Dirac operator

(ε∂T − ∂X) on R1,m is then given by

F (T,X) = TαMod

(
α, µ,

X

T

)
f

(
X

T

)
,
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where the modulation factor is defined as

Mod(α, µ, x) = F
(µ)
1 (|x|2) +

µ− α
2µ+m

xεF
(µ)
2 (|x|2)

with

F
(µ)
1 (t) = F

(
1 + µ− α

2
,
µ− α

2
;µ+

m

2
; t

)
F

(µ)
2 (t) = F

(
1 + µ− α

2
, 1 +

µ− α
2

; 1 + µ+
m

2
; t

)
.

This function F (T,X) belongs to Hα(R+Ω), with

Ω =

{
(T,X) ∈ H+ :

X

T
∈ Ω′

}
.

proof : The proof for this theorem is constructive : since we have put
F (T,X) = λαF (x) with

F (x) =
∞∑

j=0

bj(xε)
jf(x) ,

we only need to determine the coefficients bj in such a way that(
∂ + ε(Er − α)

)
F (x) = 0 .

First of all, note that the summation over j yields the sum of a scalar and a
bivector-valued function :

∞∑
j=0

bj(xε)
j =

∞∑
j=0

b2j|x|2j + xε

∞∑
j=0

b2j+1|x|2j .

Letting the Dirac operator ∂ act on F (x) we get :

• for the scalar part :

∂
∞∑

j=0

b2j|x|2jf(x) = x
∞∑

j=0

2jb2j|x|2j−2f(x)

= x

∞∑
j=0

(2j + 2)b2j+2|x|2jf(x)
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• for the bivector part :

∂ xε

∞∑
j=0

b2j+1|x|2jf(x) = ε(Γ0,m − Er −m)
∞∑

j=0

b2j+1|x|2jf(x)

= −ε
∞∑

j=0

(m+ 2j + 2µ)b2j+1|x|2jf(x) .

Letting the Euler operator Er act on F (x) we get :

• for the scalar part :

Er

∞∑
j=0

b2j|x|2jf(x) =
∞∑

j=0

(2j + µ)b2j|x|2jf(x)

• for the bivector part :

Erxε
∞∑

j=0

b2j+1|x|2jf(x) = xε
∞∑

j=0

(1 + 2j + µ)b2j+1|x|2jf(x) .

Expressing the fact that
(
∂ + ε(Er − α)

)
F (x) = 0 gives for each j ∈ N rise

to the following set of equations :{
(2j + 2)b2j+2 = (1 + 2j + µ− α)b2j+1

(m+ 2j + 2µ)b2j+1 = (2j + µ− α)b2j .

This enables us to recursively define the coefficients bj, for all j ∈ N :

b2j+2 =
1 + 2j + µ− α

2j + 2

2j + µ− α
m+ 2j + µ

b2j

b2j+1 =
2j + µ− α

2j

2j − 1 + µ− α
m+ 2j + µ

b2j−1 .

Choosing b0 = 1, this eventually yields :

b2j =

(
1+µ−α

2

)
j

(
µ−α

2

)
j

j!
(
µ+ m

2

)
j

b2j+1 =
µ− α

2µ+m

(
1+µ−α

2

)
j

(
1 + µ−α

2

)
j

j!
(
1 + µ+ m

2

)
j

,
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proving that

∞∑
j=0

b2j|x|2j = F

(
1 + µ− α

2
,
µ− α

2
;µ+

m

2
; |x|2

)
∞∑

j=0

b2j+1|x|2j =
µ− α

2µ+m
F

(
1 + µ− α

2
, 1 +

µ− α
2

; 1 + µ+
m

2
; |x|2

)
.

These hypergeometric series are well-defined on the future cone FC if the
coefficient µ+ m

2
does not belong to −N. �

Remark 1 : Note that the hyperbolic fundamental solution easily follows
from the Theorem by choosing f(x) to be the classical Cauchy kernel E(x),
a monogenic function on Rm\{0} with respect to the Dirac operator ∂ which
is homogeneous of degree (1−m). The monogenic function on the punctured
hyperbolic unit ball thus obtained is the fundamental solution Eα(T,X) from
the previous chapter (see 2.4).

Remark 2 : The value α = −m
2

is again exceptional, since for this value
the modulation factor is defined for all µ. Indeed, we easily find that

F
(µ)
1 (t) = F

(
1

2

(
µ+

m

2

)
,
1

2

(
1 + µ+

m

2

)
;µ+

m

2
; t

)

= (1− t)−
1
2

(
1 + (1− t) 1

2

2

)1−µ−m
2

F
(µ)
2 (t) = F

(
1

2

(
1 + µ+

m

2

)
,
1

2

(
2 + µ+

m

2

)
; 1 + µ+

m

2
; t

)

= (1− t)−
1
2

(
1 + (1− t) 1

2

2

)−µ−m
2

,

such that the modulation factor reduces to

Mod
(
−m

2
, µ, x

)
=

(1 + (1− |x|2) 1
2 )1−µ−m

2

21−µ−m
2 (1− |x|2) 1

2

(
1 +

xε

1 + (1− |x|2) 1
2

)
.

3.1.2 The Poincaré Model

In Chapter 2 it was already explained how to obtain the projection of the
hyperbolic Dirac equation on the Poincaré model, by choosing apropriate
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co-ordinates on the future cone FC. Indeed, writing an arbitrary space-time

vector εT +X as λP

(
ε
1 + |x|2

2
+ x

)
with λP = T + (T 2 − |X|2) 1

2

x =
X

λP

,

and using the set (λP , x) as co-ordinates on FC, the Dirac operator on the
Poincaré ball was found to be the differential operator

− 1

λP

(
∂ + 2

x+ ε

1− |x|2
ε (Er − EλP

)

)
,

with ∂ (respectively Er) the Dirac (respectively Euler) operator on R0,m. In
view of the projective model for the hyperbolic unit ball, we now construct
α-homogeneous solutions G(T,X) = λα

PG(x) for this operator. The idea is
again to propose the following form for G(x) :

G(x) =
∞∑

j=0

aj(xε)
jg(x) ,

where g(x) is an arbitrary homogeneous solution for the Dirac operator ∂.
The same remarks concerning the domain of definition as for the Klein model
apply here : depending on whether the restriction f(ω) to the unit sphere
Sm−1 is locally/globally defined, a local/global monogenic on the hyperbolic
unit ball is obtained.

Theorem 3.2 Consider an arbitrary µ-homogeneous solution g(x) for the
Dirac operator ∂ on R0,m, where µ + m

2
/∈ −N, defined in an open subset

Ω′ of Bm(1). An α-homogeneous solution G(T,X) for the Dirac operator
(ε∂T − ∂X) on R1,m is then given by

G(T,X) = λα
PModP

(
α, µ,

X

λP

)
g

(
X

λP

)
with

λP = T + (T 2 − |X|2)
1
2 ,

where the modulation factor is defined as

ModP (α, µ, x) = F
(µ)
P,1 (|x|2) +

µ− α
µ+ m

2

xεF
(µ)
P,2 (|x|2)
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with

F
(µ)
P,1 (t) = F

(
1− α− m

2
, µ− α;µ+

m

2
; t
)

F
(µ)
2 (t) = F

(
1− α− m

2
, 1 + µ− α; 1 + µ+

m

2
; t
)
.

This function G(T,X) belongs to Hα(R+Ω), with

Ω =

{
(T,X) ∈ H+ :

X

λP

∈ Ω′
}
.

proof : The proof for this theorem is again constructive : since we have put
G(T,X) = λα

PG(x) with

G(x) =
∞∑

j=0

aj(xε)
jg(x) ,

we only need to determine the coefficients aj in such a way that(
∂ + 2

ε+ x

1− |x|2
(Er − α)

)
G(x) = 0 .

Since (ε+ x)2 = 1− |x|2, this is equivalent with(
∂(x+ ε) +m+ 2α

)
G(x) = 0 .

Rewriting the summation over j as the sum of a scalar and a bivector-valued
function

∞∑
j=0

aj(xε)
j =

∞∑
j=0

a2j|x|2j + xε
∞∑

j=0

a2j+1|x|2j ,

we get for the action of the operator ∂ x on G(x) :

• for the scalar part :

∂ x

∞∑
j=0

a2j|x|2jg(x) = −
∞∑

j=0

(m+ 2j + 2µ)a2j|x|2jg(x)

• for the bivector part :

∂ x xε

∞∑
j=0

a2j+1|x|2jg(x) = ε∂

∞∑
j=0

a2j+1|x|2j+2g(x)

= −xε
∞∑

j=0

(2j + 2)a2j+1|x|2jg(x) .
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Letting the operator ∂ε = −ε∂ act on G(x) yields :

• for the scalar part :

−ε∂
∞∑

j=0

a2j|x|2jg(x) = xε
∞∑

j=0

2ja2j|x|2j−2g(x)

= xε
∞∑

j=0

(2j + 2)a2j+2|x|2jg(x)

• for the bivector part :

−ε∂ xε
∞∑

j=0

a2j+1|x|2jg(x) = (m+ Er − Γ0,m)
∞∑

j=0

a2j+1|x|2jg(x)

=
∞∑

j=0

(m+ 2j + 2µ)a2j+1|x|2jg(x) .

Expressing the fact that
(
∂(x + ε) +m + 2α

)
G(x) = 0 gives for each j ∈ N

rise to the following set of equations :{
(2j + 2µ− 2α)a2j = (m+ 2j + 2µ)a2j+1

(2j + 2−m− 2µ)a2j+1 = (2j + 2)a2j+2 .

This enables us to recursively define the coefficients aj, for all j ∈ N :

a2j+2 =
2 + 2j −m− 2α

2j + 2

2j + 2µ− 2α

m+ 2j + 2µ
a2j

a2j+1 =
2j + 2µ− 2α

2j

2j −m− 2α

m+ 2j + 2µ
a2j−1 .

Choosing a0 = 1, this eventually yields :

a2j =

(
1− α− m

2

)
j
(µ− α)j

j!
(
µ+ m

2

)
j

a2j+1 =
µ− α
µ+ m

2

(
1− α− m

2

)
j
(1 + µ− α)j

j!
(
1 + µ+ m

2

)
j

,

proving that

∞∑
j=0

a2j|x|2j = F
(
1− α− m

2
, µ− α;µ+

m

2
; |x|2

)
∞∑

j=0

a2j+1|x|2j =
µ− α
µ+ m

2

F
(
1− α− m

2
, 1 + µ− α; 1 + µ+

m

2
; |x|2

)
.
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Note that these hypergeometric functions are well-defined on the future cone
if µ+ m

2
does not belong to −N. �

Remark 1 : The hyperbolic fundamental solution again follows from this
Theorem by choosing g(x) to be the Cauchy kernel E(x). The monogenic
function on the punctured hyperbolic unit ball thus obtained is the funda-
mental solution Eα(T,X) from the previous chapter (see 2.6).

Remark 2 : In case α = −m
2

we again obtain a very simple expression
for the modulation factor :

F
(µ)
P,1 (t) = F

(
1, µ+

m

2
;µ+

m

2
; t
)

=
1

1− t

F
(µ)
2 (t) = F

(
1, 1 + µ+

m

2
; 1 + µ+

m

2
; t
)

=
1

1− t
,

such that

ModP

(
−m

2
, µ, x

)
=

1 + xε

1− |x|2
.

As the modulation factor does not depend on µ, this means that in case
α = −m

2
there is a one-to-one correspondence between monogenic functions

on an open subset Ω ⊂ Bm(1) and hyperbolic monogenic functions on Ω,
considered as a subset of the Poincaré ball.

This can be explained as follows : we start from a monogenic function on
the Poincaré ball in co-ordinates x ∈ Bm(1). In order to ”lift” these co-
ordinates from Bm(1) to the hyperbolic unit ball H+, passing the parabola
P ↔ 2T = 1 + |X|2, it suffices to determine λ in such a way that

λ

(
1 + |x|2

2
, x

)
∈ H+ =⇒ λ =

2

1− |x|2
.

In other words, the mapping from the Euclidean unit ball Bm(1) to H+ is
nothing but the stereographic projection sending

x ∈ Bm(1) 7→
(

1 + |x|2

1− |x|2
,

2x

1− |x|2

)
∈ H+ .

Because the operator ∂ on Bm(1) is the conformally invariant operator, where
the invariance is to be understood in the sense that for any Moebius trans-
formation ψ(x) we get that

∂f(x) = 0 =⇒ ∂
(
J(ψ, x)f(ψ(x))

)
= 0 ,

117



the one-to-one correspondence requires the operator on the hyperbolic unit
ball to be the conformal operator too. As we will show in Chapter 7, this is
the operator corresponding to the value α = −m

2
.

3.1.3 Equivalence of Both Models

In this subsection, the equivalence between Theorem 3.1 and Theorem 3.2 is
proved, providing us with a geometrical interpretation for certain relations
between hypergeometric functions.

Consider an arbitrary µ-homogeneous function f(x) which is monogenic with
respect to the Dirac operator ∂ on R0,m and defined in an open subset of the
unit ball Bm(1) ⊂ Rm.

We may associate two functions on the FC with f(x) :

• Theorem 3.1 provides us with a monogenic function F (T,X) on the
hyperbolic unit ball given by

F (T,X) = λαMod

(
α, µ,

X

λ

)
f

(
X

λ

)
,

with λ = T .

• Theorem 3.2 provides us with a monogenic function G(T,X) on the
hyperbolic unit ball given by

G(T,X) = λα
P ModP

(
α, µ,

X

λP

)
f

(
X

λP

)
,

with λP = T + (T 2 − |X|2) 1
2 .

We will now prove the following :

F (T,X) = 2µ−αG(T,X) .

For that purpose we rewrite G(T,X) in terms of the co-ordinates (λ, x) on

FC, with x =
X

T
and λ = T :

G(T,X) = λα
(
1 + (1− |x|2)

1
2

)α−µ
ModP

(
α, µ,

x

1 + (1− |x|2) 1
2

)
f (x) .

118



It then remains to prove that

Mod (α, µ, x) = 2µ−α
(
1 + (1− |x|2)

1
2

)α−µ
ModP

(
α, µ,

x

1 + (1− |x|2) 1
2

)
,

which by means of the definition for the occurring modulation factors reduces
to :

2α−µ
(
1 + (1− |x|2)

1
2

)µ−α
F

(
1 + µ− α

2
,
µ− α

2
;µ+

m

2
; |x|2

)
= F

(
1− α− m

2
, µ− α;µ+

m

2
;

|x|2(
1 + (1− |x|2) 1

2

)2
)

and

2α−µ
(
1 + (1− |x|2)

1
2

)µ−α
F

(
1 + µ− α

2
, 1 +

µ− α
2

; 1 + µ+
m

2
; |x|2

)
= F

(
1− α− m

2
, 1 + µ− α; 1 + µ+

m

2
;

|x|2(
1 + (1− |x|2) 1

2

)2
)

.

We will prove the first equality, the latter is quite similar. To prove this
equality, a formula from Goursat’s table of quadratic transformations and
one of Kummer’s relations for the hypergeometric function are necessary :

F (a, b; a− b+ 1; z) =

(
1 + z

1− z

)2b−1

(1 + z)−a ×

F

(
a+ 1

2
− b, 1 +

a

2
− b; a− b+ 1;

4z

(1 + z)2

)
and

F (a, b; c; z) = (1− z)c−a−bF (c− a, c− b; c; z) .

In some sense these formulae will thus be given given a geometrical meaning,
illustrating the subtle connection between special functions on the one hand
and the geometric model on the other hand.

Putting

z =
|x|2(

1 + (1− |x|2) 1
2

)2 ,
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and choosing a = µ− α and b = 1− α− m

2
, we get :

F (a, b; a− b+ 1; z) = 2α−µ
(
1 + (1− |x|2)

1
2

)µ−α
(1− |x|2)α+m−1

2 ×

F

(
k + α+m− 1

2
,
k + α+m

2
; k +

m

2
; |x|2

)
,

which by means of Kummer’s relation reduces to

F (a, b; a− b+ 1; z) = 2α−µ(1 +
(
1 + (1− |x|2)

1
2

)µ−α ×

F

(
1 + k − α

2
,
k − α

2
; k +

m

2
; |x|2

)
,

yielding

2α−µ
(
1 + (1− |x|2)

1
2

)µ−α
F

(
1 + µ− α

2
,
µ− α

2
;µ+

m

2
; |x|2

)
= F

(
1− α− m

2
, µ− α;µ+

m

2
;

|x|2(
1 + (1− |x|2) 1

2

)2
)

.

This proves the equivalence between the Modulation Theorem in both the
Klein and the Poincaré model. �

Remark : We already encountered a manifestation of this equivalence when
we studied the modulation factor for α = −m

2
. Indeed, recalling the fact that

for this value we get in the Klein model

Mod
(
−m

2
, µ, x

)
=

(1 + (1− |x|2) 1
2 )1−µ−m

2

21−µ−m
2 (1− |x|2) 1

2

(
1 +

xε

1 + (1− |x|2) 1
2

)

and in the Poincaré model

ModP

(
−m

2
, µ, x

)
=

1 + xε

1− |x|2
,

a simple computation indeed shows that

(1 + (1− |x|2) 1
2 )−µ−m

2

2−µ−m
2

ModP

(
−m

2
, µ,

x

1 + (1− |x|2) 1
2

)
= Mod

(
−m

2
, µ, x

)
.
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3.2 Generalization to Natural Powers

The aim of this section is to generalize the Modulation Theorems from the
previous section to natural powers of the Dirac operator on the hyperbolic
unit ball. The motivation for this is to have a hyperbolic version of the
classical Fischer building blocks. As we have seen in section 0.1.2, each
homogeneous R0,m-valued polynomial on Rm has a unique orthogonal de-
composition of the form :

Rk(x) =
k∑

j=0

xjPk−j(x) , x ∈ Rm ,

with Pk−j(ξ) ∈M+(k− j) an inner spherical monogenic of degree k− j. The
functions xjPk−j(x) are the so-called Fischer building blocks, simultaneous
eigenfunctions for Er and Γ0,m. The following property of these building
blocks is crucial :

∂s+1
(
xsPk(x)

)
= 0 .

Since we have proved that it is possible to construct monogenic functions
on the hyperbolic unit ball by means of monogenic functions Pk(x), it seems
natural to look for a Theorem that enables us to do the same with the Fischer
building blocks xsPk(x) with regards to higher powers of the Dirac operator
on the hyperbolic unit ball. In view of the projective nature of our model
for the hyperbolic unit ball, we are thus looking for α-homogeneous solutions
for natural powers of the Dirac operator (ε∂T − ∂X) on R1,m that can be
interpreted as modulated versions of the classical Fischer building blocks. In
order to construct these functions we will again work with the Klein model
and project the equations on the hyperplane Π. Note that it is sufficient
to work with the Klein model only, since we have proved the equivalence
with the Poincaré model in the previous section. Formulae for the Poincaré
model may easily be derived from the formulae for the Klein model, using
transformation properties of the hypergeometric function.

We already know that the projection of the hyperbolic Dirac operator on
the hyperplane Π gives rise to the operator

−1

λ

(
∂ + ε[Er − Eλ]

)
acting on homogeneous functions of the form λαf(x), x ∈ Bm(1). Through-
out this section we will adopt the following notation :

Dα(x) = ∂ + ε(Er − α) ,
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for all α ∈ C. The projection of the k-iterated hyperbolic Dirac equation, i.e.
the equation for the operator (ε∂T−∂X)k acting on α-homogeneous functions,
then becomes :

Dα−(k−1)(x)Dα−(k−2)(x) · · ·Dα−1(x)Dα(x)f(x) = 0 ,

with x ∈ Bm(1). The projected k-iterated hyperbolic Dirac operator will be
denoted by

Dk
α(x) = Dα−(k−1)(x)Dα−(k−2)(x) · · ·Dα−1(x)Dα(x) ,

with D1
α(x) = Dα(x). This operator satisfies the following properties :

Dk
α(x) = Dk−1

α−1(x)Dα(x)

Dk
α(x) = Dα+1−k(x)D

k−1
α (x) .

The aim is to construct solutions for the equation

Ds+1
α (x)f(x) = 0

of the form

f(x) = Mod(α, k; s;x)xsPk(x) .

For s = 0, Theorem 3.1 offers a solution :

Dα(x)[Mod(α, k; 0; x)Pk(x)] = 0 for all Pk(ξ) ∈M+(k) .

Note that we have introduced an extra parameter s in comparison with the
previous section. If this parameter s is omitted, we will implicitely assume
that s = 0.

Theorem 3.3 Consider an inner spherical monogenic Pk(ξ) ∈ M+(k), a
complex number α ∈ C and an arbitrary integer s ∈ N. We then have :

Ds+1
α (x)[Mod(α, k; s;x)xsPk(x)] = 0 ,

where the modulation factors are given by

Mod(α, k; 2s;x) =
1

4ss!

Γ
(
k + m

2

)
Γ
(
k + s+ m

2

)Mod(α− s, k + s; 0; x)

Mod(α, k; 2s+ 1; x) =
1

4ss!

Γ
(
k + m

2
+ 1
)

Γ
(
k + s+ m

2
+ 1
)Mod(α− s, k + s; 1; x)

with Mod(α, k; 0; x) given by Theorem 3.1 and

Mod(α, k; 1; x) = − 1

2k +m
F

(
1 + k − α

2
, 1 +

k − α
2

; 1 + k +
m

2
; |x|2

)
.
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In order to prove this Theorem, two technical Lemmata will be proved first :

Lemma 3.1 Let Pk(ξ) ∈ M+(k) be an inner spherical monogenic, let α be
an arbitrary complex number and let s ∈ N be an arbitrary integer. We then
have :

Dα(x)[Mod(α, k; 2s;x)x2sPk(x)] = Mod(α− 1, k; 2s− 1;x)x2s−1Pk(x) .

Lemma 3.2 Let Pk(ξ) ∈ M+(k) be an inner spherical monogenic, let α be
an arbitrary complex number and let s ∈ N be an arbitrary integer. We then
have :

Dα(x)[Mod(α, k; 2s− 1;x)x2s−1Pk(x)] = Mod(α− 1, k; 2s− 2;x)x2s−2Pk(x) .

Proof of Lemma 3.1 :

Using the definitions for the modulation factors, the Lemma may be rewritten
as follows :

1

4ss!

Γ
(
k + m

2

)
Γ
(
k + s+ m

2

)Dα(x)[Mod(α− s, k + s; 0; x)x2sPk(x)]

=
1

4s−1(s− 1)!

Γ
(
k + m

2
+ 1
)

Γ
(
k + s+ m

2

)Mod(α− s, k + s− 1; 1;x)x2s−1Pk(x)

or equivalently :

Dα(x)[Mod(α− s, k + s; 0; x)x2sPk(x)]

= −2sF

(
s+

k − α
2

, s+
1 + k − α

2
; s+ k +

m

2
; |x|2

)
.

The modulation factor Mod(α− s, k+ s; 0; x) is bivector-valued. The action
of the operator Dα(x) on this modulation factor thus consists of two parts :

• Dα(x) acting on the scalar part of the modulation factor :

Dα(x)FS(|x|2)x2sPk(x)

where we have put

FS(|x|2) = F

(
s+

k − α
2

, s+
1 + k − α

2
; s+ k +

m

2
; |x|2

)
.
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• Dα(x) acting on the bivector-valued part of the modulation factor :

s+ k−α
2

s+ k + m
2

Dα(x)xεFB(|x|2)x2sPk(x) ,

where we have put

FB(|x|2) = F

(
1 + s+

k − α
2

, s+
1 + k − α

2
; 1 + s+ k +

m

2
; |x|2

)
If F (z) stands for the hypergeometric funcion F (a, b; c; z), we use the short-
hand notation F+(z) for the hypergeometric function F (a+1, b+1; c+1; z).

We then get :

Dα(x)FS(|x|2)x2sPk(x)

= (Γ0,m − Er −m)FS(|x|2)x2s−1Pk(x)

+ ε(2s+ k − α)FS(|x|2)x2sPk(x)

+ 2ε|x|2
(
s+ k−α

2

) (
s+ 1+k−α

2

)(
s+ k + m

2

) F+
S (|x|2)x2sPk(x)

= −2sFS(|x|2)x2sPk(x)− 2xε

(
s+

k − α
2

)
FS(|x|2)x2s−1Pk(x)

− 2|x|2
(
s+ k−α

2

) (
s+ 1+k−α

2

)(
s+ k + m

2

) F+
S (|x|2)x2s−1Pk(x)

− 2xε|x|2
(
s+ k−α

2

) (
s+ 1+k−α

2

)(
s+ k + m

2

) F+
S (|x|2)x2s−1Pk(x) ,

and

Dα(x)xεFB(|x|2)x2sPk(x)

= ε(Γ0,m − Er −m)FB(|x|2)x2sPk(x)− (Er − α)FB(|x|2)x2s+1Pk(x)

= 2
(
s+ k +

m

2

)
xεFB(|x|2)x2s−1Pk(x)

+ 2

(
s+

1 + k − α
2

)
|x|2FB(|x|2)x2s−1Pk(x)

+ 2xε|x|2
(
1 + s+ k−α

2

) (
s+ 1+k−α

2

)(
1 + s+ k + m

2

) F+
B (|x|2)x2s−1Pk(x)

+ 2

(
1 + s+ k−α

2

) (
s+ 1+k−α

2

)(
1 + s+ k + m

2

) F+
B (|x|2)x2s−1Pk(x) .
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This gives terms in x2s−1Pk(x) and terms in xεx2s−1Pk(x). First we gather
all terms in x2s−1Pk(x) :

− 2sFS(|x|2) + 2

(
s+ k−α

2

) (
s+ 1+k−α

2

) (
1 + s+ k−α

2

)(
s+ k + m

2

) (
1 + s+ k + m

2

) |x|4F+
B (|x|2)

+ 2

(
s+ k−α

2

) (
s+ 1+k−α

2

)(
s+ k + m

2

) |x|2
(
FB(|x|2)− F+

S (|x|2)
)
.

Recalling the definitions for the functions FS(|x|2) and FB(|x|2), and writing
the previous sum as a single power series, we get :

−2sF

(
s+

k − α
2

, s+
1 + k − α

2
; s+ k +

m

2
; |x|2

)
x2s−1Pk(x) .

Next, we gather all terms in xεx2s−1Pk(x) :

2

(
s+

k − α
2

)(
FB(|x|2)− FS(|x|2)

)
− 2

(
s+ k−α

2

) (
s+ 1+k−α

2

)(
s+ k + m

2

) |x|2F+
S (|x|2)

+ 2

(
s+ k−α

2

) (
s+ 1+k−α

2

) (
1 + s+ k−α

2

)(
s+ k + m

2

) (
1 + s+ k + m

2

) |x|2F+
B (|x|2) .

Writing this as a single power series yields zero, so that we finally have :

Dα(x)[Mod(α− s, k + s; 0; x)x2sPk(x)]

= −2sF

(
s+

k − α
2

, s+
1 + k − α

2
; s+ k +

m

2
; |x|2

)
,

which proves Lemma 3.1. �

Proof of Lemma 3.2 :

Using the definitions for the modulation factors, the Lemma may be rewritten
as follows :

1

4ss!

Γ
(
k + m

2
+ 1
)

Γ
(
k + s+ m

2
+ 1
)Dα(x)[Mod(α− s, k + s; 1; x)x2s+1Pk(x)]

=
1

4ss!

Γ
(
k + m

2

)
Γ
(
k + s+ m

2

)Mod(α− s− 1, k + s; 0; x)x2sPk(x)
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or equivalently :

Dα(x)
[
F (|x|2)x2s+1Pk(x)

]
= −2

(
s+ k +

m

2

)
Mod(α− s− 1, k + s; 0; x) ,

where we have put

F (|x|2) = F

(
1 + s+

k − α
2

, s+
1 + k − α

2
; 1 + s+ k +

m

2
; |x|2

)
.

We get immediately :

Dα(x)F (|x|2)x2s+1Pk(x)

= (Γ0,m − Er −m)F (|x|2)x2sPk(x) + ε(1 + 2s+ k − α)F (|x|2)x2s+1Pk(x)

+ 2ε

(
1 + s+ k−α

2

) (
s+ 1+k−α

2

)(
1 + s+ k + m

2

) |x|2F+(|x|2)x2s+1Pk(x)

= −2
(
k + s+

m

2

)
F (|x|2)x2sPk(x)− 2xε

(
s+

1 + k − α
2

)
F (|x|2)x2sPk(x)

− 2

(
1 + s+ k−α

2

) (
s+ 1+k−α

2

)(
1 + s+ k + m

2

) |x|2F+(|x|2)x2sPk(x)

− 2xε

(
1 + s+ k−α

2

) (
s+ 1+k−α

2

)(
1 + s+ k + m

2

) |x|2F+(|x|2)x2sPk(x) .

Gathering the scalar terms on the one hand and the terms in xε on the
other hand, and making use of elementary properties of the hypergeometric
function, we finally arrive at :

−2
(
s+ k +

m

2

)
Mod(α− s− 1, k + s; 0; x) ,

which proves Lemma 3.2. �

We then prove Theorem 3.3, hereby making use of Lemma 3.1 and Lemma
3.2. Consider an arbitrary complex α and an arbitrary integer s. We have :

Ds+1
α (x)[Mod(α, k; s;x)xsPk(x)]

= Ds
α−1(x)[Mod(α− 1, k; s− 1;x)xs−1Pk(x)]

= · · ·
= Dα−s(x)[Mod(α− s, k; 0; x)Pk(x)]

= 0 .

This proves the Theorem. �
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3.3 The Ultra-Modulation Theorem

The aim of this section is to generalize the Modulation Theorem to the
ultra-hyperbolic setting, i.e. to the orthogonal space Rp,q endowed with the
quadratic form

Qp,q(T ,X) =

p∑
i=1

T 2
i −

q∑
j=1

X2
j .

For that purpose we first introduce the following essential subsets of Rp,q :

1. The (p, q)-time-like region TLRp,q = {(T ,X) ∈ Rp,q : Qp,q(T ,X) > 0}

2. The (p, q)-space-like region SLRp,q = {(T ,X) ∈ Rp,q : Qp,q(T ,X) < 0}

3. The (p, q)-nullcone NCp,q = {(T ,X) ∈ Rp,q : Qp,q(T ,X) = 0}

In case the signature (p, q) is equal to (1,m), we are dealing with the space-
time situation and these definitions then reduce to the ones already given in
section 1.2.

Both the TLRp,q and the SLRp,q contain a so-called ultrahyperbolic unit ball,
defined as follows :

BT (p, q) = {(T ,X) ∈ TLRp,q : Qp,q(T ,X) = 1}
BS(p, q) = {(T ,X) ∈ SLRp,q : Qp,q(T ,X) = −1} .

Together with NCp,q these are canonical SO(p, q)-invariant surfaces. Note
that BT (p, q) and BS(p, q) contain respectively the elements εi and ej of the
orthonormal basis Bp,q(εi, ej) = {ε1, · · · , εp, e1, · · · , eq} for Rp,q.

On the analogy of the definition for the Dirac operator on the hyperbolic
unit ball H+ in the m-dimensional space-time R1,m, a Dirac operator on the
ultrahyperbolic unit balls BT (p, q) and BS(p, q) is defined and nullsolutions
for this operator are constructed. To do so, we first introduce a projective
model for BT (p, q) and BS(p, q) :

• the manifold of rays Ray(TLRp,q) in the (p, q)-time-like region, given
by

Ray(TLRp,q) =
{
{λ(T ,X) : λ ∈ R+

0 } : (T ,X) ∈ TLRp,q

}
,

yields a projective model for the ultrahyperbolic unit ball BT (p, q)
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• the manifold of rays Ray(SLRp,q) in the (p, q)-space-like region, given
by

Ray(SLRp,q) =
{
{λ(T ,X) : λ ∈ R+

0 } : (T ,X) ∈ SLRp,q

}
,

yields a projective model for the ultrahyperbolic unit ball BS(p, q) .

As for the space-time situation, the projective model for BT (p, q) (resp.
BS(p, q)) forces us to define the Dirac operator on these ultrahyperbolic unit
balls as the Dirac operator D(T ,X)p,q on the orthogonal space Rp,q acting
on α-homogeneous Rp,q-valued functions on the TLRp,q (resp. SLRp,q).

Remark : The manifolds of rays Ray(TLRp,q) and Ray(SLRp,q) can also be
defined as principalG-bundles, withG = R+

0 , and the Dirac operator on these
manifolds can then rigorously be defined as the Dirac operator D(T ,X)p,q

acting on sections of an associated principal fibre bundle, see Chapter 2 for
this construction.

This means that the ultrahyperbolic Dirac operator acts on sections of the
homogeneous Clifford line bundle

Rp,q;α = Rp,q
0 × Rp,q/ ∼

where the equivalence relation ∼ is given by ((T ,X), c) ∼ (λ(T ,X), λαc).
In other words : the bundle space of the bundle Rp,q;α is the set Rp,q

0 × Rp,q

and the base space consists of the equivalence classes under the projection
π, with

π
(
(T 1, X1), a1

)
= π

(
(T 2, X2), a2

)
⇐⇒

(
(T 1, X1), a1

)
∼
(
(T 2, X2), a2

)
⇐⇒

(
(T 1, X1), a1

)
=
(
λ(T 2, X2), λ

αa2

)
for a certain λ ∈ R0

+. The aim of this section is to construct nullsolutions for
this ultrahyperbolic Dirac operator, by means of a recursive argument.

First of all we need the ultrahyperbolic version of the polar decomposition of
(p, q)-space-time vectors and of the Dirac operator D(T ,X)p,q on the space
Rp,q. Consider therefore a (p, q)-vector (T ,X) ∈ TLRp,q, and write it in the
following form :

(T ,X) = Qp,q(T ,X)
1
2

(
T

Qp,q(T ,X)
1
2

,
X

Qp,q(T ,X)
1
2

)
= Qp,q(T ,X)

1
2 (τ , ξ) . (3.1)
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Expression (3.1) represents the (p, q)-time-like vector (T ,X) ∈ TLRp,q as a
unit vector (τ , ξ) belonging to BT (p, q) multiplied with its ultrahyperbolic

norm Qp,q(T ,X)
1
2 , i.e. its distance to the origin in Rp,q with respect to the

metric ds2 = Qp,q(dT , dX). One possible ultrahyperbolic decomposition for
the Dirac operator on Rp,q is then given by

D(T ,X)p,q =
(τ , ξ)

Qp,q(T ,X)
1
2

(Ep,q + Γp,q) , (3.2)

with Ep,q the Euler operator on Rp,q, measuring the degree of homogeneity
with respect to the (p, q)-space-time co-ordinates (T ,X) on Rp,q and with
Γp,q the ultrahyperbolic angular operator on Rp,q, tangent to BT (p, q); i.e.
when acting on functions depending on the ultrahyperbolic norm only, this
operator is identically zero.

For space-like (p, q)-vectors (T ,X) ∈ SLRp,q, the factor Qp,q(T ,X)
1
2 belongs

to iR and must be replaced by
(
−Qp,q(T ,X)

) 1
2 . The distance to the origin

in Rp,q is then given by ds2 = −Qp,q(dT , dX)

In both cases the (p, q)-space-time vector (T ,X) and the Dirac operator
D(T ,X)p,q are written in terms of a unit vector, the ultrahyperbolic norm
and the Euler and Gamma operators.

In terms of the co-ordinates (T ,X) these operators are given by :

Ep,q =

p∑
i=1

Ti∂Ti
+

q∑
j=1

Xj∂Xj

and

Γp,q =
∑
j<k

εjεk(Tj∂Tk
− Tk∂Tj

)−
∑
j<k

ejek(Xj∂Xk
−Xk∂Xj

)

−
∑
j,k

εjek(Tj∂Xk
+Xk∂Tj

) .

This can easily be verified by calculating (T ,X)D(T ,X)p,q by means of the
multiplications rules on the Clifford algebra Rp,q and by collecting the scalar
terms (giving Ep,q) and the bivector-terms (giving Γp,q). Note that there is no
decomposition given on the nullcone. For the definition of the Dirac operator
on the nullcone we refer to the work of Sommen, see [66]. We briefly return
to this point in Chapter 7.
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Using the explicit expressions for Ep,q and Γp,q, one can easily verify the
following operator equality :

D(T ,X)p,q(T ,X) = (p+ q − 1) + Ep,q − Γp,q .

We now consider a (p, q)-vector (T ,X) and we construct an α-homogeneous
solution for the Dirac operator on Rp,q which is defined in a neighbourhood
of (T ,X). In view of the fact that our model for the ultrahyperbolic unit
balls BT (p, q) and BS(p, q) is projective, a neighbourhood of (T ,X) is to be
understood as a small cone, consisting of all half rays in a neighbourhood of
the half ray connecting (T ,X) with the origin.

Depending on whether (T ,X) ∈ TLRp,q or SLRp,q this construction yields
by definition a monogenic function for the ultrahyperbolic Dirac operator on
BT (p, q) or BS(p, q). If (T ,X) belongs to the nullcone NCp,q in Rp,q, a neigh-
bourhood of (T ,X) contains both rays in TLRp,q and SLRp,q. There exist
α-homogeneous distributional solutions for the Dirac operator D(T ,X)p,q,
defined in a neighbourhood of a nullray on NCp,q, but here we only consider
(p, q)-vectors for which there exists a neighbourhood entirely consisting of
(p, q)-time-like or (p, q)-space-like half rays.

3.3.1 The (p, q)-space-like situation

If (T ,X) ∈ SLRp,q, we have by definition :

Qp,q(T ,X) =

p∑
i=1

T 2
i −

p∑
j=1

X2
j < 0 .

This means that there is at least one spatial co-ordinate Xj 6= 0, for if Xj = 0
for all 1 ≤ j ≤ q we get Qp,q(T ,X) ≥ 0 and this contradicts the fact that
(T ,X) ∈ SLRp,q. Without loosing generality we may assume that Xq 6= 0.
Let us then consider the tangent plane Wq to the ultrahyperbolic unit ball
BS(p, q) in eq. If Xq > 0, the half ray connecting (T ,X) with the origin
intersects Wq in the (p, q)-vector

1

Xq

T +
1

Xq

q−1∑
j=1

ejXj + eq with

(
1

Xq

T ,
1

Xq

q−1∑
j=1

ejXj

)
∈ Rp,q−1 .

In fact, this holds for all (p, q)-vectors in a (p, q)-space-like neighbourhood
of the given vector (T ,X). If Xq < 0 we replace Xq by |Xq|, whence the
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nullsolutions under construction are even with respect to the co-ordinate
Xq. This expresses the rotational symmetry of the ultrahyperbolic unit ball
BS(p, q). It also means that the conical neighbourhood in which the solutions
are locally defined actually consist of rays (minus the origin) instead of half
rays. This is not surprising, in view of the projective model for the sphere
Sm considered earlier. The reason why we considered half rays in case of the
hyperbolic unit ball in space-time is because the manifold H+ is, in contrast
to the manifolds considered here, not connected.

As we will use an inductive argument to construct solutions for the Dirac
operator on the unit balls BS(p, q) and BT (p, q), it is important to have a
clear notation for vectors belonging to orthogonal spaces of different dimen-
sions. Therefore, we adopt the following notation : for r > 0 and s > 0, the
vector (T r, Xs) is an (p− r, q− s)-vector, belonging to Rp−r,q−s and it stands
for the vector

(
∑p−r

i=1 εiTi,
∑q−s

j=1 ejXj)

TpTp−1 · · ·Tp−(r−1)XqXq−1 · · ·Xq−(s−1)

.

This means that r (resp. s) indicates how many temporal (resp. spatial)
co-ordinates are to be removed from the (p, q)-vector (T ,X), starting with
Tp (resp. Xq). The resulting vector must then also be divided by this co-
ordinate. If r = 0 (resp. s = 0) the temporal part T (resp. the spatial part
X) remains unchanged and therefore this will not be written explicitely.

The argument above thus shows that all (p, q)-vectors in a neighbourhood of
the given (T ,X) ∈ SLRp,q may be written as

(T ,X) = λq

(
eq + (T ,X1)

)
with λq = Xq and (T ,X1) the (p, q − 1)-vector obtained by removing the
spatial component Xq and dividing the resulting vector by Xq. We then
use (λq, (T ,X1)) as new co-ordinates on SLRp,q, valid in the small conical
neighbourhood of the given (T ,X). In terms of these co-ordinates the vector
derivative on Rp,q may be written as(

p∑
i=1

εi∂Ti
−

p∑
j=1

ej∂Xj

)
→ 1

λq

(
D(T ,X1)p,q−1 + eq

[
Ep,q−1 − λq

d

dλq

])
,

D(T ,X1)p,q−1 and Ep,q−1 denoting respectively the Dirac and Euler operator
on the orthogonal space Rp,q−1 in terms of the co-ordinates (T ,X1).
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In view of the fact that nullsolutions F (T ,X) for the Dirac operator on
the unit ball BS(p, q) are defined as homogeneous solutions for the operator
D(T ,X)p,q we put

F (T ,X) = λαq
q Fq(T ,X1) ,

with (
D(T ,X1)p,q−1 + eq [Ep,q−1 − αq]

)
Fq(T ,X1) = 0 .

The idea is to construct Fq as a modulated version of a homogeneous nullsolu-
tion for the operator D(T ,X1)p,q−1 on Rp,q−1. This is the inductive argument
we alluded to, because this means that a monogenic function with respect
to the Dirac operator on the unit ball BS(p, q) will be written in terms of a
monogenic function with respect to the Dirac operator on a unit ball in an
ultrahyperbolic space of lower dimension. We must however be careful be-
cause we do not know whether the projection of the (p, q)-vector (T ,X), i.e.
the (p, q−1)-vector (T ,X1), belongs to SLRp,q−1, TLRp,q−1 or even NCp,q−1.

The only thing we know is that Qp,q(T ,X) < 0, whence

p∑
i=1

(
Ti

Xq

)2

−
q−1∑
j=1

(
Xj

Xq

)2

< 1 =⇒ Qp,q−1(T ,X1) < 1 .

This means that all three possibilities are likely and those (p, q)-vectors for
which the projection (T ,X1) ∈ NCp,q−1 will temporarily be excluded. We
return to this point later. This also means that the explicit form of Fq will
depend on whether (T ,X1) belongs to TLRp,q−1 or SLRp,q−1.

Let us then put

Fq(T ,X1) = Mod
(
αq, λq; (T ,X1)

)
fq(T ,X1) (3.3)

with

Mod
(
αq, λq; (T ,X1)

)
= F

(λq)
1 (N2

p,q−1) + eq(T ,X1)F
(λq)
2 (N2

p,q−1) , (3.4)

where N2
p,q−1 stands for Qp,q−1(T ,X1), and with

D(T ,X1)p,q−1fq(T ,X1) = 0

Ep,q−1fq(T ,X1) = λqfq(T ,X1) ,
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i.e. with fq(T ,X1) a λq-homogeneous solution for the Dirac operator on
Rp,q−1. Note that (eq(T ,X1))

2 = Qp,q−1(T ,X1) = N2
p,q−1. This means

that the modulation factor is actually a power series in the bivector-variable
eq(T ,X1). This is in agreement with the Modulation Theorem 3.1, where
the modulation factor was given by a power series in the bivector xε.

In order to determine the functions F
(λq)
1 (N2

p,q−1) and F
(λq)
2 (N2

p,q−1), we put

F
(λq)
1 (N2

p,q−1) =
∞∑

k=0

akN
2k
p,q−1 =

∞∑
k=0

ak

(
p∑

i=1

(
Ti

Xq

)2

−
q−1∑
j=1

(
Xj

Xq

)2
)k

F
(λq)
2 (N2

p,q−1) =
∞∑

k=0

bkN
2k
p,q−1 =

∞∑
k=0

bk

(
p∑

i=1

(
Ti

Xq

)2

−
q−1∑
j=1

(
Xj

Xq

)2
)k

.

Making use of the fact that

D(T ,X1)p,q−1N
2k
p,q−1 = 2k(T ,X1)N

2k−2
p,q−1

Ep,q−1N
2k
p,q−1 = 2kN2k

p,q−1

D(T ,X1)p,q−1(T ,X)p,q−1 = (p+ q − 1) + Ep,q−1 − Γp,q−1 ,

we find immediately :(
D(T ,X1)p,q−1 + eq [Ep,q−1 − αq]

)∑∞
k=0 akN

2k
p,q−1fq

=
∞∑

k=0

{
(T ,X1)(2k + 2)a1+k + eq(λq + 2k − αq)ak

}
N2kfq

and(
D(T ,X1)p,q−1 + eq [Ep,q−1 − αq]

)
eq(T ,X)p,q−1

∑∞
k=0 bkN

2k
p,q−1fq

= −
∞∑

k=0


(T ,X1)(1 + 2k + λq − αq)bk

+
eq(2k + 2λq + p+ q − 1)bk

N2k
p,q−1fq

This leads to the following recursive relations :{
(2k + 2)a1+k = (1 + 2k + λq − αq)bk

(2k + λq − αq)ak = (2k + 2λq + p+ q − 1)bk .
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Choosing a0 = 1, we conclude :

ak =

(
1+λq−αq

2

)
k

(
λq−αq

2

)
k

k!
(
λq + p+q−1

2

)
k

bk =
λq−αq

2

λq + p+q−1
2

(
1+λq−αq

2

)
k

(
1 + λq−αq

2

)
k

k!
(
1 + λq + p+q−1

2

)
k

,

whence

F
(λq)
1 (t) = F

(
1 + λq − αq

2
,
λq − αq

2
;λq +

p+ q − 1

2
; t

)
(3.5)

F
(λq)
2 (t) =

λq−αq

2

λq + p+q−1
2

F

(
1 + λq − αq

2
, 1 +

λq − αq

2
; 1 + λq +

p+ q − 1

2
; t

)
(3.6)

Note that these hypergeometric functions are well-defined as long as λq +
m−1

2

does not belong to −N, unless αq = 1−m
2

. In that case, the operator is again
related to the conformal Dirac operator on the ultrahyperbolic unit balls.

We have thus proved : for (T ,X) ∈ SLRp,q, an αq-homogeneous solution
for the Dirac operator D(T ,X)p,q on Rp,q, defined in a neighbourhood of
(T ,X), is given by the function F (T ,X) = X

αq
q Fq(T ,X1), with Fq the pro-

duct of a power series in the bivector-variable eq(T ,X1) (i.e. the modulation
factor (3.4) given in terms of the hypergeometric functions (3.5) and (3.6))
and a homogeneous nullsolution for the Dirac operator on an ultrahyperbolic
space of lower dimension. This latter nullsolution is homogeneous of degree
λq, with λq + m−1

2
/∈ −N.

3.3.2 The (p, q)-time-like situation

In this subsection we construct a locally defined monogenic function for the
Dirac operator on BT (p, q). Consider a (p, q)-vector (T ,X) ∈ TLRp,q. We
then have by definition :

Qp,q(T ,X) =

p∑
i=1

T 2
i −

p∑
j=1

X2
j > 0 .

This means that there is at least one temporal co-ordinate Ti 6= 0, for if
Ti = 0 for all 1 ≤ i ≤ k we get Qp,q(T ,X) ≤ 0 and this contradicts the
fact that (T ,X) ∈ TLRp,q. Without loosing generality we may assume that
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Tp 6= 0. Let us then consider the tangent plane Vp to the ultrahyperbolic
unit ball BT (p, q) in εp. If Tp > 0, the half ray connecting (T ,X) with the
origin intersects Vp in the (p, q)-vector

1

Tp

X +
1

Tp

p−1∑
i=1

εiTi + εp with

(
1

Tp

p−1∑
i=1

εiTi,
1

Tp

X

)
∈ Rp−1,q .

In fact, this holds for all (p, q)-vectors in a neighbourhood of the given vector
(T ,X). If Tp < 0 we replace Tp by |Tp|, which means that the nullsolutions
that we are constructing will be even with respect to the co-ordinate Tp. This
expresses the rotational symmetry of the ultrahyperbolic unit ball BT (p, q).
Again, it means that the conical neighbourhood in which the solutions are
locally defined consist of punctured rays instead of half rays.

So, all (p, q)-vectors in a neighbourhood of the given (T ,X) ∈ TLRp,q may
be written as

(T ,X) = λp

(
εp + (T 1, X))

with λp = Tp and (T 1, X) the (p − 1, q)-vector obtained by removing the
temporal component Tp and dividing the resulting vector by Tp. We then
use (λp, (T 1, X)) as new co-ordinates on TLRp,q, valid in a neighbourhood of
the given (T ,X). In terms of these new co-ordinates the Dirac operator on
Rp,q may be written as(

p∑
i=1

εi∂Ti
−

p∑
j=1

ej∂Xj

)
→ 1

λp

(
D(T 1, X)p−1,q + εp

[
λp

d

dλp

− Ep−1,q

])
,

D(T 1, X)p−1,q and Ep−1,q denoting respectively the Dirac and Euler operator
on the orthogonal space Rp−1,q in terms of the co-ordinates (T 1, X).

In view of the fact that nullsolutions F (T ,X) for the Dirac operator on
the unit ball BT (p, q) are defined as homogeneous solutions for the operator
D(T ,X)p,q we put

F (T ,X) = λαp
p Fp(T 1, X) ,

with (
D(p− 1, q)T 1,X + εp [αp − Ep−1,q]

)
Fp(T 1, X) = 0 . (3.7)
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The idea is to construct Fp(T 1, X) as a modulated version of a homogeneous
nullsolution for a Dirac operator on an ultrahyperbolic space of lower dimen-
sion. However, the situation in the (p, q)-time-like region is slightly more
complicated than the situation in the (p, q)-space-like region and the reason
is the following : (T ,X) ∈ TLRp,q does not imply that Qp−1,q(T 1, X) < 1,
making it impossible to use this variable as the expansion parameter in the
modulation factor which will again, as for the (p, q)-space-like situation, be
constructed as a hypergeometric series. On the other hand, we have the
following :

−
p−1∑
i=1

(
Ti

Tp

)2

+

q∑
j=1

(
Xj

Tp

)2

< 1 =⇒ Qq,p−1(X,T 1) < 1 ,

where (X,T 1) stands for the (q, p− 1)-vector obtained by switching the role
of the spatial and temporal co-ordinates in (T 1, X).

This means that for (T ,X) ∈ TLRp,q the (q, p − 1)-vector (X,T 1) belongs
to Rq,p−1 but we do not know whether it belongs to SLRq,p−1, TLRq,p−1 or
even NCq,p−1. As Qq,p−1(X,T 1) < 1, the three possibilities are likely and we
will again temporarily exclude those (p, q)-vectors (T ,X) ∈ TLR for which
the (q, p− 1)-projected vector (X,T 1) belongs to the nullcone NCq,p−1. We
return to this point later.

Let us now return to equation (3.7) :(
D(T 1, X)p−1,q + εp [αp − Ep−1,q]

)
Fp(T 1, X) = 0 .

Since we want to use Qq,p−1(X,T 1) as the expansion parameter in the modu-
lation factor, i.e. the argument of the hypergeometric series, it seems natural
to recast this equation in another form. Indeed, we will replace the Dirac
operator D(T 1, X)p−1,q by the Dirac operator on the space Rq,p−1. Let us
therefore multiply this equation by εp from the left, i.e. let us project this

equation on the even subalgebra R(+)
p,q . We then get :

εpD(T 1, X)p−1,q = Tp

(
p−1∑
i=1

εpεi∂Ti
−

q∑
j=1

εpej∂Xj

)
.

As (εpεi)
2 = −1 and (εpej)

2 = 1, we may formally identify the operator
εpD(T 1, X)p−1,q with the Dirac operator D(X,T 1)q,p−1 on Rq,p−1. We thus
rewrite equation (3.7) as follows :(

D(X,T 1)q,p−1 + [αp − Eq,p−1]

)
Fp(X,T 1) = 0 , (3.8)
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where we have used the fact that Ep−1,q = Eq,p−1. We will now solve this
equation, and at the end we replace (X,T 1) by εp(T 1, X) to obtain a solution
for equation (3.7). In order to make a clear distinction between the solutions
to equation (3.7) and (3.8), the solution to the latter equation will be labelled
with a prime.

We thus put

F ′p(X,T 1) = Mod′
(
αp, λp; (X,T 1)

)
f ′p(X,T 1)

with

Mod′
(
αp, λp; (X,T 1)

)
= F

(λp)′

1 ((N ′
q,p−1)

2) + (X,T 1)F
(λp)′

2 ((N ′
q,p−1)

2)

(3.9)

where (N ′
q,p−1)

2 stands for Qq,p−1(X,T 1), and with{
D(X,T 1)q,p−1f

′
p(X,T 1) = 0

Eq,p−1f
′
p(X,T 1) = λpf

′
p(X,T 1) ,

i.e. with f ′p(X,T 1) a λp-homogeneous solution for the Dirac operator on the
orthogonal space Rq,p−1.

In order to determine F
(λp)′

1 ((N ′
q,p−1)

2) and F
(λp)′

2 ((N ′
q,p−1)

2), we put

F
(λp)′

1 ((N ′
q,p−1)

2) =
∞∑

k=0

ak(N
′
q,p−1)

2k =
∞∑

k=0

ak

(
q∑

j=1

(
Xj

Tp

)2

−
p−1∑
i=1

(
Ti

Tp

)2
)k

F
(λp)′

2 ((N ′
q,p−1)

2) =
∞∑

k=0

bk(N
′
q,p−1)

2k =
∞∑

k=0

bk

(
q∑

j=1

(
Xj

Tp

)2

−
p−1∑
i=1

(
Ti

Tp

)2
)k

Making use of the fact that

D(X,T 1)q,p−1(N
′
q,p−1)

2k = 2k(X,T 1)(N
′
q,p−1)

2k−2

Eq,p−1(N
′
q,p−1)

2k = 2k(N ′
q,p−1)

2k

D(X,T 1)q,p−1(X,T 1) = (p+ q − 1) + Eq,p−1 − Γq,p−1 ,

one finds immediately :(
D(X,T 1)q,p−1 − Eq,p−1 + αp

)∑∞
k=0 ak(N

′
q,p−1)

2kf ′p

=
∞∑

k=0

{
(X,T 1)(2k + 2)a1+k − (2k + λp − αp)ak

}
(N ′

q,p−1)
2kf ′p
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and(
D(X,T 1)q,p−1 − Ep,q−1 + αp

)
(X,T 1)

∑∞
k=0 bk(N

′)2kf ′p

= −
∞∑

k=0


(X,T 1)(1 + 2k + λp − αp)bk

−
(2k + 2λp + p+ q − 1)bk

 (N ′
q,p−1)

2kf ′p ,

leading to the same recursive relations as for the (p, q)-space-like situation :{
(2k + 2)a1+k = (1 + 2k + λp − αp)bk

(2k + λp − αp)ak = (2k + 2λp + p+ q − 1)bk .

We immediately conclude :

F
(λp)′

1 (t) = F

(
1 + λp − αp

2
,
λp − αp

2
;λp +

p+ q − 1

2
; t

)
(3.10)

F
(λp)′

2 (t) =
λp−αp

2

λp + p+q−1
2

F

(
1 + λp − αp

2
, 1 +

λp − αp

2
; 1 + λp +

p+ q − 1

2
; t

)
(3.11)

Note that these hypergeometric functions are well-defined for λp + m−1
2

/∈ −N
(unless αq = 1−m

2
) as their argument (N ′

q,p−1)
2 = Qq,p−1(X,T 1) < 1.

Now that we have found this solution for equation (3.8), we return to (3.7).
A solution Fp(T 1, X) is given by :

Fp(T 1, X) = Mod
(
αp, λp; (T 1, X)

)
fp(T 1, X)

with

Mod
(
αp, λp; (T 1, X)

)
= Mod′

(
αp, λp; εp(T 1, X)

)
= F

(λp)′

1 ((N ′
q,p−1)

2) + εp(T 1, X)F
(λp)′

2 ((N ′
q,p−1)

2) .

(3.12)

Note that if we replace (X,T 1) by εp(T 1, X) in Mod’(αp, λp; εp(X,T 1)), we
do not alter the argument of the hypergeometric functions. Therefore we
still write N ′

q,p−1 with

(N ′
q,p−1)

2 =

q∑
j=1

(
Xj

Tp

)2

−
p−1∑
i=1

(
Ti

Tp

)2

.
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As (εp(T 1, X))2 = Qq,p−1(X,T 1) = (N ′
q,p−1)

2, the modulation factor (3.12)
may again be interpreted as a power series in the bivector-variable εp(T 1, X).

The function fp(T 1, X) can be found as follows : we start from an arbitrary
solution f ′p(X,T 1) for the Dirac operator D(X,T 1)q,p−1 on Rq,p−1 which is
λp-homogeneous and we put

fp(T 1, X) = f ′p
(
εp(T 1, X)

)
This is of course equivalent with choosing fp(T 1, X) as a λp-homogeneous
solution for the Dirac operator D(T 1, X)p,q−1 on Rp−1,q.

3.3.3 The unifying picture

In this subsection we unify both the (p, q)-time-like and (p, q)-space-like case,
and this will lead to an explicit construction for nullsolutions on BT (p, q) or
BS(p, q). For that purpose we rewrite the results from previous subsections.
Let us first introduce the following function, defined as a power series in a
bivector-variable B :

Definition 3.1 For an arbitrary bivector B ∈ R(2)
p,q such that [B2]0 < 1, we

define the following bivector-valued function :

Pp,q(α, λ,B) = F
(λ)
1 ([B2]0) +

λ−α
2

λ+ p+q−1
2

BF
(λ)
2 ([B2]0)

with F
(λ)
i ([B2]0) (i = 1, 2) given by the following hypergeometric functions :

F
(λ)
1 (t) = F

(
1 + λ− α

2
,
λ− α

2
;λ+

p+ q − 1

2
; t

)
F

(λ)
2 (t) = F

(
1 + λ− α

2
, 1 +

λ− α
2

; 1 + λ+
p+ q − 1

2
; t

)
.

Consider then an arbitrary (p, q)-vector (T ,X) ∈ Rp,q :

1. if (T ,X) ∈ TLRp,q and Tp 6= 0, a locally defined α-homogeneous solu-
tion for the operator D(T ,X)p,q is given by

|Tp|αPp,q

(
α, λ, εp(T 1, X)

)
fλ(T 1, X) ,

with fλ(T 1, X) a λ-homogeneous solution for D(T 1, X)p−1,q on Rp−1,q
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2. if (T ,X) ∈ SLRp,q and Xq 6= 0, a locally defined α-homogeneous solu-
tion for the operator D(T ,X)p,q is given by

|Xq|αPp,q

(
α, λ, eq(T ,X1)

)
fλ(T ,X1) ,

with fλ(T ,X1) a λ-homogeneous solution for D(T ,X1)p,q−1 on Rp,q−1

We are now able to construct α-homogeneous solutions for the operator
D(T ,X)p,q on Rp,q in a neighbourhood of (p, q)-vectors (T ,X)p,q belonging to
certain regions of the orthogonal space Rp,q, by performing consecutive pro-
jections on tangent planes, to either space-like or time-like ultrahyperbolic
unit balls.

This goes as follows : at a certain stage of the procedure we will have
a vector (T r, Xs) belonging to either TLRp−r,q−s or SLRp−r,q−s. In the
first case a homogeneous solution for the operator D(T r, Xs)p−r,q−s may be
written as a modulated version of a homogeneous solution to the operator
D(T r+1, Xs)p−r−1,q−s, whereas in the latter case a homogeneous solution for
the operator D(T r, Xs)p−r,q−s may be written as a modulated version of a
homogeneous solution for the operator D(T r, Xs+1)p−r,q−s−1. The next step,
before we can use the recursion argument, is to look at the projected vector.
By this we mean the following : if (T r, Xs) belongs to TLRp−r,q−s (resp.
SLRp−r,q−s) we project onto the plane tangent to the ultrahyperbolic unit
ball BT (p−r, q−s) (resp. to BS(p−r, q−s)) at the basis element εp−r (resp.
eq−s). If this projected vector (T r+1, Xs) (resp. (T r, Xs+1)), which clearly
belongs to an orthogonal space of lower dimension, belongs to the nullcone
of the lower-dimensional space, then the recursion argument breaks down.
In that case we can only consider distributional homogeneous solutions for
D(T r+1, Xs)p−r−1,q−s (resp. D(T r, Xs+1)p−r,q−s−1). If the projected vector
does not belong to this nullcone, we repeat this procedure.

Eventually this means that there exist (p, q)-vectors in the orthogonal space
Rp,q for which small conical neighbourhoods may consecutively be projected
onto either the space-like or the time-like subset of the lower-dimensional
orthogonal spaces. This means that for certain (p, q)-vectors, homogeneous
solutions for the operator D(T ,X)p,q may be found as ’multiple-modulated’
versions of homogeneous solutions for the Dirac operator on Rm.
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3.4 On a Bi-Axial Hyperbolic Problem

In this section we construct new hyperbolic monogenic solutions for the Dirac
operator on the Klein model of the hyperbolic unit ball, by considering a bi-
axial splitting of Rm. This allows to reobtain the solutions constructed by
means of the Modulation Theorem on the Klein ball in a totally different
way. Indeed, it is proved that these solutions can be interpreted as special
cases of so-called generalized hyperbolic powerfunctions.

3.4.1 Bi-axial hyperbolic monogenic functions

Let us consider a bi-axially symmetric domain in R0,m by splitting R0,m into
R0,m1 ⊕ R0,m2 . A general element x ∈ R(1)

0,m will be denoted by x = x1 + x2

with xi = riξi
, where ξ

i
∈ Smi−1. The Dirac operator (resp. Euler operator)

on R0,mi will be denoted by ∂i (resp. Ei).

Our aim is to contruct solutions f(x) = f(x1, x2) for the operator Dα(x),
defined by

Dα(x) = ∂ + ε(E− α) = ∂1 + εE1 + ∂2 + εE2 − αε,

of the following form :

f(x1, x2) =
∞∑
l=0

{
Fl(r

2
2) + x2εGl(r

2
2)

}
(x1ε)

lPk(x1)Pq(x2) , xi ∈ R(1)
0,mi

,

with Pk(ξ1
) ∈ M+

m1
(k) and Pq(ξ2

) ∈ M+
m2

(q). So, for each l ∈ N the factor
between brackets represents a power series in the variable x2ε.

Note that we choose these inner spherical monogenics to belong to the spaces
R(+)

0,m1
and R(+)

0,m2
respectively, such that

[∂1, Pq(x2)] = [x1, Pq(x2)] = 0
[∂2, Pk(x1)] = [x2, Pq(x1)] = 0

.

Letting the operator Dα(x) act upon the function f(x), hereby using the fact
that

∂i

(
x2l

i Pk(xi)
)

= −2lx2l−1
i Pk(xi)

∂i

(
x2l+1

i Pk(xi)
)

= −(2k + 2l +mi)x
2l
i Pk(xi)

,
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putting t = r2
2 and Et = t d

dt
, we arrive at the following system S of equations

for the unknown functions Fl and Gl (l ∈ N) :

S ↔


(k + l + m1

2
)F2l+1 = (Et + l + k+q−α

2
)F2l − (Et + q + m2

2
)G2l

(1 + l)F2l+2 = (Et + l + 1+k+q−α
2

)F2l+1 − (Et + q + m2

2
)G2l+1

(k + l + m1

2
)G2l+1 = d

dt
F2l − (Et + l + 1+k+q−α

2
)G2l

(1 + l)G2l+2 = d
dt
F2l+1 − (Et + 1 + l + k+q−α

2
)G2l+1

This system must be interpreted in the following sense : given two analytic
functions F0(t) and G0(t), the functions Fl(t) and Gl(t) can be determined for
all l ∈ N by means of these equations. Introducing the short-hand notation

Q0 =
k + q − α

2

Q1 =
1 + k + q − α

2
,

the system S can also be rewritten as a recursive set of equations :

F2l+1 =
(Et + l +Q0)(Et + l − 1 +Q1)− (Et + q + m2

2
) d

dt

l(k + l + m1

2
)

F2l−1

F2l+2 =
(Et + l +Q0)(Et + l +Q1)− (Et + q + m2

2
) d

dt

(1 + l)(k + l + m1

2
)

F2l

G2l+1 =
(Et + l +Q0)(Et + l +Q1)− (Et + 1 + q + m2

2
) d

dt

l(k + l + m1

2
)

G2l−1

G2l+2 =
(Et + l + 1 +Q0)(Et + l +Q1)− (Et + 1 + q + m2

2
) d

dt

(1 + l)(k + l + m1

2
)

G2l

In order to solve this system one needs to specify the so-called Cauchy data,
i.e. the explicit form of the solution f(x1, x2) for x1 = 0. This function
f(0, x2) can then be extended to a solution for the hyperbolic Dirac equation
on the Klein model, by determining the functions Fl(t) and Gl(t) by means
of the recursive set of equations above.

3.4.2 Generalized Hyperbolic Power Functions

The aim of this section is to construct solutions for the operator Dα(x) which
are generalizations of the monomials zλ in complex analysis. For that pur-
pose we define xλ

2 for arbitrary complex λ, and we then use this function
multiplied by an inner spherical monogenic Pq(x2) as initial Cauchy data
in the system S from the previous subsection, in order to obtain a solution
f(x1, x2) for the Dirac equation on the hyperbolic Klein ball.
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The function xλ
2 was already defined in e.g. [23], where the authors have

put

xλ
2 = rλ

2

(
cos

πλ

2
+ ξ

2
sin

πλ

2

)
= rλ

2 cos
πλ

2
+ rλ−1

2 x2 sin
πλ

2
.

We will now use this function as Cauchy data, in two distinct steps : first
we consider inner power functions and then outer power functions.

• Inner Power Functions

Recalling the fact that t = r2
2, let us first consider the function

F0(t) = tλ

G0(t) = 0 .

In view of the fact that hyperbolic monogenic functions are defined as
homogeneous solutions for the Dirac operator ∂X on R1,m, these initial
data are canonical : they come from the projection on the hyperplane
Π↔ T = 1 of the α-homogeneous function

F (T, 0, X2) = Tα−2λ−q|X2|2λPq(X2)

defined for X1 = 0. We are thus starting from an α-homogeneous
function in space-time variables (T, 0, X2), and this function will be
extended by means of the system S to an α-homogeneous solution for
the Dirac operator ∂X on R1,m, in space-time variables (T,X1, X2).

With the aid of S, one finds :

F1(t) = −λ+Q0

k + m1

2

tλ

G1(t) =
λ

k + m1

2

tλ−1 .

We can then derive expressions for F2l(t), F2l+1(t) and G2l+1(t) by
means of the recursive set of equations.

Consider for example the formula giving F2l+2(t) in terms of F2l(t).
Putting

O2l+2(F ) =
(Et + l +Q0)(Et + l +Q1)− (Et + q + m2

2
) d

dt

(1 + l)(k + l + m1

2
)

,
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we have F2l+2(t) = O2l+2(F )F2l(t). Starting with F0(t), the operator
O2(F ) contains a part which multiplies F0(t) with a (complex) constant,
and a part which lowers the degree of F0(t) and then multiplies with
a (complex) constant. This scheme repeates itself when the operator
O2l+2(F ) acts on F2l(t), whence F2l+2(t) will have the following form :

F2l+2(t) = c0t
λ + c1t

λ−1 + · · ·+ cl+1t
λ−l−1 with ci ∈ C .

However, if λ ∈ N the scheme breaks down when the exponent of t
becomes zero and the remaining coefficients all vanish.

We then prove that

F2l(t) =
l∑

i=0

ci(λ, l)t
λ−i (3.13)

with ci(λ, l) given by

(−1)i

(
λ

i

)(
λ− i+ q + m2

2

)
i(

k + m1

2

)
i

(
λ+ k+q−α

2

)
l−i

(
λ+ 1+k+q−α

2

)
l−i

(l − i)!
(
i+ k + m1

2

)
l−i

.

Here it is understood that for λ ∈ N the series terminates when the
exponent of t becomes zero, such that the remaining coefficients then
all vanish.

proof : We will prove this formula by induction. Since

F2(t) = O2(F ) tλ

=
(λ+Q0)(λ+Q1)

k + m1

2

tλ − λ
λ− 1 + q + m2

2

k + m1

2

tλ−1 ,

the formula holds for l = 1. Suppose the formula is correct for F2l(t),
we then prove that it also holds for F2l+2(t) = O2l+2(F )F2l(t).

First of all, the term in tλ is given by

(Et + l +Q0)(Et + l +Q1)

(1 + l)(k + l + m1

2
)

c0(λ, l)t
λ =

(λ+Q0)l+1(λ+Q1)l+1

(l + 1)!
(
k + m1

2

)
l+1

tλ

= c0(λ, l + 1)tλ ,

while the term in tλ−l−1 is given by

−
(
Et + q + m2

2

)
(1 + l)(k + l + m1

2
)

d

dt
cl(λ, l)t

λ−l ,
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which by means of the fact that

λ− l
1 + l

(
λ

l

)
=

(
λ

l + 1

)
,

reduces to

(−1)l+1

(
λ

l + 1

)(
λ− l − 1 + q + m2

2

)
l+1(

k + m1

2

)
l+1

tλ−l−1 = cl+1(λ, l + 1)tλ−l−1 .

For the term in tλ−i, with 0 < i < 1 + l, we obtain

ci(λ, l)
(Et + l +Q0)(Et + l +Q1)

(1 + l)(k + l + m1

2
)

tλ−i

− ci−1

(
Et + q + m2

2

)
(1 + l)(k + l + m1

2
)

d

dt
(λ, l)tλ+1−i ,

which by means of the fact that

(1 + l − i)
(
λ

i

)
+ (1 + λ− i)

(
λ

i− 1

)
= (1 + l)

(
λ

i

)
may be written as

(−1)i

(
λ

i

)(
λ− i+ q + m2

2

)
i(

k + m1

2

)
i

(λ+Q0)1+l−i(λ+Q1)1+l−i

(1 + l − i)!
(
i+ k + m1

2

)
1+l−i

tλ−i ,

which is equal to ci(λ, 1 + l)tλ−i. Adding these terms we finally obtain

F2l+2(t) =
1+l∑
i=0

ci(λ, 1 + l)tλ−i ,

as was to be proved. �

A similar approach can be followed to prove that

F2l+1(t) =
λ+ k+q−α

2

k + m1

2

l∑
i=0

di(λ, l) t
λ−i (3.14)

with di(λ, l) given by

(−1)i

(
λ

i

)(
λ− i+ q + m2

2

)
i(

1 + k + m1

2

)
i

(
λ+ 1 + k+q−α

2

)
l−i

(
λ+ 1+k+q−α

2

)
l−i

(l − i)!
(
1 + i+ k + m1

2

)
l−i

,
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and

G2l+1(t) =
λ

k + m1

2

l∑
i=0

fi(λ− 1, l) tλ−1−i (3.15)

with fi(λ− 1, l) given by

(−1)i

(
λ− 1

i

)(
λ− i+ q + m2

2

)
i(

1 + k + m1

2

)
i

(
λ+ k+q−α

2

)
l−i

(
λ+ 1+k+q−α

2

)
l−i

(l − i)!
(
1 + i+ k + m1

2

)
l−i

.

In both cases it is understood that the series terminates if the exponent
of t becomes zero, whence all remaining coefficients vanish.

Returning to the explicit form for f(x1, x2) proposed at the beginning
of this section, we have thus found a solution for the operator Dα(x),
with x = x1 + x2, which generalizes the function |x2|2λPq(x2) on Rm2 :

Iλ
α,k,q(x) =

(
∞∑
l=0

[
l∑

i=0

ci(λ, l)r
2λ−2i
2

]
r2l
1

)
Pk(x1)Pq(x2)

+
λ+ k+q−α

2

k + m1

2

x1ε

(
∞∑
l=0

[
l∑

i=0

di(λ, l)r
2λ−2i
2

]
r2l
1

)
Pk(x1)Pq(x2)

+
λx1x2

k + m1

2

(
∞∑
l=0

[
l∑

i=0

fi(λ− 1, l)r2λ−2i−2
2

]
r2l
1

)
Pk(x1)Pq(x2) .

Remark : Let us consider a special case of this result by putting λ = 0
such that F0(t) = 1 and G0(t) = 0. The function I0

α,k,q(x) then reduces
to

I0
α,k,q(x) =

(
∞∑
l=0

[
c0(0, l) + d0(0, l)

k+q−α
2

k + m1

2

x1ε

]
r2l
1

)
Pk(x1)Pq(x2) ,

which by means of the definition for Mod(α, k, x) can be written as

I0
α,k,q(x) = Mod(α− q, k, x1)Pk(x1)Pq(x2) .

One can immediately see that this is a solution for the hyperbolic Dirac
equation on the Klein ball by decomposing the operator Dα(x) as

Dα(x) = ∂1 + ε
(
E1 − (α− q)

)
+ ∂2 + ε(E2 − q) .

Note that in case q = 0, one finds the solution given by Theorem 3.1,
showing that the modulated hyperbolic monogenics Mod(α, k, x)Pk(x)
can be interpreted as trivial inner hyperbolic monogenic powers I0

α,k,0(x).
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• Outer Power Functions

Next, we consider for arbitrary λ ∈ C the outer power function as
initial Cauchy data :

F0(t) = 0

G0(t) = tλ .

These initial data form the projection on the hyperplane Π ↔ T = 1
of the α-homogeneous function

F (T, 0, X2) = Tα−2λ−1−kX2|X2|2λPk(X2) ,

defined for X1 = 0. We are thus again starting from an α-homogeneous
function in space-time variables (T, 0, X2), and this function will be ex-
tended by means of the system S to an α-homogeneous solution for the
Dirac operator ∂X on R1,m, in space-time variables (T,X1, X2).

With the aid of S one finds :

F1(t) = −
λ+ q + m2

2

k + m1

2

tλ

G1(t) = −
λ+ 1+k+q−α

2

k + m1

2

tλ .

Since we have already found that

F1(t) =
λ+ k+q−α

2

k + m1

2

tλ
S−→ F2l+1(t) =

λ+ k+q−α
2

k + m1

2

l∑
i=0

di(λ, l) t
λ−i

G1(t) =
λ

k + m1

2

tλ−1 S−→ G2l+1(t) =
λ

k + m1

2

l∑
i=0

fi(λ− 1, l) tλ−i−1 ,

we get immediately :

F2l+1(t) = −
λ+ q + m2

2

k + m1

2

l∑
i=0

di(λ, l) t
λ−i (3.16)

with di(λ, l) given by

(−1)i

(
λ

i

)(
λ− i+ q + m2

2

)
i(

1 + k + m1

2

)
i

(
λ+ 1 + k+q−α

2

)
l−i

(
λ+ 1+k+q−α

2

)
l−i

(l − i)!
(
1 + i+ k + m1

2

)
l−i

,
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and

G2l+1(t) = −
λ+ 1+k+q−α

2

k + m1

2

l∑
i=0

fi(λ, l) t
λ−i (3.17)

with fi(λ, l) given by

(−1)i

(
λ

i

)(
1 + λ− i+ q + m2

2

)
i(

1 + k + m1

2

)
i

(
1 + λ+ k+q−α

2

)
l−i

(
1 + λ+ 1+k+q−α

2

)
l−i

(l − i)!
(
1 + i+ k + m1

2

)
l−i

.

In order to find G2l(t), we compare the formula giving G2l+2(t) in terms
of G2l(t) with the formula giving F2l+2(t) in terms of F2l(t). Up to a
substitution

q −→ q + 1

both formulae are identical, so that we immediately get :

G2l(t) =
l∑

i=0

gi(λ, l)t
λ−i (3.18)

with gi(λ, l) given by

(−1)i

(
λ

i

)(
λ− i+ q + 1 + m2

2

)
i(

k + m1

2

)
i

(
λ+ 1 + k+q−α

2

)
l−i

(
λ+ 1+k+q−α

2

)
l−i

(l − i)!
(
i+ k + m1

2

)
l−i

.

Note that in the formulae for F2l+1(t), G2l(t) and G2l+1(t) it is under-
stood that if the exponent of t becomes zero, all remaining coefficients
vanish.

Returning to the explicit form for f(x1, x2) proposed at the beginning
of this section, we have thus found the following solution for Dα(x),
with x = x1 + x2, generalizing the function x2|x2|2λPq(x2) :

Oλ
α,k,q(x) =

λ+ q + m2

2

k + m1

2

x1ε

(
∞∑
l=0

[
l∑

i=0

di(λ, l)r
2λ−2i
2

]
r2l
1

)
Pk(x1)Pq(x2)

− x2ε

(
∞∑
l=0

[
l∑

i=0

gi(λ, l)r
2λ−2i
2

]
r2l
1

)
Pk(x1)Pq(x2)

+
λ+ 1+k+q−α

2

k + m1

2

x1x2

(
∞∑
l=0

[
l∑

i=0

fi(λ, l)r
2λ−2i
2

]
r2l
1

)
Pk(x1)Pq(x2)
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This allows us to define the generalized hyperbolic powerfunction Pλ
α,k,q(x),

with (α, λ) ∈ C2 and (k, q) ∈ N2. When multiplying this function by Tα and
putting x = X

T
we obtain an α-homogeneous solution for the Dirac operator

∂X on R1,m, whence the index α. The index λ refers to the power function xλ
2

in the Cauchy data xλ
2Pq(x2), whereas the indices k and q refer to the inner

monogenics Pk(x1) and Pq(x2) respectively. This function is in explicit form
given by :

Pλ
α,k,q(x) = I

λ
2
α,k,q(x) cos

πλ

2
+O

λ−1
2

α,k,q(x) sin
πλ

2
.
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Chapter 4

Arbitrary Powers of the
Hyperbolic Dirac Operator

The shortest path between two truths in the real domain
passes through the complex domain. (J. Hadamard)

In this Chapter arbitrary complex powers of the hyperbolic Dirac operator
are defined and a fundamental solution for these operators is constructed.
First the so-called natural powers of the Dirac operator on the hyperbolic
unit ball will be considered, and afterwards arbitrary complex powers.

4.1 Natural Powers of the Hyperbolic Dirac

Operator

In this section natural powers of the Dirac operator on the hyperbolic unit
ball are considered, i.e. integer powers of the Dirac operator ∂X on R1,m

acting on sections of the homogeneous Clifford line bundle R1,m;α introduced
in Chapter 2 as an associated principal fibre bundle or, equivalently, acting
on α-homogeneous functions on the future cone in space-time co-ordinates
(T,X). In the previous Chapter we already encountered these natural powers
when we generalized the Modulation Theorem to the case of the k-iterated
hyperbolic Dirac equation (see Theorem 3.3).

When projecting the k-iterated Dirac operator ∂k
X acting on α-homogeneous

functions F (T,X) on the FC onto the Klein model for the hyperbolic unit
ball, we obtain the differential operator

Dk
α(x) = Dα−(k−1)(x)Dα−(k−2)(x) · · ·Dα−1(x)Dα(x)
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on the unit ball Bm(1) ⊂ Rm acting on functions f(x), with

F (T,X) = λαF

(
1,
X

T

)
= λαf(x) ,

and λ = T and where the operator Dα(x) = D1
α(x) stands for

Dα(x) = ∂ + ε(Er − α) ,

with ∂ (resp. Er) the Dirac (resp. Euler) operator on R0,m in co-ordinates x.

On the analogy of our first method to construct a fundamental solution for
the hyperbolic Dirac equation, for which we refer to Chapter 2, we can try
to apply Theorem 3.3 to the outer spherical monogenic ξ ∈ M−(0), i.e. the
restriction of the Cauchy kernel to Sm−1, to obtain a fundamental solution
for the k-iterated hyperbolic Dirac equation.

We make a distinction between even and odd natural powers :

• Even Natural Powers of the Hyperbolic Dirac Operator

In case the power ∂s
X of the hyperbolic Dirac operator is even, we are

dealing with a scalar-valued differential operator. Indeed, the product
of two consecutive operators reduces to

Dα−1(x)Dα(x) =

(
∂ + ε(Er − (α− 1))

)(
∂ + ε(Er − α)

)
=

(
∆m − (Er + 1− α)(Er − α)

)
.

This explains why Theorem 3.3 provided us with a scalar solution in
case of an even power of the hyperbolic Dirac operator.

To obtain a fundamental solution for the s-iterated Dirac equation on
the hyperbolic unit ball, with s = 2k, we try to modulate the Cauchy
kernel E(x) on Rm. For those values for which the modulation factor
in Theorem 3.3 is well-defined, we get the following solution for the
operator D2k

α (x), defined on the punctured unit ball Bm(1) \ {0} :

E2k
α (x) = Mod(1 + α− k,−m+ k; 1; x)x2k−1E(x) .

For odd dimensionsm this function is defined for all even powers s = 2k,
whereas in case of an even dimension m we have to restrict ourselves
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to those powers for which k > m
2
− 1 in order to make sure that the

hypergeometric function in the modulation factor is well-defined.

However, despite the fact that this solution is well-defined for these
latter values, the function x2k−1E(x) will no longer have a singularity
at x = 0. Thus in case of an even dimension m the function E2k

α (x)
does not lead to a fundamental solution for the iterated hyperbolic
Dirac operator. This phenomenon can be illustrated by means of its
Euclidean analogue : consider the Laplacian ∆m on Rm, with m even
and m > 2, its fundamental solution up to a normalizing constant given
by the function r2−m. The fundamental solution for the operator ∆2

m

is then given by the function r4−m, again up to a normalizing constant.

According to this scheme the fundamental solution for the operator ∆
m
2
m

should be given by the function rm−m but this is the regular constant

solution f(r) = 1 for the operator ∆
m
2
m . The fundamental solution can

then be found as

lim
µ→m

2

r2µ−m − 1

2µ−m
,

leading to the logarithmic function ln r. The same thing happens in
case of an an even power s = 2k of the hyperbolic Dirac operator acting
on a space of even dimension m. This case will again be temporarily
excluded, and the special treatment involving logarithmic functions will
be tackled by the introduction of Gegenbauer functions of the second
kind, just like we did in Chapter 2.

As the singular behaviour of the fundamental solution does not change
when a particular regular solution for the s-iterated hyperbolic Dirac
equation is added, we will add a particular nullsolution to E2k

α (x). For
those values for which this function yields a fundamental solution, i.e.
in case of an odd dimension m, it is a modulated version of the fun-
damental solution for the operator ∂2k on R0,m. It seems obvious to
add a regular nullsolution which is given by the modulation of a con-
stant, hereby inspired by the construction of the fundamental solution
for the hyperbolic Dirac operator. However, applying Theorem 3.3 to
the constant function P0(x) = 1 would yield a function

Mod

(
1 + α− k, k − 1; 1;

X

T

)(
X

T

)2k−1

,

and this is not what we are looking for because this function does not
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modulate a constant. Instead, we will add the regular solution

Mod

(
1 + α− k,−k; 1;

X

T

)
,

but we first need a direct proof for the fact that this is indeed a solution
for the iterated hyperbolic Dirac equation. This is expressed in the
following :

Lemma 4.1 Let k ∈ N0 and α ∈ C. For all x ∈ Bm(1) we have :

D2k
α (x)Mod(1 + α− k,−k; 1; x) = 0 .

Proof : First of all note that the operator D2k
α (x) can be written as a

k-fold product of hypergeometric differential operators in the variable
t = r2. Writing

Ht(a, b; c) = t(1− t) d
2

dt2
+ [c− (1 + a+ b)t]

d

dt
− ab ,

we get for the operator D2k
α (x) :

Dα−(2k−1)(x)Dα−(2k−2)(x) · · ·Dα−1(x)Dα(x)

= (−4)kHt

(
k − 1− α

2
, k − 1 +

1− α
2

;
m

2

)
· · ·Ht

(
−α

2
,
1− α

2
;
m

2

)
.

In view of the fact that the modulation factor Mod(1 +α− k,−k; 1; x)
in terms of the variable t is, up to a constant, given by the function

F

(
−α

2
,
1− α

2
; 1− k +

m

2
; t

)
,

it suffices in case k > 1 to prove that if all of the differential operators
Ht above, except for the last one, act on this modulation factor we get
up to a constant the hypergeometric function

F

(
k − 1− α

2
, k − 1 +

1− α
2

;
m

2
; t

)
,

which is the regular solution for the last hypergeometric differential
operator in the expansion for D2k

α (x). To that end it suffices to prove
that

Ht (a, b; c)F (a, b; c− k; t) =
abk

c− k
F (1 + a, 1 + b; 1 + c− k; t) ,
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which can easily be verified by means of the definition of the hypergeo-
metric series.

In case k = 1 we get immediately that

D2
α(x)Mod(α,−1; 1;x) = 0 .

This proves the Lemma. �

Returning to the (2k)-iterated hyperbolic Dirac equation, we propose
the following expression for the fundamental solution E2k

α (T,X) in
space-time co-ordinates (T,X) :

E2k
α (T,X) = TαMod

(
1 + α− k,−m+ k; 1;

X

T

)(
X

T

)2k−1

E

(
X

T

)
+ cα,2kT

αMod

(
1 + α− k,−k; 1;

X

T

)
,

with cα,2k a constant that will be determined in an appropriate way.
This goes as follows : using the definition of the modulation factors,
we get immediately

E2k
α (T,X) =

Tαx2k

Am|x|m
F

(
k − α+m

2
, k +

1− α−m
2

; 1 + k − m

2
; |x|2

)
+ c′a,2kT

αF

(
−α

2
,
1− α

2
; 1− k +

m

2
; |x|2

)
.

Rewriting everything in terms of the hyperbolic polar co-ordinates

εT +X = ρξ = (T 2 − |X|2)
1
2

(
ετ + (τ 2 − 1)

1
2 ξ
)
,

we get

Tαx2k

Am|x|m
F

(
k − α+m

2
, k +

1− α−m
2

; 1 + k − m

2
; |x|2

)
= (−1)k Γ

(
1 + k − m

2

)
Γ
(

m
2

)
21+m

2
−kπ

m
2

ρα(τ 2 − 1)
k
2
−m

4 P
m
2
−k

α+m
2
−k(τ)

and

c′a,2kT
αF

(
−α

2
,
1− α

2
; 1− k +

m

2
; |x|2

)
= c′a,2k

Γ
(
1 + m

2
− k
)

2k−m
2

ρα(τ 2 − 1)
k
2
−m

4 P
k−m

2

α+m
2
−k(τ) .
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Adding these functions, we thus get :

E2k
α (T,X) = (−1)k Γ

(
1 + k − m

2

)
Γ
(

m
2

)
21+m

2
−kπ

m
2

ρα(τ 2 − 1)
k
2
−m

4[
P

m
2
−k

α+m
2
−k(τ) + (−1)k 21+m−2kπ

m
2 Γ
(
1 + m

2
− k
)

Γ
(
1 + k − m

2

)
Γ
(

m
2

) c′α,2kP
k−m

2

α+m
2
−k(τ)

]
.

Choosing c′α,2k in such a way that the factor between square brackets
reduces to[

P
m
2
−k

α+m
2
−k(τ)−

Γ(1 + α+m− 2k)

Γ(1 + α)
P

k−m
2

α+m
2
−k(τ)

]
,

we find with the aid of formula (17) that the fundamental solution for
the (2k)-iterated hyperbolic Dirac equation is, up to a constant, given
by

E2k
α (T,X) ∼

sin
(
k − m

2

)
π

eiπ(k−m
2 )

ρα(τ 2 − 1)
k
2
−m

4 Q
k−m

2

α+m
2
−k(τ) .

Note the appearance of the sine function, clearly indicating the fact
that this formula does not yield a fundamental solution in case of an
even dimension m. Recalling formula (22) we then find the function
E2k

α (T,X) for odd dimensions m in terms of a Gegenbauer function of
the second kind :

E2k
α (T,X) ∼ ραD

m+1
2
−k

α (τ) .

This formula is also valid in case of an even dimensions m, and that will
be verified explicitely in the next subsection, where the fundamental
solution for the iterated hyperbolic Dirac operator will be obtained by
means of a different method. One can also see this by means of the
same argument that was used in Chapter 2 when we determined the
hyperbolic fundamental solution. There it was explicitely shown that
the fundamental solution obtained by means of the limit procedure, i.e.
the method that must be used in case of an even dimension and that
leads to logarithmic functions, also yields the expression in terms of the
Gegenbauer function of the second kind. We will however not repeat
these calculations here.
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• Odd Natural Powers of the Hyperbolic Dirac Operator

In case the power ∂s
X of the hyperbolic Dirac operator is odd, we are

dealing with a vector-valued differential operator. We can again apply
the same trick to obtain a fundamental solution for this operator, by
using Theorem 3.3 to modulate the Cauchy kernel E(x), which yields

E2k+1
α (x) = Mod(α− k, 1−m+ k; 0; x)x2kE(x) ,

and by adding a particular regular nullsolution which allows us to find
an expression for E2k+1

α (T,X) in terms of the Gegenbauer function of
the second kind.

Since we will obtain these results in the next subsection by means of a
different method, we will not repeat this argument. Instead, it suffices
to note that the α-homogeneous fundamental solution for the operator
∂2k+1

X may easily be derived from the (α+1)-homogeneous fundamental
solution for the operator ∂2k+2

X . Hence,

E2k+1
α (T,X) ∼ ∂XE

2k+2
α+1 (T,X)

= ραξ(Γ1,m + 1 + α)D
m+1

2
−k

α+1 (τ) .

Using the recurrence relations (25) for the Gegenbauer function, this
gives rise to the following fundamental solution for the (2k+1)-iterated
hyperbolic Dirac equation :

E2k+1
α (T,X) ∼ ∂XE

2k+2
α+1 (T,X)

= ρα
(
D

m+1
2
−k

α−1 (τ)ξ −D
m+1

2
−k

α (τ)ε
)
.

4.2 Complex Powers of the Hyperbolic Dirac

Operator

In this section the definition for powers of the hyperbolic Dirac operator will
be extended from natural powers, treated in the previous section, to arbitrary
complex powers. Instead of using the technique from the previous section,
by projecting the s-iterated hyperbolic Dirac equation on the Klein model
for the hyperbolic unit ball, we will now use a different technique, based on
Riesz distributions. This technique was already used in Chapter 2, when we
determined the hyperbolic fundamental solution, but here it will be genera-
lized to arbitrary complex powers.
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In order to define arbitrary complex powers of the hyperbolic Dirac operator,
we first need to define arbitrary complex powers ∂µ

X of the Dirac operator on
the real orthogonal space R1,m. Complex powers of the hyperbolic Dirac ope-
rator will then easily be found by letting the operator ∂µ

X act on homogeneous
functions, i.e. sections of the homogeneous Clifford line-bundle R1,m;α.

In order to define the operator ∂µ
X for µ ∈ C we must first focus on the

natural powers. Since the technique used here differs from the one of the
previous section, it is worthwhile to reconsider these powers :

1. Natural Powers of the Dirac Operator ∂X on R1,m

First of all, the operator ∂k
X is defined for all integer powers k ∈ N.

For k = 2l we get ∂2l
X = �l

m. Since Z−2l = �l
mδ(X) we get for all

f ∈ D′+(R1,m)

∂2l
Xf = �l

mf = �l
m(δ(X) ∗ f) = Z−2l ∗ f ,

whence the operator ∂2l
X may be defined as a convolution operator on

D′+(R1,m) :

∂2l
Xf = Z−2l ∗ f for all f ∈ D′

+(R1,m) .

For odd powers k = 2l+ 1 we have ∂2l+1
X f = �l

m(∂Xf) = (∂XZ−2l) ∗ f .
This prompts the following definition :

∂2l+1
X f = ∂XZ−2l ∗ f for all f ∈ D′

+(R1,m) .

In the following Lemma the distribution ∂XZ−2k is rewritten as a new
distribution :

Lemma 4.2 For all µ ∈ C and for all ϕ ∈ D(R1,m) we have

< ∂XZµ, ϕ > = <
XZµ−2

µ− 2
, ϕ >

proof : Consider an arbitrary ϕ ∈ D(R1,m). By definition we have :

< ∂XZµ, ϕ > = −ε < Zµ, ∂Tϕ > +
m∑

i=1

ei < Zµ, ∂Xi
ϕ >
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Let us first consider µ such that Re(µ) > 1 +m.

Putting

c(µ,m) = π
m−1

2 2µ−1Γ
(µ

2

)
Γ

(
µ+ 1−m

2

)
and using partial integration the first term yields :

< Zµ, ∂Tϕ > =
1

c(µ,m)

∫
Rm

dX

∫ ∞

|X|
(T 2 − |X|2)

µ−m−1
2 ∂Tϕ(T,X)

=
1 +m− µ
c(µ,m)

∫
Rm

dX

∫ ∞

|X|
T (T 2 − |X|2)

µ−m−3
2 ϕ(T, |X|) ,

where we have used the fact that ϕ has a compact support and that
Re(µ) > 1 + m. Using the definition of the Riesz distribution Zµ−2,
this can also be written as

< Zµ, ∂Tϕ > = − 1

µ− 2
< TZµ−2, ϕ >

The same argument can be used to obtain

< Zµ, ∂Xi
ϕ > =

1

c(µ,m)

∫ ∞

0

dT

∫
Bm(T )

dX(T 2 − |X|2)
µ−m−1

2 ∂Xi
ϕ(T,X)

=
1

µ− 2
< XiZµ−2, ϕ >

where we have introduced Bm(T ) as the ball with radius T in Rm.

This means that for all µ ∈ C such that Re(µ) > 1 + m and for
all ϕ ∈ D(R1,m) we have :

< ∂XZµ, ϕ > =
1

µ− 2
< XZµ−2, ϕ > . (4.1)

Note that the distribution at the right-hand side does not have a pole
at µ = 2 since

lim
µ→2

XZµ−2 = Xδ(X) = 0 ,

from which it follows that
XZµ−2

(µ− 2)
is well-defined for µ = 2 if we remove

the apparent singularity, by putting

lim
µ→2

<
XZµ−2

µ− 2
, ϕ > = lim

µ→2
< ∂XZµ, ϕ > .
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As �mZ2 = δ(X) = ∂2
XZ2, we thus have :

lim
µ→2

<
XZµ−2

µ− 2
, ϕ > = < E(X), ϕ > ,

with E(X) = ∂XZ2 the fundamental solution for the Dirac operator
∂X on R1,m.

This means that both sides of equation (4.1) define a holomorphic
function of µ for all ϕ ∈ D(R1,m). Since those functions coincide in
the region where Re(µ) > 1 + m, they are equal. As ϕ was chosen
arbitrarily, this proves the lemma. �

Eventually this yields the natural powers of the Dirac operator on R1,m

as convolution operators : for all k ∈ N and for all f ∈ D′
+(R1,m) we

have

∂2k
X f = Z−2k ∗ f

∂2k+1
X f = ∂XZ−2k ∗ f = −XZ−2k−2 ∗ f

2k + 2

2. Complex Powers of the Dirac Operator ∂X on R1,m

On the analogy of what was done in [7] and [23] we then define ∂µ
Xf as

the following convolution operator, for all f ∈ D′+(R1,m) :

∂µ
Xf =

(
1 + eiπµ

2
Z−µ −

1− eiπµ

2

XZ−µ−1

1 + µ

)
∗ f

=

(
1 + eiπµ

2
Z−µ +

1− eiπµ

2

Γ
(
−µ

2

)
Γ
(

1−m−µ
2

)
Γ
(

1−µ
2

)
Γ
(−m−µ

2

) ξZ−µ

)
∗ f

Introducing c± =
1± eiπµ

2
, ∂µ

Xf can also be written as

∂µ
Xf = (c+Z−µ + c−∂XZ1−µ) ∗ f .

Note that, as a linear combination of Riesz distributions, the operator
∂µ

X belongs to D′+(R1,m).

Now that we have defined complex powers ∂µ
X of the Dirac operator on the

real orthogonal space R1,m, their fundamental solutions may be constructed.
For that purpose we consider the distributional equation

∂µ
XE

µ(X) = (c+Z−µ + c−∂XZ1−µ) ∗ Eµ(X) = δ(X) .
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The superscript µ indicates the fact that Eµ(X) is the fundamental solution
for the operator ∂µ

X . For µ = 1, this superscript is omitted.

Since Zµ ∗ Z−µ = Z0 = δ(X) and ∂XZ1−µ ∗ ∂XZ1+µ = �Z2 = δ(X), it
seems natural to look for a fundamental solution which has the following
form :

Eµ(X) = aZµ + b∂XZ1+µ

= aZµ + b
XZµ−1

µ− 1
,

with a and b two complex constants that still need to be determined. Letting
the operator ∂µ

X act on Eµ(X), one finds four terms :

ac+ Z−µ ∗ Zµ = ac+ δ(X)
bc+ Z−µ ∗ ∂XZµ+1 = bc+ ∂XZ1

ac− ∂XZ1−µ ∗ Zµ = ac− ∂XZ1

bc− ∂XZ1−µ ∗ ∂XZµ+1 = bc− δ(X)

In order to obtain a fundamental solution, we choose a = c+ and b = −c−
such that

∂µ
XE

µ(X) = (c2+ − c2−)δ(X)

= eiπµδ(X)

Let us therefore define the fundamental solution for the operator ∂µ
X , for all

µ ∈ C, as

Eµ(X) =
1 + e−iπµ

2
Zµ +

1− e−iπµ

2
∂XZ1+µ

=
1 + e−iπµ

2
Zµ +

1− e−iπµ

2

XZµ−1

µ− 1
.

General complex powers of the hyperbolic Dirac operator may be defined
by letting the convolution operator ∂µ

X act on sections of the homogeneous
Clifford bundle R1,m;α. This means that complex powers of the hyperbolic
Dirac operator are defined as convolution operators acting on homogeneous
distributions f ∈ D′+(R1,m).

In what follows an α-homogeneous fundamental solution Eµ
α(X) for these

operators is constructed, thus yielding a basic example of a homogeneous
distribution in D′+(R1,m). For that purpose we consider the equation :

∂µ
XE

µ
α(X) = Tα+m−µ

+ δ(X) . (4.2)
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The right-hand side is a generalization to arbitrary complex powers of (2.1),
and expresses the fact that we are looking for a fundamental solution Eµ

α(X)
which is homogeneous of degree α. For fixed µ we exclude those α for which
α+m ∈ 1 + µ− N.

Since Eµ(X) is the fundamental solution for the operator ∂µ
X , we immediately

get :

Eµ
α(X) = Eµ(X) ∗ Tα+m−µ

+ δ(X)

=

(
1 + e−iπµ

2
Zµ +

1− e−iπµ

2
∂XZ1+µ

)
∗ Tα+m−µ

+ δ(X)

Let us therefore calculate Zσ ∗ Tα+m−µ
+ δ(X), σ being an arbitrary complex

number and α+m /∈ 1 + µ− N. Denoting R = |X|, we get :

Zσ ∗ Tα+m−µ
+ δ(X) = H(T −R)

∫ T−R

0
((T − S)2 −R2)

σ−m−1
2 Sα+m−µdS

π
m−1

2 2σ−1Γ(σ
2
)Γ(σ+1−m

2
)

= H(T −R)
(T 2 −R2)

σ−m−1
2 (T −R)1+α+m−µ

π
m−1

2 2σ−1Γ(σ
2
)Γ(σ+1−m

2
)

×∫ 1

0

[
(1− t)(1− zt)

]σ−m−1
2 tα+m−µdt

where we have put z = T−R
T+R

. Using Euler’s representation formula for the
hypergeometric function, the integral can be written as

Γ(1 + α+m− µ)Γ
(

σ+1−m
2

)
Γ
(
α− µ+ σ+3+m

2

) ×

F

(
1 +m− σ

2
, 1 + α+m− µ;α− µ+

σ + 3 +m

2
; z

)
,

if we assume that Re(σ) > m− 1. Since

z =
T −R
T +R

=
τ − (τ 2 − 1)

1
2

τ + (τ 2 − 1)
1
2

for τ =
T

(T 2 −R2)
1
2

,

we find with the aid of (15) that the hypergeometric function is equal to an
associated Legendre function of the second kind :

e−i m−σ
2

π Γ
(
α− µ+ σ+3+m

2

)
√
π2

m−σ
2 Γ(1 + α+m− µ)

(τ + (τ 2 − 1)
1
2 )1+α+m−µ

(τ 2 − 1)
m−σ

4

Q
m−σ

2

α−µ+σ+m
2

(τ) .
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With the aid of (16), we then find :

Zσ ∗ Tα+m−µ
+ δ(X) = H(T −R)eiπ σ−m−1

2 ρα+σ−µ Γ
(

1+m−σ
2

)
D

1+m−σ
2

α+σ−µ(τ)

2σ−1π
m−1

2 Γ
(

σ
2

) ,

with ρ = (T 2−R2)
1
2 = Q1,m(T,X)

1
2 the hyperbolic norm on the future cone.

Because the Gegenbauer functions are defined in the complex plane cut along
]−∞, 1], the factor H(T −R) may be omitted. Indeed, as τ ∈ R+ the con-
dition |arg(τ − 1)| < π is equivalent with τ > 1⇔ T > R. The Gegenbauer
function has zeroes for 1+m−σ

2
∈ −N, cancelling the poles of the Gamma

function Γ(1+m−σ
2

), and poles at α − µ = −k −m with k ∈ N0. Note that

these poles were to be expected since the distribution Tα+m−µ
+ also has poles

at these values. This leaves us with two distributions, the left-hand side and
the right-hand side of previous expression, having poles at α− µ = −k −m
and being equal in the strip where Re(σ) > m−1. By analytic continuation,
these distributions are equal in the whole complex plane.

We thus have :

Zµ ∗ Tα+m−µ
+ δ(X) = ρα e

iπ µ−m−1
2

2µ−1π
m−1

2

Γ
(

1+m−µ
2

)
Γ
(

µ
2

) D
1+m−µ

2
α (τ)

and

∂XZ1+µ ∗ Tα+m−µ
+ δ(X) = ∂X

[
ρ1+α e

iπ µ−m
2

2µπ
m−1

2

Γ
(

m−µ
2

)
Γ
(

1+µ
2

)Dm−µ
2

1+α (τ)

]

Recalling the polar decompositions X = ρξ and ∂X = ξ(∂ρ + 1
ρ
Γ1,m) and

using the fact that Γ1,m(τ) = Γ(ξ · ε) = ξ ∧ ε, we get :

∂Xρ
1+αD

m−µ
2

1+α (τ) = ξρα
(
(m− µ)D

m−µ
2

+1
α (τ)ξ ∧ ε+ (1 + α)D

m−µ
2

1+α (τ)
)
.

Since

ξ(ξ ∧ ε) = ε− τξ

we eventually get, hereby using (25) :

∂Xρ
1+αD

m−µ
2

1+α (τ) = (µ−m)ρα
(
D

m−µ
2

+1

α−1 (τ)ξ −D
m−µ

2
+1

α (τ)ε
)

162



This yields the fundamental solution Eµ
α(X) for an arbitrary complex power

of the hyperbolic Dirac operator, for all µ ∈ C and α 6= µ −m − k, where
k ∈ N0 :

Eµ
α(X) =

1 + e−iπµ

2
ρα e

−iπ m+1−µ
2

2µ−1π
m−1

2

Γ
(

1+m−µ
2

)
Γ
(

µ
2

) D
1+m−µ

2
α (τ)

− 1− e−iπµ

2
ρα e−iπ m−µ

2

2µ−1π
m−1

2

Γ
(
1 + m−µ

2

)
Γ
(

1+µ
2

) (
D

m−µ
2

+1

α−1 (τ)ξ −D
m−µ

2
+1

α (τ)ε
)

Remark : Note that for the case of the natural powers these expressions
coincide with the ones that were found in the previous section, by means of
modulation Theorem 3.3. The advantage of working with the Riesz distribu-
tions is that we obtained the solution for both the even and the odd powers
of the hyperbolic Dirac operator by means of the same argument.
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Chapter 5

Function Theory on the
Hyperbolic Unit Ball

The construction itself is an art, its application
to the world an evil parasite. (L. Brouwer)

In this chapter a function theory on the hyperbolic unit ball is developped.
By means of Stokes Theorem and properties of the Gegenbauer functions,
basic integral formulae will be established and these will be used to obtain a
Taylor (and Laurent) expansion for hyperbolic monogenics on H+. The main
results are then restated for the Klein model of the hyperbolic unit ball.

Throughout this Chapter, the hyperbolic angular operator will be denoted
by Γ instead of Γ1,m.

5.1 The Boosted Fundamental Solution

The aim of this section is to obtain a fundamental solution for the hyperbolic
Dirac equation having its singularities on an arbitrary ray inside the future
cone FC. The hyperbolic fundamental solution Eα(X) = Eα(T,X) obtained
in Chapter 2 becomes singular for space-time vectors belonging to the time-
like ray through ε. But if we want to establish integral formulae for arbitrary
points on the hyperbolic unit ball H+, we need to remove these singularities
from the time-like ray through ε to an arbitrary ray inside the future cone.

In the flat Euclidean case, one first solves the Dirac equation

∂E(x) = −δ(x) , x ∈ Rm ,
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for the Cauchy kernel E(x), and one then translates the singularity from the
origin to an arbitrary point y ∈ Rm :

∂E(x− y) = −δ(x− y) , x ∈ Rm .

For the hyperbolic unit ball, the situation is more complicated because H+ is
not translationally invariant. However, as H+ is SO(1,m)-invariant we can
use hyperbolic rotations (or Lorentz bootst) to remove the singularity. We
will illustrate this in two different ways : first of all we will consider the space-
time picture and explicitely construct the boosted hyperbolic fundamental
solution in co-ordinates (T,X), hereby making use of the group SO(1,m).
Afterwards we will show how this boosted hyperbolic fundamental solution
can be obtained by means of the group Spin(1,m), the double covering group
for SO(1,m).

By definition, a Lorentz boost or hyperbolic rotation is an element of the
orthogonal group SO(1,m). This means that a Lorentz boost B ∈ SO(1,m)
is a linear transformation on R1,m leaving the quadratic form Q1,m(T,X)
unchanged :

Q1,m

(
B(T,X)

)
= Q1,m(T,X) .

Denoting by I1,m the matrix of the quadratic form Q1,m(T,X),

I1,m = Diag(1,−1, · · · ,−1) ,

we thus have for the matrix B of a Lorentz transformation :

I1,m = BtI1,mB .

A pure boost is defined as a transformation B(ω) mixing up the temporal
co-ordinate T and the spatial co-ordinates X in a certain direction ω, and
belongs to the Lie algebra generated by bivectors of the form vεω, with
ω ∈ Sm−1 and v ∈ R.

Because a pure boost B(ω) can always be obtained as the composition
R(e1, ω) ◦ B(e1) ◦ R(ω, e1), where R(ω, ξ) stands for the rotation mapping
ω ∈ Sm−1 7→ ξ ∈ Sm−1, it is sufficient to consider pure boosts B(e1) in the
direction e1 only, whence the label (e1) will be omitted. These boosts can all
be represented by a matrix of the following form :

Bθ =

cosh θ sinh θ 0
sinh θ cosh θ 0

0 0 Im−1

 , θ ∈ R ,
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where Im−1 stands for the unity matrix in (m − 1) dimensions. Under this
transformation, a space-time vector (T,X) transforms in the following way :

T ′

X ′
1

...
X ′

m

 = Bθ


T
X1
...
Xm

 =


T cosh θ +X1 sinh θ
X1 cosh θ + T sinh θ

...
Xm

 .

When considering Lorentz boosts Bθ ∈ SO(1,m) one often uses the so-called
rapidity v = tanh θ ∈ ]− 1, 1[ :

T ′ =
T + vX1

(1− v2)
1
2

X ′
1 =

X1 + vT

(1− v2)
1
2

.

Letting this boost Bθ act on the hyperbolic Dirac equation 2.2, we get :

(ε∂T − ∂X)Bθ

(
Eα(T,X)

)
= Bθ

(
Tα+m−1

+ δ(X)
)
,

with

• Bθ

(
Eα(T,X)

)
= Eθ

α(T,X) the function that needs to be determined,
i.e. the boosted fundamental solution

• Bθ

(
Tα+m−1

+ δ(X)
)

the distribution at the right-hand side in the new
variables (T ′, X ′), representing a delta function along the ray through
(T ′, X ′) :

Bθ

(
Tα+m−1

+ δ(X)
)

= (T ′)α+m−1
+ δ(X ′)

=

(
T + vX1

(1− v2)
1
2

)α+m−1

+

δ

(
X1 + vT

(1− v2)
1
2

)
δ(X ∧ e1) ,

with δ(X ∧ e1) = Πm
j=2δ(Xj), which can be reduced to

Bθ

(
Tα+m−1

+ δ(X)
)

=

(
T − v2T

(1− v2)
1
2

)α+m−1

+

δ

(
X1 + vT

(1− v2)
1
2

)
δ(X ∧ e1)

= (1− v2)
α+m

2 Tα+m−1
+ δ(X1 + vT )δ(X ∧ e1) .
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We thus arrive at the boosted hyperbolic Dirac equation :

(ε∂T − ∂X)Eθ
α(T,X) = (1− v2)

α+m
2 Tα+m−1

+ δ(X1 + vT )δ(X ∧ e1)(5.1)

To solve this equation, we use the method involving Riesz distributions. Let
us therefore first consider the following related scalar equation :

�mΦθ
α(T,X) = (1− v2)

α+m
2 Tα+m−1

+ δ(X1 + vT )δ(X ∧ e1) , (5.2)

such that Eθ
α(T,X) = (ε∂T − ∂X)Φθ

α(T,X). As the distribution at the right-
hand side belongs to D′+(R1,m), we immediately get :

Φθ
α(T,X) = (1− v2)

α+m
2 Z2 ∗ Tα+m−1

+ δ(X1 + vT )δ(X ∧ e1)

=
(1− v2)

α+m
2

2π
m−1

2 Γ
(

3−m
2

) ∫ ∞

0

H(T − S − |X + vSe1|)(
(T − S)2 − |X + vSe1|2

)m−1
2

Sα+m−1dS

Let us for a moment put f(S) = T − S − |X + vSe1|. We then have :

f(S) = 0 =⇒ (T − S)2 = |X + vSe1|2

⇐⇒ S = S±

with

S± =
T + vX1 ±

(
(T + vX1)

2 − (1− v2)(T 2 − |X|2)
) 1

2

1− v2
.

Note that

(T + vX1)
2 − (1− v2)(T 2 − |X|2) = (1− v2)|X ′|2 ≥ 0 ,

such that both S+ and S− are real-valued. One can easily verify that only
S = S− gives a root of f(S), whence

Φθ
α(T,X) =

(1− v2)
α+m

2

2π
m−1

2 Γ
(

3−m
2

) ∫ S−

0

Sα+m−1(
(T − S)2 − |X + vSe1|2

)m−1
2

dS ,

where we have omitted a factor H(S−). We will return to this point later.
Denoting the integral on previous line as IS, we get immediately :

IS = (1− v2)
1−m

2
S

α+m+1
2

−

S
m−1

2
+

∫ 1

0

(1− t)
1−m

2

(
1− S−

S+

t

) 1−m
2

tα+m−1dt .
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Using Euler’s integral formula for the hypergeometric function, we get for
those m for which Re

(
3−m

2

)
< 0 :

IS =
Γ(α+m)Γ

(
3−m

2

)
(1− v2)

m−1
2 Γ

(
α+ m+3

2

) Sα+m+1
2

−

S
m+1

2
+

F

(
α+m,

m− 1

2
;α+

m+ 3

2
;
S−
S+

)
.

As

S−
S+

=
τ − (τ 2 − 1)

1
2

τ + (τ 2 − 1)
1
2

for τ =
T + vX1

(1− v2)
1
2 (T 2 − |X|2) 1

2

,

we get by means of formula (15) :

F

(
α+m,

m− 1

2
;α+

m+ 3

2
;
S−
S+

)
=

eiπ m−1
2

2
m
2
−1π

1
2

Γ
(
α+ m+3

2

)
Γ(α+m)

×(
τ + (τ 2 − 1)

1
2

)α+m

(τ 2 − 1)
m
4
− 1

2

Q
1−m

2

α+m
2
(τ) .

On the other hand we also have

S
α+m+1

2
−

S
m+1

2
+

=

(
T 2 − |X|2

1− v2

) 1+α
2 (

τ + (τ 2 − 1)
1
2

)−α−m
,

such that by means of expression (22) we will eventually find :

Φθ
α(T,X) =

e−iπ m−1
2

2π
m−1

2

Γ

(
m− 1

2

)
(T 2 − |X|2)

α+1
2 D

m−1
2

α+1 (τ) .

Note that we have omitted a factor H(S−) when we calculated the integral
IS. This puts no limitations on our result however, because the information
encoded in the Heaviside function H(S−) is also encoded in the cut of the

Gegenbauer function D
m−1

2
α+1 (τ) :

τ > 1 =⇒ S− > 0 .

Now that we have found an expression for Φθ
α(T,X) we can easily derive

an expression for Eθ
α(T,X) by letting the Dirac operator (ε∂T − ∂X) act

on Φθ
α(T,X). To do so, we will use the polar decomposition for the Dirac

operator on R1,m. First of all, note that with X = εT +X = ρξ we get :

τ =
T + vX1

(1− v2)
1
2 (T 2 − |X|2) 1

2

= ξ · ε− ve1
(1− v2)

1
2

,
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the dot indicating the Clifford inner product on Rm.

On the other hand, note that the space-time vector at the right-hand side is
nothing but the image of ε under the inverse Lorentz boost B−θ :

B−θ


1
0
...
0

 =


(1− v2)−

1
2

−v(1− v2)−
1
2

...
0

 .

This means that in polar representation we have

Φθ
α(ρξ) =

e−iπ m−1
2

2π
m−1

2

Γ

(
m− 1

2

)
ρα+1D

m−1
2

α+1

(
ξ ·B−θ(ε)

)
,

such that with ∂X = ξ
(
∂ρ + 1

ρ
Γ
)

we get :

Eθ
α(ρξ) =

e−iπ m+1
2

π
m−1

2

Γ

(
m+ 1

2

)
ρα

(
D

m+1
2

α−1 (τ)ξ −D
m+1

2
α (τ)B−θ(ε)

)
,

where we have used (25) and where we have put τ = ξ ·B−θ(ε).

Now that we have obtained a fundamental solution for the Dirac equation
on the hyperbolic unit ball becoming singular on an arbitrary ray inside the
future cone, we introduce the following notation :

Definition 5.1 Consider two space-time vectors X = |X|ξ and Y = |Y |η,
with ξ and η belonging to the hyperbolic unit ball H+, and an arbitrary α ∈ C
such that α + m /∈ −N. The restriction to H+ of the fundamental solution
for the Dirac operator ∂X on R1,m which is homogeneous of degree α in X
and has its singularities on the ray through the space-time vector η will be
denoted as Eα(ξ, η), and is given by

Eα(ξ, η) =
e−iπ m+1

2

π
m−1

2

Γ

(
m+ 1

2

)(
D

m+1
2

α−1 (τ)ξ −D
m+1

2
α (τ)η

)
,

where τ denotes the Clifford inner product ξ · η.

Note that Eα(ξ, η) ∈ Hα(H+ \ {η}).

169



Remark : In terms of this new definition the fundamental solution (2.14)
obtained in section 2.2.3 can be represented as

Eα(T,X) = Eα(X) = ραEα(ξ, ε) .

To conclude this section, we illustrate how to obtain the boosted fundamental
solution by means of the action of the Spingroup Spin(1,m). For that purpose
we start from the hyperbolic Dirac equation (2.2) in polar representation :

∂XEα(X) = [Tα+m−1
+ δ(X)]polar .

Note that we have not yet written the right-hand side in its polar represen-
tation, because this is far from trivial.

Using definition 5.1, the previous expression can also be written as follows :

ξ(Γ + α)Eα(ξ, ε) =
1

ρα−1
[Tα+m−1

+ δ(X)]polar .

It seems intuitively obvious to define the distribution at the right-hand side
as δ(ξ− ε). The mathematical principle underlying this definition is the fact
that a delta distribution on a manifold, in casu the delta distribution δ(ξ−ε)
on the hyperbolic unit ball H+, can be defined as a delta distribution in
the tangent plane at the point where the delta distribution is to be defined.
In the tangent plane, one then considers a local co-ordinate system. In the
present situation this local system is obtained by the radial projection on
the tangent plane, defined as the map sending an arbitrary element ξ ∈ H+

to the intersection of the tangent plane and the ray through ξ. This is pre-
cisely the projection on the hyperplane Π leading to the Klein model of the
hyperbolic unit ball, and that is how we have derived the hyperbolic Dirac
equation in the first place (see section 2.2).

The idea is now to consider an arbitrary element s ∈ Spin(1,m) and to let
this element act on the hyperbolic Dirac equation in its polar representation.
An arbitrary element s ∈ Spin(1,m) has the following form :

s = cosh
θ

2
+ εω sinh

θ

2
, θ ∈ R , ω ∈ Sm−1 ,

and acts on space-time vectors and on functions according to the transfor-
mation rules

X −→ sXs̄

F (X) −→ H(s)F (X) = sF (s̄Xs)s̄ .
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Since the Dirac operator ∂X is Spin(1,m)-invariant, we get :

H(s)[∂XEα(ξ, ε)] = ∂X [H(s)Eα(ξ, ε)] = H(s)δ(ξ − ε) .

By definition, we have

H(s)Eα(ξ, ε) = sEα(s̄ξs, ε)s̄ .

Recalling the explicit expression for Eα(ξ, ε), given by

Eα(ξ, ε) =
e−iπ m+1

2

π
m−1

2

Γ

(
m+ 1

2

)(
D

m+1
2

α−1 (τ)ξ −D
m+1

2
α (τ)ε

)
with τ = ξ · ε, making use of the fact that s̄ξs · ε = ξ ·sεs̄ and putting sεs̄ = η
we eventually get

sEα(s̄ξs, ε)s̄ =
e−iπ m+1

2

π
m−1

2

Γ

(
m+ 1

2

)(
D

m+1
2

α−1 (ξ · η)ξ −D
m+1

2
α (ξ · η)η

)
.

In other words, the only effect of the action of an element s ∈ Spin(1,m) on
the hyperbolic fundamental solution Eα(ξ, ε) is that ε must be replaced by
its image under the inverse Spin-transformation s̄.

Note that the distribution H(s)δ(ξ − ε) = δ(ξ − η). This can be under-
stood as follows : since a delta distribution is a scalar object, it transforms
as

H(s)δ(ξ − ε) = sδ(s̄ξs− ε)s̄ = δ(s̄ξs− ε).

Hence, its action on test functions ϕ(ξ) reduces to〈
H(s)δ(ξ − ε), ϕ(ξ)

〉
=

〈
δ(ξ − ε), ϕ(sξs̄)

〉
= ϕ(sεs̄)

=
〈
δ(ξ − η), ϕ(ξ)

〉
.

The latter delta distribution can be defined by considering a local co-ordinate
system in the tangent plane to H+ at η, obtained by a radial projection from
a uniquely determined point in the embedding space R1,m : the vertex of the
cone touching the hyperbolic surface H+ at infinity. This point lies on the
normal on the tangent plane at η.

If we choose s ∈ Spin(1,m) to be the element

s = cosh
θ

2
+ εe1 sinh

θ

2
, θ ∈ R , ω ∈ Sm−1 ,
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the space-time vector X = εT +X transforms as follows :

X −→
(

cosh
θ

2
+ εe1 sinh

θ

2

)
X

(
cosh

θ

2
− εe1 sinh

θ

2

)
−→ (T cosh θ −X1 sinh θ)ε+ (X1 cosh θ − T sinh θ)e1 +

m∑
j=2

Xjej ,

which is of course the transformation of X under the Lorentz boost B−θ,
because Spin(1,m) defines a double covering of the group SO(1,m).

5.2 Integral Formulae for ξ(Γ + α)

In this section the basic integral formulae related to the classes of functions
Hα(Ω) and Hα(R+Ω) are established. These include the Cauchy-Pompeju
Theorem, Stokes’ Theorem and Cauchy’s Theorem. Also the Modulation
Theorems from Chapter 3 will be reformulated in terms of the polar co-
ordinates (ρ, ξ) on R1,m, which will be used throughout this whole section,

where ρ = (T 2 − |X|2) 1
2 denotes the hyperbolic norm and

ξ =
εT +X

(T 2 − |X|2) 1
2

∈ H+

the hyperbolic unit vector associated to X = εT + X. In what follows we
will use, depending on the problem, two different expansions for arbitrary
hyperbolic unit vectors ξ and η ∈ H+ :

ξ = τε+ (τ 2 − 1)
1
2 ξ = ε cosh θ + ξ sinh θ

η = σε+ (σ2 − 1)
1
2η = ε coshϕ+ η sinhϕ

with ξ and η ∈ Sm−1, with τ, σ ∈ [1,+∞[ and θ, ϕ ∈ R.

First of all, we will apply the hyperbolic Modulation Theorem 3.1 to both
inner and outer spherical monogenics on Rm and write the resulting formulae
in terms of the polar co-ordinates on H+ :

1. Consider an inner spherical monogenic Pk(ξ) ∈ M+(k). The following
function then belongs to Hα(R+H+) :

TαMod

(
α, k,

X

T

)
Pk

(
X

T

)
.
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The idea is to rewrite this function in such a way that we obtain an
element of the function space Hα(H+) expressed in terms of the co-
ordinates on H+ that were introduced earlier. For that purpose formula
(23), expressing the Gegenbauer function in terms of a hypergeometric
function with argument (1− z−2), will be essential. As the modulation
factor consists of two hypergeometric functions whose argument is given
by |x|2, we get :

|x|2 =
|X|2

T 2
= 1− 1

z2
=⇒ z = τ .

This allows us to rewrite the modulation factor in the variable τ = ξ ·ε,
the same variable occurring in the the definition of the fundamental
solution Eα(ξ, ε).

First of all, we have :

F

(
1 + k − α

2
,
k − α

2
; k +

m

2
;
|X|2

T 2

)
= τ k−α Γ(1 + α− k)Γ(2k +m− 1)

Γ(α+ k +m− 1)
C

k+m−1
2

α−k (τ) ,

whence

TαF

(
1 + k − α

2
,
k − α

2
; k +

m

2
;
|X|2

T 2

)
Pk

(
X

T

)
= ρα(τ 2 − 1)

k
2
Γ(1 + α− k)Γ(2k +m− 1)

Γ(α+ k +m− 1)
C

k+m−1
2

α−k (τ)Pk(ξ) .

Next, we also have

F

(
1 + k − α

2
, 1 +

k − α
2

; 1 + k +
m

2
;
|X|2

T 2

)
= τ 1+k−α Γ(α− k)Γ(2k +m+ 1)

Γ(α+ k +m)
C

k+m+1
2

α−k−1 (τ) ,

whence

Tα k − α
2k +m

X

T
ε F

(
1 + k − α

2
,
k − α

2
; k +

m

2
;
|X|2

T 2

)
Pk

(
X

T

)
= −ρα(τ 2 − 1)

k+1
2 ξε

Γ(1 + α− k)Γ(2k +m)

Γ(α+ k +m)
C

k+m+1
2

α−k−1 (τ)Pk(ξ) .

173



As (τ 2 − 1)
1
2 ξε = ξ ∧ ε = (ξε− τ), and as

(α+ k +m− 1)C
k+m−1

2
α−k (τ) + (2k +m− 1)τC

k+m+1
2

α−k−1 (τ)

= (2k +m− 1)C
k+m+1

2
α−k (τ) ,

we eventually get :

TαMod

(
α, k,

X

T

)
Pk

(
X

T

)
= ραPα,k(ξ) ,

with Pα,k(ξ) given by :

Γ(1 + α− k)Γ(2k +m)

Γ(α+ k +m)
(τ 2 − 1)

k
2

{
C

k+m+1
2

α−k (τ)− Ck+m+1
2

α−k−1 (τ)ξε

}
Pk

(
ξ
)
.

Note that the poles of Γ(α + k +m) are cancelled by the poles of the
Gegenbauer functions and that the poles of Γ(1 + α− k) are cancelled
by the zeroes of the Gegenbauer functions, whence no restrictions on
the parameter α are to be made.

Theorem 3.1 may thus be reformulated as follows :

Theorem 5.1 Let Pk(ξ) ∈ M+(k) be an inner spherical monogenic
on Rm and let α ∈ C be an arbitrary complex number. The function
Pα,k(ξ) defined for all ξ = τε+ (τ 2 − 1)

1
2 ξ ∈ H+ by

Pα,k(ξ) =
Γ(1 + α− k)Γ(2k +m)

Γ(α+ k +m)
×

(τ 2 − 1)
k
2

{
C

k+m+1
2

α−k (τ)− Ck+m+1
2

α−k−1 (τ)ξε

}
Pk

(
ξ
)

belongs to Hα(H+).

2. Consider an outer spherical monogenic Qk(ξ) ∈ M−(k). If we denote

H+ \ {ε} by H
(ε)
+ , the following function belongs to Hα(R+H

(ε)
+ ) :

TαMod

(
α, 1− k −m, X

T

)
Qk

(
X

T

)
.

The idea is to rewrite this function as an element ofHα(H
(ε)
+ ), expressed

in terms of the polar co-ordinates on H+. Note that all outer spherical
monogenics Qk(ξ) give rise to an α-homogeneous solution for the Dirac
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operator on R1,m with singularities on the ray through ε. This singular
behaviour does not change if we add a particular α-homogeneous null-
solution for the Dirac operator, i.e. an element of Hα(H+). First of all
note that if Qk(ξ) ∈M−(k), then

P ′k(ξ) = εξQk(ξ) ∈ M+(k) .

The factor ε is introduced for convenience, and has no effect on the
monogeneity of P ′k(ξ) with respect to the Dirac operator ∂ on R0,m.
Theorem 3.1 can then be used to modulate this function, and the result
will be an element of the function space Hα(H+). Using definitions for
the Gegenbauer functions we will then rewrite the function

TαMod

(
α, 1− k −m, X

T

)
Qk

(
X

T

)
− 21−2k−m Γ

(
1− k − m

2

)
Γ
(
k + m

2

) Γ(α+ k +m)

Γ(α− k + 1)
TαMod

(
α, k,

X

T

)
P ′k

(
X

T

)
belonging to Hα(H

(ε)
+ ), in terms of the co-ordinates on H+ hence ob-

taining an element of the function space Hα(H
(ε)
+ ).

Before doing so, let us consider an explicit example by choosing Qk(ξ)
to be ξ (i.e. k = 0). The previous expression then reduces to

2π
m
2

Γ
(

m
2

)TαMod

(
α, 1−m, X

T

)
E

(
X

T

)
+ 21−m Γ

(
1− m

2

)
Γ
(

m
2

) Γ(α+m)

Γ(α+ 1)
TαMod

(
α, 0,

X

T

)
ε ,

which gives for odd m up to the factor Am :

TαMod

(
α, 1−m, X

T

)
E

(
X

T

)
+

(−1)
m−1

2

2mπ
m−2

2 Γ
(

m
2

) Γ(α+m)

Γ(α+ 1)
TαMod

(
α, 0,

X

T

)
ε ,

precisely the expression for the hyperbolic fundamental solution as it
was obtained in Chapter 2.

Consider the modulation factor Mod
(
α, 1− k −m, X

T

)
. First of all we

175



have

F

(
1− k −m− α

2
, 1− k +m+ α

2
; 1− k − m

2
;
|X|2

T 2

)
=

Γ
(
1− k − m

2

)
2k+m

2

(τ 2 − 1)
k
2
+m

4

τα+k+m−1
P

k+m
2

α+m
2
−1(τ) ,

whence

TαF

(
1− k −m− α

2
, 1− k +m+ α

2
; 1− k − m

2
;
|X|2

T 2

)
Qk

(
X

T

)
= ρα Γ

(
1− k − m

2

)
2k+m

2

(τ 2 − 1)
1
2
−m

4 P
k+m

2

α+m
2
−1(τ)Qk(ξ) .

Next, we also have

F

(
1 +

1− k −m− α
2

, 1− k +m+ α

2
; 2− k − m

2
;
|X|2

T 2

)
=

Γ
(
2− k − m

2

)
2k+m

2
−1

(τ 2 − 1)
k
2
+m

4
− 1

2

τα+k+m−2
P

k+m
2
−1

α+m
2
−1(τ) ,

whence

Tα 1− k −m− α
2− 2k −m

X

T
ε F

(
1 + k − α

2
,
k − α

2
; k +

m

2
;
|X|2

T 2

)
Qk

(
X

T

)
= ρα(1− k −m− α)

Γ
(
1− k − m

2

)
2k+m

2

(τ 2 − 1)
1
2
−m

4 ξεP
k+m

2
−1

α+m
2
−1(τ)Qk(ξ) .

On the other hand, the function TαMod
(
α, k, X

T

)
P ′k
(

X
T

)
in terms of

the Legendre functions can easily be found by means of preceeding
calculations :

TαF

(
1 + k − α

2
,
k − α

2
; k +

m

2
;
|X|2

T 2

)
P ′k

(
X

T

)
= ρα(τ 2 − 1)

1
2
−m

4
Γ
(
k + m

2

)
21−k−m

2

P
1−k−m

2

α+m
2
−1(τ)P

′
k(ξ) ,

and

Tα k − α
2k +m

X

T
ε F

(
1 + k − α

2
,
k − α

2
; k +

m

2
;
|X|2

T 2

)
P ′k

(
X

T

)
= (k − α)ρα(τ 2 − 1)

1
2
−m

4 ξε
Γ(k + m

2
)

21−k−m
2

P
−k−m

2

α+m
2
−1(τ)P

′
k(ξ) ,
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where P ′k(ξ) = εξQk(ξ).

Let us then return to the function

TαMod

(
α, 1− k −m, X

T

)
Qk

(
X

T

)
− 21−2k−m Γ

(
1− k − m

2

)
Γ
(
k + m

2

) Γ(α+ k +m)

Γ(α− k + 1)
TαMod

(
α, k,

X

T

)
P ′k

(
X

T

)
.

It has a component in Qk(ξ) given by

ρα Γ
(
1− k − m

2

)
2k+m

2

(τ 2 − 1)
1
2
−m

4

[
P

k+m
2

α+m
2
−1(τ)−

Γ(α+ k +m)

Γ(α− k)
P
−k−m

2

α+m
2
−1(τ)

]
and a component in ξεQk(ξ) given by

(1− k −m− α)ρα Γ
(
1− k − m

2

)
2k+m

2

(τ 2 − 1)
1
2
−m

4 ×[
P

k+m
2
−1

α+m
2
−1(τ)−

Γ(α+ k +m− 1)

Γ(α− k + 1)
P

1−k−m
2

α+m
2
−1(τ)

]
.

With the aid of formulae (16) and (17) we get for the term in Qk(ξ)

eiπ(k+m
2 )Γ(α+ k +m)

2k+m
2
−1Γ(α− k)Γ

(
k + m

2

)ρα(τ 2 − 1)
1
2
−m

4 Q
−k−m

2

α+m
2
−1(τ)

and for the term in ξεQk(ξ)

eiπ(k+m
2
−1)Γ(α+ k +m)

2k+m
2
−1Γ(α− k + 1)Γ

(
k + m

2

)ρα(τ 2 − 1)
1
2
−m

4 Q
1−k−m

2

α+m
2
−1(τ) .

Recalling the definition for the Gegenbauer function of the second kind
in terms of the Legendre function of the second kind, the term in Qk(ξ)
gives

2π
1
2 e−iπ(k+m+1

2 )Γ
(
k + m+1

2

)
Γ
(
k + m

2

) ρα(τ 2 − 1)
k+1
2 D

k+m+1
2

α−1−k (τ)

and the term in ξεQk(ξ) gives

π
1
2 e−iπ(k+m−1

2 )(α+m+ k − 1)
Γ
(
k + m+1

2

)
Γ
(
k + m

2

) ρα(τ 2 − 1)
k
2D

k+m−1
2

α−k (τ) .
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Adding both pieces and using the recurrence relations for the Gegen-
bauer functions eventually yields :

ρα(τ 2 − 1)
k
2 2π

1
2 e−iπ(k+m+1

2 )Γ
(
k + m+1

2

)
Γ
(
k + m

2

) ×{
D

k+m+1
2

α−k−1 (τ)ξε−Dk+m+1
2

α−k (τ)
}
ξεQk(ξ) .

Note that this expression has poles for α = −m− k − n with n ∈ N.

We thus arrive at the following Theorem :

Theorem 5.2 Let Qk(ξ) ∈M−(k) be an outer spherical monogenic on
Rm and let α ∈ C such that α /∈ −m − k − N. The function Qα,k(ξ)

defined for all ξ = τε+ (τ 2 − 1)
1
2 ξ ∈ H+ by

Qα,k(ξ) = (τ 2 − 1)
k
2 2π

1
2 e−iπ(k+m+1

2 )Γ
(
k + m+1

2

)
Γ
(
k + m

2

) ×{
D

k+m+1
2

α−k−1 (τ)ξε−Dk+m+1
2

α−k (τ)
}
ξεQk(ξ)

belongs to Hα(H
(ε)
+ ).

Let us then consider the fundamental solution Eα(ξ, η). We already know
that is satisfies the equation

ξ(Γ + α)Eα(ξ, η) = δ(ξ − η) ,

but in view of Cauchy’s Theorem we need an expression for this operator
acting from the right, as will be made clear a bit further. In order to indicate
on which of the variables the Gamma operator is acting, the variable will be
used as an additional label. We then have the following :

Lemma 5.1 Let Eα(ξ, η) be the hyperbolic fundamental solution given by
Definition 5.1. Putting β = −α−m, the following relation holds :

Eα(ξ, η)(Γη − β)η = δ(ξ − η) .

Proof : Using conjugation, the previous expression is found to be equivalent
with

η̄(Γ̄η − β̄)Ēα(ξ, η) = δ(ξ − η) .
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Since η̄ = −η and Γ̄η = −Γ, we get

η(Γη + β̄)Ēα(ξ, η) = δ(ξ − η) .

In order to determine Ēα(ξ, η) we consider its explicit expression in terms of
the Gegenbauer function of the second kind. Using expression (24) one can
easily verify that

e−iπ m+1
2 D

m+1
2

α (z) = e−iπ m+1
2 D

m+1
2

ᾱ (z) ,

such that Ēα(ξ, η) = −Eᾱ(ξ, η). We thus have to prove that

−η(Γη + β̄)Eᾱ(ξ, η) = δ(ξ − η) ,

or equivalently

−η(Γη + β)Eα(ξ, η) = δ(ξ − η) ,

where β = −α−m. First of all we know that

η(Γη + β)Eβ(η, ξ) = δ(ξ − η) ,

or in explicit form, with τ = η · ξ :

e−iπ m+1
2 Γ

(
m+1

2

)
π

m−1
2

η(Γη + β)

{
D

m+1
2

β−1 (τ)η −D
m+1

2
β (τ)ξ

}
= δ(ξ − η) .

On the other hand, putting k = 0 in Theorem 5.1, we also have

e−iπ m+1
2 Γ

(
m+1

2

)
π

m−1
2

η(Γη + β)

{
C

m+1
2

β−1 (τ)η − C
m+1

2
β (τ)ξ

}
= 0 .

Eventually making use of expression (27) to put

D
m+1

2
β−1 (τ)− eiπ m+1

2
sin
(
β + m−1

2

)
π

sin(β − 1)π
C

m+1
2

β−1 (τ) = D
m+1

2
α (τ)

and

D
m+1

2
β (τ)− eiπ m+1

2
sin
(
β + m+1

2

)
π

sin(βπ)
C

m+1
2

β (τ) = D
m+1

2
α−1 (τ) ,

we arrive at

e−iπ m+1
2 Γ

(
m+1

2

)
π

m−1
2

η(Γη + β)

{
D

m+1
2

α (τ)η −D
m+1

2
α−1 (τ)ξ

}
= δ(ξ − η) ,
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or

−η(Γη + β)Eα(ξ, η) = δ(ξ − η) .

This proves the Lemma. �

Remark : This Lemma also proves that the function Eα(X, Y ), defined
for space-time vectors X and Y ∈ FC, is monogenic with respect to the
Dirac operator ∂X on R1,m from the left and the operator ∂Y from the right
if we impose the following homogeneity condition :

Eα(X, Y ) = |X|αEα(ξ, η)|Y |β .

It becomes singular if X and Y are on the same ray through the origin.

In the next Theorem we will give a homogeneous version of the following
basic identity, valid on Rm :

d(fσ(x, dx)g) =

(
(f∂)g + f(∂g)

)
dx , (5.3)

with dx = dx1 · · · dxm the volume element on Rm, ∂ the Dirac operator on
R0,m and σ(x, dx) the oriented surface element. It is defined by means of the
contraction operator :

σ(x, dx) = ∂cdx =
m∑

j=1

(−1)j+1ejdx1 · · · dxj−1dxj+1 · · · dxm ,

the contraction operator itself being determined by the relations

∂xj
c(xkF ) = xk∂xj

cF
∂xj
c(dxkF ) = δjkF − dxk∂xj

cF .

Remark : The contraction operator is sometimes referred to as a fermionic
derivation operator. This is motivated by the fact that this operator acts as
a ”derivative” on the ”variables” dxk in such a way that it anti-commutes
with dxj.

In order to derive a homogeneous version of identity (5.3) which is valid
on R1,m, we first define the Leray form and a homogeneous version of the
oriented surface element as contractions of respectively the volume element
dTdX and the surface element σ(T,X; dT, dX) on R1,m with the Euler ope-
rator Eρ on R1,m (in the following formulae, the variable X0 is to be replaced
by the time-variable T ) :
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Definition 5.2 The Leray form L(X, dX) on R1,m is defined as

L(X, dX) = EρcdX0dX1 · · · dXm

= X0dX1 · · · dXm − dX0L(X, dX)

= X0dX + (−1)mL(X, dX)dX0

=
m∑

j=0

(−1)jXjdXĵ .

Definition 5.3 The homogeneous Σ-form on R1,m is defined as

Σ(X, dX) = Eρcσ(X, dX)

= εL(X, dX) + Tσ(X, dX) + (−1)m∂cL(X, dX)dT .

The notation ĵ hereby indicates that this index is omitted in the summation.

Both objects transform in a homogeneous way under the transformations

X −→ λX

dX −→ λdX +Xdλ ,

whence they are well-defined on the hyperbolic unit ball. As their restrictions
to the hyperbolic surface H+ coincide respectively with the volume element
and the oriented surface element on H+, it seems natural to replace the
volume element and the oriented surface element in expression (5.3) by the
Leray form L(X, dX) and Σ(X, dX) respectively. A homogeneous version of
this identity is then given by

Theorem 5.3 (Cauchy-Pompeju) Let F and G ∈ C1(R1,m) with F (X) and
G(X) respectively homogeneous of degree α and β, where α+β+m = 0. We
then have

d

(
FΣ(X, dX)G

)
= −

[
(F∂X)G+ F (∂XG)

]
L(X, dX) .

For a proof we refer to e.g. [12]. �

Since both sides of this equation are homogeneous of degree zero, if the
condition α+β+m = 0 holds, the result is essentially valid on the manifold
Ray(FC) and can thus be realized on arbitrary surfaces inside the future
cone, in particular on the hyperbolic surface H+. Let us therefore consider
an open subset Ω of H+ and let C ⊂ Ω be compact with smooth boundary
∂C. We are then lead to the following Theorems :

181



Theorem 5.4 (Stokes) Let F and G ∈ C1(Ω) with F (X) and G(X) respec-
tively homogeneous of degree β and α, where α+ β +m = 0. Then :∫

∂C

FΣ(ξ, dξ)G =

∫
C

[
(FΓ)ξG+ FΓ(ξG)

]
L(ξ, dξ)

=

∫
C

[
(F (Γ− β)) ξG− Fξ(Γ + α)G

]
L(ξ, dξ)

Proof : We start from the Cauchy-Pompeju identity on R1,m :

FΣ(X, dX)G = −
[
(F∂X)G+ F (∂XG)

]
L(X, dX) .

Since

F∂X = −∂XF = −ξ(Γ + β̄)F (ξ) = F (β − Γ)ξ

on H+, integration over a compact subset C ⊂ Ω with smooth boundary
yields immediately :∫

∂C

FΣ(X, dX)G =

∫
C

[
(F (Γ− β)ξ)G− Fξ(Γ + α)G

]
L(X, dX) .

As α+ β = −m and Γ + ξΓξ = m this reduces to∫
∂C

FΣ(X, dX)G =

∫
C

[
(FΓ) ξG− F (ξΓξ −m)(ξG)

]
L(X, dX)

=

∫
C

[
(FΓ) ξG+ FΓ(ξG)

]
L(X, dX) .

This proves the Theorem. �

Theorem 5.5 (Cauchy) Let F ∈ Hα(Ω). The following formula holds :∫
∂C

Eα(η, ξ)Σ(ξ, dξ)F (ξ) =

{
F (η) if η ∈

◦
C

0 if η ∈ Ω \ C

Proof : Follows immediately from Stokes’ Theorem and Lemma 5.1. �
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5.3 Taylor Series on the Hyperbolic Unit Ball

In this section the Taylor (and Laurent) series for hyperbolic monogenics on
SO(m)-invariant subdomains Ωη of H+ is established. An SO(m)-invariant
subdomain Ωη of H+ is defined as an open subset Ωη ⊂ H+ such that the
subgroup SO(1,m)η of SO(1,m) fixing η, leaves the subset Ωη invariant. A
decomposition for the fundamental solution Eα(η, ξ) will be given, using the
classical Cauchy kernel E(x) on Rm and Theorems 5.1 and 5.2. Cauchy’s
Theorem will then be used to establish the Taylor (resp. Laurent) series for
hyperbolic monogenics on open domains (resp. open annular domains) in
H+ .

From the previous section (in particular Lemma 5.1) it is clear that the
fundamental solution Eα(η, ξ) for the operator η(Γ + α) with singularity for
η = ξ may be considered as the restriction to the hyperbola H+ of a function
which is α-homogeneous in Y , β-homogeneous in X, monogenic with respect
to the Dirac operator ∂Y on R1,m acting from the left and the operator ∂X

acting from the right and having singularities for Y and X belonging to
the same ray through the origin. It seems therefore natural to consider the
Cauchy kernel E(y − x) on Rm, and to modulate this function by means of
Theorems 5.1 and 5.2 in order to obtain Eα(η, ξ).

So let us consider the series expansion for the Euclidean Cauchy kernel
E(y − x), see formula (2), with t =< x, y > the standard Euclidean inner
product :

E(y − x) =
1

Am

∞∑
k=0

|x|k

|y|k+m−1

{
C

m
2

k (t)η − C
m
2

k−1(t)ξ
}
,

valid for |x| < |y|. Since the function between brackets is an outer spherical
monogenic on Rm with respect to the variable y, having a singularity for
y = 0, Theorem 5.2 can be used to construct a hyperbolic monogenic on

H
(ε)
+ = H+ \ {ε}. With η = σε + (σ2 − 1)

1
2η ∈ H+, this function is for all

η 6= ε and α+m+ k /∈ −N given by

2π
1
2

eiπ(k+m+1
2 )

Γ
(
k + m+1

2

)
Γ
(
k + m

2

) (σ2 − 1)
k
2×{

D
k+m+1

2
α−k−1 (σ)ηε−Dk+m+1

2
α−k (σ)

}
ηε
{
C

m
2

k (t)η − C
m
2

k−1(t)ξ
}

.
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Using the various recurrence relations for the Gegenbauer functions, this may
also be written as

η
π

1
2

eiπ(k+m−1
2 )

Γ
(
k + m−1

2

)
Γ
(
k + m

2

) (σ2 − 1)
k
2×{

(1 + α− k)Dk+m−1
2

1+α−k (σ) + (2k +m− 1)(σ2 − 1)
1
2D

k+m+1
2

α−k (σ)ηε

}
×

η
{
C

m
2

k (t)η − C
m
2

k−1(t)ξ
}

On the other hand, the function
{
C

m
2

k (t)η − C
m
2

k−1(t)ξ
}

is an inner spherical

monogenic with respect to the variable x. A slightly modified version of
Theorem 5.1 may then be used to obtain a hyperbolic monogenic with respect
to the operator (Γ− β)ξ acting from the right :

Γ(1 + β − k)Γ(2k +m)

Γ(β + k +m)
(τ 2 − 1)

k
2

{
C

m
2

k (t)η − C
m
2

k−1(t)ξ
}
×{

C
k+m+1

2
β−k (τ)− Ck+m+1

2
β−k−1 (τ)ξε

}
In order to replace the indices (β − k) and (β − k − 1) of the Gegenbauer
functions by indices (α− k) and (1 + α− k), we use Legendre’s duplication
formula, relation (26) for the Gegenbauer functions of the first kind

Cµ
−ν−2µ(z) = −sin(ν + 2µ)π

sin(νπ)
Cµ

ν (z) ,

and the Gegenbauer recursion formula(
C

k+m+1
2

α−k−1 (τ)− τCk+m+1
2

α−k (τ)
)

= − 1 + α− k
2k +m− 1

C
k+m−1

2
1+α−k (τ) .

This allows us to obtain the following hyperbolic monogenic with respect to
the operator (Γ− β)ξ acting from the right :

Γ(1 + α− k)
Γ(α+ k +m)

Γ(2k +m− 1)(τ 2 − 1)
k
2

{
C

m
2

k (t)η − C
m
2

k−1(t)ξ
}
×{

(2k +m− 1)(τ 2 − 1)
1
2 ξεC

k+m+1
2

α−k (τ) + (1 + α− k)Ck+m−1
2

1+α−k (τ)

}
When modulating the Euclidean Cauchy kernel E(y − x) to the hyperbolic
bi-monogenic function Eα(Y,X), with α+m /∈ −N and

Y = |Y |η = |Y |
(
σε+ (σ2 − 1)

1
2η

)
= εS + Y

X = |X|ξ = |X|
(
τε+ (τ 2 − 1)

1
2 ξ

)
= εT +X
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we identify y with
Y

S
and x with

X

T
(because the Modulation Theorems

essentially follow from the projection on the Klein model for the hyperbolic
unit ball). Since the series expansion for the Cauchy kernel converges for
|x| < |y|, with

|x| < |y| ⇐⇒ τ < σ ,

we propose the following decomposition for the function Eα(η, ξ), valid for
all α+m /∈ −N and for τ < σ :

1

Am

∞∑
k=0

η(−1)k22k+m−2e−iπ m−1
2 Γ

(
k +

m− 1

2

)2
Γ(1 + α− k)
Γ(α+ k +m)

×

(σ2 − 1)
k
2

{
(1 + α− k)Dk+m−1

2
1+α−k (σ) + (2k +m− 1)(σ2 − 1)

1
2D

k+m+1
2

α−k (σ)ηε

}
{
C

m
2

k (< ξ, η >) + C
m
2

k−1(< ξ, η >)η ξ

}
(τ 2 − 1)

k
2

{
(1 + α− k)Ck+m−1

2
1+α−k (τ) + (2k +m− 1)(τ 2 − 1)

1
2 ξεC

k+m+1
2

α−k (τ)

}
with a region of convergence that will be determined later.

In what follows, we will give a technical proof for the expansion we have
proposed here. The key ingredient is the addition formula (28) for the Gegen-
bauer function of the second kind, for which we refer to section 0.2.3. We
could have proved the expansion for Eα(η, ξ) starting from this formula,
without mentioning the modulation of the Euclidean Cauchy kernel, but this
doesn’t help to understand the expansion. In some sense the modulation
argument, which is very natural, even gives a geometrical interpretation to
the addition formula for the Gegenbauer function.

Let us now put < η, ξ >= cosψ ∈ [−1, 1] such that

η · ξ = στ −
(
(σ2 − 1)(τ 2 − 1)

) 1
2 < η, ξ >= coshϕ cosh θ − sinhϕ sinh θ cosψ .

The addition formula for the Gegenbauer function of the second kind, applied

to D
m−1

2
α+1 (η · ξ), yields :

D
m−1

2
α+1 (η · ξ) =

Γ(m− 1)

Γ
(

m−1
2

)2 ∞∑
k=0

ak(α,m)ck(θ, ϕ, ψ)
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with

ak(α,m) = (−1)k4kΓ

(
m− 1

2
+ k

)2
Γ(2 + α− k)
Γ(α+ k +m)

ck(θ, ϕ, ψ) =
m− 2 + 2k

m− 2
(sinhϕ sinh θ)k ×

D
m−1

2
+k

1+α−k (coshϕ)C
m
2
−1

k (cosψ)C
m−1

2
+k

1+α−k (cosh θ) .

This series converges in the region where

| cosψ + (cos2 ψ − 1)
1
2 | <

∣∣∣∣(coshϕ∓ 1)(cosh θ + 1)

(coshϕ± 1)(cosh θ − 1)

∣∣∣∣ 12 .

The Gamma operator Γ = Y ∧ ∂Y on the hyperbolic unit ball H+ has the
following representation in space-time co-ordinates (S, Y ) :

Γ = −εY ∂S − Sε∂Y + Γ0,m ,

with Γ0,m the spherical Dirac operator on Sm−1 in the co-ordinates η.

With respect to ε as a privileged direction, a co-ordinate system on the
hyperbolic unit ball is obtained by choosing ϕ ∈ R and η ∈ Sm−1 as the
co-ordinates on H+. With respect to this co-ordinate system the hyperbolic
Dirac operator Γ is given by

Γ =

(
1 + ηε

coshϕ

sinhϕ

)
Γ0,m + ηε

∂

∂ϕ
.

In view of the fact that the function Eα(η, ξ), given by definition 5.1, can be
written as

Eα(η, ξ) =
e−iπ m−1

2

2π
m−1

2

Γ

(
m− 1

2

)
η (Γ + 1 + α)D

m−1
2

α+1 (τ) , (5.4)

where the hyperbolic Gamma operator acts on the Y -variable, we have the
following series expansion for all α+m /∈ −N :

Eα(η, ξ) =
e−iπ m−1

2

2π
m−1

2

Γ(m− 1)

Γ
(

m−1
2

) η[ (
1 + ηε

coshϕ

sinhϕ

)
Γ0,m + ηε

∂

∂ϕ
+ 1 + α

] ∞∑
k=0

ak(α,m)ck(θ, ϕ, ψ)

Before actually calculating this expression, we define :
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Definition 5.4 Let ξ and η ∈ Sm−1, and let k ∈ N. We then define

Zk(η, ξ) = C
m
2

k (< η, ξ >) + η ξC
m
2

k−1(< η, ξ >)

Bk(η, ξ) =

{
−ηZk−1(η, ξ)ξ k ≥ 1

0 k = 0

The motivation for this definition lies in the following equality :

m− 2 + 2k

m− 2
C

m
2
−1

k (< η, ξ >) = Zk(η, ξ)−Bk(η, ξ) .

As Zk(η, ξ) is an inner spherical monogenic of degree k and as Bk(η, ξ) is an
outer spherical monogenic of degree (k−1), both with respect to the variable
y on Rm, we get :

Γ0,mZk(η, ξ) = −kZk(η, ξ)

Γ0,mBk(η, ξ) = (m+ k − 2)Bk(η, ξ) .

Hence, considering the hyperbolic Gamma operator in terms of the co-ordinates
(ϕ, η) we find(

Γ + 1 + α

)[
(sinhϕ)kD

m−1
2

+k

1+α−k (coshϕ)
m− 2 + 2k

m− 2
C

m
2
−1

k (cosψ)

]

= (sinhϕ)k−1


(1 + α− k) sinhϕD

m−1
2

+k

1+α−k (coshϕ)
+

(2k +m− 1) sinh2 ϕD
m+1

2
+k

α−k (coshϕ)ηε

Zk

+ (sinhϕ)k−1


(m+ α+ k − 1) sinhϕD

m−1
2

+k

1+α−k (coshϕ)
+

(m+ α+ k − 1)(α+ 2− k)
(m+ 2k − 3)

D
m−3

2
+k

2+α−k (coshϕ)ηε

Bk .

In view of the addition formula, both the left-hand side and the right-hand
side of the previous equation must still be multiplied with

ak(α,m)
Γ(m− 1)

Γ
(

m−1
2

)2 (sinh θ)kC
m−1

2
+k

1+α−k (cosh θ)

and summed over the parameter k, in order to obtain an expression for the

operator (Γ + 1 + α) acting on the Gegenbauer function D
m−1

2
1+α (η · ξ). This

expression can then be cast into the form

∞∑
k=0

ck

(
S1 + S2ηε

)(
S3 + S4η ξ

)(
S5 + S6ξε

)
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with ck a constant, depending on k, and Si a scalar function (i = 1, 2, · · · , 6).

This goes as follows : first of all we write Bk as −ηZk−1ξ. Since Z−1 ≡ 0, the
second series starts from k = 1. Rewriting this series, by putting k′ = k− 1,
one finds :

(Γη + 1 + α)D
m−1

2
1+α (η · ξ) = Σ1 + Σ2 ,

where we have put

Σ1 =
Γ(m− 1)

Γ
(

m−1
2

)2 ∞∑
k=0

ak(α,m)(sinhϕ)kC
m−1

2
+k

1+α−k (cosh θ)×

(sinh θ)k


(1 + α− k)D

m−1
2

+k

1+α−k (coshϕ)
+

(2k +m− 1) sinhϕD
m+1

2
+k

α−k (coshϕ)ηε

Zk(η, ξ)

and

Σ2 =
Γ(m− 1)

Γ
(

m−1
2

)2 ∞∑
k=0

(2k +m− 1)2

(1 + α− k)
ak(α,m)(sinhϕ)kC

m+1
2

+k

α−k (cosh θ)×

(sinh θ)k+1


sinhϕD

m+1
2

+k

α−k (coshϕ)η
+

1 + α− k
2k +m− 1

D
m−1

2
+k

1+α−k (coshϕ)ε

Zk(η, ξ)ξ .

Eventually gathering the terms in D
m−1

2
+k

1+α−k (coshϕ) (resp. D
m+1

2
+k

α−k (coshϕ))
and making use of definition 5.4 to rewrite Zk(ξ, η) in its explicit form, we
get :(

Γ + 1 + α

)
D

m−1
2

1+α (η · ξ)

=
Γ(m− 1)

Γ
(

m−1
2

)2 ∞∑
k=0

(−1)k4k Γ(α+ 1− k)
Γ(α+m+ k)

Γ

(
m− 1

2
+ k

)2

×{
(1 + α− k)D

m−1
2

+k

1+α−k (coshϕ) + (2k +m− 1) sinhϕD
m+1

2
+k

α−k (coshϕ)ηε

}
(sinhϕ sinh θ)k

{
C

m
2

k (< η, ξ >) + η ξC
m
2

k−1(< η, ξ >)

}
{

(1 + α− k)C
m−1

2
+k

1+α−k (cosh θ) + (2k +m− 1) sinh θC
m+1

2
+k

α−k (cosh θ)ξε

}
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In view of expression (5.4) this has to be multiplied with

e−iπ m−1
2

2π
m−1

2

Γ

(
m− 1

2

)
η ,

and the result is the function Eα(η, ξ), defined for all α+m /∈ −N :

Eα(η, ξ) =
e−iπ m−1

2

2π
m−1

2

Γ(m− 1)

Γ
(

m−1
2

) η ∞∑
k=0

(−1)k4k Γ(α+ 1− k)
Γ(α+m+ k)

Γ

(
m− 1

2
+ k

)2

{
(1 + α− k)D

m−1
2

+k

1+α−k (coshϕ) + (2k +m− 1) sinhϕD
m+1

2
+k

α−k (coshϕ)ηε

}
(sinhϕ sinh θ)k

{
C

m
2

k (< η, ξ >) + η ξC
m
2

k−1(< η, ξ >)

}
{

(1 + α− k)C
m−1

2
+k

1+α−k (cosh θ) + (2k +m− 1) sinh θC
m+1

2
+k

α−k (cosh θ)ξε

}
Invoking the relation

Γ(2z) =
22z−1

π
1
2

Γ(z)Γ

(
z +

1

2

)
,

using the explicit definition for Am and recalling the fact that sinhϕ (resp.

sinh θ) stands for (σ2 − 1)
1
2 (resp. (τ 2 − 1)

1
2 ), this expression for Eα(η, ξ)

reduces to the expression we have proposed earlier.

Remark : Although the calculations involved are rather lenghty, this proof
for the expansion for Eα(η, ξ) is an important result : it gives an alternative
interpretation for the Addition Theorem for the Gegenbauer function of the
second kind as established in reference [25]. In [75] the Addition Theorem
for the Gegenbauer functions is used to obtain an axial decomposition for
the fundamental solution of the Dirac equation on the sphere Sm−1 in Rm.
There too, the author gives an alternative proof, which is close to the spirit
of harmonic analysis.
The present approach enables us to obtain expansions for the hyperbolic fun-
damental solution by means of a natural modulation argument. This will be
used in the next section, when we describe the function theory on the Klein
model for the hyperbolic unit ball.

In order to characterize the region of convergence of the series expansion
for Eα(η, ξ), we first introduce the following definition :
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Definition 5.5 For all ζ ∈ H+ and for arbitrary R > 1 the set HC(R, ζ) is
defined as

HC(R, ζ) = {ξ ∈ H+ : 1 ≤ ξ · ζ < R} .

The notation HC is inspired by the fact that this subset HC(R, ζ) ⊂ H+

is a hyperbolic cap, by analogy with the term spherical cap. Note that the
set HC(R, ζ) is invariant under the subgroup SO(1,m)ζ of SO(1,m) fixing
ζ ∈ H+, or HC(R, ζ) is an SO(m)-invariant subdomain of H+.

Recalling our notations

η = σε+ (σ2 − 1)
1
2η = ε coshϕ+ η sinhϕ

ξ = τε+ (τ 2 − 1)
1
2 ξ = ε cosh θ + ξ sinh θ

,

the series expansion for Eα(η, ξ) converges normally on each hyperbolic cap
HC(R, ε), for all τ ≤ R < σ, where σ is being held fixed.

Definition 5.6 For two arbitrary space-time vectors η and ξ ∈ H+, the
function Ek

α(η, ξ) is for all k ∈ N and α+m /∈ −N defined by

Ek
α(η, ξ) = η(−1)k22k+m−2e−iπ m−1

2 Γ

(
k +

m− 1

2

)2
Γ(1 + α− k)
Γ(α+ k +m)

(σ2 − 1)
k
2

{
(1 + α− k)Dk+m−1

2
1+α−k (σ) + (2k +m− 1)(σ2 − 1)

1
2D

k+m+1
2

α−k (σ)ηε

}
{
C

m
2

k (< ξ, η >) + C
m
2

k−1(< ξ, η >)η ξ

}
(τ 2 − 1)

k
2

{
(1 + α− k)Ck+m−1

2
1+α−k (τ) + (2k +m− 1)(τ 2 − 1)

1
2C

k+m+1
2

α−k (τ)ξε

}
These functions Ek

α(η, ξ) are the building blocks of the axial decomposition
for Eα(η, ξ). The term axial decomposition hereby refers to the fact that we
have singled out a privileged direction, or axis, in casu ε ∈ H+.
However, the following Theorem remains true if we replace ε by an arbitrary
element ζ of the hyperbolic unit ball. This is an immediate consequence of
the fact that the hyperbolic unit ball is a homogeneous space, in which all
points are equivalent by definition.

Theorem 5.6 The hyperbolic fundamental solution Eα(η, ξ) has an axial
decomposition given by :

Eα(η, ξ) =
1

Am

∞∑
k=0

Ek
α(η, ξ) .
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This expansion is valid for all α+m /∈ −N and converges normally on each
closed hyperbolic cap HC(R, ε) with τ ≤ R < σ. By construction we also
have

Ek
α(η, ξ) ∈ Hα

η (H
(ε)
+ )

E
k

α(η, ξ) ∈ Hβ
ξ (H+) ,

where we have indicated the variable on which the Dirac operator is supposed
to act.

This Theorem can then be used to establish a Taylor series for hyperbolic
monogenics defined in SO(m)-invariant subdomains Ωε. However, we must
be careful because the decomposition for Eα(η, ξ) established above holds for
σ > τ . In order to find the Taylor series of a hyperbolic monogenic around
ε we thus need to integrate the fundamental solution with respect to η, in
contrast to the Cauchy integral obtained in Theorem 5.5. Using expression
(27) one can easily verify that Eα(η, ξ) = −Eβ(ξ, η), up to a nullsolution
for the hyperbolic angular operator, such that for functions F ∈ Hα(Ω),
with Ω ⊂ H+ open and C ⊂ Ω compact with smooth boundary ∂C, Stokes’
Theorem yields immediately :

η ∈
◦
C =⇒ F (η) =

∫
∂C

Eα(η, ξ)Σ(ξ, dξ)F (ξ)

= −
∫

∂C

Eβ(ξ, η)Σ(ξ, dξ)F (ξ) ,

or equivalently, for ξ ∈
◦
C :

F (ξ) = −
∫

∂C

Eβ(η, ξ)Σ(η, dη)F (η) ,

which by means of the fact that Eβ̄(η, ξ) = −Eβ(η, ξ) eventually leads to :

F (ξ) =

∫
∂C

Eβ̄(η, ξ)Σ(η, dη)F (η) ,

with Eβ̄(η, ξ) = 1
Am

∑
k E

k

β̄(η, ξ) and

E
k

β̄(η, ξ) = (−1)k22k+m−2e−iπ m−1
2 Γ

(
k +

m− 1

2

)2
Γ(1 + β − k)
Γ(β + k +m)

(τ 2 − 1)
k
2

{
(1 + β − k)Ck+m−1

2
1+β−k (τ) + (2k +m− 1)(τ 2 − 1)

1
2C

k+m+1
2

β−k (τ)ξε

}
{
C

m
2

k (< ξ, η >) + C
m
2

k−1(< ξ, η >)ξ η

}
(σ2 − 1)

k
2

{
(1 + β − k)Dk+m−1

2
1+β−k (σ)− (2k +m− 1)(σ2 − 1)

1
2D

k+m+1
2

β−k (σ)ηε

}
η̄
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This eventually leads to a Taylor series for functions F (ξ) ∈ Hα(HC(R, ε)),
with R > 1 arbitrary :

Theorem 5.7 (Taylor) Let F (ξ) ∈ Hα(HC(R, ε)), with R > 1 arbitrary

and α+m /∈ −N. There exists a sequence of functions (F
(k)
ε (ξ))k∈N such that

the function ξ 7→ F
(k)
ε (ξ) belongs to Hα(H+) for each k ∈ N and such that

the following expansion holds in HC(R, ε) :

F (ξ) =
∞∑

k=0

F (k)
ε (ξ) ,

where F
(k)
ε (ξ) has the following integral representation, for each k ∈ N :

F (k)
ε (ξ) =

1

Am

∫
σ=r

Eβ̄(η, ξ)Σ(η, dη)F (η)

where the integration goes over ∂HC(r, ε), r ∈]1, R[ arbitrarily and where
Σ(η, dη) = nds, n denoting the outer unit normal with respect to ∂HC(r, ε)
and ds the Lebesgue measure on ∂HC(r, ε). Denoting the projection of a
function f on Sm−1 onto the space of inner spherical monogenics of order k
by P (k)[f ], this integral is in explicit form given by

F
(k)
ε (ξ) =

(−1)k22k+m−2

eiπ m−1
2

Γ

(
k +

m− 1

2

)2
Γ(1 + β − k)
Γ(β + k +m)

(τ 2 − 1)
k
2 (r2 − 1)

k+m−1
2{

(β +m+ k − 1)C
k+m−1

2
β−k (τ) + (2k +m− 1)(τ 2 − 1)

1
2C

k+m+1
2

β−k−1 (τ)ξ ε

}

P (k)


 (1 + β − k)Dk+m−1

2
1+β−k (r)ηε

+

(2k +m− 1)(r2 − 1)
1
2D

k+m+1
2

β−k (r)

F
(
rε+ (r2 − 1)

1
2η
)

This series expansion for F (η) converges on closed hyperbolic caps HC(ρ, ε),
with τ ≤ ρ < r.

Proof : Consider a function F (ξ) ∈ Hα(HC(R, ε)), such that

ξ(Γ + α)F (ξ) = 0

for all ξ ∈ HC(R, ε), i.e. for all ξ ∈ H+ such that ξ · ε < R. Consider then

an arbitrary ξ = τε + (τ 2 − 1)
1
2 ξ ∈ HC(R, ε). As τ = ξ · ε < R, there exists
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a real number r such that τ < r < R. The closed hyperbolic cap HC(r, ε),
with boundary

∂HC(r, ε) = {η ∈ H+ : σ = η · ε = r} ,

may then be interpreted as a compact subset of the open set HC(R, ε). Since
τ < r, we have ξ ∈ HC(r, ε) such that Cauchy’s Theorem gives :

F (ξ) =

∫
σ=r

Eβ̄(η, ξ)Σ(η, dη)F (η) .

In view of Theorem 5.6 for Eβ̄(η, ξ), this becomes

F (ξ) =
1

Am

∞∑
k=0

∫
σ=r

E
k

β̄(η, ξ)Σ(η, dη)F (η) =
∞∑

k=0

F (k)
ε (ξ) ,

with

F (k)
ε (ξ) =

1

Am

∫
σ=r

E
k

β̄(η, ξ)Σ(η, dη)F (η) .

Because the boundary ∂HC(r, ε) is a sphere with radius (r2 − 1)
1
2 , we get :∫

σ=r

Σ(η, dη) = (r2 − 1)
m−1

2

∫
Sm−1

ndS(η) ,

with dS(η) the Lebesgue measure on the m-dimensional sphere Sm−1 and n

the outer unit normal to ∂HC(r, ε) with respect to HC(r, ε). In an arbitrary
point of the boundary, this is nothing but the tangent vector to the hyperbola
obtained by intersecting H+ with the 2-dimensional plane through this point,
its diametrically opposite point on the sphere and the origin. Considering
the point p = rε+ (r2 − 1)

1
2η ∈ HC(r, ε), the tangent vector np in p is given

as the unit space-time vector

np = (r2 − 1)
1
2 ε+ rη .

This can easily be verified geometrically : for r = 1 the point p = ε and the
tangent vector np is then given by a pure spatial vector, orthogonal to ε with
respect to the hyperbolic metric. When considering another point p′ ∈ H+,
obtained by applying a Lorentz boost to p, the tangent vector np is boosted
to a new tangent vector np′ such that p′ and np′ are still orthogonal with
respect to the hyperbolic metric. In addition, np′ remains a space-like unit
vector and this fixes np′ . Note that in the limit for r → +∞ the tangent
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vector becomes a nullvector.

The function F
(k)
ε (ξ) is thus given by

F (k)
ε (ξ) =

1

Am

(r2 − 1)
m−1

2

∫
Sm−1

E
k

β̄(η, ξ)((r2 − 1)
1
2 ε+ rη)dS(η)F (η) ,

where η is to be replaced by rε+ (r2 − 1)
1
2η.

Referring to the definition of E
k

β̄(η, ξ), the following factor may be brought
from under the integration :

(−1)k22k+m−2e−iπ m−1
2 Γ

(
k +

m− 1

2

)2
Γ(1 + β − k)
Γ(β + k +m)

(τ 2 − 1)
k
2 (r2 − 1)

k
2{

(1 + β − k)Ck+m−1
2

1+β−k (τ) + (2k +m− 1)(τ 2 − 1)
1
2C

k+m+1
2

β−k (τ)ξε

}
.

Under the integration sign, we are left with the following :{
C

m
2

k (< ξ, η >) + C
m
2

k−1(< ξ, η >)ξ η
}{

(1 + β − k)Dk+m−1
2

1+β−k (r)− (2k +m− 1)(r2 − 1)
1
2D

k+m+1
2

β−k (r)ηε

}
η̄
(
(r2 − 1)

1
2 ε+ rξ

)
F
(
η
)
,

which is equal to

−ξ
{
C

m
2

k (< ξ, η >)ξ − C
m
2

k−1(< ξ, η >)η
}{

(1 + β − k)Dk+m−1
2

1+β−k (r)ηε+ (2k +m− 1)(r2 − 1)
1
2D

k+m+1
2

β−k (r)

}
F
(
rε+ (r2 − 1)

1
2η
)
.

Note that the first factor is the projection kernel on the space of inner or
outer spherical monogenics on Rm (see also section 0.1.2). Recalling the
notation

P (k)[f ](ξ) = − 1

Am

ξ

∫
Sm−1

{
C

m
2

k (< ξ, η >)ξ − C
m
2

k−1(< ξ, η >)η
}
f(η)dS(η)
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for the projection of a function f on Sm−1 onto the space of inner spherical
monogenics, the integral representation for F

(k)
ε (ξ) can thus be reduced to

(−1)k22k+m−2

eiπ m−1
2

Γ

(
k +

m− 1

2

)2
Γ(1 + β − k)
Γ(β + k +m)

(τ 2 − 1)
k
2 (r2 − 1)

k+m−1
2{

(β +m+ k − 1)C
k+m−1

2
β−k (τ) + (2k +m− 1)(τ 2 − 1)

1
2C

k+m+1
2

β−k−1 (τ)ξ ε

}

P (k)


 (1 + β − k)Dk+m−1

2
1+β−k (r)ηε

+

(2k +m− 1)(r2 − 1)
1
2D

k+m+1
2

β−k (r)

F
(
rε+ (r2 − 1)

1
2η
)

The series expansion for the function F (ξ) converges normally on compact
subsets HC(ρ, ε), with τ = ξ · ε ≤ ρ < r. �

Next, we consider a hyperbolic monogenic F (ξ) ∈ Hα(Ωε), where Ωε stands
for the open annular SO(m)-invariant subdomain HC(R1, ε) \HC(R2, ε) in
H+, with R1 > R2 > 1. For these functions, the following Theorem holds :

Theorem 5.8 (Laurent) Let F ∈ Hα(HC(R1, ε) \ HC(R2, ε)), with α ∈ C
such that α+m /∈ −N and R1 > R2 > 1. There exists a sequence of functions(
F

(k)
ε (ξ)

)
k∈N and a sequence of functions

(
G

(k)
ε (ξ)

)
k∈N such that for all k ∈ N

ξ 7→ F (k)
ε (ξ) ∈ Hα(H+)

ξ 7→ G(k)
ε (ξ) ∈ Hα(H

(ε)
+ ) ,

and such that for all ξ ∈ HC(R1, ε) \HC(R2, ε) we have

F (ξ) =
∞∑

k=0

F (k)
ε (ξ) +G(k)

ε (ξ) .

This series expansion converges normally on compact annular subdomains
HC(r1, ε) \HC(r2, ε) of H+, with R1 > r1 ≥ τ ≥ r2 > R2, and the functions

F
(k)
ε (ξ) and G

(k)
ε (ξ) have the following integral representation :

F (k)
ε (ξ) =

1

Am

∫
σ=r1

Eβ̄(η, ξ)Σ(η, dη)F (η)

G(k)
ε (ξ) =

1

Am

∫
σ=r2

Eα(ξ, η)Σ(η, dη)F (η)

where the integration goes resp. over the spheres ∂HC(r1, ε) and ∂HC(r2, ε);
and where Σ(η, dη) = nds, with n the outer unit normal field with respect to
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∂HC(r1, ε) and ∂HC(r2, ε) and ds the Lebesgue measure on these spheres.
Denoting the projection of a function f on Sm−1 onto the space of inner
(resp. outer) spherical monogenics of order k by P (k)[f ] (resp. Q(k)[f ]),
these integrals are in explicit form given by :

F
(k)
ε (ξ) =

(−1)k22k+m−2

eiπ m−1
2

Γ

(
k +

m− 1

2

)2
Γ(1 + β − k)
Γ(β + k +m)

(τ 2 − 1)
k
2 (r2

1 − 1)
k+m−1

2{
(β +m+ k − 1)C

k+m−1
2

β−k (τ) + (2k +m− 1)(τ 2 − 1)
1
2C

k+m+1
2

β−k−1 (τ)ξ ε

}

P (k)


 (1 + β − k)Dk+m−1

2
1+β−k (r1)ηε

+

(2k +m− 1)(r2
1 − 1)

1
2D

k+m+1
2

β−k (r1)

F
(
r1ε+ (r2

1 − 1)
1
2η
)

and

G
(k)
ε (ξ) =

(−1)k22k+m−2

eiπ m−1
2

Γ

(
k +

m− 1

2

)2
Γ(1 + α− k)
Γ(α+ k +m)

(τ 2 − 1)
k
2 (r2

1 − 1)
k+m−1

2{
(α+m+ k − 1)D

k+m−1
2

α−k (τ)ξε− (2k +m− 1)(τ 2 − 1)
1
2D

k+m+1
2

α−k−1 (τ)

}

Q(k)


 (α+ k +m− 1)C

k+m−1
2

α−k (r2)
+

(2k +m− 1)(r2
2 − 1)

1
2C

k+m+1
2

α−k−1 (r2)

F
(
r2ε+ (r2

2 − 1)
1
2η
)

Proof : Let us put Ωε = HC(R1, ε) \ HC(R2, ε), where R1 > R2 > 1, such
that

ξ(Γ + α)F (ξ) = 0 ,

for all ξ ∈ Ωε. Consider then an arbitrary ξ = τε+(τ 2−1)
1
2 ξ ∈ Ωε, ξ ∈ Sm−1.

As R1 > τ > R2, there exist r1 and r2 such that r1 > τ > r2. Hence, Cauchy’s
Theorem may be applied to the compact subset HC(r1, ε)\HC(r2, ε) of H+,
bounded by the spheres

∂HC(r1, ε) = {η ∈ H+ : σ = η · ε = r1}

and

∂HC(r2, ε) = {η ∈ H+ : σ = η · ε = r2} .
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We thus have that

F (ξ) =

∫
σ=r1

Eβ̄(η, ξ)Σ(η, dη)F (η)−
∫

σ=r2

Eα(ξ, η)Σ(η, dη)F (η) .

For the first integral, we refer to the proof of the Taylor Theorem 5.7. In
order to calculate the second integral, we use the expansion of Eα(ξ, η) as
given by Theorem 5.6. This yields :∫

σ=r2

Eα(ξ, η)Σ(η, dη)F (η) = (r2
2 − 1)

m−1
2

∞∑
k=0

∫
Sm−1

Ek
α(ξ, η)nF (η)dS(η) ,

where η = r2ε + (r2
2 − 1)

1
2η and n stands for the outer unit normal to the

sphere ∂HC(r2, ε). This normal vector was already determined in the proof

of Theorem 5.7, and is in the point η given by n = (r2
2−1)

1
2 ε+r2η. Denoting

for each k ∈ N

Ik(ξ) =

∫
Sm−1

Ek
α(ξ, η)nF (η)dS(η) ,

we can bring the following factor outside the integration in Ik(ξ) :

(−1)k22k+m−2

Ame
iπ m−1

2

Γ

(
k +

m− 1

2

)2
Γ(1 + α− k)
Γ(α+ k +m)

(τ 2 − 1)
k
2 (r2

2 − 1)
k
2

ξ

{
(1 + α− k)Dk+m−1

2
1+α−k (τ) + (2k +m− 1)(τ 2 − 1)

1
2D

k+m+1
2

α−k (τ)ξε

}
which, in view of what follows, may be written as

(−1)k22k+m−2

Ame
iπ m−1

2

Γ

(
k +

m− 1

2

)2
Γ(1 + α− k)
Γ(α+ k +m)

(τ 2 − 1)
k
2 (r2

2 − 1)
k
2{

(α+m+ k − 1)D
k+m−1

2
α−k (τ)ξε− (2k +m− 1)(τ 2 − 1)

1
2D

k+m+1
2

α−k−1 (τ)

}
ξ .

Note that we now have a factor ξ at the end. Under the integration sign in
Ik(ξ) we are left with the following :{

C
m
2

k (< ξ, η >) + C
m
2

k−1(< ξ, η >)ξ η
}{

(1 + α− k)Ck+m−1
2

1+α−k (r2) + (2k +m− 1)(r2
2 − 1)

1
2C

k+m+1
2

α−k (r2)ηε
}{

(r2
2 − 1)

1
2 ε+ r2η

} .
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The product of the last two factors may be simplified, hereby using the
recurrence relations for the Gegenbauer functions, and the factor ξ mentioned
above may be brought under the integral sign. This eventually gives the
following integrand :{

C
m
2

k (< ξ, η >)ξ − C
m
2

k−1(< ξ, η >)η
}{

(α+ k +m− 1)C
k+m−1

2
α−k (r2)η − (2k +m− 1)(r2

2 − 1)
1
2C

k+m+1
2

α−k−1 (r2)ε
} .

Recalling the formula for projection onto the space M−(k) of outer spherical
monogenics on Sm−1,

Q(k)[f ](ξ) = − 1

Am

∫
Sm−1

{
C

m
2

k (< ξ, η >)ξ − C
m
2

k−1(< ξ, η >)η

}
ηf(η)dS(η) ,

this will eventually yield :

−
∫

σ=r2

Eα(ξ, η)Σ(η, dη)F (η) =

(−1)k22k+m−2

eiπ m−1
2

Γ

(
k +

m− 1

2

)2
Γ(1 + α− k)
Γ(α+ k +m)

(τ 2 − 1)
k
2 (r2

1 − 1)
k+m−1

2{
(α+m+ k − 1)D

k+m−1
2

α−k (τ)ξε− (2k +m− 1)(τ 2 − 1)
1
2D

k+m+1
2

α−k−1 (τ)

}

Q(k)


 (α+ k +m− 1)C

k+m−1
2

α−k (r2)
+

(2k +m− 1)(r2
2 − 1)

1
2C

k+m+1
2

α−k−1 (r2)

F
(
r2ε+ (r2

2 − 1)
1
2η
)

which also gives the explicit form for G
(k)
ε (ξ). This ends the proof. �

5.4 Function Theory on the Klein Model

The aim of this section is to restate the results obtained in the previous
sections of this Chapter in terms of the Klein model (Bm(1), ds2

K) for the
hyperbolic unit ball. The main purpose is to find a Taylor (resp. Laurent)
expansion for functions f(x) defined in an open subset ΩK (resp. in an open
annular subdomain) of the unit ball Bm(1), satisfying the equation(

∂ + ε(E− α)
)
f(x) = 0 , for all x ∈ ΩK .

Such functions belong to the following function space, defined on the analogy
of the spaces Hα(R+Ω) and Hα(Ω) from Chapter 2 :

198



Definition 5.7 Let ΩK ⊂ Bm(1) be open and let α be an arbitrary complex
number. We then put

Hα
K(ΩK) =

{
f ∈ C1(ΩK) :

(
∂ + ε(E− α)

)
f(x) = 0 in ΩK

}
.

Note that for an arbitrary open subset Ω ⊂ H+, we have immediately :

F (T,X) ∈ Hα(R+Ω) =⇒ f(x) = F

(
1,
X

T

)
∈ Hα

K(ΩK)

with

ΩK =

{
x ∈ Bm(1) :

(
1

(1− |x|2) 1
2

,
x

(1− |x|2) 1
2

)
∈ Ω

}
.

In order to establish a Taylor and Laurent series on (Bm(1), ds2
K), we need 3

key ingredients :

• Stokes’ Theorem

• Cauchy’s Theorem

• a decomposition for the fundamental solution

First of all, let us establish Stokes’ Theorem. Since the Cauchy-Pompeju
Theorem 5.3 is essentially valid on the manifold of rays it can be realized on
any surface inside the FC, in particular on the hyperplane Π↔ T = 1. Let
us therefore determine the restrictions of both L(X, dX) and Σ(X, dX) to
this hyperplane (note that these restrictions are labelled by a superscript K,
referring to the Klein model) :

L(X, dX)K =
m∑

j=0

(−1)jXjdXĵ = dx

Σ(X, dX)K = εL(x, dx) + σ(x, dx) .

Consider then an open subset ΩK of the unit ball Bm(1) and let CK ⊂ ΩK

be a compact subset with smooth boundary ∂CK . We already know that
the projection on the Klein ball of the Dirac operator on R1,m acting on

α-homogeneous functions F (T,X) = TαF

(
1,
X

T

)
is given by

(ε∂T − ∂X)K = −Dα(x) = −
(
∂ + ε(E− α)

)
,
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where ∂ (resp. E) denotes the Dirac (resp. Euler) operator on R0,m, so we
have the following version of Stokes’ Theorem on the Klein model for the
hyperbolic unit ball :

Theorem 5.9 (Stokes) Let f and g in C1(ΩK) be arbitrary functions on an
open subset ΩK of the Klein ball and choose α, β ∈ C such that α+β+m = 0.
We then have :∫

∂CK

f
(
σ(x, dx) + εL(x, dx)

)
g =

∫
CK

[(
fDα(x)

)
g + f

(
Dβ(x)g

)]
dx

Cauchy’s Theorem on the Klein model for the hyperbolic unit ball then easily
follows from Stokes’ Theorem if we choose f(x) to be the restriction EK(y, x)
of the hyperbolic fundamental solution Eα(η, ξ) to Π. This function has a
singularity for x = y, with x (resp. y) the intersection of Π and the ray
through ξ (resp. η), and satisfies

Dα(y)Eα,K(y, x) = −δ(y − x) = Eα,K(y, x)Dβ(x) .

This leads immediately to Cauchy’s Theorem :

Theorem 5.10 (Cauchy) Let f ∈ Hα
K(ΩK). We then have :

−
∫

∂CK

Eα,K(y, x)
(
σ(x, dx) + εL(x, dx)

)
f(x) =

{
f(y) if y ∈

◦
CK

0 if y ∈ ΩK \ CK

Let us then first consider the Taylor expansion of functions f ∈ Hα
K(Bm(r))

with r < 1. This follows from Cauchy’s Theorem, once we have established
a decomposition for the hyperbolic fundamental solution Eα,K(y, x). In view
of the construction of the axial decomposition for Eα(η, ξ) in the previous
section, see Theorem 5.6, a decomposition for Eα,K(y, x) is easily obtained by
modulating the decomposition of the Cauchy kernel on Rm from both sides.
This is expressed in the following :

Theorem 5.11 The fundamental solution Eα,K(y, x) can be decomposed as
follows :

Eα,K(y, x) = − 1

Am

∞∑
k=0

E
(k)
α,K(y, x)

= − 1

Am

∞∑
k=0

Mod(α, k; y)
|y|kCk(ξ, η)

|x|k+m−1
Mod(β, 1− k −m;x) ,
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where we have put y = |y|η and x = |x|ξ and with

Ck(ξ, η) = C
m
2

k (< η, ξ >)ξ − C
m
2

k−1(< η, ξ >)η .

This series expansion is valid for all α + m /∈ −N and converges normally
on each Bm(r) with |y| ≤ r < |x|. We also have that

E
(k)
α,K(y, x) ∈ Hα

K

(
Bm(1)

)
y

E
(k)

α,K(y, x) ∈ Hβ
K

(
Bm(1) \ {0}

)
x
,

where we have indicated the variable on which the (projected) Dirac operator
acts.

We can now establish the Taylor expansion :

Theorem 5.12 (Taylor) Let f(y) ∈ Hα
K

(
Bm(R)

)
, with R < 1 and α ∈ C

with α + m /∈ −N. Then there exists a sequence (f (k)(y))k∈N such that the

function y 7→ f (k)(y) belongs to Hα
K

(
Bm(1)

)
for each k and such that the

following expansion is valid :

f(y) =
∞∑

k=0

f (k)(y) ,

where f (k)(y) has the following integral representation :

f (k)(y) =
1

Am

∫
|x|=r

E
(k)
α,K(y, x)

(
σ(x, dx) + εL(x, dx)

)
f(x) .

The integration goes over the sphere ∂Bm(r), with r < R, L(x, dx) = ds and
σ(x, dx) = nds, where n denotes the outer unit normal with respect to ∂Bm(r)
and ds denotes the Lebesgue measure on ∂Bm(r). The Taylor expansion
for f(y) ∈ Hα

K

(
Bm(R)

)
converges normally on compact sets Bm(ρ), with

|y| ≤ ρ < r. An explicit expression for f (k)(y) is given by :

f (k)(y) = Mod(α, k; y)
|y|k

rk
P (k)

[
Mod(β, 1− k −m; rξ)(rξε− 1)f(rξ)

]
(η) ,

where P (k)[f ] denotes the projection of a function f ∈ L2(S
m−1) onto the

space of inner spherical monogenics.
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Proof : Let y ∈ Bm(R) ⇒ |y| < R. Hence, there exists r < R such that

|y| ∈ Bm(r) and with Bm(r) a compact subset of Bm(R). From Cauchy’s
Theorem, we then immediately get :

f(y) = −
∫
|x|=r

Eα,K(y, x)(σ(x, dx) + εL(x, dx))f(x) .

As the integration goes over the sphere ∂Bm(r), we have∫
|x|=r

(
σ(x, dx) + εL(x, dx)

)
= rm−1

∫
Sm−1

(ξ + rε)dS(ξ) .

Recalling the decomposition 5.11, this yields

f(y) =
∞∑

k=0

f (k)(y)

with f (k)(y) given by

Mod(α, k; y)

Am

|y|k

rk

∫
Ck(ξ, η)Mod(β, 1− k −m; rξ)(ξ + rε)f(rξ)dS(ξ) .

Using the fact that

Ck(ξ, η) = η2Ck(ξ, η)ξ
2 = −ηCk(η, ξ)ξ ,

the integral over Sm−1 reduces to

−η
∫
Ck(η, ξ)ξMod(β, 1− k −m; rξ)(ξ + rε)f(rξ)dS(ξ) ,

so that by means of

ξMod(β, 1− k −m; rξ)(ξ + rε) = Mod(β, 1− k −m; rξ)(rξε− 1)

we finally arrive at :

f (k)(y) = Mod(α, k; y)
|y|k

rk
P (k)

[
Mod(β, 1− k −m; rξ)(rξε− 1)f(rξ)

]
.

The series expansion for f(y) converges normally on compact balls Bm(ρ)
with |y| ≤ ρ < r. �

This means that hyperbolic monogenic functions f(y) on Bm(1), monogenic
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with respect to the operator
(
∂ + ε(E− α)

)
y
, can be decomposed in a series

of modulated inner spherical monogenics on Sm−1 with respect to the Dirac
operator ∂ on R0,m :

f(y) =
∞∑

k=0

Mod(α, k; y)Pk(y) ,

with Pk(y) given by Taylor’s Theorem.

Next, we consider the Laurent expansion for functions f(y) ∈ Hα
K(ΩK) with

ΩK the annular domain in Bm(1) defined by

ΩK = Bm(R1) \ B̄m(R2) , R1 > R2 .

For that purpose we need both the decomposition for Eα,K(y, x) of Theorem
5.11 valid for |y| < |x| and the following decomposition, valid for |y| > |x| :

Theorem 5.13 The fundamental solution Eα,K(y, x) can be decomposed as
follows :

Eα,K(y, x) =
1

Am

∞∑
k=0

E
(k)′

α,K(y, x)

=
1

Am

∞∑
k=0

Mod(α, 1− k −m; y)
|x|kCk(η, ξ)

|y|k+m−1
Mod(β, k;x) ,

where we have put y = |y|η and x = |x|ξ and with

Ck(η, ξ) = C
m
2

k (< η, ξ >)η − C
m
2

k−1(< η, ξ >)ξ .

This series expansion is valid for all α + m /∈ −N and converges normally
on each Bm(R) \Bm(r) with 1 > R ≥ |y| ≥ r > |x|. We also have that

E
(k)′

α,K(y, x) ∈ Hα
K

(
Bm(1) \ {0}

)
y

E
(k)′

α,K(y, x) ∈ Hβ
K

(
Bm(1)

)
x
,

where we have indicated the variable on which the (projected) Dirac operator
acts.

Remark : Note that we have labelled the building blocks E
(k)′

α,K(y, x) of the
decomposition for |y| > |x| with a prime, to distinguish it from the building
blocks of the decomposition for |y| < |x|.

We then have the following Laurent expansion :
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Theorem 5.14 (Laurent) Let f(y) ∈ Hα
(
Ω
)
, with Ω ⊂ Bm(1) the open

annular domain Bm(R1) \ B̄m(R2), where 0 < R2 < R1 < 1. Then there
exists a sequence

(
f (k)(y)

)
k∈N with y 7→ f (k)(y) belonging to Hα

K

(
Bm(1)

)
and

a sequence
(
g(k)(y)

)
k∈N with y 7→ g(k)(y) belonging to Hα

K

(
Bm(1)\{0}

)
, such

that the following expansion is valid :

f(y) =
∞∑

k=0

f (k)(y) + g(k)(y) ,

where f (k)(y) is given by the integral

f (k)(y) = Mod(α, k; y)
|y|k

rk
1

P (k)

[
Mod(β, 1− k −m; r1ξ)(r1ξε− 1)f(r1ξ)

]
(η) ,

with |y| < r1 < R1 and g(k)(y) by the integral

g(k)(y) = Mod(α, 1− k −m; y)
rk+m−1
2

|y|k+m−1
Q(k)

[
Mod(β, k; r2ξ)(1− r2ξε)f(r2ξ)

]
(η) ,

with |y| > r2 > R2.

Proof : Suppose f(y) ∈ Hα
(
Bm(R1) \ B̄m(R2)

)
with 0 < R2 < R1 < 1 and

take y belonging to this open annular domain, so that we have R2 < |y| < R1.
Hence there exist r1, r2 such that R2 < r2 < |y| < r1 < R1, whence y belongs

to the compact subset C = Bm(r1) \ Bm(r2) in Bm(1). From Cauchy’s
Theorem we then immediately get :

f(y) = −
∫

∂C

Eα,K(y, x)
(
σ(x, dx) + εL(x, dx)

)
f(x)

= −
∫
|x|=r1

Eα,K(y, x)
(
σ(x, dx) + εL(x, dx)

)
f(x)

+

∫
|x|=r2

Eα,K(y, x)
(
σ(x, dx) + εL(x, dx)

)
f(x) .

For the calculation of the first integral we refer to the proof of the Taylor
series. We have :

−
∫
|x|=r1

Eα,K(y, x)
(
σ(x, dx) + εL(x, dx)

)
f(x) =

∞∑
k=0

f (k)(y) ,

with

f (k)(y) = Mod(α, k; y)
|y|k

rk
1

P (k)

[
Mod(β, 1− k −m; r1ξ)(r1ξε− 1)f(r1ξ)

]
.
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On the other hand, we have the following :∫
|x|=r2

Eα,K(y, x)
(
σ(x, dx) + εL(x, dx)

)
f(x)

= rm−1
2

∞∑
k=0

∫
Sm−1

E
(k)′

α,K(y, x)(ξ + r2ε)f(r2ξ)dS(ξ) ,

with E
(k)′

α,K(y, x) given by Theorem 5.13. Putting∫
|x|=r2

Eα,K(y, x)
(
σ(x, dx) + εL(x, dx)

)
f(x) =

∞∑
k=0

g(k)(y) ,

we then get :

g(k)(y) =
1

Am

Mod(α, 1− k −m; y)
rk+m−1
2

|y|k+m−1∫
Sm−1

Ck(η, ξ)Mod(β, k; r2ξ)(ξ + r2ε)f(r2ξ)dS(ξ) .

As

Mod(β, k; r2ξ)(ξ + r2ε) = ξMod(β, k; r2ξ)(1− r2ξε) ,

and recalling the formula for projection onto the space of outer spherical
monogenics on Rm, we finally arrive at

g(k)(y) = Mod(α, 1− k −m; y)
rk+m−1
2

|y|k+m−1
Q(k)

[
Mod(β, k; r2ξ)(1− r2ξε)f(r2ξ)

]
.

This yields the Laurent series

f(y) =
∞∑

k=0

f (k)(y) + g(k)(y)

for f ∈ Hα
K(Bm(R1) \ B̄m(R2)), converging normally on compact annular

subdomains Bm(r1) \Bm(r2) with r1 ≥ |y| ≥ r2. �

Remark : The Laurent Theorem on the Klein model for the hyperbolic
unit ball again illustrates that the function theory for hyperbolic monogenics
on the Klein ball can be described as a ”modulation of the classical function
theory for the operator ∂ on R0,m”.

205



5.5 Eigenfunctions for the Operator ξ(Γ + α)

In this section eigenfunctions for the Dirac operator on the hyperbolic unit
ball are constructed. It is important to make a clear distinction between the
eigenvalue problem related to the hyperbolic Dirac operator, i.e. the Dirac
operator ∂X on R1,m acting on homogeneous functions, and the eigenvalue
problem related to the hyperbolic Gamma operator Γ. Eigenfunctions for
the latter problem give rise to nullsolutions for the Dirac operator on the
hyperbolic unit ball :

ΓF (ξ) = αF (ξ) =⇒ ξ(Γ− α)F (ξ) = 0 .

Eigenfunctions related to the first problem can by no means be related to a
single eigenvalue problem for the Gamma operator. However, in this section
it will be shown how they are related to systems of eigenvalue problems for
the Gamma operator.

The eigenvalue problem for the Dirac operator on the hyperbolic unit ball
arises from the following question : is it possible to generalize the idea of
an exponential function to the hyperbolic unit ball? In classical Clifford
analysis, i.e. Clifford analysis on the flat Euclidean space Rm, a generalized
exponential function was constructed as an eigenfunction for the operator ∂
on R0,m. This inspires us to look for a hyperbolic version of this exponential
function as an eigenfunction of the Dirac operator on R1,m. However, in view
of the projective nature of our model for the hyperbolic ball, this hyperbolic
version of the exponential function must be defined on the manifold of rays
Ray(FC). In other words, the hyperbolic version of the exponential function
must be homogeneous. In this sense we cannot find eigenfunctions for the
Dirac operator on the hyperbolic unit ball in the strict sense of the word, for
the operator itself is homogeneous of degree (−1). However, for an arbitrary
function ψ(T,X) which is homogeneous of degree (+1) one may consider the
following inhomogeneous equation :

(ε∂T − ∂X)Fλ(T,X) = λ
Fλ(T,X)

ψ(T,X)
.

It seems obvious to choose ψ(T,X) in such a way that it corresponds to
a SO(1,m)-invariant object, because the Dirac operator itself is invariant
under Spin(1,m)-transformations. Choosing

ψ(T,X) = Q1,m(T,X)
1
2 = (T 2 − |X|2)

1
2

to be the hyperbolic norm, we thus arrive at the following equation :

ξ(Γ + α)Fλ(ξ) = λFλ(ξ) , ξ ∈ H+ , (5.5)
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which is the eigenvalue problem related to the Dirac operator on the hyper-
bolic unit ball.

In order to solve equation (5.5) we will first rewrite this equation as a set of
equations, by means of the zero divisors (1± ξ). For that purpose we put

Fλ =
1 + ξ

2
F+

λ +
1− ξ

2
F−λ .

Letting the hyperbolic Dirac operator act on Fλ and using the fact that

ξΓξ + Γ = m ,

we get respectively :

1

2
ξ(Γ + α)(1 + ξ)F+

λ = −1− ξ
2

ΓF+
λ +

m

2
F+

λ + (α− λ)
1 + ξ

2
F+

λ

and

1

2
ξ(Γ + α)(1− ξ)F−λ =

1 + ξ

2
ΓF−λ −

m

2
F−λ − (α+ λ)

1− ξ
2

F−λ .

The eigenvalue probem for the Dirac operator on the hyperbolic unit ball is
thus equivalent with the following set of equations :

ΓF−λ +
(m

2
+ α− λ

)
F+

λ −
m

2
F−λ = 0

ΓF+
λ +

(m
2

+ α+ λ
)
F−λ −

m

2
F+

λ = 0

This can alo be arranged in a matrix formalism :

Γ

F+
λ

F−λ

 =


m

2
β +

m

2
− λ

β +
m

2
+ λ

m

2


F+

λ

F−λ


where we have put β = −α−m. In other words, the eigenvalue problem for
the hyperbolic Dirac operator is equivalent with a two-dimensional system of
equations for the hyperbolic Gamma operator Γ. Let us denote the (2 × 2)
matrix in previous expression asM . In order to solve the system of equations,
M has to be reduced to its Jordan canonical form N :

Q−1MQ = N .

207



• If M has two eigenvalues µ1 6= µ2, N is the diagonal matrix

N =

(
µ1 0
0 µ2

)
.

Putting

Q−1

F+
λ

F−λ

 =

G+
λ

G−λ

 ,

the system for (G+
λ , G

−
λ ) decouples and reduces to{

ΓG+
λ = µ1G

+
λ

ΓG−λ = µ2G
−
λ

This means that G+
λ (resp. G−λ ) is the restriction to H+ of a solution for

the Dirac operator ∂X on R1,m which is homogeneous of degree (−µ1)
(resp. homogeneous of degree (−µ2)). Once we have choosen (G+

λ , G
−
λ ),

the solutions (F+
λ , F

−
λ ) are found to be :F+

λ

F−λ

 = Q

G+
λ

G−λ


• If M has only one eigenvalue µ, the Jordan normal form N reduces to

N =

(
µ 1
0 µ

)
.

The equations for (G+
λ , G

−
λ ) are then given by{

ΓG+
λ = µG+

λ +G−λ
ΓG−λ = µG−λ

which means that the function G−λ is easily found as the restriction to
the hyperbolic unit ball H+ of an arbitrary (−µ)-homogeneous solution
for the Dirac operator on R1,m. However, in order to find G+

λ one must
solve an inhomogeneous equation for the hyperbolic Gamma operator.

To do so, one may follow an approach which is very similar to the
one followed by P. Van Lancker for the case of the sphere Sm−1 in Rm

(see reference [75]). This approach is influenced by the work of S. Bell
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and D. Calderbank, see [4] and [10], in which the Dirac operator on
C∞-submanifolds-with-boundary of a given manifold is studied.

Another way to solve the latter system of equations makes use of Riesz
distributions. Suppose F ∈ D′+(R1,m), such that we immediately have
that both Gλ

+ and Gλ
− belong to D′+(R1,m). As

(Γ− λ)Gλ
+ = Gλ

− =⇒ ∂X

(
ρ−λGλ

+

)
= ρ−λ−1ξGλ

− ,

it suffices to solve the scalar equation

�mΦλ
+ = ρ−λ−1ξGλ

− ,

hereby using Riesz distributions, and to put

Gλ
+ = ∂XΦλ

+ = ∂X

(
Z2 ∗ ρ−λ−1ξGλ

−
)
.
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Chapter 6

Boundary Value Theory

If in the infinite you want to stride,
just walk in the finite to every side.

(J.W. von Goethe)

In this Chapter the fundamental solution for the hyperbolic Dirac equation
is considered in the limit as its singularities approach the nullcone. This
gives rise to the so-called photogenic Cauchy kernel, referring to both its
monogeneity with respect to the Dirac operator ∂X on R1,m and its relation
to the nullcone, which is the surface on which the worldlines of photons are
lying. This kernel will be used to define an integral transform on the unit
ball Bm(1), the photogenic Cauchy transform, and the boundary values of
this transform will be calculated as its argument approaches the unit sphere.
By considering the extension of these boundary values to the Lie sphere, it is
found that under certain restrictions on the parameter α the function space
containing boundary values of hyperbolic monogenic functions on the Klein
ball has a reproducing kernel.

6.1 The Photogenic Cauchy Kernel

In the previous Chapter a function theory on the hyperbolic unit ball was
developped. The starting point was the hyperbolic Dirac equation (2.2) for
the fundamental solution Eα(T,X), being an α-homogeneous solution for the
Dirac operator ∂X with singularities on the temporal ray through ε. These
singularities were boosted to an arbitrary ray inside the future cone, leading
to equation (5.1). It is a well-known fact that this ray can never be boosted on
the nullcone. Relativistically speaking, this would require an infinite amount
of energy. Nevertheless, we can still try to solve the following equation :

(ε∂T − ∂X)Fα,ω(T,X) = Tα+m−1
+ δ(Tω −X) , ω ∈ Sm−1 . (6.1)
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The right-hand side of this equation contains a delta distribution becoming
singular on the upper part of the nullcone, and a factor Tα+m−1

+ reassuring
our photogenic Cauchy kernel, i.e. the solution to the equation above, to be
α-homogeneous. The nullray containing the singularities will be denoted by

Rω = {(T,X) ∈ R1,m : X = Tω} , ω ∈ Sm−1.

In order to solve equation (6.1), from now on referred to as the photogenic
Dirac equation, we first consider the following related scalar problem :

�mΦα,ω(T,X) = Tα+m−1
+ δ(Tω −X) .

Since the distribution at the right-hand side does not exist for α ∈ −m−N,
we expect the distribution Φα,ω(T,X) to have poles at the same values. For
all other values α ∈ C, Tα+m−1

+ δ(Tω−X) belongs to the set D′+(R1,m) whence
Φα,ω(T,X) is given by

Φα,ω(T,X) = Z2 ∗ Tα+m−1
+ δ(Tω −X) .

By definition, we thus get :

Φα,ω(T,X) =
1

2π
m−1

2 Γ
(

3−m
2

) ∫ ∞

0

Sα+m−1ρ(T − S,X − Sω)1−mdS

=
1

2π
m−1

2 Γ
(

3−m
2

) ∫ S0

0

Sα+m−1(
T 2 − |X|2 − 2S(T− < X,ω >)

)m−1
2

dS

where we have put

S0 =
1

2

T 2 − |X|2

T− < X,ω >
.

The integral with respect to S can be reduced to a Beta integral :∫ S0

0

Sα+m−1(
T 2 − |X|2 − 2S(T− < X,ω >)

)m−1
2

dS

= (T 2 − |X|2)
1−m

2

(
1

2

T 2 − |X|2

T− < X,ω >

)α+m ∫ 1

0

tα+m−1(1− t)
1−m

2 dt .

In case of an even spatial dimension m, for α ∈ C such that α + m /∈ −N,
the integral at the right-hand side is the integral given by expression (29) :∫ 1

0

tα+m−1(1− t)
1−m

2 dt =
Γ(α+m)Γ

(
3−m

2

)
Γ
(
α+ 3+m

2

) ,
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such that the distribution Φα,ω(T,X) is found to be

Φα,ω(T,X) =
Γ(α+m)

21+α+mπ
m−1

2 Γ
(
α+ m+3

2

) (T 2 − |X|2)α+m+1
2

(T− < X,ω >)α+m
. (6.2)

In case of an odd spatial dimension m, the Beta integral does not converge
in the classical sense. However, the distribution Φα,ω(T,X) as given above
is defined for both even and odd m as long as α /∈ −m − N, these values
being excluded because the Gamma function has poles there. Note that the
Gamma function in the denominator does not remove these poles in case
of an odd dimension! We demonstrate this by considering the residue for
α = −m. In that case, we have :

Res
{
Tα+m−1

+ δ(Tω −X) , α = −m
}

= δ(T )δ(Tω −X) = δ(T )δ(X) .

This latter equation can easily be verified by letting both distributions act
on a test function ϕ(T,X) ∈ D(R1,m). This means that

Res
{
Z2 ∗ Tα+m−1

+ δ(Tω −X) , α = −m
}

= Z2 .

On the other hand, we also have by definition :

Res
{
Φα,ω(T,X) , α = −m

}
= lim

α→−m
(α+m)Φα,ω(T,X)

= Z2 .

Thus, although the simplification

Γ(α+m)

Γ
(
α+ m+3

2

) = (α+m− 1) · · ·
(
α+

m+ 3

2

)
seems to remove the pole at α = −m, it only makes it less obvious to see that
there actually is a pole at this value. Because we now have two distributions
which are equal in a strip of the complex plane and which have poles at the
same values for α, they are equal in the whole complex plane minus the poles
by analytic continuation.

Using the fact that �m = (ε∂T − ∂X)2, we thus find the following explicit
formula for the photogenic Cauchy kernel :

Fα,ω(T,X) = (ε∂T − ∂X)

[
Γ(α+m)

21+α+mπ
m−1

2 Γ
(
α+ m+3

2

) (T 2 − |X|2)α+m+1
2

(T− < X,ω >)α+m

]
.
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The constant in previous expression will be denoted as c(α,m) throughout
this Chapter :

c(α,m) =
Γ(α+m)

21+α+mπ
m−1

2 Γ
(
α+ m+3

2

) .
We are then lead to the following definition :

Definition 6.1 Let ω ∈ Sm−1 be an arbitrary unit vector in Rm and let α be
an arbitrary complex number such that α+m /∈ −N. The photogenic Cauchy
kernel is defined as the distribution

Fα,ω(T,X) = (2α+m+ 1)c(α,m)(εT +X)
(T 2 − |X|2)α+m−1

2

(T− < X,ω >)α+m

− (α+m)c(α,m)(ε+ ω)
(T 2 − |X|2)α+m+1

2

(T− < X,ω >)α+m+1
,

and satisfies the photogenic Dirac equation

(ε∂T − ∂X)Fα,ω(T,X) = Tα+m−1
+ δ(Tω −X) .

Remark : In Chapter 3 we already mentioned the fact that there exist α-
homogeneous distributional solutions for the Dirac operator D(T ,X)p,q on
Rp,q which are defined in a neighbourhood of a nullray. These distributions
were explicitely excluded when we proved the Ultra-Modulation Theorem.
The photogenic Cauchy kernel Fα,ω(T,X) in fact offers a nice example of
such a distribution, in case of the space-time Dirac operator on R1,m!

6.2 The Photogenic Cauchy Transform (PCT)

Now that we have found the photogenic Cauchy kernel Fα,ω(T,X), we can
define a photogenic Cauchy transform. To do so, we project the photogenic
Dirac equation onto the Klein model of the hyperbolic unit ball. Putting

Fα,ω(T,X) = λαFα(x, ω) ,

where λ = T and x =
X

T
= rξ ∈ Bm(1), we get immediately :

(∂ + ε(Er − α))Fα(x, ω) = −δ(x− ω) ,
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with ∂ and Er respectively the Dirac operator and the Euler operator on R0,m.
The projected photogenic fundamental solution Fα(x, ω) is hereby defined as
the distribution

Fα(x, ω) = (2α+m+ 1)c(α,m)(ε+ x)
(1− r2)α+m−1

2

(1− < x, ω >)α+m

− (α+m)c(α,m)(ε+ ω)
(1− r2)α+m+1

2

(1− < x, ω >)α+m+1
.

We then consider the sphere Sm−1 as a subset of Rm, and we define the
photogenic Cauchy transform of a function f(ω) on Sm−1 by means of the
photogenic Cauchy kernel, by analogy with the classical Cauchy transform.
This is expressed in the following :

Definition 6.2 Let f(ω) be an arbitrary function defined on the sphere Sm−1.
The photogenic Cauchy transform Cα

P [f ](x) of f is for all x ∈ Bm(1) defined
by the following integral :

Cα
P [f ](x) =

1

Am

∫
Sm−1

Fα(x, ω)ωf(ω)dω

Remark : The additional factor ω in the definition for Cα
P [f ](x) plays the

role of unit normal vector on Sm−1, on the analogy of the definition for the
Cauchy transform on graphs of Lipschitz functions (see reference [19]).

Note that the photogenic Cauchy transform of a function f(ω) on Sm−1

yields a new function Cα
P [f ](x), defined for all x ∈ Bm(1), which is a solution

for the projected hyperbolic Dirac operator
(
∂+ε(Er−α)

)
. This means that

the function Cα
P [f ](T,X), defined by

Cα
P [f ](T,X) = TαCα

P [f ]

(
X

T

)
belongs to the function space Hα(R+H+).

In view of the fact that square integrable functions f ∈ L2(S
m−1) can be

decomposed in terms of inner and outer spherical monogenics, by means of
the decomposition

f(ξ) =
∞∑

k=0

P (k)[f ](ξ) +Q(k)[f ](ξ) ,
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we will now explicitely determine the photogenic Cauchy transform of inner
and outer spherical monogenics on Rm.

We will use two Lemmata : the first one is a refinement of the classical
Hecke-Funk Theorem (see Theorem 0.2), the latter yields an explicit formula
for an integral that will often occur in what follows :

Pk,m(λ; r) =

∫ 1

−1

Pk,m(t)(1− t2)m−3
2

(1− rt)λ
dt .

Lemma 6.1 Let Pk(ω) ∈ M+(k) be an inner spherical monogenic of degree
k and let Pk,m(t) be the Legendre polynomial of degree k in m dimensions. If
we put x = rξ, we have the following identities :∫

Sm−1

f(< x, ω >)Pk(ω)dω = Am

(∫ 1

−1

f(rt)Pk,m(t)(1− t2)
m−3

2 dt

)
Pk(ξ)

∫
Sm−1

f(< x, ω >)ωPk(ω)dω = Am

(∫ 1

−1

f(rt)P1+k,m(t)(1− t2)
m−3

2 dt

)
ξPk(ξ)

For a proof of this Lemma we refer to [63].

Lemma 6.2 Let Pk,m(t) be the Legendre polynomial of degree k in m dimen-
sions, let F (a, b; c; t) be the hypergeometric series and let r < 1. We then
have the following identity

Pk,m(λ; r) =
π

1
2 (λ)kΓ

(
m−1

2

)
2k
(

m
2

)
k
Γ
(

m
2

) rkF

(
k + λ

2
,
1 + k + λ

2
; k +

m

2
; r2

)
.

Proof : This Lemma will be proven by induction on the parameter k. For
k = 0 and r < 1 we get :∫ 1

−1

(1− t2)m−3
2

(1− rt)λ
dt =

∞∑
l=0

(
−λ
l

)
(−r)l

∫ 1

−1

tl(1− t2)
m−3

2 dt

=
∞∑
l=0

(
−λ
2l

)
(r)2l

∫ 1

0

(t2)l− 1
2 (1− t2)

m−3
2 dt2 ,

which by means of the definition for the Beta integral reduces to∫ 1

−1

(1− t2)m−3
2

(1− rt)λ
dt =

∞∑
l=0

(
−λ
2l

)
B

(
l +

1

2
,
m− 1

2

)
r2l .
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Writing the Beta function in terms of the Gamma function, we arrive at∫ 1

−1

(1− t2)m−3
2

(1− rt)λ
dt =

√
π

Γ
(

m−1
2

)
Γ
(

m
2

) F

(
λ

2
,
1 + λ

2
;
m

2
; r2

)
.

For k = 1 we get, hereby using that P1,m(t) = t :∫ 1

−1

t(1− t2)m−3
2

(1− rt)λ
dt =

∂r

λ− 1

∫ 1

−1

(1− t2)m−3
2

(1− rt)λ−1
dt ,

which by means of the derivation property of the hypergeometric function
reduces to∫ 1

−1

t(1− t2)m−3
2

(1− rt)λ
dt =

√
π
λΓ
(

m−1
2

)
mΓ

(
m
2

) rF (1 + λ

2
, 1 +

λ

2
; 1 +

m

2
; r2

)
.

The rest of the proof uses the recurrence relation (18) for the Legendre poly-
nomials in higher dimensions. We then get for arbitrary k > 1 :∫ 1

−1

P1+k,m(t)(1− t2)m−3
2

(1− rt)λ
dt =

2k +m− 2

k +m− 2

∂r

λ− 1

∫ 1

−1

Pk,m(t)(1− t2)m−3
2

(1− rt)λ−1
dt

− k

k +m− 2

∫ 1

−1

Pk−1,m(t)(1− t2)m−3
2

(1− rt)λ−1
dt

Using the induction hypothesis and the elementary properties of the hyper-
geometric series, this can be simplified to

π
1
2 (λ)1+kΓ

(
m−1

2

)
21+k

(
m
2

)
1+k

Γ
(

m
2

)r1+kF

(
1 + k + λ

2
, 1 +

k + λ

2
; 1 + k +

m

2
; r2

)
.

This proves the Lemma. �

6.2.1 The PCT of Inner Spherical Monogenics

Let us consider an arbitrary inner spherical monogenic Pk(ω) ∈ M+(k). By
definition, we have :

Cα
P [Pk](x) =

1

Am

∫
Sm−1

Fα(x, ω)ωPk(ω)dS(ω)

= (2α+m+ 1)
c(α,m)

Am

(1− r2)α+m−1
2

∫
(ε+ x)ωPk(ω)dS(ω)

(1− < x, ω >)α+m

− (α+m)
c(α,m)

Am

(1− r2)α+m+1
2

∫
(ε+ ω)ωPk(ω)dS(ω)

(1− < x, ω >)α+m+1
.
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Using Lemma 6.1 it is readily verified that up to the factor Pk(ξ) the PCT
Cα

P [Pk](x) has a scalar component and a bivector-valued component. These
are respectively given by :

Cα
P [Pk](x)|0 = c(α,m)(α+m)(1− r2)α+m+1

2 Pk,m(α+m+ 1; r)Pk(ξ)

− c(α,m)(2α+m+ 1)(1− r2)α+m−1
2 rP1+k,m(α+m; r)Pk(ξ)

Cα
P [Pk](x)|2 = −c(α,m)(α+m)(1− r2)α+m+1

2 P1+k,m(α+m+ 1; r)εξPk(ξ)

+ c(α,m)(2α+m+ 1)(1− r2)α+m−1
2 P1+k,m(α+m; r)εξPk(ξ)

By means of Lemma 6.2, this reduces to

Cα
P [Pk](x)|0 = −c(α,m)

π
1
2 Γ(α+m+ k + 1)Γ

(
m−1

2

)
2kΓ

(
k + m

2

)
Γ(α+m)

(1− r2)α+m−1
2 Pk(x)

2α+m+ 1

2k +m
r2F

(
1 + α+m+ k

2
, 1 +

α+m+ k

2
; 1 + k +

m

2
; r2

)
−(1− r2)F

(
1 + α+m+ k

2
, 1 +

α+m+ k

2
; k +

m

2
; r2

)


and

Cα
P [Pk](x)|2 = c(α,m)

π
1
2 Γ(α+m+ k + 2)Γ

(
m−1

2

)
2k+1Γ

(
1 + k + m

2

)
Γ(α+m)

(1− r2)α+m−1
2 εxPk(x)

2α+m+ 1

α+m+ k + 1
F

(
1 + α+m+ k

2
, 1 +

α+m+ k

2
; 1 + k +

m

2
; r2

)
−(1− r2)F

(
1 +

α+m+ k

2
, 1 +

1 + α+m+ k

2
; 1 + k +

m

2
; r2

)


Using the definition of the hypergeometric series, these terms between square
brackets can repectively be rewritten as

−F
(
α+m+ k − 1

2
,
α+m+ k

2
; k +

m

2
; r2

)
for the scalar term and

−(k − α)F

(
α+m+ k

2
,
1 + α+m+ k

2
; 1 + k +

m

2
; r2

)
for the bivector-valued term. Eventually using one of Kummer’s relations, in
order to get rid of the factor (1− r2)α+m−1

2 , we find :

Cα
P [Pk](x) = Cα

P [Pk](x)|0 + Cα
P [Pk](x)|2

= c(α,m)
π

1
2 Γ(α+m+ k + 1)Γ

(
m−1

2

)
2kΓ

(
k + m

2

)
Γ(α+m)

Mod(α, k, x)Pk(x) ,
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with Mod(α, k, x) the modulation factor defined in Theorem 3.1. This means
that the hyperbolic monogenic functions on the Klein ball constructed by
means of this Modulation Theorem are reobtained as photogenic Cauchy
transforms of inner spherical monogenics.

6.2.2 The PCT of Outer Spherical Monogenics

Let us then consider an outer spherical monogenic Qk(ω) ∈M−(k). We will
hereby restrict ourselves to Qk(ω) = ωPk(ω) such that the inner spherical

monogenic Pk(ω) ∈ M+(k) takes its values in the even subalgebra R(+)
0,m,

whence the commutator [Pk(ω), ε] = 0. By definition, we have :

Cα
P [Qk](x) = − 1

Am

∫
Sm−1

Fα(x, ω)Pk(ω)dS(ω)

= −(2α+m+ 1)
c(α,m)

Am

(1− r2)α+m−1
2

∫
(ε+ x)Pk(ω)dS(ω)

(1− < x, ω >)α+m

+ (α+m)
c(α,m)

Am

(1− r2)α+m+1
2

∫
(ε+ ω)Pk(ω)dS(ω)

(1− < x, ω >)α+m+1
.

Using Lemma 6.1 we immediately see that up to the factor Pk(ξ) the PCT
Cα

P [Qk](x) has a component in ε and a component in ξ, respectively given by

Cα
P [Qk](x)|ε = c(α,m)(α+m)(1− r2)α+m+1

2 Pk,m(α+m+ 1; r)εPk(ξ)

− c(α,m)(2α+m+ 1)(1− r2)α+m−1
2 Pk,m(α+m; r)εPk(ξ)

Cα
P [Qk](x)|ξ = c(α,m)(α+m)(1− r2)α+m+1

2 P1+k,m(α+m+ 1; r)ξPk(ξ)

− c(α,m)(2α+m+ 1)(1− r2)α+m−1
2 rPk,m(α+m; r)ξPk(ξ)

With the aid of Lemma 6.2 this reduces to

Cα
P [Qk](x)|ε = c(α,m)

π
1
2 Γ(α+m+ k + 1)Γ

(
m−1

2

)
2kΓ

(
k + m

2

)
Γ(α+m)

(1− r2)α+m−1
2 εPk(x) −2α+m+ 1

α+m+ k
F

(
α+m+ k

2
,
1 + α+m+ k

2
; k +

m

2
; r2

)
+(1− r2)F

(
1 + α+m+ k

2
, 1 +

α+m+ k

2
; k +

m

2
; r2

)
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and

Cα
P [Pk](x)|ξ = −c(α,m)

π
1
2 Γ(α+m+ k + 2)Γ

(
m−1

2

)
2k+1Γ

(
1 + k + m

2

)
Γ(α+m)

(1− r2)α+m−1
2 xPk(x)

(2α+m+ 1)(2k +m)

(α+m+ k)(α+m+ k + 1)
F

(
α+m+ k

2
,
1 + α+m+ k

2
; k +

m

2
; r2

)
−(1− r2)F

(
1 +

α+m+ k

2
, 1 +

1 + α+m+ k

2
; 1 + k +

m

2
; r2

)


Eventually making use of the definition for the hypergeometric series to
rewrite the terms between square brackets respectively as

−(1 + α− k)F
(
α+m+ k − 1

2
,
α+m+ k

2
; k +

m

2
; r2

)
for the term in ε and

− (α− k)(1 + α− k)
(2k +m)(α+ k +m)

F

(
α+m+ k

2
,
1 + α+m+ k

2
; 1 + k +

m

2
; r2

)
for the term in ξ and recalling Kummer’s relation, in order to get rid of the

factor (1− r2)α+m−1
2 , we arrive at :

Cα
P [Qk](x) = Cα

P [Qk](x)|ε + Cα
P [Qk](x)|ξ

= (k − α− 1)c(α,m)
π

1
2 Γ(α+m+ k)Γ

(
m−1

2

)
2kΓ

(
k + m

2

)
Γ(α+m)

Mod(α, k, x)Pk(x)ε .

6.3 Photogenic Boundary Values

Now that we have found the photogenic Cauchy transform of inner and outer
spherical monogenics on Rm, we will determine their boundary values. Since
both Cα

P [Pk](x) and Cα
P [Qk](x) are solutions for the operator

(
∂ + ε(Er − α)

)
defined on the unit ball Bm(1) ⊂ Rm, i.e.

Cα
P [Pk](x) ∈ Hα

K

(
Bm(1)

)
Cα

P [Qk](x) ∈ Hα
K

(
Bm(1)

)
,

it seems natural to investigate whether the following limits exist :

Cα
P [Pk] ↑ (ξ) = lim

r→1−
[H(1− r)Cα

P [Pk](rξ)]

Cα
P [Qk] ↑ (ξ) = lim

r→1−
[H(1− r)Cα

P [Qk](rξ)] ,
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where we have put x = rξ and where the arrow ↑ is used to indicate that
these limits are calculated with r approaching 1 from beneath.

In order to determine these limits, the following property of the hypergeo-
metric function is essential : for Re(c− a− b) > 0 and c /∈ −N we have

lim
t→1

F (a, b; c; t) =
Γ(c− a− b)Γ(c)

Γ(c− a)Γ(c− b)
.

Recalling the definitions for the constant c(α,m) and the modulation factor
Mod(α, k, x), for which we respectively refer to Definition 6.1 and Theorem
3.1, we get for those α for which Re(α) + m−1

2
> 0 :

Cα
P [Pk] ↑ (ξ) =

Γ
(

m−1
2

)
8π

m−1
2

(α+m+ k){(α+m+ k − 1) + (k − α)ξε}Pk(ξ)(
α+ m+1

2

) (
α+ m−1

2

)
(6.3)

Cα
P [Qk] ↑ (ξ) =

Γ
(

m−1
2

)
8π

m−1
2

(1 + α− k){(α− k)− (α+m+ k − 1)ξε}Qk(ξ)(
α+ m+1

2

) (
α+ m−1

2

)
(6.4)

Remark : It was to be expected that we would have to make restrictions
on the parameter α! Consider for example the value α = −m

2
, for which the

projection of the hyperbolic Dirac operator on the Poincaré model reduces to
the operator ∂(x+ ε) on the unit ball Bm(1), see Chapter 3. If a hyperbolic
monogenic function f(x) on the Poincaré model - which is a function f(x)
on Bm(1) such that ∂(x + ε)f(x) = 0 - would have a boundary value f(ξ)
then also the function g(x) = (x+ ε)f(x) would have a boundary value, viz.
g(ξ) = (ξ + ε)f(ξ). From this it follows immediately that ξg(ξ) = −εg(ξ).
On the other hand the function g(x) is monogenic on Bm(1) with respect
to the operator ∂ on R0,m, such that g(ξ) stands for the boundary value
of a classical monogenic function. In other words, for all inner spherical
monogenics Pk(ξ) ∈M+(k) we get∫

Sm−1

P k(ξ)εξg(ξ)dS(ξ) = 0 =⇒
∫

Sm−1

P k(ξ)g(ξ)dS(ξ) = 0 .

As this expression holds for all Pk(ξ) we get g(ξ) = 0 and thus f(ξ) = 0,
which illustrates that for α = −m

2
there are no non-trivial hyperbolic mono-

genic functions with boundary values on the sphere.
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Formulae (6.3) and (6.4) can also be expressed in terms of the spherical
Gamma operator Γ0,m on the sphere Sm−1, hereby using the fact that inner
(resp. outer) spherical monogenics of degree k are eigenfunctions for the
operator Γ0,m with eigenvalue (−k) (resp. (k+m−1)). For Re(α)+ m−1

2
> 0

we get

Cα
P [Pk] ↑ (ξ)

=
Γ
(

m−1
2

)
8π

m−1
2

{
(α+m− 1− Γ0,m)− ξε(Γ0,m + α)

}
(α+m− Γ0,m)Pk(ξ)(

α+ m+1
2

) (
α+ m−1

2

) ,

Cα
P [Qk] ↑ (ξ)

=
Γ
(

m−1
2

)
8π

m−1
2

{
(α+m− 1− Γ0,m)− ξε(Γ0,m + α)

}
(α+m− Γ0,m)Qk(ξ)(

α+ m+1
2

) (
α+ m−1

2

) .

This shows that in case Re(α) + m−1
2

> 0 the boundary values Cα
P [Pk] ↑ (ξ)

and Cα
P [Qk] ↑ (ξ) can be found by letting the polynomial operator

Pα(Γ0,m) =
Γ
(

m−1
2

)
8π

m−1
2

{(α+m− 1− Γ0,m)− ξε(Γ0,m + α)}(α+m− Γ0,m)(
α+ m+1

2

) (
α+ m−1

2

)
act on respectively the inner and outer spherical monogenics Pk(ξ) andQk(ξ).

We will now reinterpret these formulae in such a way that the boundary
values Cα

P [Pk] ↑ (ξ) and Cα
P [Qk] ↑ (ξ) can be recovered as the action of a

distribution on the spherical monogenics Pk(ξ) and Qk(ξ).

Two different approaches can be followed here :

• The first approach uses the polynomial operator Pα(Γ0,m) introduced
above. Since we will need two different variables ω and ξ ∈ Sm−1, the
Gamma operator on Sm−1 will be labelled with the variable on which
it is supposed to act from now on. So instead of Γ0,m we will write Γω :

Cα
P [Pk] ↑ (ξ) =

∫
Sm−1

δ(ξ − ω)Pα(Γω)Pk(ω)dS(ω)

Cα
P [Qk] ↑ (ξ) =

∫
Sm−1

δ(ξ − ω)Pα(Γω)Qk(ω)dS(ω)

221



Recalling formulae (3) and (4), this can also be written as

Cα
P [Pk] ↑ (ξ) = −

∫
Sm−1

[δ(ξ − ω)Pα(Γω)]Pk(ω)dS(ω)

=

∫
Sm−1

Pα(Γω)δ(ξ − ω)Pk(ω)dS(ω)

and

Cα
P [Qk] ↑ (ξ) = −

∫
Sm−1

[δ(ξ − ω)Pα(Γω)]Qk(ω)dS(ω)

=

∫
Sm−1

Pα(Γω)δ(ξ − ω)Qk(ω)dS(ω) .

Defining the action of a distribution D(ω) on a test function ϕ(ω) by

< D(ω), ϕ(ω) > =

∫
Sm−1

D(ω)ωϕ(ω)dS(ω) ,

we get for all Re(α) + m−1
2

:

Cα
P [Pk] ↑ (ξ) = − < Pα(Γω)δ(ξ − ω), ωPk(ω) >

= < ωPα(Γω)δ(ξ − ω), Pk(ω) >

Cα
P [Qk] ↑ (ξ) = − < Pα(Γω)δ(ξ − ω), ωQk(ω) >

= < ωPα(Γω)δ(ξ − ω), Qk(ω) >

• The second approach again uses the photogenic Cauchy kernel but in
contrast to previous considerations, the distribution Fα(x, ω), x = rξ,
will now be interpreted as a distribution in the variable ξ ∈ Sm−1.
When acting on a test function ϕ(ξ), we get by definition (cfr. supra) :

< Fα(rξ, ω), ϕ(ξ) > =

∫
Sm−1

Fα(rξ, ω)ξϕ(ξ)dS(ξ) .

We will let this distribution act on an inner spherical monogenic Pk(ξ)
(resp. an outer spherical monogenic Qk(ξ)), and perform similar cal-
culations as in the previous subsection to simplify the resulting expres-
sions.
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For an arbitrary Pk(ξ) ∈M+(k), we get :

< Fα(rξ, ω), Pk(ξ) > = c(α,m)(1− r2)α+m−1
2 Pk(ω)[

−r(2α+m+ 1)Pk,m(α+m; r)
+(α+m)(1− r2)P1+k,m(α+m+ 1; r)

]
− c(α,m)(1− r2)α+m−1

2 ωεPk(ω)[
(2α+m+ 1)P1+k,m(α+m; r)
−(α+m)(1− r2)P1+k,m(α+m+ 1; r)

]
Lemma 6.2 can be used to calculate the expressions between square
brackets as a sum of hypergeometric functions.

Using elementary properties of the hypergeometric series, this can then
be simplified to

< Fα(rξ, ω), Pk(ξ) >

= c(α,m)(α− k)(α− k + 1)
π

1
2 Γ (α+m+ k) Γ

(
m−1

2

)
2k+1Γ (α+m) Γ

(
1 + k + m

2

)
rkF

(
1 + k − α

2
, 1 +

k − α
2

; 1 + k +
m

2
; r2

)
Pk(ω)

+ c(α,m)
k − α

2k +m

π
1
2 Γ (α+m+ k + 1) Γ

(
m−1

2

)
2kΓ (α+m) Γ

(
k + m

2

)
r1+kF

(
1 + k − α

2
, 1 +

k − α
2

; 1 + k +
m

2
; r2

)
ωεPk(ω) .

For Re(α) + m−1
2

> 0 we thus get in the limit limr→1 :

lim
r→1

< Fα(rξ, ω), Pk(ξ) >

=
Γ
(

m−1
2

)
8π

m−1
2

(α− k){(α− k − 1)− ωε(α+m+ k)}Pk(ω)(
α+ m+1

2

) (
α+ m−1

2

) .

Next we consider an arbitrary Qk(ξ) ∈M−(k). We get :

< Fα(rξ, ω), Qk(ξ) > = c(α,m)(1− r2)α+m−1
2 ωPk(ω)[

−r(2α+m+ 1)P1+k,m(α+m; r)
+(α+m)(1− r2)Pk,m(α+m+ 1; r)

]
− c(α,m)(1− r2)α+m−1

2 εPk(ω)[
(2α+m+ 1)Pk,m(α+m; r)
−(α+m)(1− r2)Pk,m(α+m+ 1; r)

]
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Lemma 6.2 can be used to simplify the expressions between square
brackets as a sum of hypergeometric functions, and these can then be
reduced by means of the definition for the hypergeometric series to

< Fα(rξ, ω), Qk(ξ) > = c(α,m)
π

1
2 Γ (α+m+ k) Γ

(
m−1

2

)
2k+1Γ (α+m) Γ

(
1 + k + m

2

)
rkF

(
1 + k − α

2
,
k − α

2
; k +

m

2
; r2

)
ωPk(ω)

− c(α,m)(1 + α− k)
π

1
2 Γ (α+m+ k) Γ

(
m−1

2

)
2kΓ (α+m) Γ

(
k + m

2

)
rkF

(
1 + k − α

2
,
k − α

2
; k +

m

2
; r2

)
εPk(ω) .

For Re(α) + m−1
2

> 0 we thus get in the limit limr→1 :

lim
r→1

< Fα(rξ, ω), Qk(ξ) >

=
Γ
(

m−1
2

)
8π

m−1
2

(α+m+ k − 1){(α+m+ k)− ωε(1 + α− k)}Qk(ω)(
α+ m+1

2

) (
α+ m−1

2

) .

If we now compare these expressions for

limr→1 < Fα(rξ, ω), Pk(ξ) >

limr→1 < Fα(rξ, ω), Qk(ξ) >

with the boundary values Cα
P [Pk] ↑ (ξ) and Cα

P [Qk] ↑ (ξ) for the PCT of
inner and outer spherical monogenics on Rm, we conclude that

lim
r→1

< Fα(rξ, ω), Pk(ξ) > = Cβ
P [Pk] ↑ (ξ)

lim
r→1

< Fα(rξ, ω), Qk(ξ) > = Cβ
P [Qk] ↑ (ξ) ,

where we have put β = −α−m.

This can easily be understood as follows : if we consider for example
an inner spherical monogenic Pk(ω) ∈M+(k), we have by definition

Cβ
P [Pk] ↑ (ξ) = lim

r→1

∫
Sm−1

Fβ(rξ, ω)ωPk(ω)dS(ω)

lim
r→1

< Fα(rω, ξ), Pk(ω) > = lim
r→1

∫
Sm−1

Fα(rω, ξ)ωPk(ω)dS(ω)
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showing that both formulae are identical, except for the fact that the
arguments of the photogenic kernel are switched and that α ↔ β.
We have already encountered this phenomenon in Chapter 5, where
the following observation was made : the fundamental solution for the
hyperbolic Dirac equation on H+ is the restriction to H+ of a function
Eα(X, Y ), defined for X and Y ∈ FC, which is α-homogeneous in X
and monogenic with respect to the operator ∂X acting from the left
and β-homogeneous in Y and monogenic with respect to the operator
∂Y acting from the right.

6.4 Hyperbolic Hilbert Modules

In this section, we introduce a function space containing square integrable
functions on Sm−1 ⊂ Rm which are boundary values of hyperbolic monogenic
functions on the Klein model, i.e. functions belonging to Hα

K

(
Bm(1)

)
. Con-

sidering the extension of these functions to the Lie sphere LSm−1 it can be
proved that this function space is a Hilbert module with reproducing kernel,
under certain restrictions on the parameter α. Throughout this section, the
spherical Dirac operator Γ0,m on Sm−1 will always be denoted by means of
the variable on which it acts; i.e. as Γω or Γξ (with ω and ξ ∈ Sm−1).

First of all, let us consider a function f ∈ L2(S
m−1). This function can

be decomposed as f =
∑∞

k=0 P (k)[f ] + Q(k)[f ], where the series converges
in L2-sense. By definition, we thus have :

‖f‖2L2(Sm−1) =
∞∑

k=0

‖P (k)f‖2L2(Sm−1) + ‖Q(k)f‖2L2(Sm−1) < ∞ ,

which means that
(
‖P (k)f‖L2(Sm−1)

)
k∈N and

(
‖Q(k)f‖L2(Sm−1)

)
k∈N belong to

the space of square summable series l2. From the previous section we already
know that if we let the photogenic Cauchy transform act on these monogenic
building blocks P (k)[f ] and Q(k)[f ], we get for α ∈ C :

Cα
P [P (k)f ](x) ∈ Hα

K

(
Bm(1)

)
Cα

P [Q(k)f ](x) ∈ Hα
K

(
Bm(1)

)
,

with, up to a constant depending on α, m and k :

Cα
P [P (k)f ](x) ∼ Mod(α, k;x)P (k)f(x)

Cα
P [Q(k)f ](x) ∼ Mod(α, k;x)P (k)f(x)ε .
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For each k ∈ N fixed and α ∈ C such that Re(α) > 1−m
2

, we also have that
for f ∈ L2(S

m−1) :

lim
|x|→1

Cα
P [P (k)f ](x) = Cα

P [P (k)f ] ↑ (ξ) ∈ L2(S
m−1)

lim
|x|→1

Cα
P [Q(k)f ](x) = Cα

P [Q(k)f ] ↑ (ξ) ∈ L2(S
m−1) .

Indeed, consider for example

Cα
P [P (k)f ] ↑ (ξ) = cpP (k)[f ](ξ) + cqQ(k)[f ](ξ)ε ,

with

cp =
Γ
(

m−1
2

)
8π

m−1
2

(α+m+ k)(α+m+ k − 1)(
α+ m+1

2

) (
α+ m−1

2

)
cq =

Γ
(

m−1
2

)
8π

m−1
2

(α+m+ k)(k − α)(
α+ m+1

2

) (
α+ m−1

2

) .
Since∥∥Cα

P [P (k)f ] ↑
∥∥2

L2(Sm−1)
=

∫
Sm−1

Cα
P [P (k)f ] ↑ (ξ)Cα

P [P (k)f ] ↑ (ξ)dS(ξ) ,

we get, in view of the orthogonality of P (k)[f ] and Q(k)[f ] :∥∥Cα
P [P (k)f ] ↑

∥∥2

L2(Sm−1)
= |cp|2‖P (k)f‖2L2(Sm−1) − |cq|2‖Q(k)f‖2L2(Sm−1)

< ∞ .

A natural question to ask is the following : if

f =
∞∑

k=0

P (k)[f ] +Q(k)[f ] in L2-sense ,

do we also have that

Cα
P [f ] ↑ =

∞∑
k=0

Cα
P [P (k)f ] ↑ +Cα

P [Q(k)f ] ↑ in L2-sense ?

In view of expressions (6.3) and (6.4) the answer is clearly no, as both
Cα

P [P (k)f ] ↑ and Cα
P [Q(k)f ] ↑ contain factors k2P (k)f and k2Q(k)f from

the second-order derivation with respect to the Gamma operator.

However, if we restrict ourselves to functions f belonging to the Sobolev
space W2(S

m−1), see e.g. [74], defined by
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Definition 6.3

W2(S
m−1) = {f : Lστf ∈ L2(S

m−1) , |σ| = |τ | ≤ 2} ,

where Lστ = Lσ1τ1 · · ·Lσnτn for multi-indices σ and τ ∈ Nn,

it is immediately clear that f ∈ W2(S
m−1) =⇒ Cα

P [f ] ↑ ∈ L2(S
m−1).

Lemma 6.3 The operator Cα
P [·] ↑ on W2(S

m−1) is continuous, for all α ∈ C
such that Re(α) > 1−m

2
.

Proof : It suffices to verify that if (fj)j∈N → f in W2(S
m−1), we also get that

‖Cα
P [fj] ↑ −Cα

P [f ] ↑ ‖L2(Sm−1) −→ 0 .

Since fj ∈ L2(S
m−1) we have fj =

∑
k P

(j)
k +Q

(j)
k , and since (fj)j∈N → f in

the L2-sense we also have f =
∑

k Pk +Qk. Hence, we get that

Cα
P [fj] ↑ =

∞∑
k=0

Mod(α, k; ξ)
(
cα,k,m + c′α,k,mε

)
P

(j)
k (ξ)

Cα
P [f ] ↑ =

∞∑
k=0

Mod(α, k; ξ)
(
cα,k,m + c′α,k,mε

)
Pk(ξ) ,

where the condition on α is needed to ensure the existence of the radial limits.
This means that

Cα
P [fj] ↑ −Cα

P [f ] ↑ =
∞∑

k=0

Mod(α, k; ξ)
(
cα,k,m + c′α,k,mε

)(
P

(j)
k (ξ)− Pk(ξ)

)
,

and in view of the fact that both ‖P (j)
k − Pk‖L2 → 0 and ‖Q(j)

k −Qk‖L2 → 0
this yields the desired result. �

Since the photogenic Cauchy transform Cα
P [f ](x) of a function f in the

Sobolev space W2(S
m−1) belongs to Hα

K

(
Bm(1)

)
it seems natural to define

a function space MLα
2 (Sm−1) containing radial limits, in the L2-sense, of

hyperbolic monogenics on the Klein ball :

Definition 6.4 Let α be an arbitrary complex number. We then put

MLα
2 (Sm−1) =

{
f ∈ L2(S

m−1) : f(ω) = lim
r→1

f ∗(x) , f∗ ∈ Hα
K

(
Bm(1)

)}
.
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For α ∈ C such that Re(α) > 1−m
2

, we thus have the following mapping :

Cα
P [·] ↑ : W2(S

m−1) 7→ MLα
2 (Sm−1) : f 7→ Cα

P [f ] ↑ .

Note however that this mapping is not one-to-one. Indeed, from the explicit
expressions for Cα

P [Pk](x) and Cα
P [Qkε](x) we get for all k ∈ N that

Cα
P [(1 + α− k)Pk + (α+m+ k)Qkε] ↑ (ξ) = 0 .

In view of the fact that the spherical monogenics are eigenfunctions for the
operator Γω on the unit sphere Sm−1, this can be rewritten as

Cα
P

[(
Γω + 1 + α

)
(1 + ωε)Pk

]
↑ (ξ) = 0 .

Recalling the explicit expression for the photogenic Cauchy transform, and
using the fact that (1 + ωε)ωε = (1 + ωε), this gives rise to the following
equalities :∫

Sm−1

Fα(x, ω)ω(Γ + 1 + α)(1 + ωε)Pk(ω)dS(ω) = 0

and also ∫
Sm−1

Fα(x, ω)ω(Γ + 1 + α)(1 + ωε)Qk(ω)dS(ω) = 0 .

We will now rewrite these expressions in terms of the inner product on the
space L2(S

m−1) :

(Dα(ω)Fα(x, ω), Pk) = (Dα(ω)Fα(x, ω), Qk) = 0 ,

with Dα(ω) a differential operator on the unit sphere. Since

(f, Pk) = (f,Qk) = 0 =⇒ f = 0 ,

this will give rise to a differential equation for the photogenic Cauchy kernel
when considered as a function of ω ∈ Sm−1.

Using the fact that ωΓωω = Γω − (m− 1), we immediately get∫
Sm−1

Fα(x, ω)ω(Γω + 1 + α)(1 + ωε)Pk(ω)dS(ω)

=

∫
Sm−1

Fα(x, ω)

(
(1 + α)ω(1 + ωε)− (m− 1)ε+ (ω + ε)Γω

)
Pk(ω)dS(ω) ,
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which by means of the fact that (f,Γg) = (Γf, g) can be written as({
Γω(ω + ε)− (m− 1)ε+ (1 + α)(ω − ε)

}
Fα(x, ω), Pk

)
.

In other words, the operator Dα(ω) mentioned earlier is given by

Dα(ω) = Γω(ω + ε)− (m− 1)ε+ (1 + α)(ω − ε)

and its action on the photogenic Cauchy kernel is given by the following :

Lemma 6.4 The photogenic Cauchy kernel Fα(x, ω) belongs to the kernel of
the operator Dα(ω), for all x ∈ Bm(1) :

Dα(ω)Fα(x, ω) = 0 .

Proof : Follows from direct calculations. �

Let us then consider a function f belonging to MLα
2 (Sm−1). By definition,

there exists a function f ∗(x) ∈ Hα
K

(
Bm(1)

)
such that f(ξ) = limr→1 f

∗(rξ).
In view of the Taylor Theorem on the hyperbolic Klein ball, we thus have :

f ∗(x) =
∞∑

k=0

Mod(α, k;x)Pk(x) =⇒ f(ξ) =
∞∑

k=0

Mod(α, k; ξ)Pk(ξ) ,

with Pk(x) ∈ M+(k), its explicit form being given by Theorem 5.12. Since
f ∈ L2(S

m−1) we also have that(∣∣F (k)
1 (1)

∣∣‖Pk‖L2

)
k

and

(∣∣F (k)
2 (1)

∣∣‖Pk‖L2

)
k

∈ l2 .

Remark : Note that the spaces MLα
2 (Sm−1) are trivial for Re(α) ≤ 1−m

2
,

since the modulation factor Mod(α, k;x) does not coverge for these values as
|x| → 1.

In view of the fact that

Cα
P

[
2kΓ

(
k + m

2

)
Γ(α+m+ k + 1)

Pk(ω)

]
(x) =

Γ
(

m−1
2

)
Mod(α, k;x)Pk(x)

2α+m+1π
m
2
−1Γ

(
α+ m+3

2

) ,

it follows that

Cα
P [·] ↑ :

∞∑
k=0

2kΓ
(
k + m

2

)
Γ(α+m+ k + 1)

Pk(ω) 7→
Γ
(

m−1
2

)
2α+m+1π

m
2
−1Γ

(
α+ m+3

2

)f(ξ) .
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where the convergence is understood in the L2-sense. In order to verify
whether this series belongs to the space W2(S

m−1) it suffices to prove that

∞∑
k=0

k2 2kΓ
(
k + m

2

)
Γ(α+m+ k + 1)

Pk(ω) ∈ L2(S
m−1) .

For that purpose we use Legendre’s duplication formula :∣∣∣∣∣ k22kΓ
(
k + m

2

)
Γ(α+m+ k + 1)

∣∣∣∣∣ ≤
∣∣∣∣∣ k2

(α+m+ k)(α+m+ k − 1)

22−α−mπ
1
2 Γ
(
k + m

2

)
Γ
(

α+m+k
2

)
Γ
(

α+m+k−1
2

)∣∣∣∣∣
≤ Cα,m

∣∣F (k)
1 (1)

∣∣ ∣∣∣∣ k2

(α+m+ k)(α+m+ k − 1)

∣∣∣∣ ,
with Cα,m a constant depending on α and m only. Since the last term is
bounded by a constant for all k, we immediately get that the desired result,
hereby using the fact that f ∈ L2(S

m−1) :

∞∑
k=0

2kΓ
(
k + m

2

)
Γ(α+m+ k + 1)

Pk(ω) ∈ W2(S
m−1) .

Since the kernel of the mapping Cα
P [·] ↑ is closed, which follows immediately

from the continuity, its domain can be characterized as the orthogonal com-
plement of its kernel, where

ker Cα
P [·] ↑ =

{
f ∈ W2(S

m−1) : f(ξ) = (Γ + 1 + α)
∞∑

k=0

ck(1 + ξε)Pk(ξ)

}
.

Returning to f ∗(x) ∈ Hα
K

(
Bm(1)

)
, we expand the hypergeometric functions

in the modulation factor as a series :

f ∗(x) =
∞∑

k=0

∞∑
l=0

(
k−α

2

)
l

(
1+k−α

2

)
l

l!
(
k + m

2

)
l

|x|2lPk(x)

+
k − α

2k +m

∞∑
k=0

∞∑
l=0

x

(
1+k−α

2

)
l

(
1 + k−α

2

)
l

l!
(
1 + k + m

2

)
l

|x|2lPk(x)ε ,

which is a double series converging normally on the unit ball Bm(1). Hence,
Siciak’s Theorem tells us that the complexified double series

f ∗(z) =
∞∑

k=0

∞∑
l=0

(
k−α

2

)
l

(
1+k−α

2

)
l

l!
(
k + m

2

)
l

|z|2lPk(z)

+
k − α

2k +m

∞∑
k=0

∞∑
l=0

z

(
1+k−α

2

)
l

(
1 + k−α

2

)
l

l!
(
1 + k + m

2

)
l

|z|2lPk(z)ε
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will converge normally on the Lie ball LBm(1), from which it immediately
follows that f ∗(z) is holomorphic in the Lie ball.

To examine the L2-boundary behaviour of this holomorphic function, we
consider the extension of f to the Lie sphere LSm−1, given by

f(eitξ) =
∞∑

k=0

Mod(α, k; eitξ)Pk(e
itξ) .

By definition, we have :

f(eitξ) ∈ L2(LS
m−1) ⇐⇒ ‖f(eitξ)‖L2(LSm−1) <∞ ,

where the norm on the Lie sphere is given by

‖f(eitξ)‖2L2(LSm−1) =
1

Amπ

∫ π

0

∫
Sm−1

f(eitξ)+f(eitξ)dtdS(ξ) ,

with f(eitξ)+ the Hermitian conjugate on the complexified Clifford algebra.

In view of the definition of the modulation factor Mod(α, k; eitξ), the Lie
norm ‖f‖2L2(LSm−1) reduces to

1

π

∞∑
k=0

{∫ π

0

|F (k)
1 (e2it)|2dt−

∣∣∣∣ k − α2k +m

∣∣∣∣ ∫ π

0

|F (k)
2 (e2it)|2dt

}
‖Pk‖2L2(Sm−1) ,

with as before :

F
(k)
1 (e2it) = F

(
k − α

2
,
1 + k − α

2
; k +

m

2
; e2it

)
F

(k)
2 (e2it) = F

(k+1)
1 (e2it) .

Note that

f(eitξ) ∈ L2(LS
m−1) ⇐⇒ f(eitξ)ε ∈ L2(LS

m−1) ,

where ‖fε‖2L2(LSm−1) is given by

1

π

∞∑
k=0

{∫ π

0

|F (k)
1 (e2it)|2dt+

∣∣∣∣ k − α2k +m

∣∣∣∣ ∫ π

0

|F (k)
2 (e2it)|2dt

}
‖Pk‖2L2(Sm−1) ,

whence f(eitξ) ∈ L2(LS
m−1) if both

1

π

(∫ π

0

|F (k)
1 (e2it)|2dt‖Pk‖2L2(Sm−1)

)
k

∈ l1
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and

1

π

(∫ π

0

|F (k)
2 (e2it)|2dt‖Pk‖2L2(Sm−1)

)
k

∈ l1 .

The aim is now to find conditions on α such that

1

π

(∫ π

0

|F (k)
1 (e2it)|2dt‖Pk‖2L2(Sm−1)

)
k

≤
(
|F (k)

1 (1)|2‖Pk‖2L2(Sm−1)

)
k

1

π

(∫ π

0

|F (k)
2 (e2it)|2dt‖Pk‖2L2(Sm−1)

)
k

≤
(
|F (k)

2 (1)|2‖Pk‖2L2(Sm−1)

)
k

,

where the inequalities mean that starting from a certain k0 ∈ N, each term on
the left-hand side has the corresponding term on the right-hand side as upper
bound. For α such that Re(α) > 1−m

2
both F

(k)
1 (1) and F

(k)
2 (1) converge for

all k ∈ N, respectively to the values

F
(k)
1 (1) =

Γ
(
α+ m−1

2

)
Γ
(
k + m

2

)
Γ
(

α+m+k−1
2

)
Γ
(

α+m+k
2

)
F

(k)
2 (1) =

Γ
(
α+ m−1

2

)
Γ
(
1 + k + m

2

)
Γ
(

α+m+k
2

)
Γ
(

α+m+k+1
2

) .

This means that for α ∈ C such that Re(α) > 1−m
2

it suffices to prove that for
k large enough, the integrals at the left-hand side are bounded from above
by the modulus of these constants.

To so, we use the following : let a, b and c be real such that c > b > 0,
a > 0 and c − a − b > 0. We then have Euler’s integral representation
formula for the hypergeometric function F (a, b; c; eix) :

F (a, b; c; eix) =
Γ(c)

Γ(c− b)Γ(b)

∫ 1

0

tb−1(1− t)c−b−1(1− teix)−adt .

From this, it easily follows that

∣∣F (a, b; c; eix)
∣∣ ≤ ∣∣∣∣ Γ(c)

Γ(c− b)Γ(b)

∣∣∣∣ ∫ 1

0

∣∣tb−1(1− t)c−b−1
∣∣ ∣∣(1− teix)−a

∣∣ dt ,
which, in view of the fact that the parameters are real, reduces to

∣∣F (a, b; c; eix)
∣∣ ≤ Γ(c)

Γ(c− b)Γ(b)

∫ 1

0

tb−1(1− t)c−b−1
∣∣(1− teix)

∣∣−a
dt .
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As a > 0 and ∣∣1− teix
∣∣ =

(
(1 + t2)− 2t cosx

) 1
2 ≥ 1− t ,

we eventually find that∣∣F (a, b; c; eix)
∣∣ ≤ Γ(c)

Γ(c− b)Γ(b)

∫ 1

0

tb−1(1− t)c−b−1(1− t)−adt

= F (a, b; c; 1) .

In the present situation this means that for real α such that α > 1−m
2

, we
have that f ∈MLα

2 (Sm−1) =⇒ f ∈ L2(LS
m−1). Indeed, it suffices to choose

k0 ∈ N in such a way that k0 > α. For all k ≥ k0, the hypergeometric series
F

(k)
1 (e2it) and F

(k)
2 (e2it) then satisfy the requirements to conclude that

1

π

∫ π

0

|F (k)
1 (e2it)|2dt‖Pk‖2L2(Sm−1) ≤ |F (k)

1 (1)|2‖Pk‖2L2(Sm−1)

1

π

∫ π

0

|F (k)
2 (e2it)|2dt‖Pk‖2L2(Sm−1) ≤ |F (k)

2 (1)|2‖Pk‖2L2(Sm−1) .

In other words, for α ∈ R such that α > 1−m
2

we have the inclusion :

MLα
2 (Sm−1) ⊂ L+

2 (LSm−1) .

Note that this also means that the projection Dα(x) of the hyperbolic Dirac
operator on the Klein ball is a differential operator of the Frobenius type,
and hence we can construct a reproducing kernel for hyperbolic monogenic
functions on the Klein ball belonging to the function space MLα

2 (Sm−1) for
α > 1−m

2
if the inner product on L+

2 (LSm−1) can be rewritten in terms of
the inner product on the sphere Sm−1.

Remark : From these estimates it is also clear that for real α > 1−m
2

we
have the following equivalence :

f(ω) ∈MLα
2 (Sm−1) ⇐⇒ f(ω) =

∞∑
k=0

Mod(α, k;ω)Pk(ω) .

Indeed, the ”⇒” is a trivial consequence of Taylor’s Theorem and for the ”⇐”
it suffices to put f̃(x) =

∑∞
k=0 Mod(α, k;x)Pk(x), where the convergence is

understood in the sense of the supremum norm on compact sets K ⊂ Bm(1).
The estimates above then guarantee that this series indeed converges and by
construction we also have that f(ω) = limr→1 f̃(rω).
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Let us then determine this reproducing kernel, which will be denoted by
Kα(x, ω) (where from now on α ∈ R satisfies the condition α > 1−m

2
), with

f(x) =

∫
Sm−1

Kα(x, ω)f(ω)dS(ω)

for f ∈MLα
2 (Sm−1).

As f ∈ MLα
2 (Sm−1) belongs to L+

2 (LSm−1), we have by definition for the
complex holomorphic extension f(z) on the Lie ball :

f(z) =
1

Amπ

∫ π

0

∫
Sm−1

H+(z, eitω)f(eitω)dS(ω)dt ,

which, by means of the definition for the Cauchy-Hua kernel, reduces to

f(rξ) =
1

Amπ

∞∑
k,l=0

∫ π

0

∫
Sm−1

(rξ)lrke−iktZk(ξ, ω)(eitω)−lf(eitω)dS(ω)dt ,

where θ =< ξ, ω > and (see Definition 5.4)

Zk(ξ, ω) = C
m
2

k (θ) + ξωC
m
2

k−1(θ)

and with x = rξ ∈ Bm(1). As f ∈ MLα
2 (Sm−1), we have by means of

Theorem 5.12

f(x) =
∞∑

q=0

Mod(α, q;x)Pq(x) ,

such that the function f(rξ) is for all x ∈ Bm(1) given by

1

Amπ

∞∑
q,k,l=0

rk+lξl

∫ π

0

∫
Sm−1

ei(q−k−l)tZk(ξ, ω)ω−lMod(α, q; eitω)Pq(ω)dS(ω)dt .

In view of the definition for the modulation factor, this reduces to the sum
of two terms :

Σ1 =
∞∑

q,k,l=0

rk+lξl

Amπ

∫ π

0

ei(q−k−l)tF
(q)
1 (e2it)dt

∫
Sm−1

Zk(ξ, ω)ω−lPq(ω)dS(ω)

and

Σ2 =
∞∑

q,k,l=0

q − α
(2q +m)

rk+lξl

Amπ

∫ π

0

ei(1+q−k−l)tF
(q)
2 (e2it)dt ×∫

Sm−1

Zk(ξ, ω)ω−lωεPq(ω)dS(ω) .
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Consider for example the first term Σ1. Due to the orthogonality of spherical
monogenics on the sphere and the fact that Zk(ξ, ω) = Zk(ω, ξ), with Zk(ω, ξ)
an inner spherical monogenic of order k, the integral in ω only differs from
zero if both l ∈ 2N and q = k. Hence,

Σ1 =
∞∑

k,l=0

rk+2l

Amπ

∫ π

0

e−2iltF
(k)
1 (e2it)dt

∫
Sm−1

Zk(ξ, ω)Pk(ω)dS(ω) .

As ∫ π

0

e−2iltF
(k)
1 (e2it)dt =

∞∑
j=0

(
k−α

2

)
j

(
1+k−α

2

)
j

j!
(
k + m

2

)
j

∫ π

0

e−2i(j−l)tdt ,

the sumation in l dissapears, and only the term for which j = l remains.
Note that this is a crucial step : it enables us to get rid of the variable t, and
therefore we can rewrite the inner product on the Lie sphere in terms of the
inner product on the sphere Sm−1. We thus find :

Σ1 =
∞∑

k=0

rk

Am

F
(k)
1 (r2)

∫
Sm−1

Zk(ξ, ω)Pk(ω)dS(ω) .

In a completely similar way, we arrive at

Σ2 =
∞∑

k=0

k − α
2k +m

r1+k

Am

F
(k)
2 (r2)ξε

∫
Sm−1

Zk(ξ, ω)Pk(ω)dS(ω) ,

from which it then immediately follows that

f(rξ) =
∞∑

k=0

Mod(α, k; rξ)Pk(rξ) ,

as was to be expected!

We then propose the following form for the reproducing kernel Kα(x, ω) :

Kα(ω, x) =
∞∑

k=0

rk
Mod(α, k; rξ)Zk(ξ, ω)Mod(α, k;ω)

|F (k)
1 (1)|2 − |F (k)

2 (1)|2
.

This kernel satisfies the necessary conditions :

• In view of its very own definition, we have

Kα(x, y) = Kα(y, x) ,

which is the property of anti-symmetry.
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• The kernel Kα(ξ, ω) belongs to the moduleMLα
2 (Sm−1).

• It has the reproducing property :∫
Sm−1

Kα(rξ, ω)f(ω)dS(ω)

=
∞∑
l=0

∫
Sm−1

Kα(rξ, ω)Mod(α, l;ω)Pl(ω)dS(ω) ,

which by means of the orthogonality of spherical monogenics on the
sphere reduces to∫

Sm−1

Kα(rξ, ω)f(ω)dS(ω) = f(rξ) .

Theorem 6.1 For real α such that α > 1−m
2

, the space MLα
2 (Sm−1) is a

Hilbert module with reproducing kernel, given by

Kα(ω, rξ) =
∞∑

k=0

rk
Mod(α, k; rξ)Zk(ξ, ω)Mod(α, k;ω)

|F (k)
1 (1)|2 − |F (k)

2 (1)|2
.

Remark : Note that for α = k the reproducing kernel Kk(ω, ξ) reduces to
the classical Szego kernel

Kk(ω, ξ) =
∞∑

k=0

Zk(ξ, ω) =
1 + ξω

|1 + ξω|m
.

In other words, the reproducing kernel for the space of hyperbolic monogenics
in the Klein ball can again be found as a modulation of the ”classical” kernel
for the Dirac operator on the flat Euclidean space Rm, albeit only under
certain restrictions on the parameter α.
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Chapter 7

The Conformal Case

Mathematics is the art of giving the same
name to different things. (J. H. Poincaré)

This Chapter is dedicated to the so-called conformal Dirac operator on the
hyperbolic unit ball, which is well-known and has already extensively been
studied throughout literature. This conformal operator is only a special case
of the Spin(1,m)-invariant operator studied in the thesis, as will be shown,
which makes it possible to state some results for the conformal Dirac operator
(e.g. a Modulation Theorem).

7.1 Dirac Operators on Manifolds

In this section we consider the Dirac operator on the hyperbolic unit ball
from the classical point of view, i.e. we explain how the operator studied
in the thesis must be understood in terms of the general theory of Dirac
operators on manifolds.

A first possibility to define the Dirac operator on a general manifold is to
study the abstract metric manifold, and in this sense follow the original idea
of B. Riemann that a manifold exists in itself. This allows the study of
manifolds without any notion of ”exterior”, which is the main idea behind
differential geometry. In this theory vector bundles play an important central
role : to define a Dirac operator on a general manifold it is equipped with a
suitable structure, the so-called spinor bundle. Much research has been done
on spinor Dirac operators (or Atiyah-Singer operators), see for instance [3],
[6] and [71].

It is however well-known that Riemannian manifolds, with a certain degree of
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smoothness, are isometrically embeddable in a Euclidean space of sufficiently
high dimension, see reference [53]. This was later generalized to the pseudo-
Riemannian case, see reference [14], and in some sense these two Theorems
remove the principal objection to use embedded manifolds ; that these are less
general than abstract metric manifolds. A second approach to define a Dirac
operator on a manifold fully exploits the idea of embedding the manifold
isometrically in a (pseudo-)Euclidean space, making it possible to use the
properties of the Dirac operator in the embedding space. This is actually the
approach followed in the thesis, as will be shown.

The main difference between both approaches lies in the mathematical frame-
work and language that is used. When working without an embedding, one
needs to define a ”comparison rule” to compare objects (such as tangent
vectors) in different points of the manifold, which can be done by means
of a connection on fibre bundles. When working with an embedding of the
manifold one uses properties of the embedding space. For example, consider
the sphere Sm−1 as the (m− 1)-dimensional manifold embedded in Rm. The
curvature of this manifold can be determined implicitely, using nothing but
the metric on this manifold, or it can be determined in terms of properties
of the unit normal.

In this section we will construct the Atiyah-Singer spinor Dirac operator
on H+ and we will show that the R1,m-valued hyperbolic solutions F (T,X)
considered in this thesis are so-called Clifford sections. We will explain how
these sections can be related to the spinor bundle on H+. For that purpose
H+ will be considered as an m-dimensional manifold embedded in the flat
Minkowski space-time R1,m. As a general reference to the rest of this section
we refer to [16], where the general method was outlined, and [18].

In order to define spinor bundles, we first need the concept of a spinor.
For that purpose we use the regular representation L of the Clifford algebra
R1,m which maps the algebra into its endomorphism algebra End(R1,m); that
is, into the algebra of linear transformations on the vector space structure of
the Clifford algebra :

L : R1,m 7→ End(R1,m) : a 7→ L(a) ,

with

L(a)b = ab for all a, b ∈ R1,m .

This representation will of course not be irreducible, in the sense that certain
vector subspaces will be preserved under multiplication from the left, namely
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the left ideals. In other words, the minimal left ideals transform irreducible
under the regular representation L. The mapping into the endomorphism
algebra of any minimal left ideal induced by the regular representation is
called the spinor representation and the minimal left ideal is called the space
of spinors. A spinor space can be realized as a minimal left ideal R1,mJ ,
with J2 = J a primitive idempotent of the algebra. The name spinor space
is inspired by the fact that a spinor space can also be interpreted as a repre-
sentation of the Spin group by left multiplication. To certain extent, a spinor
can be seen as a column vector. Any associative algebra can be embedded
into a total matrix algebra, and the columns of these matrices that carry an
irreducible representation of the algebra may be considered as spinors.

Let us then follow the approach of [16] and define a unit normal field on
H+ as the mapping

N : H+ 7→ R1,m : ξ 7→ ξ .

This unit normal field will be essential to the construction of the spin fibres,
cfr. infra. The tangent space TξH+ in an arbitrary ξ ∈ H+ is then given by

TξH+ = {X ∈ R1,m : < X, ξ >1,m = 0} .

As the restriction of the inner product < ·, · >1,m on R1,m to TξH+ is non-
degenerate, the Clifford algebra of this tangent space can be constructed.
This subalgebra of R1,m is denoted by Cl(TξH+). In the point ε ∈ H+ we
put Cl(TεH+) = Rm,0, the Clifford algebra associated to the flat Euclidean
space Rm endowed with the quadratic form Qm,0(X) = |X|2. Note that this
definition for the tangent space makes use of the embedding into R1,m, since
we use a unit normal field, but in the literature tangent spaces are usually
defined intrinsically as equivalence classes of curves on a manifold.

Let us then define the Spin bundle, by means of its fibres :

Definition 7.1 The spin fibre σξ in ξ ∈ H+ is defined as

σξ =
{
(ξ, σ) ∈ H+ × Spin(1,m) : σξσ̄ = ε

}
.

The Spin bundle Σ is the union
⋃

ξ σξ of all spin fibres over H+ with topology
inherited from H+ × Spin(1,m).

In the language of bundles, we have the base space H+ and the total space
H+×Spin(1,m) with a projection π such that

π : H+ × Spin(1,m) 7→ H+ : π(ξ, σ) = ξ if σξσ̄ = ε .
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Recalling the mapping χ from the group Spin(1,m) into the group SO(1,m),
we get for all (ξ, σ) ∈ σξ a mapping χ(σ) between two tangent spaces :

χ(σ) : TξH+ 7→ TεH+ .

Indeed, consider an arbitrary X0 ∈ TξH+, such that < X0, ξ >1,m= 0. In
order to prove that χ(σ)X0 ∈ TεH+, whenever (ξ, σ) belongs to the Spin fibre
σξ, it suffices to prove that < χ(σ)X0, ε >1,m= 0 or that < X0, σ̄εσ >1,m= 0.
This is immediately clear from the definition of the Spin fibre : (ξ, σ) ∈ σξ

implies that σ̄εσ = ξ.

This means that for all (ξ, σ) ∈ σξ we have a mapping

χ(σ) : Cl(TξH+) 7→ Cl(TεH+) = Rm,0

relating the Clifford algebras of tangent spaces at different points of H+.

Consequently, we also have a mapping τ between the Spin bundle Σ and
the subgroup of Spin(1,m) containing all elements mappping ε to an element
of H+ (since there are elements mapping ε to an element of H− too), defined
by

τ : Σ 7→ Spin(1,m) : (ξ, σ) 7→ σ .

The inverse mapping is easily found to be

τ−1 : Spin(1,m) 7→ Σ : σ 7→ (σ̄εσ, σ) .

The Spin bundle can then be used to define the Clifford bundle :

Definition 7.2 The Clifford fibre Clξ in ξ ∈ H+ is defined as

Clξ =
{
(ξ, a) ∈ H+ × R1,m : σaσ̄ ∈ Cl(TεH+) = Rm,0 for (ξ, σ) ∈ σξ

}
.

The Clifford bundle Cl(Σ) is then defined as the union
⋃

ξ Clξ of all Clifford
fibres.

Again in the language of bundles we have a base space H+, a total space
H+ × R1,m and a projection π such that

π : H+ × R1,m 7→ H+ : (ξ, a) 7→ ξ

if, for all σ in the spin fibre σξ, we have σaσ̄ ∈ Cl(Tε) = Rm,0.
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A Clifford section is a mapping s : H+ 7→ H+ × R1,m such that π ◦ s = 1H+ .
In other words, a section of the Clifford bundle is a function F on H+ such
that (

ξ, F (ξ)
)
∈ Clξ for all ξ ∈ H+ .

It is important to note that, without explicitely mentioning, we have been
using the concept of Clifford sections on Cl(Σ) throughout this whole thesis.
Indeed, consider for example the construction of the hyperbolic fundamental
solution Eα(ξ, η). This happened in two steps :

• First we have projected the hyperbolic Dirac equation onto the hyper-
plane Π ↔ T = 1. This is of course nothing but the tangent space
TεH+ whence the functions constructed by means of the projection on
the Klein model for the hyperbolic unit ball automatically take their
values in the Clifford algebra Cl(TεH+) if they are evaluated at ε.

This argument also explains why we have identified Cl(TεH+) with
Rm,0 : in projecting the hyperbolic Dirac equation on Π one obtains
an equation whose solutions can be written as modulated versions of
homogeneous monogenics with respect to the operator ∂ on R0,m. These
modulation factors, for which we refer to Chapter 3, are power series in
the bivector-valued variable xε. This variable can be identified with a
vector variable u ∈ Rm such that |u|2 = u2. In other words : these hy-

perbolic functions take their values in Rm,0
∼= R(+)

1,m, the latter algebra
being generated by εej (1 ≤ j ≤ m).

• In a second step we mentioned the fact that ε does not play a privileged
role in this construction : the solution in another point η ∈ H+ can be
obtained by replacing ε ↔ η, i.e. by applying a Spin(1,m) transfor-
mation sending ε 7→ η. This means that the functions at each point of
H+ take their values in the Clifford algebra of the tangent space at this
point, turning these functions by definition into Clifford sections. The
Spin bundle actually formalizes this idea : ε is choosen as a reference
point and the spin fibre ση at each η ∈ H+ is used to ”translate” the
results at ε to results at η, by means of a Spin(1,m)-transformation.

In a completely similar way as for the Spin bundle, we can define the spinor
bundle. The only difference with the Spin bundle Σ is the fact that we now
use the regular representation for the Spin group, by left multiplication. As
the author notes in [16], the name ’spinor bundle’ is somewhat abused in
the sequel : classically in the literature the fibre of the spinor bundle in a
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point gives an irreducible representation of the Clifford fibre in that point,
while here it is defined in such a way that it is isomorphic to the Clifford
fibre. However, referring to the definition of a spinor, it is clear that one can
obtain an irreducible spinor bundle by means of a suitable idempotent J at
the right.

Definition 7.3 The spinor fibre Sξ in ξ ∈ H+ is defined as

Sξ =
{
(ξ, ψ) ∈ H+ × R1,m : σψ ∈ Cl(TεH+) for (ξ, σ) ∈ σξ

}
.

The spinor bundle S is then defined as the union
⋃

ξ Sξ of spinor fibres.

Note that in some sense the spinor fibre Sξ consists of ”square roots” of the
Clifford fibre Clξ, and hence of the Spin fibre σξ. Indeed, for all (ξ, σ) ∈ σξ

we have

(ξ, ψ) ∈ Sξ =⇒ σψ ∈ Cl(TεH+)

=⇒ σψσψ ∈ Cl(TεH+)

=⇒ σψψ̄σ̄ ∈ Cl(TεH+)

which means that (ξ, ψψ̄) ∈ Clξ.

Sections of the spinor bundle, or spinor fields, are defined in the natural way
as mappings from the base space H+ to the total space such that the image
of ξ ∈ H+ under the section belongs to the spinor fibre Sξ. Let us denote the
space of C∞ spinor fields as Γ∞(S). This space is a right Clifford module, for
if f ∈ Γ∞(S) we have for all (ξ, σ) ∈ σξ that σf(ξ) ∈ Cl(TεH+) = Rm,0. So,
if a ∈ Rm,0 we also have that σf(ξ)a ∈ Rm,0 which means that fa ∈ Γ∞(S).

The following Theorem characterizes the spinor sections :

Theorem 7.1 A function f on H+ is a spinor section if and only if

ξf(ξ) = f̃(ξ)ε for all ξ ∈ H+ .

Proof : By definition f is a spinor section if σf(ξ) ∈ Rm,0 for all ξ, with σ in
the spin fibre σξ. As the Spin structure is defined in such a way that σξσ̄ = ε
we get that ξ = σ̄εσ. On the other hand, a belongs to Cl(TεH+) if and only
if εa = ãε. If we apply this to a = σf(ξ), we get

σf̃(ξ)ε = εσf(ξ) = σξf(ξ) ,

if and only if f is a spinor section. Left multiplication with σ−1 completes
the proof. �
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As an example of this Theorem we note that

f(ξ) = ξ(ξ + ε) = (ξ + ε)ε = 1 + ξε

is a spinor section, because it is easily checked that ξf(ξ) = f̃(ξ)ε.

Next, we define a connection on the spinor bundle S. We mentioned that a
connection is necessary to compare objects in different points of the manifold.
This can best be understood in terms of the Clifford bundle : the comparison
between two elements of the Clifford bundle at different points ξ and η of
H+ seems obvious, given the fact that the Clifford algebras of the tangent
spaces at these points belong to the enveloping algebra of the embedding
space. The logical infinitesimal comparison operator is thus given by the
ordinary derivation operator ∂ξ,xf in the direction x, where (ξ, x) belongs to
the tangent bundle TH+ =

⋃
ξ TξH+, defined as

∂ξ,xf = ∂tF (ξ + tx)|t=0

with F an arbitrary smooth extension of f in a neighbourhood of ξ in R1,m.
However, the result of this derivation is not necessarily an element of the
tangent bundle itself, and this leads to an operator

∇ξ,xf = Pξ∂ξ,xf ,

with Pξ the orthogonal projection on the Clifford algebra Cl(Tξ) of the tan-
gent space at ξ.

In a similar way, a connection on the spinor bundle can be defined. Let
f be a smooth spinor section and let x be a tangent vector at ξ ∈ H+, i.e.
let (ξ, x) ∈ TH+. Denoting the orthogonal projection on the spinor fibre by
Πξ we put

∇ξ,xf = Πξ∂ξ,xf

Note that the projection on the spinor fibre of an arbitrary Clifford algebra-
valued function on the hyperbolic unit ball is given by

Πf =
1

2
(f + ξf̃ε) .

Indeed, we have ξΠf(ξ) = Π̃f(ξ)ε and Π2f = Πf .
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Taking into account that for spinor sections we have fε = ξf̃ we find

∇ξ,xf =
1

2

(
∂ξ,xf + ξ(∂ξ,xf̃)ε

)
=

1

2

(
∂ξ,xf + ∂ξ,x(ξf̃)ε− (∂ξ,xξ)f̃ ε

)
,

where we have used the chain rule for derivation. This can then further be
reduced to

∇ξ,xf =
1

2
∂ξ,xf +

1

2
∂ξ,x(fε)ε−

1

2
(∂ξ,xξ)ξ(ξf̃ε)

= ∂ξ,xf −
1

2
xξf ,

where we have used that ∂ξ,xξ = ∂t(ξ + tx)|t=0 = x.

The spinor Dirac operator in ξ can then be defined as follows : let e1, · · · , em

be an orthonormal basis for the tangent space TξH+. For f ∈ Γ∞(S) we then
put

∇f(ξ) =
m∑

j=1

ej∇ξ,ej
f

=
m∑

j=1

(
ej∂ξ,ej

f − ej
ejξ

2
f

)

=
m∑

j=1

ej∂ξ,ej
f − m

2
ξf .

If we then introduce the Dirac operator ∂X on R1,m, its hyperbolic polar
decomposition given by

∂X = ξ

(
∂ρ +

1

ρ
Γ1,m

)
,

and if we note that the set (ξ, e1, · · · , em) forms an orthogonal basis for R1,m

we have that

ξ

ρ
Γ1,m =

m∑
j=1

ej∂ξ,ej
.

This means that the Atiyah-Singer spinor Dirac operator in ξ ∈ H+ is given
by

∇f(ξ) = ξ
(
Γ1,m −

m

2

)
f(ξ) .
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In other words : the Dirac operator on the hyperbolic unit ball constructed
within the framework of differential geometry concides with the one we
have studied in the thesis, i.e. the Dirac operator on R1,m acting on α-
homogeneous functions F (T,X), if we choose α = −m

2
.

This also means that hyperbolic monogenics f(ξ) ∈ Hα(Ω), with Ω ⊂ H+

and α 6= −m
2
, give rise to (local) eigensections for the spinor Dirac operator

on H+ (see [17]). Indeed, suppose f ∈ Hα(Ω) such that ξ(Γ1,m + α)f = 0
for all ξ ∈ Ω. We then have the following eigensections for the spinor Dirac
operator ∇ :

∇(1± iξ)f = ±i
(
α+

m

2

)
(1± iξ)f .

On the other hand, if f(ξ) is an eigensection for the spinor Dirac operator

∇f(ξ) = λf(ξ) ,

we have the following hyperbolic monogenics :

ξ
(
Γ1,m −

(m
2
± iλ

))
(1∓ iξ)f = 0 =⇒ (1∓ iξ)f ∈ H∓iλ−m

2 (H+) .

Hence eigenfunctions for the hyperbolic angular operator Γ1,m, which is the
Dirac operator on H+ induced by the Dirac operator ∂X on the embedding
space R1,m, correspond to eigenfunctions of the spinor Dirac operator on H+

with shifted eigenvalues.

As mentioned in [17], this also means that sections of the spinor bundle
can be considered as Clifford algebra valued functions on the hyperbolic unit
ball. However, it is important to distinguish clearly between eigenfunctions
of ∇ considered as an operator on C∞(H+) and eigensections of ∇ acting
in Γ∞(S). When looking for eigensections it suffices to describe all eigen-
functions and then pick out those which are sections, hereby making use of
Theorem 7.1.

7.2 The Conformal Fundamental Solution

In this section the hyperbolic fundamental solution Eα(ξ, η) in case α = −m
2

is determined, to obtain the fundamental solution for the ”classical” Dirac
operator on H+ and it is explained why this operator is often referred to
as the conformal Dirac operator. This will be done by means of a Moebius
transformation.
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Recalling the Definition 5.1 for the hyperbolic fundamental solution, we get
immediately :

E−m
2
(ξ, η) =

e−iπ m+1
2

π
m−1

2

Γ

(
m+ 1

2

){
D

m+1
2

−m
2
−1(τ)ξ −D

m+1
2

−m
2

(τ)η

}
.

Using formula (22) to rewrite these Gegenbauer functions in terms of the
Legendre function of the second kind, we get :

D
m+1

2

−m
2
−1(τ) =

eiπ(m+ 1
2
)Γ
(

m
2

)
2

m
2 π

1
2 Γ
(

m+1
2

) (τ 2 − 1)−
m
4
Q
−m

2
−1 (τ)

Γ
(
−m

2

)
and

D
m+1

2

−m
2

(τ) =
eiπ(m+ 1

2
)Γ
(
1 + m

2

)
2

m
2 π

1
2 Γ
(

m+1
2

) (τ 2 − 1)−
m
4
Q
−m

2
0 (τ)

Γ
(
1− m

2

) .
Next, we apply formula (14) to write the Legendre functions of the second
kind in terms of a hypergeometric function with argument 1 − τ−2. As we
are looking for a fundamental solution we will only use that part which has
a singularity for ξ = η, i.e. for τ = 1. This is allowed because the part that
will be omitted, which is regular for τ = 1, is a solution for the hyperbolic
Dirac equation too : it is the function TαMod(α, 0, x). We thus have :

Q
−m

2
−1 (τ)

Γ
(
−m

2

) =
2

m
2
−1

eiπ m
2

t
m
2
−1

(t2 − 1)
m
4

F

(
1

2
− m

4
, 1− m

4
; 1− m

2
; 1− 1

τ 2

)
+ Regular Function

and

Q
−m

2
0 (τ)

Γ
(
1− m

2

) =
2

m
2
−1

eiπ m
2

Γ
(

m
2

)
Γ
(
1 + m

2

) t
m
2

(t2 − 1)
m
4

F

(
−m

4
,
1

2
− m

4
; 1− m

2
; 1− 1

τ 2

)
+ Regular Function .

Using the following formulae, for which we refer to [35] ,(
1 + (1− z) 1

2

2

)1−2a

= F

(
a− 1

2
, a; 2a; z

)
= (1− z)

1
2F

(
a, a+

1

2
; 2a; z

)
we then eventually find :

E−m
2
(ξ, η) =

1

2
m
2 Am

ξ − η
(τ − 1)

m
2

.
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This result was also obtained by Ryan and his collaborators by means of a
Cayley transformation, for which we refer to [58] and [59]. We briefly sketch
this approach here, by introducing the Cayley transformation

C : Rm 7→ R1,m : x 7→ ε− x
1 + εx

mapping the unit ball Bm(1) in Rm conformally onto the hyperbolic unit ball
H+. Indeed, one can easily verify that the inner product C(x) ·C(x) = 1 on
R1,m whence C(x) ∈ H+. To see that this mapping is conformal, it suffices
to rewrite the image of x ∈ Bm(1) under the Cayley transformation as

C(x) =
ε− x

1− |x|2
(1− εx) =

−2x

1− |x|2
+

1 + |x|2

1− |x|2
ε .

Recalling the mapping from (H+, ds
2
H) onto the Poincaré model (Bm(1), ds2

P )
of the hyperbolic unit ball, for which we refer to Chapter 1, it is immediately
clear that the Cayley transformation is actually the inverse mapping : a point
x ∈ Bm(1) is projected vertically upwards onto the parabola P and the inter-
section of the ray through this point with H+ gives C(x). This means that
there is a metric equivalence between (Bm(1), ds2

P ) and (H+, ds
2
H) under the

Cayley transformation. Since the Poincaré metric is conformally equivalent
with the standard Euclidean metric on Bm(1), the Cayley transformation
maps the unit ball Bm(1) ⊂ Rm provided with the Euclidean metric ds2

E

conformally onto the hyperbolic unit ball H+ ⊂ R1,m with its natural metric
inherited from the Minkowksi metric.

In [58] the author then considers two functions f(x) and g(x) defined on
an open domain Ω ⊂ Rm. If Σ is a Lipschitz surface in Ω bounding a subre-
gion of Ω, where the Lipschitz condition by definition means that there exists
an outward pointing normal for almost all x ∈ Σ, and if ∂f = 0 = g∂ the
following holds : ∫

Σ

g(x)σ(x, dx)f(x) = 0 .

Making use of the Cayley transformation to rewrite this integral in terms of
the variable ξ = C(x) ∈ C(Σ) ⊂ H+, this yields :∫

C(Σ)

g
(
C−1(ξ)

)
J̃(C−1, ξ)Σ(ξ, dξ)J(C−1, ξ)f

(
C−1(ξ)

)
= 0 ,
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with J̃(C−1, ξ)Σ(ξ, dξ)J(C−1, ξ) the vector-valued measure on C(Σ). The
factor J(C−1, ξ), for which we refer to the introductory Chapter, is given by

J(C−1, ξ) =
1 + ε̃ξ[

(1 + ε̃ξ)(1 + εξ)
]m

2

.

Denoting the region bounded by the surface Σ as V and applying Stokes’
Theorem to the integral above finally gives∫

C(Σ)

g
(
C−1(ξ)

)
J̃(C−1, ξ)Σ(ξ, dξ)J(C−1, ξ)f

(
C−1(ξ)

)
=

∫
C(V )

[
g
(
C−1(ξ)

)
J̃(C−1, ξ)DH+

]
J(C−1, ξ)f

(
C−1(ξ)

)
L(ξ, dξ)

+

∫
C(V )

g
(
C−1(ξ)

)
J̃(C−1, ξ)

[
DH+J(C−1, ξ)f

(
C−1(ξ)

)]
L(ξ, dξ) ,

where DH+ stands for the Dirac operator on H+ arising from the application
of Stokes’ Theorem and where L(ξ, dξ) denotes the Lebesgue measure on H+.
As Σ is arbitrary, it follows that

DH+J(C−1, ξ)f
(
C−1(ξ)

)
= 0 = g

(
C−1(ξ)

)
J̃(C−1, ξ)DH+ .

This allows to conclude that a function f(ξ) is left (resp. right) monogenic
with respect to the operator DH+ acting from the left (resp. the right) if and
only if the function

J(C, y)f
(
C(y)

)
is left (resp. right) monogenic with respect to the Dirac operator ∂ on Rm,
where C(x) = ξ. We also encountered this in Chapter 3, when we explained
why for α = −m

2
there is a one-to-one correpondence between monogenic

functions with respect to the operator ∂ on Rm and hyperbolic monogenics.

The author then applies this to the Cauchy kernel E(x), which is both left
and right monogenic on Rm

0 , hereby making use of the following essential
relation :

E
(
C(x)− C(y)

)
= J̃(C, x)−1E(x− y)J(C, y)−1 ,

for which he refers to [55]. Putting C(x) = ξ ∈ H+ and C(y) = η ∈ H+,
Ryan thus arrives at the fundamental solution

E(ξ − η) =
1

Am

ξ − η
|ξ − η|m

,
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which by means of the fact that

|ξ − η|2 = (ξ − η)(ξ̃ − η̃) = 2τ − 2 ,

reduces to

E(ξ − η) =
1

2
m
2 Am

ξ − η
(τ − 1)

m
2

.

This explains why the operator

DH+ = ξ
(
Γ1,m −

m

2

)
is referred to as the conformal Dirac operator on the hyperbolic unit ball :
it arises very naturally by considering a Moebius transformation. Note that
this conformal operator is only a special case of the operator we have studied
in the thesis. The main reason for this is the following : the hyperbolic Dirac
operator is invariant under the group Spin(1,m) which is only a subgroup of
Spin(1,m+ 1), this latter group being isomorphic to the Moebius group. So
in considering a subgroup of this conformal group we obtain a richer class of
invariant operators, and hence a richer class of functions.

7.3 Conformal Invariance and the Nullcone

In this section we show how to obtain the conformal character of the operator

ξ
(
Γ− m

2

)
by means of the isomorphy of the Moebius group with the Spin(1,m+1). For
that purpose we need some basic notions from the theory of Dirac operators
on nullcones, see [66]. We preferred not to put this into Chapter 0 because it
can be seen as a non-trivial continuation of the theory we have developped
throughout the thesis.

Consider the nullcone NC1,m+1 in R1,m+1 provided with the co-ordinates
(T,X,Xm+1).This nullcone can be described by means of a projective model,
by putting

Ray(NC1,m+1) =
{
{λ(ε, ω) : λ ∈ R+

0 } : ω ∈ Sm
}
,

or equivalently as a principal bundle by considering the free action of R+
0

on NC1,m+1 and identifying the orbit space with the manifold of nullrays.
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Hence, functions on the nullcone will have to be homogeneous with respect
to the co-ordinates (T,X,Xm+1). There is however a serious constraint on
the degree of homogeneity α, as was pointed out by Sommen (in joint work
with Souc̆ek). Let Ω be an open conical subset of R1,m+1

0 , i.e. Ω = λΩ for
positive λ, and let NΩ be the intersection Ω ∩ NC1,m+1. If f(X,Xm+1) is
a given smooth α-homogeneous function in NΩ, then f admits smooth α-
homogeneous extensions to conical subsets Ω ⊂ R1,m+1

0 and any two of them
will satisfy

f1(X,Xm+1)− f2(X,Xm+1) = (X2 −X2
m+1)g(X,Xm+1)

for some smooth function g. Hence, if Eα(U) denotes the set of smooth
α-homogeneous functions in U we have the isomorphism

Eα(NΩ) ∼= Eα(Ω)/(X2 −X2
m+1)Eα−2(Ω)

where the projection operator from Eα(Ω) 7→ Eα(NΩ) is the restriction
f 7→ f |NC and where X2 = T 2 − |X|2.

In [66] the author considered a very natural refinement of this restriction
operator when working within the context of Clifford analysis :

f1 ∼ f2 ⇔ f1(X,Xm+1)− f2(X,Xm+1) = (X +Xm+1em+1)g(X,Xm+1) ,

which also implies that f1|NC = f2|NC + (X + Xm+1em+1)g|NC . This leads
to the following definition :

Definition 7.4 Let α be an arbitrary complex number and let Ω be an open
conical subset of R1,m+1

0 . We then define

Gα(NΩ) ∼= Eα(Ω)/(X +Xm+1em+1)Eα−1(Ω)
∼= Eα(NΩ)/(X +Xm+1em+1)Eα−1(NΩ) .

We now want to define the action of the Dirac operator ∂ on R1,m+1, given
by

∂ = ∂X − em+1∂Xm+1 = ε∂T −
m+1∑
j=1

ej∂Xj
,

on this set Gα(NΩ). First of all, note that it doesn’t make sense to define
the Dirac operator as an operator from Eα(NΩ) to Eα−1(NΩ) because

∂
(
(X2 −X2

m+1)g
)

= 2(X +Xm+1em+1)g + (X2 −X2
m+1)∂g .
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It does however make sense to define ∂ from Eα(NΩ) 7→ Gα−1(NΩ), i.e. to
call a function f(X,Xm+1) ∈ Eα(NΩ) (left) monogenic if

∂f = (X +Xm+1em+1)g

for some g(X,Xm+1) ∈ Eα−2(NΩ). But in view of the fact that

∂
(
(X +Xm+1em+1)g

)
= 2

(
E1,m+1 + 1 +

m

2

)
g − (X +Xm+1em+1)∂g ,

where E1,m+1 denotes the Euler operator on R1,m+1, it only makes sense to
consider the operator

∂ : Gα(NΩ) 7→ Gα−1(NΩ)

for α = −m
2
. Indeed, only for g ∈ E−m

2
−1(NΩ) we get that

∂
(
f + (X +Xm+1em+1)g

)
= ∂f − (X +Xm+1em+1)∂g .

We are thus lead to the following :

Definition 7.5 The Dirac operator on the nullcone in R1,m+1 is defined
as the operator ∂ acting on the restriction of

(
−m

2

)
-homogeneous functions

f(X,Xm+1) to the nullcone.

In [66] the author then develops a function theory for this operator, by de-
riving a Cauchy formula on the nullcone, but this is beyond the scope of the
thesis. For our purposes it suffices to remember the definition of the Dirac
operator on the nullcone.

Consider then a hyperbolic monogenic, i.e. F (ξ) ∈ Hα(Ω) with Ω ⊂ H+,
for α = −m

2
. This means that{

∂XF (X) = 0
E1,mF (X) = |X|−m

2 F (ξ)

By considering the constant extension of this function in the em+1-direction,
we obtain a

(
−m

2

)
-homogeneous solution for the operator ∂ on R1,m+1 which

after restriction to NC1,m+1 gives rise to a solution for the Dirac operator on
the nullcone. On this function F (X,Xm+1)|NC the group Spin(1,m+1) may
act by means of the H(s)-representation.

We will now show that only for α = −m
2

this identification between mono-
genic functions on the nullcone and hyperbolic monogenics also works in
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the opposite direction. For that purpose we start from a solution for the
Dirac operator on NC1,m+1, i.e. the restriction to the nullcone of a

(
−m

2

)
-

homogeneous solution F (X,Xm+1) for the operator ∂ on R1,m+1. Our goal

now is to construct a uniquely determined
(
−m

2

)
-homogeneous solution F̃ (X)

for the Dirac operator ∂X on R1,m, determined by the function F (X,Xm+1).

As monogenic functions on NC1,m+1 are defined up to a function

(X +Xm+1em+1)h(X,Xm+1)

it suffices to find h(X,Xm+1) such that

∂X

(
F (X, |X|) + |X|(ξ + em+1)h(X, |X|)

)
= 0 .

Note that the function between brackets represents the constant extension of
the function F (X,Xm+1)|NC in the em+1-direction. In other words, we have

to construct a
(
−m

2

)
-homogeneous function h̃(X, |X|) such that

∂X

(
F (X, |X|) + (ξ + em+1)h̃(X, |X|)

)
= 0 .

This goes as follows : we know that both F (X,Xm+1) and F (X, |X|) are
smooth extensions of the function F |NC , whence

F (X,Xm+1)− F (X, |X|) = (X +Xm+1em+1)
2h(X,Xm+1) .

From this we get that

∂F (X,Xm+1) = ∂

(
F (X, |X|) + (X +Xm+1em+1)

2h(X,Xm+1)

)
= 0 ,

such that

∂XF (X, |X|) = −(X +Xm+1em+1)g(X,Xm+1)

with

g(X,Xm+1) = 2h(X,Xm+1) + (X +Xm+1em+1)∂h(X,Xm+1)

a
(
−m

2

)
-homogeneous function. Since the left-hand side does not depend on

Xm+1 neither does the right-hand side, whence

∂Xm+1

(
(X +Xm+1em+1)g(X,Xm+1)

)
= 0 .
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Choosing Xm+1 = |X| we are lead to

∂XF (X, |X|) = −(ξ + em+1)g̃(X, |X|) ,

g̃(X, |X|) being a
(
−m

2
− 1
)
-homogeneous function. If we can find a function

h(X) such that

∂X(ξ + em+1)h(X) = (ξ + em+1)g̃(X, |X|) ,

it follows immediately that

∂X

(
F (X, |X|) + (ξ + em+1)h(X)

)
= 0 ,

as required. The crucial step in proving the existence of the function h(X)
is the following observation : for

(
−m

2

)
-homogeneous functions, the factor

(ξ + em+1) anticommutes with the operator ∂X . Indeed :

∂Xem+1 = −em+1∂X

and

∂Xξ = ξ

(
∂ρ +

1

ρ
Γ1,m

)
ξ = ∂ρ +

1

ρ
ξΓ1,mξ ,

which by means of the fact that ξΓ1,mξ = m− Γ1,m reduces to

∂Xξ = ∂ρ +
m

ρ
− 1

ρ
Γ1,m

= −ξ
(
ξ(∂ρ +

1

ρ
Γ1,m)

)
+

1

ρ
(m+ 2E1,m)

= −ξ∂X +
1

ρ
(m+ 2E1,m) .

Corollary : For
(
−m

2

)
-homogeneous functions h(X) we get that

∂X(ξ + em+1)h(X) = −(ξ + em+1)∂Xh(X) .

Eventually this means that it suffices to solve the equation

∂Xh(X) = −g̃(X, |X|) ,

which can easily be done using Riesz distributions. The existence and unique-
ness of h(X) then follow from elementary properties of these distributions.
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Corollary : We have now thus showed how to obtain the action of the
conformal group on the hyperbolic unit ball H+ by means of the spin group
on the nullcone NC1,m+1. Indeed, one first lifts a hyperbolic monogenic F (ξ)
on H+ to a homogeneous function F (X,Xm+1) on the future cone FC1,m+1

by constant extension in an additional spatial direction em+1 and then re-
stricts the result to the nullcone. After that, the conformal transformation
group is given by Spin(1,m + 1) and acts by a simple spinor rotation. The
problem is however that the transformed function will no longer be constant
in the direction of em+1, such that after the spinor transformation we do not
necessarily end up with a solution for the operator ∂X . This can be realized
by adding a uniquely determined function, but it is only possible in case
α = −m

2
.

254



Samenvatting

In deze doctoraatsscriptie beschouwen we een projectief model voor de hyper-
bolische eenheidsbal, gerealizeerd als variëteit van halfrechten in de toekomst-
gerichte lichtkegel in de reële orthogonale ruimte R1,m, beter gekend als
de vlakke Minkowski-ruimte-tijd. Met behulp van Clifford-algebra’s is het
mogelijk om op de desbetreffende variëteit een Clifford-algebra-structuur
te definiëren, en dit stelt ons dan in staat om de Dirac-operator op de
hyperbolische eenheidsbal in te voeren als de Dirac-operator op de vlakke
Minkowski-ruimte inwerkend op secties van een homogene lijnbundel. De
doctoraatsscriptie beoogt het opstellen van een functietheorie voor Clifford-
algebra-waardige nuloplossingen voor deze hyperbolische Dirac-operator, de
zogenaamde hyperbolische monogenen.

Clifford-algebra’s zijn genoemd naar William Kingdon Clifford (1845-1879),
die deze algebra’s invoerde ter veralgemening van zowel Grassmans uitwendige
algebra als Hamiltons algebra der quaternionen. Zijn bedoeling was om de
meetkundige en de algebraische eigenschappen van de Euclidische ruimte
samen te brengen in een allesomvattende overkoepelende structuur. Vandaar
ook zijn oorspronkelijke benaming : ”geometrische algebra’s”. Deze Clifford-
algebra’s werden later vaak herontdekt, niet in het minst door fysici. Toen
bijvoorbeeld P.A.M. Dirac in 1928, in zijn beroemd artikel [24] over het elek-
tron, de γ-matrices invoerde om de Klein-Gordon-vergelijking te linearizeren,
construeerde hij eigenlijk de generatoren voor de Clifford-algebra R1,3.

Wanneer men de Clifford algebra construeert over het veld der reële getallen
bekomt men de algebra der complexe getallen. De Cauchy-Riemann-operator,
die de basis vormt voor de theorie der complexe holomorfe functies, facto-
rizeert de Laplaciaan in twee dimensies. Met andere woorden, complexe
holomorfe functies kunnen worden beschouwd als functies die behoren tot de
kern van een rotatie-invariante eerste-orde differentiaaloperator die de Lapla-
ciaan factorizeert.
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Bovenstaande observatie stelt ons in staat om Clifford-analyse te beschouwen
als een canonische veralgemening tot hogere dimensies van de theorie van
holomorfe functies in het complexe vlak, waarbij de Dirac-operator fungeert
als analogon voor de klassieke Cauchy-Riemann-operator. De veralgemeende
holomorfe functies, die men monogene functies noemt, kunnen dus worden
beschouwd als nuloplossingen van de rotatie-invariante eerste-orde differen-
tiaaloperator die de Laplaciaan in m dimensies factorizeert. De eerste pogin-
gen om een functietheorie voor deze operator op te stellen werden in de jaren
1930 ondernomen door R. Fueter, G. Moisil en N. Théodorescu (zie [36]
en [51]). Een diepgaande studie van de monogene functietheorie kan men
terugvinden in het boek [8] van F. Brackx, R. Delanghe en F. Sommen.

Hoewel de klassieke literatuur omtrent Clifford-analyse zich voornamelijk toe-
spitste op de Dirac-operator in de vlakke Euclidische ruimte Rm, ging men
zich al vlug toeleggen op Dirac-operatoren op algemene variëteiten, wat een
voor de hand liggende veralgemening was. Er werd reeds veel onderzoek ver-
richt in die richting door theoretische fysici en differentiaalmeetkundigen, we
verwijzen bijvoorbeeld naar de Atiyah-Singer-Dirac-operator op variëteiten.
Er is echter een essentieel verschil tussen het wiskundig formalisme dat in
deze aanpak werd gebruikt en de aanpak die werd gevolgd in bijvoorbeeld
[10], [18] en [40]. In deze laatste werden Dirac-operatoren op variëteiten
werkelijk binnen het kader van de Clifford-analyse bestudeerd, doordat men
de variëteiten inbedt in een orthogonale ruimte en gebruik maakt van de
eigenschappen van de Dirac-operator in deze ruimte.

Het meer specifieke geval van de Dirac-operator op een Riemann-ruimte met
constante positieve kromming werd o.a. bestudeerd door J. Ryan en P. Van
Lancker in [58], [59], [75] en [76]. Daarin bestudeert men de Dirac operator
op de sfeer Sm−1 in Rm. De bedoeling van onderhavige scriptie is de studie
van de Dirac-operator op een Riemann-ruimte met constante negatieve krom-
ming, d.w.z. de Dirac-operator op de hyperbolische eenheidsbal. Daar zowel
de sfeer als de hyperbolische eenheidsbal kunnen worden beschouwd als reële
deelvariëteiten van de complexe eenheidsbal, zou men kunnen argumenteren
dat de functietheorie op de hyperbolische eenheidsbal uit de functietheorie
op de sfeer volgt via analytische voortzetting. Dit is echter verre van trivi-
aal omdat men de analytische voortzetting van distributionele oplossingen
voor de Dirac-vergelijking op de sfeer nodig heeft, wil men een fundamentele
oplossing bekomen, en dit vereist de berekening van residu’s van holomorfe
functies in meerdere complexe veranderlijken. Dit kan worden vermeden
door te werken met distributies, en de eenvoudigste methode om die in te
voeren maakt gebruik van het projectieve model. Bovendien kan men, steu-
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nend op de projectieve aard van dit model, resultaten bekomen die men via
analytische voorzetting niet kán bekomen. Zo beschouwen we in deze ver-
handeling een limietsituatie voor de hyperbolische Diracvergelijking waarbij
de singulariteiten naderen tot oneindig, d.w.z. de lichtkegel, wat uiteraard
niet mogelijk is in het Euclidische geval.

Onderzoek naar een monogene functietheorie in de Poincaré-ruimte, welke
een metrisch model vormt voor de hyperbolische eenheidsbal, werd gestart
door H. Leutwiler en zijn studenten (zie bijvoorbeeld [34] en [49]) en ste-
unt op de studie van harmonische functies op domeinen die conform equi-
valent zijn met de vlakke ruimte. In deze context vermelden we ook het
werk van P. Cerejeiras en J. Cnops, zie bijvoorbeeld [11], omtrent de Hodge-
Dirac-operator op hyperbolische ruimtes. Echter, zoals reeds werd opgemerkt
in referentie [12], veralgemeent men op die manier de Dirac-operator voor
Spin(1)-velden, terwijl we ons hier toeleggen op de hyperbolische veralge-
mening van de Dirac-operator voor Spin(1

2
)-velden.

In Hoofdstuk 0 wordt al het voorbereidende materiaal verzameld : basisbe-
grippen betreffende Clifford-algebra’s en Clifford-analyse op de vlakke Eucli-
dische ruimte, een korte inleiding tot de theorie der speciale functies, defini-
ties voor en eigenschappen van Riesz-distributies en de Radon-transformatie,
enz.

Hoofdstuk 1 is gewijd aan het begrip hyperbolische meetkunde. Eerst geven
we een historisch overzicht van de ontwikkelingen in de meetkunde die hebben
geleid tot de ontdekking van de niet-Euclidische meetkunde, in het bijzon-
der het hyperbolische vlak, en daarna geven we verscheidene modellen voor
de hyperbolische eenheidsbal (het hoger-dimensionale analogon voor het hy-
perbolische vlak). We beschouwen achtereenvolgens het klassieke Klein- en
Poincaré-model, het hemisfeer-model dat beide modellen met elkaar in ver-
band brengt, de hyperboloide H+ in de toekomstgerichte lichtkegel die alle
ruimte-tijd vectoren met hyperbolische eenheidsnorm bevat en voor wat volgt
het meest essentiële model : het projectieve model, dat de hyperbolische
eenheidsbal realizeert als variëteit van halfrechten in de toekomstgerichte
lichtkegel in de vlakke Minkowski-ruimte-tijd R1,m.

In Hoofdstuk 2 bestuderen we de zogenaamde hyperbolische Dirac-vergelij-
king en haar fundamentele oplossing. We introduceren eerst de homogene
Clifford-lijnbundel R1,m;α (met α ∈ C willekeurig) als een geassocieerde vezel-
bundel en nadien definiëren we de Dirac-operator op de hyperbolische een-
heidsbal als de Dirac-operator op de vlakke Minkowski-ruimte-tijd inwerkend
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op secties van deze bundel. De projectieve aard van ons model voor de hyper-
bolische eenheidsbal is hierbij van essentieel belang. Steunend op het feit dat
de delta-distributie in een punt van een algemene variëteit kan gedefinieerd
worden als de delta-distributie in het raakvlak in dat punt aan de variëteit
stellen we dan de vergelijking op waaraan de hyperbolische fundamentele
oplossing moet voldoen, de zogenaamde hyperbolische Dirac-vergelijking, en
geven we enkele expliciete constructies voor deze oplossing.
Een eerste constructie maakt gebruik van de Frobenius-methode voor dif-
ferentiaalvergelijkingen en levert de projectie van de hyperbolische funda-
mentele oplossing op het Klein- en Poincaré-model voor de hyperbolische
eenheidsbal op, als een gemoduleerde versie van de klassieke Cauchy-kern.
Een tweede constructie herleidt de hyperbolische Dirac-vergelijking tot een
probleem in twee dimensies en de oplossing van dit probleem geeft ons een
fundamentele oplossing die bestaat uit een sigulier en een regulier gedeelte.
Hoewel het reguliere gedeelte niet uniek is, komt het op canonische wijze
tevoorschijn zoals wordt aangetoond aan het einde van het tweede hoofd-
stuk. Dit regulier stuk stelt ons ook in staat om de hyperbolische funda-
mentele oplossing te herschrijven in termen van zogenaamde hyperbolische
poolcoördinaten, en dat leidt tot Gegenbauer-functies van de tweede soort.
Deze Gegenbauer-functies duiken dan opnieuw op in een derde methode,
waar we de hyperbolische fundamentele oplossing bepalen aan de hand van
Riesz-distributies.
De laatste methode ter constructie van de hyperbolische fundamentele oplos-
sing steunt heel sterk op eigenschappen voor de fundamentele oplossing voor
de golfoperator op de vlakke Minkowski-ruimte-tijd, en leidt tot een funda-
mentele oplossing voor de hyperbolische Dirac-vergelijking in R1,m+2 die kan
worden uitgedrukt in termen van de oplossing in R1,m.

In het derde hoofdstuk veralgemenen we de idee achter de eerste constructie
voor de hyperbolische fundamentele oplossing, en dit leidt tot de zogenaamde
Modulatiestellingen die uitdrukken dat homogene monogene oplossingen voor
de Dirac-operator op de vlakke Euclidische ruimte kunnen worden gemodu-
leerd tot oplossingen voor de hyperbolische Dirac-vergelijking. Dit wordt
aangetoond voor zowel het Klein-model als voor het Poincaré-model voor de
hyperbolische eenheidsbal. Beide stellingen zijn equivalent, en dat leidt dan
tot geometrische interpretaties voor eigenschappen van de hypergeometrische
functie.
Vervolgens beschouwen we twee veralgemeningen van de Modulatiestellingen.
Eerst construeren we oplossingen voor de zogenaamde natuurlijke machten
van de hyperbolische Dirac-operator en daarna construeren we ook oplossin-
gen voor de Dirac-operator op ultrahyperbolische ruimten van willekeurige
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(p, q)-signatuur.
Aan het eind van het derde hoofdstuk beschouwen we een specifiek bi-axiaal
probleem voor de projectie van de hyperbolische Dirac-vergelijking op het
Klein-model. Hoewel op het eerste zicht dit probleem geen uitstaans heeft
met de Modulatiestellingen, stelt het ons in staat de gemoduleerde oplossin-
gen te interpreteren als zogenaamde veralgemeende hyperbolische machts-
functies.

In Hoofdstuk 4 definiëren we willekeurige complexe machten van de hy-
perbolische Dirac-operator en construeren we een fundamentele oplossing
voor deze operatoren aan de hand van Riesz-distributies. Dit Hoofdstuk is
gëınspireerd door [7].

Hoofdstuk 5 behandelt de functietheorie voor de hyperbolische Dirac-operator,
zowel op de hyperboloide H+ in de toekomstgerichte nulkegel als in het Klein-
model voor de hyperbolische eenheidsbal. Hiervoor maken we gebruik van
de Cauchy-Pompeju Stelling, de Stelling van Stokes en de Cauchy integraal-
stelling.
Om vervolgens de Taylor- en Laurent-reeks op te stellen voor hyperbolische
monogenen, gedefinieerd in een open (ringvormig) domein van de hyperboli-
sche eenheidsbal, stellen we een axiale decompositie op voor de fundamentele
oplossing. Daartoe gebruiken we de Modulatiestellingen van Hoofdstuk 3
en vinden we een alternatieve interpretatie voor het Additietheorema voor
Gegenbauer-functies (zie [25]).
Aan het einde van het vijfde hoofdstuk gaan we kort in op de vraag naar het
bestaan van eigenfuncties voor de hyperbolische Dirac operator.

In Hoofdstuk 6 introduceren we de fotogene Cauchy-transformatie (FCT),
gedefinieerd als een integraaltransformatie met als kern de fundamentele
oplossing voor de hyperbolische Dirac-vergelijking met singulariteiten op
oneindig. In tegenstelling tot de vlakke Euclidische ruimte kan men in het
hyperbolische geval spreken van singulariteiten op oneindig door een delta-
distributie te beschouwen op de lichtkegel. Daar L2-functies op de sfeer Sm−1

kunnen worden ontwikkeld in een reeks van inwendig en uitwendig sferische
monogenen op Sm−1, bepalen we vervolgens de FCT van deze sferische mono-
genen, en dat leidt opnieuw tot een andere interpretatie voor de gemoduleerde
oplossingen uit Hoofdstuk 3.
Vervolgens beschouwen we de fotogene randwaarden van deze transformaties,
door het argument van de FCT van de sferische monogenen tot de sfeer te
laten naderen. Onder bepaalde voorwaarden op de complexe parameter α,
verkrijgen we dan een afbeelding van de Sobolevruimte op de sfeer W2(S

m−1)
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naar de verzameling van randwaarden van hyperbolische monogenen in het
Klein-model.
Door de extensie van deze randwaarden tot de Lie-sfeer te beschouwen, kun-
nen we dan ook aantonen dat de eerder genoemde verzameling van randwaar-
den van hyperbolische monogenen een Hilbert-module met reproducerende
kern oplevert.

Hoofdstuk 7 tenslotte behandelt de conforme Dirac-operator en illustreert
hoe de hyperbolische Dirac-operator uit dit proefschrift moet worden gezien
in termen van de Dirac-operator op een algemene variëteit. Door een spin-
bundel in te voeren op de hyperboloide H+ wordt er aangetoond dat de hier
beschouwde Clifford-algebra-waardige functies eigenlijk Clifford-secties zijn,
en door deze bundel te verfijnen tot de zogenaamde spinorbundel wordt er
aangetoond dat onze hyperbolische Dirac-operator zich voor een specifieke
waarde voor α herleidt tot de Atiyah-Singer-Dirac-operator.
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