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Abstract

The aim of this study is to investigate whether reliable and accurate 3D geometrical models of the murine aortic arch can be
constructed from sparse-view data in vivo micro-CT acquisitions. This would considerably reduce acquisition time and X-ray
dose. In vivo contrast-enhanced micro-CT datasets were reconstructed using a conventional filtered back projection
algorithm (FDK), the image space reconstruction algorithm (ISRA) and total variation regularized ISRA (ISRA-TV). The
reconstructed images were then semi-automatically segmented. Segmentations of high- and low-dose protocols were
compared and evaluated based on voxel classification, 3D model diameters and centerline differences. FDK reconstruction
does not lead to accurate segmentation in the case of low-view acquisitions. ISRA manages accurate segmentation with
1024 or more projection views. ISRA-TV needs a minimum of 256 views. These results indicate that accurate vascular models
can be obtained from micro-CT scans with 8 times less X-ray dose and acquisition time, as long as regularized iterative
reconstruction is used.

Citation: Vandeghinste B, Vandenberghe S, Vanhove C, Staelens S, Van Holen R (2013) Low-Dose Micro-CT Imaging for Vascular Segmentation and Analysis Using
Sparse-View Acquisitions. PLoS ONE 8(7): e68449. doi:10.1371/journal.pone.0068449
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Introduction

Mouse models provide valuable information about the devel-

opment and progression of cardiovascular pathologies within a

reasonable timeframe. Genetically modified mice can be used to

study abdominal aortic aneurysm formation [1], cerebral aneu-

rysm formation [2], atherosclerosis [3], vascular remodeling [4],

angiogenesis [5], or even specific genetic disorders such as Marfan

and Loeys-Dietz syndrome [6,7].

In order to perform such research, reliable 3D models of the

cardiovascular system have to be made. These models are then

used as input for Computation Fluid Dynamic (CFD) simulations.

Ex vivo techniques using vascular corrosion casting [8] proved to be

a good tool, resulting in high quality models [9]. However, these ex

vivo techniques eliminate the possibility to gather longitudinal

information, which is considered crucial in evaluating pathology

evolution and in therapy development [10].

With the advent of improved CT contrast agents for specific

preclinical usage and improved micro-CT systems, it became

possible to obtain those high quality 3D models using in vivo

imaging techniques. In Vandeghinste et al. [11], we compared the

accuracy of in vivo models and the parameters derived to ex vivo

reference models. We found that in vivo micro-CT allows one to

build reliable 3D geometrical models of the cardiovascular system,

making follow-up studies possible.

One major difficulty in longitudinal aneurysm studies is the total

number of scans needed to characterize the aneurysm formation

process fully. Because the onset of the aneurysm development is

not known and varies greatly per individual animal, daily CT

scans need to be taken in hopes of having data just before and just

after the start of the formation. Secondly, there is a possibility of

aneurysm dissection or rupture in a later stage, with the most

important information available just before the dissection. This

information cannot be obtained anymore after the dissection.

Daily scans over the course of weeks during such longitudinal

studies will result in a large X-ray dose.

Unfortunately, little is known about the potential side effects of

the dose on preclinical studies. The effects of animal strain, age,

radiation location and the many measurement protocols available

result in a large number of combinations to study [12].

Nevertheless, Laforest et al. [13] have shown that total doses of

0.180 Gy can already lead to tumor growth inhibition in mice.

Klinck et al. [12] showed how weekly exposure to high-resolution

micro-CT reduces the trabecular bone volume 8 to 20% in

skeletally immature BALB/cByJ and C57BL/6J mice. Others

have presented results to the contrary [14]. Nevertheless, using the

lowest possible radiation would help remove any doubt about

negatively influenced results [15], as typical X-ray whole body

radiation doses from 3D micro-CT scanners range from 0.017 to

0.78 Gy [16], well in the range of the studies described above.

A second issue is the throughput. With daily scans, the

throughput needs to be maximized to efficiently plan these studies

amongst others. This necessitates fast acquisition protocols and fast

reconstruction algorithms.

One possibility to achieve higher throughput and lower dose at

the same time is reducing the number of projection views acquired

during the scan. This allows for a faster rotation time and thus

reduces the dose-time-product proportionally. If a filtered back-

projection (FBP) type algorithm is used to reconstruct these
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datasets, the images will show streaking artefacts [17]. This is due

to the limited amount of data being available. Even though

iterative reconstruction algorithms allow for much more accurate

modelling of the acquisition system and physics, streaking artefacts

will not be completely eliminated.

One of the techniques that have been extensively investigated to

solve the problem of limited data is iterative CT reconstruction

combined with Total Variation (TV) minimization. TV minimi-

zation has been used before for few-view, limited angle recon-

struction [17–25], algorithm-enabled low dose imaging [26], and

CT image denoising or restoration [27,28]. It assumes that

medical images can be conceptualized by edges and uniform

intensities [29,30]. After applying the gradient operator, the image

is transformed into an edge map, which only contains a small

number of significant coefficients. TV regularization will then

search for the reconstructed image that is optimally sparse, i.e. has

the least number of significant coefficients. This may ultimately

result in a cartoon-like image, with minimal noise. Although

cartoon-like images are not desired for diagnostic CT imaging

[18], they may still offer enough information for segmentation

purposes and dose reduction.

The aim of this study is to investigate whether reliable and

accurate 3D geometrical models of the murine aortic arch can be

reconstructed using few view in vivo micro-CT acquisitions. By

reducing the number of projection views, both the acquisition time

and the dose will decrease proportionally. With conventional

reconstruction methods this would introduce excessive noise. We

reduce the noise and artefacts using TV minimization. We

compared geometrical models obtained using sparse view acqui-

sitions with models obtained from full-view acquisitions of the

same animals.

Materials and Methods

Ethics statement
Data from a previous study [11] were used, as per the guidelines

of ethical practice in animal experimentation. No additional

animal work was conducted.

Data acquisition
Four wild-type mice were administered an iodine-based contrast

agent (Fenestra VC-131, Advanced Research Technologies Inc.,

Saint Laurent, Canada) with a dose of 15 ml/g to enhance the

vasculature on the images. The animals were scanned 25 minutes

post injection, to achieve optimal image contrast. The acquisitions

were measured on a FLEX Triumph CT scanner (TriFoil

Imaging, Northridge, USA) with the following acquisition

parameters: 50 mm focal spot, 262 detector binning, 2048

projections over 360 degrees, 3.5 times magnification and

70 kVp tube voltage. The geometrical parameters result in a

33.81 mm field of view, a theoretical spatial resolution of 46 mm

and a scanning time of 8.53 minutes. The ideal tube current,

which utilizes the dynamic range of the detector optimally, was

determined at 180 mA for a 70 kVp tube voltage. According to

another study on the same system [15], these settings would result

in a dose of about 0.12 Gy per scan.

Reconstruction methods
The measured data were retrospectively subsampled to simulate

dose reduction. Seven distinct datasets were generated from the

measured projection data, by removing all but every nth projection

to obtain datasets with 2048/n uniformly spaced projection views.

In this way, datasets were obtained with 1024, 512, 256, 128, 64

and 32 views over 360 degrees. Based on literature [15], these

views would thus correspond to nominal dose levels of 60, 30, 15,

7.5, 3.75 and 1.875 mGy. The dataset with all 2048 projection

views (nominal dose 120 mGy [15]) can then serve as a reference

dataset to these few-view datasets.

The datasets were reconstructed using 3 different algorithms:

image space reconstruction algorithm (ISRA), ISRA with TV

regularization (TV) and FBP. ISRA is an adaptation of the

maximum likelihood (ML) algorithm, and results in non-negative

reconstructed images [31,32]. Mathematically, the algorithm is

described by

x
(kz1)
j ~x

(k)
j

PI
i~1

aijmi

PI
i~1

aij

PJ
j~1

aijx
(k)
j

,

with I and J respectively the number of detector pixels and voxels,

x
(k)
j voxel j at iteration k, aijthe contribution of voxel j to detector i,

and vector mthe measured data.

Its implementation is easy and straightforward, and is depicted

in Fig. 1: first the measured data m is back-projected and stored.

Next, the current image estimate xj is forward and then back-

projected, and the ratio of the back-projected data m and this

image estimate is calculated. Finally, this ratio is used to

multiplicatively update the current image. This type of algorithm

is ideal to reconstruct large preclinical datasets, as the sinogram m

is only used to calculate the back-projection of the measured data

once. From then on, only forward and back-projections are

needed, without comparing to the measured data again in

sinogram space. This results in a considerable decrease in

computation time, because the large sinogram is read from the

hard drives only once.

The second algorithm is implemented by adapting ISRA with a

one-step-late (OSL) [33,34,35] modification to incorporate the

TV-norm. The modification is based on Lange [34] and Defrise et

al. [35], where TV was incorporated in emission and transmission

tomography algorithms. When only a small number of projection

views are used, it becomes much more difficult to solve the system

of equations, as this system becomes more and more under-

determined. TV regularization will act as a penalty, enforcing a

sparse image gradient. In other words, the image will be forced

towards being uniform between edges. The dashed lines in Fig. 1

represent the TV part that is added to the ISRA method. Here,

the TV calculated on the previous image iteration is used to

change the error ratio for the next image iteration. The degree of

Figure 1. ISRA and ISRA-TV in block diagram. Block diagram to
show how data flows through ISRA (full lines) and ISRA-TV (full +
dotted).
doi:10.1371/journal.pone.0068449.g001
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regularization can be varied with one relaxation parameter b. The

ISRA-TV algorithm can be described by

x
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j ~x
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with
L

Lxj

U(xj) the partial derivative of the energy function U

[34,36]:
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Parameter e is a small positive number to resolve the

discontinuity at zero in the derivative of the TV.

The implementation of the iterative algorithms was done on the

GPU in CUDA. The forward projector was implemented using a

pixel-driven approach, by connecting a detector pixel with the

location of the X-ray tube and calculating image samples along

this ray. The samples can be easily fetched using the 3D texture

interpolation facilities available in CUDA. The back projector uses

a voxel-driven approach, which connects each voxel with the X-

ray tube and calculates the value at the intersection of this ray with

the detector. This can be done using 2D texture interpolation. The

finite size of the focal spot was not modelled. Furthermore, no

ordered subset versions of the algorithms were used, as conver-

gence would not be guaranteed in that case [37,38].

To compare the results obtained with ISRA and ISRA-TV with

traditional results, we also reconstructed the data with an FBP-type

algorithm for cone-beam systems such as ours: the algorithm of

Feldkamp, Davis and Kress (FDK) [39] (Cobra EXXIM, EXXIM

Computing corp., Livermore, USA). FDK is a standard recon-

struction method and is primarily used for its fast reconstruction

result even in large datasets. The algorithm does not employ any

advanced modelling to reduce noise encountered by sparse

sampling.

All images were reconstructed to a 100 mm voxel matrix. The

matrix dimensions were determined per animal to always

encompass the whole body. All iterative algorithms were stopped

at convergence, defined as x(k){x(k{1)
�� ��2

2
v0:14. The value of

0.14 was empirically determined. For ISRA-TV, the regulariza-

tion parameter b was always set to 0.001. This was selected

empirically to provide a good regularization, without overly

smoothing.

3D Segmentation
In our previous study, the segmentation was done manually in

the Mimics software package (Materialise, Leuven, Belgium). The

aortic arch was manually thresholded in a first segmentation step.

When the resulting mask was judged sufficiently accurate, a 3D

geometric model was built according to this mask. This 3D model

was then smoothed in Mimics Remesher (Materialise, Leuven,

Belgium) to remove anatomically impossible bulges and dents

without shrinking the model. The result of these operations was a

3D model sufficiently smooth and simple to be useful in CFD

simulations.

Since this manual thresholding approach could lead to

subjective results we propose to use a semi-automatic method in

this work. To get an objective quantitative measure, the first steps

that would be executed during manual segmentation were

implemented in a semi-automatic fashion. The semi-automatic

segmentation results can then be compared. Although this method

does not result in a perfectly segmented aortic arch with inclusion

of the carotid arteries and the abdominal aorta, the segmentation

result is still representative of a starting point for further manual

editing.

As a first step, the semi-automatic segmentation starts with the

definition of a volume of interest (VOI) inside the aortic arch. The

mean v, standard deviation s, minimum vmin and maximum voxel

values vmax are then determined inside this VOI. Next, threshold-

ing is applied to preliminary segment the image with voxel values

in the interval [MAX(vmin, v – 3s), MIN(vmax, v + 3s)].

To select the arterial tree we need to apply three steps. First,

because noisy voxels may wrongly associate with the arterial tree

in later steps, the segmentation is eroded by 1 pixel (voxel is

Figure 2. Sub steps of semi-automatic segmentation. Transversal and sagittal slices of each automatic segmentation operation, going from the
reconstructed dataset on the left to the final binary image on the right.
doi:10.1371/journal.pone.0068449.g002
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replaced with the minimum value of the 26 neighbours in 3D).

Next, automatic region growing is started using the aortic arch

VOI as seed. Finally, the resulting mask is dilated by 1 pixel (voxel

value is replaced with the maximum value of the 26 neighbours in

3D), to regain the volume removed by the erosion operation.

As a last operation, the segmentation is converted to a binary

image and the remaining holes are filled (binary OR operation of

Figure 3. Segmentation mask and centerline. Front, right and top view of the aorta segmentation mask and the resulting centerline.
doi:10.1371/journal.pone.0068449.g003

Figure 4. Transversal reconstruction results. Transversal view of reconstructions for FDK (top row), ISRA (middle row) and ISRA-TV (bottom row)
for different amounts of projection views. Full arrow points to the aortic arch. Dashed arrow points to the sternum.
doi:10.1371/journal.pone.0068449.g004
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the voxel value with its 26 neighbours). The result of each

operation is depicted in Fig. 2 for a full-view (high-dose) dataset.

Analysis
To compare the reconstructions of each few-view dataset, the

full-view reconstruction was first automatically segmented to

obtain a reference segmentation mask, serving as the gold

standard segmentation. For ISRA and ISRA-TV, the ISRA

reconstruction from the 2048-view dataset is used as a reference.

For FDK, the FDK reconstruction from 2048-view dataset is used.

The sparse-view segmentations were evaluated based on 3 values:

the amount of correctly classified voxels or true positives (TP), the

amount of not segmented voxels or false negatives (FN) (segmented

on the full-view but not on the few-view reconstruction), and the

amount of additionally segmented voxels or false positives (FP)

(segmented on the few-view but not on the full-view reconstruc-

tion).

To compare the segmentations in more detail, the aorta

diameters and aorta positions were compared. First a centerline

was fitted to the aorta mask using the MedCAD module of

Mimics. Because this centerline cannot be calculated when the

segmentation still includes parts of the heart, all masks had to be

manually edited to only retain the aorta. This was done blinded for

all datasets. The 2048-view ISRA dataset was manually edited

twice: once to serve as a reference centerline and once as part of

the blinded datasets. The difference between both centerlines then

allows us to investigate the error due to the manual adjustments.

Figure 3 illustrates the shape of the resulting aorta segmentation

next to its calculated centerline. No data of FDK reconstructions

was included in this part of the study, as that data was

reconstructed with proprietary software. Careful comparison

between the FDK reconstruction and our iterative software

showed sub-voxel differences. This led to a considerable centerline

offset, which does not represent changes due to sparse-viewing

artifacts, but due to mismatched registration.

For each 3D centerline control point, the closest point (in L2-

norm sense) on the reference centerline was searched. The error

on the aortic diameter was then calculated by averaging the

relative error between the diameter dref of the reference segmen-

tation and the diameter d of the segmentation in question over

each pair of control points p:

error~

PN
p~1

dref ,p{dp

dref ,p

����
����

N

Each individual diameter was calculated as the best-fit diameter,

fit on the plane orthogonal to the centerline going through the

control point. The offset between both centerlines was calculated

by calculating the average 3D Euclidean distance between this

centerline and the reference centerline for all pairs of control

points.

Student’s T-test was used to test the results of different datasets

for significance to the error seen with 2048-view ISRA. As the

2048-view ISRA results are segmented twice, this allows us to

measure the error due to manual editing to retain the aorta. A

Figure 5. Coronal reconstruction results. Coronal view of reconstructions for FDK (top row), ISRA (middle row) and ISRA-TV (bottom row) for
different amounts of projection views.
doi:10.1371/journal.pone.0068449.g005
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significant (p,0.05) difference with this error then signifies errors

not caused by manual editing.

Results

Fig. 4 and Fig. 5 depict the images obtained at different few-

view levels, corresponding to nominal whole-body dose levels as

extrapolated from literature [15] of 120 mGy, 15 mGy, 7.5 mGy

and 1.875 mGy. Conventional FDK and ISRA lead to excessive

image noise for lower number of views, reducing the visibility of

the aortic arch (full arrow in Fig. 3). While ISRA-TV reduces the

streak artefacts considerably when only 256 and 128 views are

used, it does not manage to sufficiently reduce the artefacts when

only 32 views are used. Furthermore, a small loss of spatial

resolution can be noted in all ISRA-TV reconstructions, compared

to ISRA without regularization. This is apparent by comparing the

sternum in the top right on the full-view datasets (dashed arrow in

Fig. 4). On the other hand, the coronal view in Fig. 5 shows that

some vessels in the lung can still be identified at 128-view ISRA-

TV, while they are obscured by noise for ISRA and FDK.

Fig. 6 shows the classification accuracy when the amount of

views is reduced. The error bars represent the standard deviation

over the animals. ISRA-TV manages correct classification with

2048 and 1024 view datasets, which also holds for ISRA when

1024 views are used. Starting from 512 views on, a trend of

overestimation (higher FP fraction) occurs for ISRA and FDK.

This trend is not seen with ISRA-TV, which remains correct as

long as more than 64 views are used. A small underestimation is

always present with ISRA-TV, not seen with ISRA nor FDK. The

FDK reconstruction already shows some overestimation at 1024

projection views, reducing the number of correctly classified

voxels.

Fig. 7 and 8 compare the reconstructions and segmentations of

2048, 1024, 256, 128 and 32 views FDK, ISRA and ISRA-TV on

one transversal slice. The segmented image is colour coded,

showing white where there is correct classification (be it as

background, or as part of the arterial tree), blue when there is

overestimation and red when there is underestimation. The black

segmentation mask is the reference mask obtained from the high

dose FDK reconstruction for all fewer-view FDK reconstructions,

or from the high dose ISRA reconstruction for all fewer-view

ISRA and ISRA-TV reconstructions.

The FDK reconstructions do not lead to an accurate

segmentation, even when 1024 views are available. The large

shape disagreement between the 2048-view FDK and 2048-view

ISRA reconstruction is due to the much higher noise in the FDK

reconstruction, even though the maximum number of projection

views was used.

Both iterative reconstruction methods manage to obtain an

accurate segmentation on the 2048 and 1024 view datasets. There

is some difference, as ISRA tends to overestimate the segmentation

volume (blue), while ISRA-TV both over- and underestimates at

the same time. When 256 views are used, ISRA tends to

overestimate considerably, increasing the segmentation volume.

ISRA-TV is more accurate at 256 and 128 views, and

overestimates more when the number of views is further reduced

(more blue). Finally, both methods fail segmentation at only 32

views.

Table 1 contains the relative diameter errors compared to the

reference centerline, which was calculated separately from 2048-

view ISRA. The error for 2048-view ISRA is the error caused by

manually adjusting the segmentation. Although the semi-automat-

ically generated masks correctly delineated the abdominal aorta,

Figure 6. Quantitative comparison between different algorithms. TP, FP and FN for each algorithm. Note that each plot has a different scale,
which is very low in the case of FN.
doi:10.1371/journal.pone.0068449.g006

Figure 7. Difference images through the aortic arch. Colour coded difference images of one transversal slice through the aortic arch. Black is
reference, white is TP, blue is FP, red is FN.
doi:10.1371/journal.pone.0068449.g007
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the delineation between the heart and descending aorta was not

always that clear. This means we could sometimes not manually

separate the heart and the descending aorta without doubt about

changes to the aorta mask. These datasets were not included in the

comparison. Using 512 views with ISRA leads to a significantly

larger diameter error (p,0.05) than for 2048-view ISRA. The

mean aorta diameter seen on the reference segmentations is

1.2 mm. The 13.7% error for 512-view ISRA is thus equal to a

difference of 164 mm. When TV is used to reduce the noise and

image artifacts, the diameter errors do not change significantly,

even when only 256 views are used.

Table 2 details the centerline distance between the different

methods. Again, the distance for 2048-ISRA is the distance caused

by manually-adjusting the segmentation to enable the centerline

calculations. When fewer views are used with ISRA, the centerline

offset does not change significantly. However, this does not hold

for 512-view and 256-view ISRA-TV, where a significant (p,0.05)

different distance can be found compared to the distance expected

from adjusting the segmentation manually. The highest error can

always be found at the top of the aortic arch, where the carotid

arteries influence the centerline calculation.

Fig. 9 plots the number of iterations needed to reach the

stopping criterion and the total reconstruction time (logarithmic

scale) for both iterative algorithms and per number of used views.

As a reference, the total time needed for FDK is also included.

Our implementation ran on one Intel Xeon E5620 core (2.4 Ghz)

with 32 GB RAM memory, interfacing with one Nvidia Tesla

M2070 GPU. The usage of TV regularization leads to a slow-

down, doubling the total reconstruction time needed at 2048 views

for ISRA-TV compared to ISRA. This is due to the overhead of

calculating the TV per iteration. When less than 256 views are

used, this slow-down will be out-weighted by the guaranteed and

faster halting of the algorithm, which means much less iterations

are needed to reach our stopping criterion. For ISRA-TV, the

number of iterations needed is independent of the number of

Figure 8. Difference images through the heart. Colour coded difference images of a transversal slice through the heart. Black is reference, white
is TP, blue is FP, red is FN.
doi:10.1371/journal.pone.0068449.g008

Table 1. Relative aorta diameter errors.

views ISRA ISRA-TV

2048 5.1061.24% 7.2261.19%

1024 6.5662.32% 7.9761.09%

512 13.6663.37% * 7.5961.94%

256 - 6.5261.60%

128 - -

64 - -

32 - -

Comparison of relative aorta diameter errors (mean error 6 SD, n = 4) *:
Significance by comparing to 2048-view ISRA (p,0.05). Manually nonadjustable
data denoted with -.
doi:10.1371/journal.pone.0068449.t001

Table 2. Centerline distance.

ISRA ISRA-TV

views distance (mm) distance (mm)

2048 0.04660.011 0.06460.014

1024 0.05460.009 0.07560.022

512 0.05960.002 0.07060.014 *

256 - 0.06560.008 *

128 - -

64 - -

32 - -

3D Euclidean distance between centerlines (mean 6 SD, n = 4). *: Significance
by comparing to 2048-view ISRA (p,0.05). Manually nonadjustable data
denoted with -.
doi:10.1371/journal.pone.0068449.t002
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projection views and remains constant around 235613 iterations.

At 128 projection views or less, ISRA-TV thus leads to a faster

solution compared to ISRA. At 128 views, the reconstruction time

for ISRA-TV is already half the time needed by ISRA.

Discussion

Segmentation accuracy was used as a metric to determine if few-

view CT can be used to segment the aortic arch and connected

vessels. Based on the results presented, we found that 256-view

acquisitions can result in comparable segmentations as full-view

acquisitions, as long as TV regularization is used. This leads to an

8-fold reduction in X-ray dose, and an 8-fold shorter acquisition.

This leads to a considerable increase in throughput when multiple

studies need to be performed on the same day. Using fewer views

without using regularized image reconstruction will lead to errors

in the vessel diameters. Regularized reconstruction on the other

hand will keep the diameters. Although a significant geometry

displacement may occur, it is generally smaller than 0.075 mm,

which is smaller than the reconstructed voxel size.

FDK is currently used the most in preclinical practice due to its

fast reconstruction time and the number of commercially available

software packages providing this reconstruction algorithm. How-

ever, this comes at a cost, as the segmentation quality is already

negatively influenced even at 1024 views. In contrast, iterative

reconstruction is much more robust to dose reduction. Non-

regularized ISRA also shows its benefits: it can already lead to a 2-

fold decrease in dose compared to FDK, or even a 4-fold decrease

if a small change in diameter is acceptable.

Although the accuracy of ISRA-TV is very high at high-view

settings, both under- and overestimation can be noticed around

the aortic arch (Fig. 7). This is consistent with the insignificant

diameter loss and the sub-voxel displacement of the centerline. We

hypothesize that this is due to resolution loss at the edges.

However, this effect was not a limiting factor for our task.

In this study, only a reduction of projection views was employed

to reduce the total image dose, as this is the only method

retrospectively available. However, other dose reduction methods

exist in the clinic [40]. Of these clinical methods, reducing the tube

current is the only viable option in preclinical systems. The worse

photon statistics will result in an increase in image noise, without

inducing the streaking artefacts as encountered in sparse-viewing.

We expect comparable results when TV regularization is used on

those data sets.

TV reconstruction can be expected to be useful in many of

today’s pre-clinical studies for higher throughput and dose

reduction. Examples are bone imaging to assess bone density

during fracture healing [41], bone resorption, remodelling and

regeneration [42], bone neoplasms [43], and bone influenced by

metabolic disorders such as osteoporosis [44]. Because of the

piecewise constant nature of the bone and surrounding tissue,

these applications are very suited for TV based reconstruction.

Additionally, the nature of these studies primarily requires high-

resolution micro CT imaging, making them a good candidate for

dose reduction. Other applications may include preclinical PET/

CT and SPECT/CT studies, which utilize the CT information for

attenuation correction [45], partial volume (PVE) correction [46],

and as an anatomical landmark (VOI selection). Currently the

same CT image is used as input for these 3 methods. However,

especially attenuation correction is a big candidate for ultra-low-

dose micro CT scans. Applying TV regularization on our data

with only 32 views leads to an inaccurate segmentation of the

vessels, but does manage to obtain some visual quality (Fig. 4 and

5). Such images might still be useful for attenuation correction.

These low-dose acquisitions can then be co-registered with one

higher dose acquisition to generate all information in longitudinal

studies.

Conclusions

This study determined the minimum number of projection

views needed to accurately segment the aortic arch and its

connected vessels. The same segmentation quality can be obtained

as with a high number of views when ISRA-TV is used with a

minimum of 256 projection views. This leads to an 8 times

decrease in X-ray dose and acquisition time.
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Figure 9. Reconstruction time needed to reach stopping criterion. (left) Number of iterations needed to reach the stopping criterion. (right)
Total reconstruction time needed to reach the stopping criterion (logarithmic scale).
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